WO2018147606A1 - 폴리아마이드-이미드 필름 및 이의 제조방법 - Google Patents

폴리아마이드-이미드 필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2018147606A1
WO2018147606A1 PCT/KR2018/001498 KR2018001498W WO2018147606A1 WO 2018147606 A1 WO2018147606 A1 WO 2018147606A1 KR 2018001498 W KR2018001498 W KR 2018001498W WO 2018147606 A1 WO2018147606 A1 WO 2018147606A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
imide film
compound
imide
film
Prior art date
Application number
PCT/KR2018/001498
Other languages
English (en)
French (fr)
Inventor
정다우
김선환
이진우
오대성
임동진
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170121939A external-priority patent/KR101908121B1/ko
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to US16/477,697 priority Critical patent/US11702519B2/en
Priority to CN202210665931.8A priority patent/CN114854014A/zh
Priority to JP2019537331A priority patent/JP6850354B2/ja
Priority to CN201880010612.5A priority patent/CN110300773B/zh
Publication of WO2018147606A1 publication Critical patent/WO2018147606A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • Embodiments relate to polyamide-imide films having specific perforation properties, colorless transparent and excellent mechanical and optical properties and methods for their preparation.
  • Polyamide-imide has excellent friction, heat, and chemical resistance, so it can be used as primary electrical insulation, coating, adhesive, extrusion resin, heat-resistant paint, heat-resistant plate, heat-resistant adhesive, heat-resistant fiber, And heat-resistant films.
  • Polyamide-imide is used in various fields.
  • polyamide-imide is made in powder form and used as a coating agent such as metal or magnetic wire, and is mixed with other additives depending on the use.
  • polyamide-imide is used as a paint for decoration and corrosion protection together with the fluoropolymer, and serves to adhere the fluoropolymer to the metal substrate.
  • Polyamide-imide is also used as a coating for kitchen cooking utensils, and as a membrane used for gas separation due to its heat resistance and chemical resistance, and to filter contaminants such as carbon dioxide, hydrogen sulfide and impurities from natural gas wells. It is also used for devices.
  • polyamide-imide films have been developed to produce polyamide-imide films which are cheaper and have excellent optical, mechanical and thermal properties.
  • Embodiments relate to polyamide-imide films having specific perforation properties, colorless transparent and excellent mechanical and optical properties and methods for their preparation.
  • the polyamide-imide film includes a polyamide-imide polymer formed by polymerizing an aromatic diamine compound, an aromatic dianhydride compound, and a dicarbonyl compound, and satisfies the following general formula 1:
  • a method of preparing a polyamide-imide film may include polymerizing an aromatic diamine compound, an aromatic dianhydride compound, and a dicarbonyl compound to prepare a polyamide-imide polymer solution; Introducing the polymer solution into a tank; Extruding and casting the polymer solution in the tank and drying to prepare a gel sheet; And heat treating the gel sheet, wherein the polymer solution has a viscosity of 100,000 to 300,000 cps, and the heat treatment is performed at a rate of 2 ° C./min to 80 ° C./min in a temperature range of 80 to 500 ° C. While raising the temperature, the process proceeds for 5 to 40 minutes, and the maximum temperature of the heat treatment step is 300 to 500 ° C.
  • the polyamide-imide film according to the embodiment has specific puncturing properties, is colorless and transparent, and has excellent mechanical and optical properties.
  • the manufacturing method of the polyamide-imide film according to the embodiment it is possible to provide a film having a specific puncturing characteristics, a colorless transparent and excellent mechanical and optical properties.
  • Embodiments provide polyamide-imide films having specific perforation properties and being colorless and transparent but having excellent mechanical and optical properties.
  • the polyamide-imide film according to one embodiment includes a polyamide-imide polymer formed by polymerizing an aromatic diamine compound, an aromatic dianhydride compound, and a dicarbonyl compound.
  • the molar ratio of the aromatic diamine compound and the aromatic dianhydride compound may be 10: 2 to 10: 4, specifically 10: 2 to 10: 3.
  • the molar ratio range is satisfied, it is possible to provide a polyamide-imide film having excellent mechanical and optical properties.
  • the polyamide-imide polymer is an imide repeating unit derived from polymerization of the aromatic diamine compound and the aromatic dianhydride compound, and an amide derived from polymerization of the aromatic diamine compound and the dicarbonyl compound ( amide) repeating units.
  • the aromatic diamine compound is a compound which imide-bonds with the aromatic dianhydride compound and an amide bond with the dicarbonyl compound to form a copolymer.
  • one aromatic diamine may be used as the aromatic diamine compound.
  • the chemical structure of the polyamide-imide polymer can be easily designed, and process efficiency can be enhanced.
  • the aromatic diamine compound may be represented by 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-Bis (trifluoromethyl) -4, 4'-diaminobiphenyl, TFDB), but is not limited thereto.
  • the aromatic dianhydride compound Since the aromatic dianhydride compound has a low birefringence value, the aromatic dianhydride compound is a compound that can contribute to the improvement of optical properties such as transmittance of the polyamide-imide film.
  • one aromatic dianhydride may be used as the aromatic dianhydride compound.
  • the chemical structure of the polyamide-imide polymer can be designed to realize the desired physical properties, and process efficiency can be improved.
  • the aromatic dianhydride compound may include a compound having a fluorine-containing substituent.
  • the aromatic dianhydride compound may be formed of a compound having a fluorine-containing substituent.
  • the fluorine-containing substituent may be a fluorinated hydrocarbon group, specifically may be a trifluoromethyl group, but is not limited thereto.
  • the aromatic dianhydride compound is 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride represented by the formula (2) (2,2'-Bis- (3, 4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA), but is not limited thereto.
  • the aromatic diamine compound and the dianhydride compound may be polymerized to produce a polyamic acid.
  • the polyamic acid may be converted into a polyimide through a dehydration reaction, and the polyimide includes an imide repeat unit.
  • the polyimide may include a compound represented by the following Chemical Formula 3, but is not limited thereto.
  • N in Chemical Formula 3 is an integer of 1 to 400.
  • the dicarbonyl compound may include at least two dicarbonyl compounds different from each other.
  • the dicarbonyl compound may include a first dicarbonyl compound and / or a second dicarbonyl compound.
  • the first dicarbonyl compound and the second dicarbonyl compound may be aromatic dicarbonyl compounds.
  • the first dicarbonyl compound and the second dicarbonyl compound may be different compounds from each other.
  • first dicarbonyl compound and the second dicarbonyl compound may be different aromatic dicarbonyl compounds from each other, but are not limited thereto.
  • first dicarbonyl compound and the second dicarbonyl compound are each aromatic dicarbonyl compounds, since they contain a benzene ring, mechanical properties such as surface hardness and tensile strength of the polyamide-imide film produced It can contribute to the improvement.
  • two aromatic dicarbonyl compounds may be used as the dicarbonyl compound.
  • the chemical structure of the polyamide-imide polymer can be designed to realize desired physical properties, and process efficiency can be improved.
  • the dicarbonyl compound is terephthaloyl chloride (TPC), 1,1'-biphenyl-4,4'-dicarbonyl dichloride (1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC) or a combination thereof, but is not limited thereto.
  • TPC terephthaloyl chloride
  • 1,1'-biphenyl-4,4'-dicarbonyl dichloride 1,1'-biphenyl-4,4'-dicarbonyl dichloride
  • BPDC 1,1'-biphenyl-4,4'-dicarbonyl dichloride
  • the first dicarbonyl compound is 1,1'-biphenyl-4,4'-dicarbonyl dichloride represented by Formula 4 (1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC), but is not limited thereto.
  • the second dicarbonyl compound may include terephthaloyl chloride (TPC) represented by Formula 5, but is not limited thereto.
  • TPC terephthaloyl chloride
  • BPDC 1,1'-biphenyl-4,4'-dicarbonyldichloride
  • TPC terephthaloyl chloride
  • the polyamide-imide film produced may have high oxidation resistance.
  • aromatic diamine compound and the dicarbonyl compound may be polymerized to form an amide repeating unit represented by Formula 6 and Formula 7.
  • X in Chemical Formula 6 is an integer of 1 to 400.
  • Y in Formula 7 is an integer of 1 to 400.
  • Polyamide-imide film comprises a polyamide-imide polymer formed by polymerizing an aromatic diamine compound, an aromatic dianhydride compound and a dicarbonyl compound, wherein the aromatic diamine compound is one It includes a diamine compound, the aromatic dianhydride compound includes one aromatic dianhydride compound, the dicarbonyl compound may comprise two dicarbonyl compounds.
  • the aromatic diamine compound is 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-Bis (trifluoromethyl) -4,4'-diaminobiphenyl, TFDB ),
  • the aromatic dianhydride compound is 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (2,2'-Bis (3,4-Dicarboxyphenyl) hexafluoropropane dianhydride , 6-FDA)
  • the dicarbonyl compound is terephthaloyl chloride (TPC), 1,1'-biphenyl-4,4'-dicarbonyldichloride (1,1'-biphenyl -4,4'-dicarbonyl dichloride (BPDC) or a combination thereof, but is not limited thereto.
  • the aromatic diamine compound consists of one kind of diamine compound
  • the aromatic dianhydride compound consists of one kind of aromatic dianhydride compound
  • the dicarbonyl compound consists of two kinds of dicarbonyl compound.
  • the aromatic diamine compound is 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-Bis (trifluoromethyl) -4,4'-diaminobiphenyl, TFDB ),
  • the aromatic dianhydride compound is 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (2,2'-Bis (3,4-Dicarboxyphenyl) hexafluoropropane dianhydride , 6-FDA)
  • the dicarbonyl compound is terephthaloyl chloride (TPC) and 1,1'-biphenyl-4,4'-dicarbonyldichloride (1,1'-biphenyl).
  • BPDC 1,1'-biphenyl-4,4'-dicarbonyl dichloride
  • One embodiment is characterized by obtaining a polyamide-imide film having an improved balance of optical properties, mechanical properties and flexibility without the complicated process by appropriately adjusting the content of the imide repeat unit and amide repeat unit.
  • each of the imide repeating unit and the amide repeating unit may be controlled by the amount of the aromatic dianhydride compound and the dicarbonyl compound.
  • the molar ratio of the imide repeat unit and the amide repeat unit may be 50:50 to 20:80, but is not limited thereto.
  • the optical properties such as transmittance and haze of the polyamide-imide film are excellent.
  • the polyamide-imide film satisfies the following general formula 1:
  • the polyamide-imide film has a compressive strength of 0.4 kgf / ⁇ m or more based on 50 ⁇ m in thickness.
  • the compressive strength may be 0.45 kgf / ⁇ m or more or 0.46 kgf / ⁇ m or more, but is not limited thereto.
  • the polyamide-imide film has a maximum diameter of perforation (X) of 60 mm or less, based on a thickness of 50 ⁇ m.
  • the maximum perforation diameter may be 5 to 60 mm, 10 to 60 mm, 15 to 60 mm, 20 to 60 mm, 25 to 60 mm, or 25 to 58 mm, but is not limited thereto.
  • the polyamide-imide film has a modulus of 5.0 GPa or more based on a thickness of 50 ⁇ m. Specifically, the modulus may be 5.1 GPa or more, but is not limited thereto.
  • the polyamide-imide film has a surface hardness of HB or higher.
  • the surface hardness may be more than H or more than 2H, but is not limited thereto.
  • the polyamide-imide film has a yellowness index (YI) of 5 or less based on a thickness of 50 ⁇ m. Specifically, the yellowness may be 4.5 or less, but is not limited thereto. More specifically, the yellowness may be 4 or less, 3.8 or less or 3.6, but is not limited thereto.
  • YI yellowness index
  • the polyamide-imide film has a haze of 2% or less based on a thickness of 50 ⁇ m. Specifically, the haze may be 1.8% or less than 1.5%, but is not limited thereto. More specifically, the haze may be 1.0% or 0.9% or less, but is not limited thereto.
  • the polyamide-imide film has a light transmittance of 85% or more, measured at 550 nm based on a thickness of 50 ⁇ m.
  • the light transmittance measured at 550 nm based on a thickness of 50 ⁇ m may be 86% or more, 87% or more, or 88% or more, but is not limited thereto.
  • the polyamide-imide film has a tensile strength of at least 15 kgf / mm 2 based on a thickness of 50 ⁇ m. Specifically, the tensile strength may be 18 kgf / mm 2 or more, but is not limited thereto.
  • the polyamide-imide film has an elongation of 15% or more based on a thickness of 50 ⁇ m. Specifically, the elongation may be 16% or more, but is not limited thereto.
  • the polyamide-imide film may include a polyamide-imide polymer formed by polymerizing an aromatic diamine compound, an aromatic dianhydride compound, and a dicarbonyl compound, and may satisfy the condition of Formula 1. .
  • the polyamide-imide film satisfies the condition of Formula 1, and has a compressive strength of 0.4 kgf / ⁇ m or more, based on a thickness of 50 ⁇ m of the polyamide-imide film, and the maximum perforation
  • the diameter (X) may be 60 mm or less, the modulus is 5.0 GPa or more, the surface hardness is HB or more, the yellowness is 5 or less, the haze is 2% or less, and the light transmittance measured at 550 nm may be 85% or more. have.
  • the polyamide-imide film includes a polyamide-imide polymer formed by polymerizing an aromatic diamine compound, an aromatic dianhydride compound, and a dicarbonyl compound, wherein the aromatic diamine compound is 2,2 '. -Bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-Bis (trifluoromethyl) -4,4'-diaminobiphenyl, TFDB), wherein the aromatic dianhydride compound is 2 And 2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (2,2'-Bis (3,4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA), wherein the dicarbonyl
  • TPC terephthaloyl chloride
  • 1,1'-biphenyl-4,4'-dicarbonyldichloride (1,1'-biphen
  • Method for producing a polyamide-imide film comprising the steps of polymerizing an aromatic diamine compound, aromatic dianhydride compound and dicarbonyl compound to prepare a polyamide-imide polymer solution; Introducing the polymer solution into a tank; Extruding and casting the polymer solution in the tank and drying to prepare a gel sheet; And heat treating the gel sheet. At this time, the viscosity of the polymer solution is 100,000 to 300,000 cps.
  • the dicarbonyl compound may include a first dicarbonyl compound and a second dicarbonyl compound.
  • the preparing of the polymer solution may include: polymerizing an aromatic diamine compound, an aromatic dianhydride compound and a first dicarbonyl compound and a second dicarbonyl compound in an organic solvent to obtain a first polymer solution; And further adding the second dicarbonyl compound to the first polymer solution to obtain a second polymer solution.
  • the present invention is not limited thereto.
  • the method for producing a polyamide-imide film is obtained by polymerizing an aromatic diamine compound, an aromatic dianhydride compound and a first dicarbonyl compound and a second dicarbonyl compound in an organic solvent to obtain a first polymer solution. step; Further adding the second dicarbonyl compound to the first polymer solution to obtain a second polymer solution having a viscosity of 100,000 to 300,000 cps; Introducing the second polymer solution into a tank; Extruding and casting the second polymer solution in the tank and then drying to prepare a gel sheet; And heat treating the gel sheet.
  • the organic solvent used in the polymerization reaction is dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m- It may be one or more selected from the group consisting of cresol (m-cresol), tetrahydrofuran (THF) and chloroform, but is not limited thereto.
  • the organic solvent used in the polymerization reaction may be dimethylacetamide (DMAc), but is not limited thereto.
  • the aromatic diamine compound, the aromatic dianhydride compound, the first dicarbonyl compound, and the second dicarbonyl compound may be simultaneously or sequentially polymerized.
  • the step of obtaining the first polymer solution, the aromatic diamine compound, the aromatic dianhydride compound, the first dicarbonyl compound and the second dicarbonyl compound may be simultaneously polymerized. have.
  • the obtaining of the first polymer solution may include: polymerizing the aromatic diamine compound and the aromatic dianhydride compound to obtain a polyamic acid solution; And polymerizing by adding the first dicarbonyl compound and the second dicarbonyl compound to the polyamic acid solution.
  • the polyamic acid solution is a solution containing polyamic acid.
  • the obtaining of the first polymer solution may include: polymerizing the aromatic diamine compound and the aromatic dianhydride compound to obtain a polyamic acid solution; Dehydrating the polyamic acid solution to obtain a polyimide solution; And polymerizing by adding the first dicarbonyl compound and the second dicarbonyl compound to the polyimide solution.
  • the polyimide solution is a solution containing a polymer having an imide repeat unit.
  • obtaining the first polymer solution may include polymerizing the aromatic diamine compound, the first dicarbonyl compound, and the second dicarbonyl compound to obtain an amide polymer solution; And polymerizing by adding the aromatic dianhydride compound to the amide polymer solution.
  • the amide polymer solution is a solution comprising a polymer having an amide repeat unit.
  • the copolymer contained in the first polymer solution is derived from the imide repeat unit derived from the polymerization of the aromatic diamine compound and the aromatic dianhydride compound, and the polymerization of the aromatic diamine compound and the dicarbonyl compound. To include an amide repeating unit.
  • a catalyst may be further added.
  • Examples of the catalyst include, but are not limited to, beta picoline or acetic anhydride.
  • the reaction rate can be increased, and there is an effect of improving the bonding force between repeating unit structures or in repeating unit structures.
  • the viscosity of the polymer solution may be appropriately adjusted to be suitable for the extrusion process.
  • Another embodiment includes in the step of obtaining a first polymer solution, adding the aromatic dianhydride, the first dicarbonyl compound and the second dicarbonyl compound to an excess aromatic diamine compound.
  • the aromatic dianhydride may include 20 mol% to 50 mol%, It is not limited to this.
  • the content of the aromatic dianhydride is in the above range, the mechanical properties such as modulus, tensile strength, elongation and surface hardness of the polyamide-imide film are excellent.
  • the first dicarbonyl compound and the second dicarbonyl compound based on the total moles of the aromatic dianhydride, the first dicarbonyl compound and the second dicarbonyl compound from 50 mol% to 80 mol% may be included, but is not limited thereto.
  • the optical properties of the polyamide-imide film are excellent.
  • the step of obtaining a first polymer solution based on the total moles of the first dicarbonyl compound and the second dicarbonyl compound, 50 to 70% by weight of the first dicarbonyl compound It may be included in mol%, but is not limited thereto.
  • the first dicarbonyl compound is 1,1'-biphenyl-4,4'-dicarbonyldichloride (1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC), and the second dicarbonyl
  • the neyl compound may be terephthaloyl chloride (TPC).
  • the content of the first dicarbonyl compound is less than 50 mol%, physical properties such as tensile strength and modulus of the polyamide-imide film may be lowered, and when it is more than 70 mol%, optical properties such as haze may be reduced. have.
  • a first polymer solution I) an excess of an aromatic diamine compound that is at least the same mole as the rest of the reactant, II) the aromatic dianhydride compound, the first dicarbonyl compound and the 20 mol% to 50 mol% of the aromatic dianhydride compound, and III) the aromatic dianhydride compound, the first dicarbonyl compound, and the second dicarbono based on the total moles of the second dicarbonyl compound. It may be prepared using 50 mol% to 80 mol% of the first dicarbonyl compound and the second dicarbonyl compound based on the total moles of the neyl compound.
  • the first dicarbonyl compound (1,1′-biphenyl-4) based on the total moles of the first dicarbonyl compound and the second dicarbonyl compound.
  • 4'-dicarbonyldichloride (1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC)
  • 30 mol% to 50 mol% of the second dicarbonyl compound (terephthaloylchloride chloride, TPC)).
  • the second polymer solution may be further added to the first polymer solution to obtain a second polymer solution having a viscosity of 100,000 to 300,000 cps.
  • the weight ratio of the second dicarbonyl compound added in the step of obtaining the first polymer solution and the second dicarbonyl compound added in the step of obtaining the second polymer solution may be 90:10 to 99: 1, but It is not limited.
  • the second dicarbonyl compound added in the step of obtaining the second polymer solution may be used as a second dicarbonyl compound solution prepared by mixing with an organic solvent at a concentration of 5 to 20% by weight, but is not limited thereto. no.
  • the viscosity of the second polymer solution may be 100,000 to 300,000 cps, but is not limited thereto.
  • the viscosity of the second polymer solution is in the above range, the polyamide-imide film can be effectively produced in the extrusion and casting process.
  • the produced polyamide-imide film may have mechanical properties such as improved modulus.
  • the content of solids included in the second polymer solution may be 10% to 20% by weight.
  • the amount of solids included in the second polymer solution may be 12 wt% to 18 wt%, but is not limited thereto.
  • the polyamide-imide film may be effectively produced in the extrusion and casting process.
  • the produced polyamide-imide film may have mechanical properties such as improved modulus and optical properties such as low yellowness.
  • the pH of the second polymer solution can be adjusted by adding a neutralizing agent.
  • neutralizer examples include, but are not limited to, amine-based neutralizers such as alkoxyamines, alkylamines or alkanolamines.
  • the neutralizing agent may be added in an amount of about 0.1 mol% to about 10 mol% based on the total moles of monomers in the polyamide-imide polymer solution.
  • the pH of the second polymer solution adjusted through the neutralizer may be about 4 to about 7. Specifically, the pH of the adjusted second polymer solution may be about 4.5 to about 7.
  • the polyamide-imide film to be produced may have an effect in terms of mechanical properties, such as improving the optical properties and modulus, such as lowering the yellowness or preventing the increase in the yellowness.
  • a step of moving the polymer solution to a tank without a separate process is performed.
  • the polymer solution prepared in the polymerization facility is stored and moved to the tank as it is without a separate precipitation and re-dissolution process for removing impurities.
  • impurities such as hydrochloric acid (HCl) generated in the manufacturing process of the polymer solution
  • the prepared polymer solution was purified through a separate process to remove impurities, and then re-dissolved in a solvent was performed. .
  • the loss of the active ingredient increases in the process of removing impurities, and as a result, there is a problem that the yield decreases.
  • the manufacturing method according to the embodiment is to minimize the content of impurities in the manufacturing process of the polymer solution, or even if a predetermined impurity by controlling them properly in a subsequent process so as not to lower the physical properties of the final film It has the advantage of producing a film without a separate precipitation or redissolution process.
  • the internal temperature of the tank is preferably -20 to 0 °C. This is to prevent deterioration of the polymer solution to be introduced and to lower the moisture content.
  • vacuum degassing for 1 to 2 hours until the pressure in the tank is 0.2 to 0.4 bar; may further comprise a.
  • purging the tank to 1 to 2 atm using nitrogen gas may further include.
  • the vacuum degassing and purging the tank with nitrogen gas are performed in a separate process.
  • the step of vacuum degassing may be performed, and thereafter, the step of purging the tank with nitrogen gas may be performed, but is not limited thereto.
  • the polymer solution in the tank is extruded and cast and then dried to prepare a gel sheet.
  • the above-mentioned organic solvent may be used.
  • the polymer solution is extruded and cast into a casting sieve, such as a casting roll or casting belt.
  • the casting sieve may be cast at a speed of about 0.5 m / min to about 15 m / min, and also at a thickness of 200 to 700 ⁇ m.
  • the extrusion and casting speed is within the above range, the polyamide-imide film produced by the manufacturing method according to the embodiment may have improved optical and mechanical properties.
  • the polymer solution has the viscosity as described above, it may be advantageous to have the improved optical and mechanical properties to be extruded and cast at the extrusion speed as described above.
  • a gel sheet is formed on the casting sieve by removing the solvent contained in the polymer solution by a drying process.
  • the drying process may be performed at a temperature of about 60 ° C. to about 150 ° C., for a time of about 5 minutes to about 60 minutes.
  • the gel sheet may be heat-treated to prepare a polyamide-imide film according to the embodiment.
  • the heat treatment step may be performed for 5 to 40 minutes or 5 to 30 minutes while increasing the temperature at a rate of 2 °C / min to 80 °C / min in the temperature range of 80 to 500 °C. Specifically, the heat treatment step may be performed for 5 to 30 minutes or 5 to 20 minutes while increasing the temperature at a rate of 10 °C / min to 80 °C / min in the temperature range of 80 to 470 °C.
  • the maximum temperature during the heat treatment step may be 300 to 500 °C or 320 to 500 °C. More specifically, the maximum temperature during the heat treatment step may be 350 to 500 °C, 380 to 500 °C, 400 to 500 °C, 410 to 480 °C, 410 to 470 °C or 410 to 450 °C, but is not limited thereto.
  • Depressing the heat-treated sheet after the heat treatment step may further include.
  • the step of temperature reduction may include a first temperature reduction step of reducing the temperature at a rate of 100 ° C./min to 1,000 ° C./min and a second temperature reduction step of reducing the temperature at a rate of 40 ° C./min to 400 ° C./min.
  • a second temperature reduction step is performed after the first temperature reduction step.
  • the temperature reduction rate of the first temperature reduction step may be faster than the temperature reduction rate of the second temperature reduction step.
  • the maximum speed of the first temperature reduction step is faster than the maximum speed of the second temperature reduction step.
  • the lowest speed of the first temperature reduction step is faster than the lowest speed of the second temperature reduction step.
  • the polyamide-imide polymer Since the polyamide-imide polymer has high oxidation resistance, it is hardly affected by oxygen contained in the atmosphere during the heat treatment process. Thus, the polyamide-imide film according to the embodiment may have improved optical properties.
  • polyimide film while preventing the yellowing of the film through the purge of nitrogen gas during the heat treatment process of the film forming process to ensure transparency, according to the embodiment polyamide excellent optical properties without such nitrogen gas purging -Imide films can be obtained.
  • the polyamide-imide film prepared by the manufacturing method may satisfy the condition of Formula 1.
  • a double-jacketed 1 L glass reactor was filled with organic solvent dimethylacetamide (DMAc) in a nitrogen atmosphere at 20 ° C. and then aromatic diamine 2,2′-bis (trifluoromethyl) -4,4 '-Diaminobiphenyl (TFDB) was slowly added while dissolving.
  • DMAc organic solvent dimethylacetamide
  • TFDB aromatic diamine 2,2′-bis (trifluoromethyl) -4,4 '-Diaminobiphenyl
  • BPDC 1,1'-biphenyl-4,4'-dicarbonyldichloride
  • the yield reaches about 100% immediately before the film forming step (just before application).
  • 'yield' refers to a mole of material remaining in a solution for application compared to a mole of injected material. Means.
  • the yield just before the film forming step is about 60%, since the loss of material inevitably occurs at the stage of polyimidization reaction, precipitation, filtration and drying.
  • polyamide-imide films were prepared in the same manner, except that the mole ratios of TFDB, 6-FDA, TPC and BPDC were set forth in Table 1 below.
  • Comparative Example 1 a colored PI film of GF series of SKC Kolon PI was used.
  • the thickness was measured by an average value by measuring 5 points in the width direction.
  • the perforated sample was placed on a flat glass plate and the diameter was measured based on the longest distance from the center of the perforation using a tajima tape measure (GL19-55BL) manufactured by Tajima.
  • Evaluation example 5 surface hardness measurement
  • Yellowness index was measured using a CIE colorimeter by a spectrophotometer (UltraScan PRO, Hunter Associates Laboratory).
  • the light transmittance and haze at 550 nm were measured using the haze meter NDH-5000W of Denshoku Kogyo Co., Ltd., Japan.

Abstract

실시예는 특정 천공 특성을 갖고, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수한 폴리아마이드-이미드 필름으로서, 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함하고, 하기 일반식 1의 조건을 만족하는, 폴리아마이드-이미드 필름 및 이의 제조방법을 제공할 수 있다: <일반식 1> 4 ≤ X/Y ≤ 12 X: 상기 필름을 UTM 압축 모드로 2.5 mm 구형상의 팁을 사용하여 10 mm/min의 속도로 천공시, 크랙을 포함한 천공 최대 직경(mm) Y: 상기 필름의 모듈러스(GPa).

Description

폴리아마이드-이미드 필름 및 이의 제조방법
구현예는 특정 천공 특성을 갖고, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수한 폴리아마이드-이미드 필름 및 이의 제조방법에 관한 것이다.
폴리아마이드-이미드(polyamide-imide, PAI)는 마찰, 열, 및 화학적인 저항력이 뛰어나, 1차 전기 절연제, 코팅제, 접착제, 압출용 수지, 내열도료, 내열판, 내열접착제, 내열섬유, 및 내열필름 등에 응용된다.
폴리아마이드-이미드는 다양한 분야에서 활용되고 있다. 예를 들어, 폴리아마이드-이미드는 분말 형태로 만들어져 금속 또는 자석 와이어 등의 코팅제로 사용되며 용도에 따라 다른 첨가제와 혼합하여 사용된다. 또한 폴리아마이드-이미드는 불소중합체와 함께 장식과 부식 방지를 위한 도료로 사용되며, 불소중합체를 금속 기판에 접착시키는 역할을 한다. 또한 폴리아마이드-이미드는 주방 조리기구에 코팅을 하는 데에도 사용되고, 내열성과 내화학성의 특징이 있어 가스 분리에 사용하는 멤브레인으로도 사용되며, 천연가스 유정에서 이산화탄소, 황화수소 및 불순물과 같은 오염물을 여과하는 장치에도 사용된다.
최근에는 폴리아마이드-이미드를 필름화함으로써, 보다 저렴하면서도 광학적, 기계적 및 열적 특성이 우수한 폴리아마이드-이미드 필름이 개발되고 있다.
구현예는 특정 천공 특성을 갖고, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수한 폴리아마이드-이미드 필름 및 이의 제조방법에 관한 것이다.
일 구현예에 따른 폴리아마이드-이미드 필름은 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함하고, 하기 일반식 1의 조건을 만족한다:
<일반식 1>
4 ≤ X/Y ≤ 12
X: 상기 필름을 UTM 압축 모드로 2.5 mm 구형상의 팁을 사용하여 10 mm/min의 속도로 천공시, 크랙을 포함한 천공 최대 직경(mm)
Y: 상기 필름의 모듈러스(GPa)
다른 구현예에 따른 폴리아마이드-이미드 필름의 제조방법은 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 폴리아마이드-이미드 중합체 용액을 제조하는 단계; 상기 중합체 용액을 탱크에 투입하는 단계; 상기 탱크 내의 중합체 용액을 압출 및 캐스팅한 후 건조하여, 겔 시트를 제조하는 단계; 및 상기 겔 시트를 열처리하는 단계;를 포함하고, 상기 중합체 용액의 점도가 10만 내지 30만 cps이고, 상기 열처리 단계가 80 내지 500℃의 온도 범위에서 2℃/min 내지 80℃/min 속도로 승온시키면서, 5 내지 40 분 동안 진행되고, 상기 열처리 단계 중 최대 온도가 300 내지 500℃이다.
구현예에 따른 폴리아마이드-이미드 필름은 특정 천공 특성을 갖고, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수하다.
구현예에 따른 폴리아마이드-이미드 필름의 제조방법에 따르면, 특정 천공 특성을 갖고, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수한 필름을 제공할 수 있다.
이하, 구현예를 통해 본 발명을 상세하게 설명한다. 구현예는 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
본 명세서에서 "포함"한다는 것은 특별한 기재가 없는 한 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로써 수식되는 것으로 이해하여야 한다.
본 명세서에서 제1, 제2 등의 용어는 다양한 구성 요소를 설명하기 위해 사용되는 것이고, 상기 구성 요소들은 상기 용어에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로 구별하는 목적으로만 사용된다.
[폴리아마이드-이미드 필름]
구현예는 특정 천공 특성을 갖고, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수한 폴리아마이드-이미드 필름을 제공한다.
일 구현예에 따른 폴리아마이드-이미드 필름은 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함한다.
상기 방향족 디아민 화합물 및 상기 방향족 디안하이드라이드 화합물의 몰비는 10 : 2 내지 10 : 4, 구체적으로 10 : 2 내지 10 : 3일 수 있다. 상기 몰비 범위를 만족하는 경우, 기계적 물성과 광학적 물성이 우수한 폴리아마이드-이미드 필름을 제공할 수 있다.
상기 폴리아마이드-이미드 중합체는 상기 방향족 디아민 화합물과 상기 방향족 디안하이드라이드 화합물의 중합으로부터 유래하는 이미드(imide) 반복단위와, 상기 방향족 디아민 화합물과 상기 디카르보닐 화합물의 중합으로부터 유래하는 아마이드(amide) 반복단위를 포함한다.
상기 방향족 디아민 화합물은 상기 방향족 디안하이드라이드 화합물과 이미드 결합하고, 상기 디카르보닐 화합물과 아마이드 결합하여 공중합체를 형성하는 화합물이다.
일 구현예에서, 상기 방향족 디아민 화합물로서 1종의 방향족 디아민이 사용될 수 있다. 단일 종류의 방향족 디아민 화합물을 사용함으로써 상기 폴리아마이드-이미드 중합체의 화학적 구조의 설계가 용이할 수 있고, 공정 효율을 높일 수 있다.
예를 들어, 상기 방향족 디아민 화합물은 하기 화학식 1로 표시되는 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl, TFDB)을 포함할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 1]
Figure PCTKR2018001498-appb-I000001
상기 방향족 디안하이드라이드 화합물은 복굴절값이 낮기 때문에 상기 폴리아마이드-이미드 필름의 투과도와 같은 광학 물성의 향상에 기여할 수 있는 화합물이다.
일 구현예에서, 상기 방향족 디안하이드라이드 화합물로서 1종의 방향족 디안하이드라이드가 사용될 수 있다. 단일 종류의 방향족 디안하이드라이드 화합물을 사용함으로써 상기 폴리아마이드-이미드 중합체의 화학적 구조를 목적하는 물성이 구현되도록 설계할 수 있고, 공정 효율을 높일 수 있다.
상기 방향족 디안하이드라이드 화합물은 불소함유 치환기를 갖는 화합물을 포함할 수 있다. 또는 상기 방향족 디안하이드라이드 화합물은 불소함유 치환기를 갖는 화합물로 이루어질 수 있다. 이 때, 상기 불소함유 치환기는 불소화 탄화수소기일 수 있고, 구체적으로는 트리플루오로메틸기 일 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 방향족 디안하이드라이드 화합물은 하기 화학식 2로 표시되는 2,2'-비스(3,4-디카복시페닐)헥사플루오로프로판 디안하이드라이드(2,2'-Bis-(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA)를 포함할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 2]
Figure PCTKR2018001498-appb-I000002
상기 방향족 디아민 화합물 및 상기 디안하이드라이드 화합물이 중합하여 폴리아믹산을 생성할 수 있다.
이어서, 상기 폴리아믹산은 탈수 반응을 통하여 폴리이미드로 전환될 수 있고, 상기 폴리이미드는 이미드(imide) 반복단위를 포함한다.
예를 들어, 상기 폴리이미드는 하기 화학식 3으로 표시되는 화합물을 포함할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 3]
Figure PCTKR2018001498-appb-I000003
상기 화학식 3의 n은 1 내지 400 의 정수이다.
상기 디카르보닐 화합물은 서로 다른 적어도 2 종의 디카르보닐 화합물을 포함할 수 있다.
예를 들어, 상기 디카르보닐 화합물은 제1 디카르보닐 화합물 및/또는 제2 디카르보닐 화합물을 포함할 수 있다.
상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물은 방향족 디카르보닐 화합물(aromatic dicarbonyl compound)일 수 있다.
상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물은 서로 상이한 화합물일 수 있다.
예를 들어, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물이 서로 상이한 방향족 디카르보닐 화합물일 수 있으나, 이에 한정되는 것이 아니다.
상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물이 각각 방향족 디카르보닐 화합물인 경우, 벤젠 고리를 포함하고 있으므로, 제조된 폴리아마이드-이미드 필름의 표면 경도 및 인장 강도와 같은 기계적 물성을 향상시키는데 기여할 수 있다.
일 구현예에서, 상기 디카르보닐 화합물로서 2종의 방향족 디카르보닐 화합물이 사용될 수 있다. 2종의 방향족 디카르보닐 화합물을 사용함으로써 상기 폴리아마이드-이미드 중합체의 화학적 구조를 목적하는 물성이 구현되도록 설계할 수 있고, 공정 효율을 높일 수 있다.
상기 디카르보닐 화합물은 테레프탈로일클로라이드(terephthaloyl chloride, TPC), 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC) 또는 이의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 제1 디카르보닐 화합물은 화학식 4로 표시되는 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC)를 포함할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 4]
Figure PCTKR2018001498-appb-I000004
또한, 상기 제2 디카르보닐 화합물은 화학식 5로 표시되는 테레프탈로일클로라이드(terephthaloyl chloride, TPC)를 포함할 수 있으나, 이에 한정되는 것은 아니다:
[화학식 5]
Figure PCTKR2018001498-appb-I000005
상기 제1 디카르보닐 화합물로서 1,1'-비페닐-4,4'-디카르보닐디클로라이드(BPDC), 상기 제2 디카르보닐 화합물로서 테레프탈로일클로라이드(TPC)가 적절하게 조합되어 사용되는 경우, 제조된 폴리아마이드-이미드 필름은 높은 내산화성을 가질 수 있다.
또한, 상기 방향족 디아민 화합물 및 상기 디카르보닐 화합물이 중합하여 화학식 6 및 화학식 7로 표시되는 아마이드(amide) 반복단위를 형성할 수 있다.
[화학식 6]
Figure PCTKR2018001498-appb-I000006
[화학식 7]
Figure PCTKR2018001498-appb-I000007
상기 화학식 6의 x는 1 내지 400 의 정수이다.
상기 화학식 7의 y는 1 내지 400 의 정수이다.
다른 구현예에 따른 폴리아마이드-이미드 필름은 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함하고, 이 때 상기 방향족 디아민 화합물은 1 종의 디아민 화합물을 포함하고, 상기 방향족 디안하이드라이드 화합물은 1 종의 방향족 디안하이드라이드 화합물을 포함하며, 상기 디카르보닐 화합물은 2 종의 디카르보닐 화합물을 포함할 수 있다.
예를 들어, 상기 방향족 디아민 화합물은 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl, TFDB)을 포함하고, 상기 방향족 디안하이드라이드 화합물은 2,2'-비스(3,4-디카복시페닐)헥사플루오로프로판 디안하이드라이드(2,2'-Bis(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA)를 포함하고, 상기 디카르보닐 화합물은 테레프탈로일클로라이드(terephthaloyl chloride, TPC), 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC) 또는 이의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.
또는, 상기 방향족 디아민 화합물은 1 종의 디아민 화합물로 이루어지고, 상기 방향족 디안하이드라이드 화합물은 1 종의 방향족 디안하이드라이드 화합물로 이루어지며, 상기 디카르보닐 화합물은 2 종의 디카르보닐 화합물로 이루어질 수 있다.
예를 들어, 상기 방향족 디아민 화합물은 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl, TFDB)로 이루어지고, 상기 방향족 디안하이드라이드 화합물은 2,2'-비스(3,4-디카복시페닐)헥사플루오로프로판 디안하이드라이드(2,2'-Bis(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA)로 이루어지며, 상기 디카르보닐 화합물은 테레프탈로일클로라이드(terephthaloyl chloride, TPC) 및 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC)로 이루어질 수 있다.
일 구현예는 이미드 반복단위 및 아마이드 반복단위의 함량을 적절히 조절함으로써, 복잡한 과정 없이도 광학적 특성, 기계적 물성 및 유연성이 균형있게 개선된 폴리아마이드-이미드 필름을 수득할 수 있는 것을 특징으로 한다.
또한, 종래와 같이 침전, 여과 및 건조, 재용해 등의 과정을 거치지 않아도 광학적 특성, 기계적 특성 및 유연성이 균형있게 개선된 폴리아마이드-이미드 필름을 얻을 수 있다.
상기 이미드 반복단위 및 아마이드 반복단위 각각의 함량은 상기 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물의 투입량으로 조절될 수 있다.
상기 폴리아마이드-이미드 필름에 포함된 폴리아마이드-이미드 중합체에 있어서, 이미드 반복단위와 아마이드 반복단위의 몰비는 50:50 내지 20:80일 수 있으나, 이에 한정되는 것은 아니다.
이미드 반복단위와 아마이드 반복단위의 몰비가 상기 범위인 경우, 폴리아마이드-이미드 필름의 투과도, 헤이즈 등의 광학적 물성이 우수하다.
상기 폴리아마이드-이미드 필름은 하기 일반식 1의 조건을 만족한다:
<일반식 1>
4 ≤ X/Y ≤ 12
X: 상기 필름을 UTM 압축 모드로 2.5 mm 구형상의 팁을 사용하여 10 mm/min의 속도로 천공시, 크랙을 포함한 천공 최대 직경(mm)
Y: 상기 필름의 모듈러스(GPa)
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 압축 강도가 0.4 kgf/㎛ 이상이다. 구체적으로, 상기 압축 강도가 0.45 kgf/㎛ 이상 또는 0.46 kgf/㎛ 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 상기 천공 최대 직경(X)이 60 mm 이하이다. 구체적으로, 상기 천공 최대 직경이 5 내지 60 mm, 10 내지 60 mm, 15 내지 60 mm, 20 내지 60 mm, 25 내지 60 mm, 또는 25 내지 58 mm일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 모듈러스가 5.0 GPa 이상이다. 구체적으로, 상기 모듈러스가 5.1 GPa 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 표면 경도가 HB 이상이다. 구체적으로 상기 표면 경도가 H 이상 또는 2H 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 황색도(Yellow Index, YI)가 5 이하이다. 구체적으로, 상기 황색도가 4.5 이하일 수 있으나, 이에 한정되는 것은 아니다. 더욱 구체적으로 상기 황색도가 4 이하, 3.8 이하 또는 3.6 이하일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 헤이즈가 2% 이하이다. 구체적으로, 상기 헤이즈가 1.8% 또는 1.5% 이하일 수 있으나, 이에 한정되는 것은 아니다. 더욱 구체적으로 상기 헤이즈가 1.0% 또는 0.9% 이하일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 550 nm 에서 측정한 광투과도가 85% 이상이다. 구체적으로, 두께 50 ㎛를 기준으로, 550 nm 에서 측정한 광투과도가 86% 이상, 87% 이상 또는 88% 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 인장 강도가 15 kgf/mm2 이상이다. 구체적으로 상기 인장 강도가 18 kgf/mm2 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아마이드-이미드 필름은 두께 50 ㎛를 기준으로, 신도가 15% 이상이다. 구체적으로 상기 신도가 16% 이상일 수 있으나, 이에 한정되는 것은 아니다.
상술한 폴리아마이드-이미드 필름에 대한 다양한 특성들이 조합될 수 있다.
예를 들어, 상기 폴리아마이드-이미드 필름은 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함하고, 상기 일반식 1의 조건을 만족할 수 있다.
다른 예로서, 상기 폴리아마이드-이미드 필름은 상기 일반식 1의 조건을 만족하고, 상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 압축 강도가 0.4 kgf/㎛ 이상이고, 상기 천공 최대 직경(X)이 60 mm 이하이고, 모듈러스가 5.0 GPa 이상이고, 표면 경도가 HB 이상이고, 황색도가 5 이하이고, 헤이즈가 2% 이하이고, 550 nm 에서 측정한 광투과도가 85% 이상일 수 있다.
또 다른 예로서, 상기 폴리아마이드-이미드 필름은 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함하고, 상기 방향족 디아민 화합물은 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl, TFDB)을 포함하고, 상기 방향족 디안하이드라이드 화합물은 2,2'-비스(3,4-디카복시페닐)헥사플루오로프로판 디안하이드라이드(2,2'-Bis(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA)를 포함하고, 상기 디카르보닐 화합물은 테레프탈로일클로라이드(terephthaloyl chloride, TPC), 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC) 또는 이의 조합을 포함할 수 있다.
[폴리아마이드-이미드 필름의 제조방법]
일 구현예에 따른 폴리아마이드-이미드 필름을 제조하는 방법은, 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 폴리아마이드-이미드 중합체 용액을 제조하는 단계; 상기 중합체 용액을 탱크에 투입하는 단계; 상기 탱크 내의 중합체 용액을 압출 및 캐스팅한 후 건조하여, 겔 시트를 제조하는 단계; 및 상기 겔 시트를 열처리하는 단계;를 포함한다. 이 때 상기 중합체 용액의 점도는 10만 내지 30만 cps이다.
또한, 상기 디카르보닐 화합물은 제1 디카르보닐 화합물 및 제2 디카르보닐 화합물을 포함할 수 있다. 이 때 상기 중합체 용액을 제조하는 단계는, 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 제1 디카르보닐 화합물 및 제2 디카르보닐 화합물을 유기 용매 상에서 중합하여 제1 중합체 용액을 얻는 단계; 및 상기 제1 중합체 용액에 상기 제2 디카르보닐 화합물을 더 첨가하여 제2 중합체 용액을 얻는 단계;를 포함할 수 있으나, 이에 한정되는 것은 아니다.
구체적으로, 폴리아마이드-이미드 필름을 제조하는 방법은, 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 제1 디카르보닐 화합물 및 제2 디카르보닐 화합물을 유기 용매 상에서 중합하여 제1 중합체 용액을 얻는 단계; 상기 제1 중합체 용액에 상기 제2 디카르보닐 화합물을 더 첨가하여 점도가 10만 내지 30만 cps인 제2 중합체 용액을 얻는 단계; 상기 제2 중합체 용액을 탱크에 투입하는 단계; 상기 탱크 내의 제2 중합체 용액을 압출 및 캐스팅한 후 건조하여, 겔 시트를 제조하는 단계; 및 상기 겔 시트를 열처리하는 단계;를 포함한다.
상기 중합 반응에서 사용되는 유기 용매는 디메틸포름아미드(dimethylformamide, DMF), 디메틸아세트아미드(dimethylacetamide, DMAc), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), m-크레졸(m-cresol), 테트라하이드로퓨란(tetrahydrofuran, THF) 및 클로로포름으로 이루어진 군으로부터 선택된 1 종 이상일 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 중합 반응에서 사용되는 유기 용매는 디메틸아세트아미드(dimethylacetamide, DMAc)일 수 있으나, 이에 한정되는 것은 아니다.
상기 제1 중합체 용액을 얻는 단계는, 상기 방향족 디아민 화합물, 상기 방향족 디안하이드라이드 화합물, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 동시 또는 순차 중합할 수 있다.
구체적으로, 일 구현예에서, 상기 제1 중합체 용액을 얻는 단계는, 상기 방향족 디아민 화합물, 상기 방향족 디안하이드라이드 화합물, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 동시에 중합할 수 있다.
다른 구현예에서, 상기 제1 중합체 용액을 얻는 단계는, 상기 방향족 디아민 화합물 및 상기 방향족 디안하이드라이드 화합물을 중합하여 폴리아믹산 용액을 얻는 단계; 및 상기 폴리아믹산 용액에 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 첨가하여 중합하는 단계;를 포함할 수 있다. 상기 폴리아믹산 용액은 폴리아믹산을 포함하는 용액이다.
또 다른 구현예에서, 상기 제1 중합체 용액을 얻는 단계는, 상기 방향족 디아민 화합물 및 상기 방향족 디안하이드라이드 화합물을 중합하여 폴리아믹산 용액을 얻는 단계; 상기 폴리아믹산 용액으로부터 탈수 반응을 진행하여 폴리이미드 용액을 얻는 단계; 및 상기 폴리이미드 용액에 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 첨가하여 중합하는 단계;를 포함할 수 있다. 상기 폴리이미드 용액은 이미드 반복단위를 갖는 중합체를 포함하는 용액이다.
또 다른 구현예에서, 상기 제1 중합체 용액을 얻는 단계는, 상기 방향족 디아민 화합물, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 중합하여 아마이드 중합체 용액을 얻는 단계; 및 상기 아마이드 중합체 용액에 상기 방향족 디안하이드라이드 화합물을 첨가하여 중합하는 단계;를 포함할 수 있다. 상기 아마이드 중합체 용액은 아마이드 반복단위를 갖는 중합체를 포함하는 용액이다.
상기 제1 중합체 용액에 포함된 공중합체는 상기 방향족 디아민 화합물과 상기 방향족 디안하이드라이드 화합물의 중합으로부터 유래하는 이미드(imide) 반복단위와, 상기 방향족 디아민 화합물과 상기 디카르보닐 화합물의 중합으로부터 유래하는 아마이드(amide) 반복단위를 포함한다.
상기 제1 중합체 용액을 얻는 단계, 상기 제2 중합체를 얻는 단계, 또는 상기 제2 중합체를 제조한 이후에, 촉매가 더 첨가될 수 있다.
상기 촉매의 예로서, 베타피콜린 또는 아세틱 안하이드라이드 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 촉매를 더 첨가함으로써, 반응 속도를 빠르게 할 수 있고, 반복단위 구조 간 또는 반복단위 구조 내 결합력을 향상시키는 효과가 있다.
또한, 상기 촉매의 첨가, 중합체 용액의 건조 및 재용해 또는 용매 추가 등의 공정에서, 압출 공정에 적당하도록 상기 중합체 용액의 점도가 적절하게 조절될 수 있다.
다른 구현예는 제1 중합체 용액을 얻는 단계에 있어서, 과량의 방향족 디아민 화합물에 상기 방향족 디안하이드라이드, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 투입하는 것을 포함한다.
구체적으로, 상기 방향족 디안하이드라이드, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물의 총 몰을 기준으로, 상기 방향족 디안하이드라이드를 20 몰% 내지 50 몰%로 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 방향족 디안하이드라이드의 함량이 상기 범위인 경우, 폴리아마이드-이미드 필름의 모듈러스, 인장 강도, 신도 및 표면 경도 등의 기계적 물성이 우수하다.
또한, 상기 방향족 디안하이드라이드, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물의 총 몰을 기준으로, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 50 몰% 내지 80 몰%로 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 디카르보닐 화합물의 함량이 상기 범위인 경우, 폴리아마이드-이미드 필름의 광투과도, 헤이즈 등의 광학적 물성이 우수하다.
또 다른 구현예는 제1 중합체 용액을 얻는 단계에 있어서, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물의 총 몰을 기준으로, 상기 제1 디카르보닐 화합물을 50 몰% 내지 70 몰%로 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 제1 디카르보닐 화합물은 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC)이고, 상기 제2 디카르보닐 화합물은 테레프탈로일클로라이드(terephthaloyl chloride, TPC)일 수 있다.
상기 제1 디카르보닐 화합물의 함량이 50 몰% 미만인 경우 폴리아마이드-이미드 필름의 인장 강도, 모듈러스 등의 물성이 저하될 수 있고, 70 몰% 초과인 경우 헤이즈 등의 광학적 물성이 저하될 수 있다.
바람직하게는, 제1 중합체 용액을 얻는 단계에 있어서, Ⅰ) 나머지 반응 물질과 동일 몰(mole) 이상인 과량의 방향족 디아민 화합물, Ⅱ) 상기 방향족 디안하이드라이드 화합물, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물의 총 몰을 기준으로, 20 몰% 내지 50 몰%의 방향족 디안하이드라이드 화합물, 및 Ⅲ) 상기 방향족 디안하이드라이드 화합물, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물의 총 몰을 기준으로, 50 몰% 내지 80 몰%의 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물을 사용하여 제조할 수 있다.
구체적으로, 상기 제1 디카르보닐 화합물 및 상기 제2 디카르보닐 화합물의 총 몰을 기준으로, 50 몰% 내지 70 몰%의 상기 제1 디카르보닐 화합물(1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC)) 및 30 몰% 내지 50 몰%의 상기 제2 디카르보닐 화합물(테레프탈로일클로라이드(terephthaloyl chloride, TPC))을 사용하여 제조할 수 있다.
상기 제1 중합체 용액을 얻는 단계에서, 이미드 반복단위 및 아마이드 반복단위 각각의 함량을 적절히 조절함으로써, 종래와 같이 침전, 여과 및 건조, 재용해 등의 과정을 거치지 않아도 광학적 특성, 기계적 물성 및 유연성이 균형있게 개선된 폴리아마이드-이미드 필름을 얻을 수 있다.
상기 제1 중합체 용액을 얻는 단계 이후에, 상기 제1 중합체 용액에 상기 제2 디카르보닐 화합물을 더 첨가하여 점도가 10만 내지 30만 cps인 제2 중합체 용액을 얻을 수 있다.
상기 제1 중합체 용액을 얻는 단계에서 첨가하는 제2 디카르보닐 화합물 및 상기 제2 중합체 용액을 얻는 단계에서 첨가하는 제2 디카르보닐 화합물의 중량비는 90:10 내지 99:1일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 제2 중합체 용액을 얻는 단계에서 첨가하는 제2 디카르보닐 화합물은 유기 용매와 혼합하여 5 내지 20 중량% 농도로 제조된 제2 디카르보닐 화합물 용액으로 사용할 수 있으나, 이에 한정되는 것은 아니다.
이는 원하는 점도를 정확하게 달성할 수 있다는 점에서 유리하다.
상기 제2 중합체 용액의 점도는 10만 내지 30만 cps일 수 있으나, 이에 한정되는 것은 아니다.
상기 제2 중합체 용액의 점도가 상기 범위인 경우, 압출 및 캐스팅 공정에서 효과적으로 폴리아마이드-이미드 필름이 제조될 수 있다. 또한, 제조된 폴리아마이드-이미드 필름은 향상된 모듈러스 등의 기계적 물성을 가질 수 있다.
일 구현예에 따르면, 제2 중합체 용액에 포함된 고형분의 함량은 10 중량% 내지 20 중량%일 수 있다. 구체적으로, 제2 중합체 용액에 포함된 고형분의 함량은 12 중량% 내지 18 중량%일 수 있으나, 이에 한정되는 것은 아니다.
상기 제2 중합체 용액에 포함된 고형분의 함량이 상기 범위인 경우, 압출 및 캐스팅 공정에서 효과적으로 폴리아마이드-이미드 필름이 제조될 수 있다. 또한, 제조된 폴리아마이드-이미드 필름은 향상된 모듈러스 등의 기계적 물성 및 낮은 황색도 등의 광학성 물성을 가질 수 있다.
상기 제2 중합체 용액을 얻은 후, 상기 제2 중합체 용액의 pH는 중화제를 첨가하여 조절할 수 있다.
상기 중화제의 예로서, 알콕시아민, 알킬아민 또는 알칸올아민 등과 같은 아민계 중화제 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 중화제는 상기 폴리아마이드-이미드 중합체 용액 내의 단량체의 총 몰수를 기준으로 약 0.1 몰% 내지 약 10 몰%의 양으로 첨가될 수 있다.
상기 중화제를 통해 조절된 제2 중합체 용액의 pH는 약 4 내지 약 7일 수 있다. 구체적으로, 조절된 제2 중합체 용액의 pH는 약 4.5 내지 약 7일 수 있다.
상기 제2 중합체 용액의 pH가 상기 범위인 경우, 후술되는 압출 및 캐스팅 공정에서 발생되는 장비의 손상을 방지할 수 있다. 또한, 제조되는 폴리아마이드-이미드 필름의 황색도를 낮추거나 황색도 증가를 방지하는 등 광학적 물성 및 모듈러스를 향상시키는 등 기계적 물성 면에서 효과를 가질 수 있다.
상기 중합체 용액을 제조하는 단계; 또는 상기 제2 중합체 용액을 얻는 단계; 이후에 상기 중합체 용액을 탱크에 투입한다.
이때, 상기 중합체 용액을 얻은 후 별도의 공정 없이 상기 중합체 용액을 탱크로 이동하는 단계를 수행한다. 구체적으로, 상기 중합 설비에서 제조된 중합체 용액은 불순물을 제거하기 위한 별도의 침전 및 재용해 과정 없이 그대로 상기 탱크로 이동하여 보관된다. 종래에는 상기 중합체 용액의 제조 과정에서 생성되는 염산(HCl) 등의 불순물을 제거하기 위하여, 제조된 중합체 용액을 별도의 공정을 통해 정제하여 불순물을 제거하고, 이를 용매에 재용해시키는 공정을 수행하였다. 다만, 이 경우, 불순물을 제거하는 과정에서 유효 성분의 손실이 커지고, 그 결과, 수득률이 저하되는 문제가 있었다.
이에, 일 구현예에 따른 상기 제조방법은 상기 중합체 용액의 제조 과정에서 원천적으로 불순물의 함량을 최소화하거나, 소정의 불순물이 존재하더라도 후속적인 공정에서 이들을 적절히 제어하여 최종 필름의 물성을 저하시키지 않도록 함으로써 별도의 침전 또는 재용해 과정 없이 필름을 제조하는 이점을 갖는다.
이 때 상기 탱크의 내부 온도는 -20 내지 0℃인 것이 바람직하다. 이는 투입하는 중합체 용액의 변질을 방지하고 함습률을 저하시키기 위함이다.
상기 제조된 중합체 용액을 탱크에 투입하는 단계 이후에, 상기 탱크 내의 압력이 0.2 내지 0.4 bar가 될 때까지 1 내지 2 시간 동안 진공 탈포하는 단계;를 더 포함할 수 있다.
또는, 상기 제조된 중합체 용액을 탱크에 투입하는 단계 이후에, 질소 가스를 사용하여 1 내지 2 기압으로 상기 탱크를 퍼징(purging)하는 단계;를 더 포함할 수 있다.
상기 진공 탈포하는 단계 및 상기 탱크를 질소 가스로 퍼징하는 단계는 별도의 공정으로 수행된다.
예를 들어, 상기 진공 탈포하는 단계가 수행되고, 그 이후에 상기 탱크를 질소 가스로 퍼징하는 단계가 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 진공 탈포하는 단계 및/또는 상기 탱크를 질소 가스로 퍼징하는 단계를 수행함으로써, 제조된 폴리아마이드-이미드 필름 표면의 물성이 향상될 수 있다.
이어서, 상기 탱크 내의 중합체 용액을 압출 및 캐스팅한 후 건조하여, 겔 시트를 제조한다.
상기 압출 및 캐스팅 공정시, 상술한 유기 용매가 사용될 수 있다.
상기 중합체 용액은 압출되고, 캐스팅 롤 또는 캐스팅 벨트 등과 같은 캐스팅 체에 캐스팅된다. 이 때 약 0.5 m/min 내지 약 15 m/min의 속도로, 또한 200 내지 700 ㎛의 두께로 상기 캐스팅 체에 캐스팅될 수 있다. 압출 및 캐스팅 속도가 상기 범위 내일 때, 구현예에 따른 제조방법에 의해서 제조된 폴리아마이드-이미드 필름은 향상된 광학적 특성 및 기계적 특성을 가질 수 있다.
즉, 상기 중합체 용액이 상기와 같은 점도를 갖는 경우, 상기와 같은 압출 속도로 압출되고 캐스팅되는 것이 향상된 광학적 특성 및 기계적 특성을 갖는데 유리할 수 있다.
상기 중합체 용액이 캐스팅 체에 캐스팅된 후, 상기 중합체 용액에 포함된 용매를 건조 공정에 의해 제거함으로써 상기 캐스팅 체 상에 겔 시트가 형성된다.
상기 건조 공정은 약 60℃ 내지 약 150℃의 온도로, 약 5분 내지 약 60분의 시간 동안 진행될 수 있다.
이후, 상기 겔 시트를 열처리하는 단계를 거쳐 구현예에 따른 폴리아마이드-이미드 필름을 제조할 수 있다.
상기 열처리 단계는 80 내지 500℃의 온도 범위에서 2℃/min 내지 80℃/min 속도로 승온시키면서, 5 내지 40 분 또는 5 내지 30 분 동안 진행될 수 있다. 구체적으로 상기 열처리 단계는 80 내지 470℃의 온도 범위에서 10℃/min 내지 80℃/min 속도로 승온시키면서, 5 내지 30 분 또는 5 내지 20 분 동안 진행될 수 있다.
상기 열처리 단계 중 최대 온도는 300 내지 500℃ 또는 320 내지 500℃일 수 있다. 더 자세하게 상기 열처리 단계 중 최대 온도는 350 내지 500℃, 380 내지 500℃, 400 내지 500℃, 410 내지 480℃, 410 내지 470℃ 또는 410 내지 450℃일 수 있으나, 이에 한정되는 것은 아니다.
상기 열처리 단계 이후에 상기 열처리된 시트를 감온시키는 단계;를 더 포함할 수 있다. 상기 감온 시키는 단계는 100℃/min 내지 1,000℃/min 속도로 감온시키는 제1 감온 단계 및 40℃/min 내지 400℃/min 속도로 감온시키는 제2 감온 단계를 포함할 수 있다.
구체적으로, 상기 제1 감온 단계 이후에 제2 감온 단계가 수행된다.
또한, 상기 제1 감온 단계의 감온 속도가 상기 제2 감온 단계의 감온 속도보다 빠를 수 있다.
예를 들어, 상기 제1 감온 단계 중 최대 속도가 상기 제2 감온 단계 중 최대 속도보다 빠르다. 또는 상기 제1 감온 단계 중 최저 속도가 상기 제2 감온 단계 중 최저 속도보다 빠르다.
상기 폴리아마이드-이미드 중합체는 높은 내산화성을 가지므로, 상기 열처리 공정시에 대기 중에 포함된 산소의 영향을 거의 받지 않는다. 따라서, 구현예에 따른 폴리아마이드-이미드 필름은 향상된 광학적 특성을 가질 수 있다.
또한, 종래에는 폴리이미드 필름을 제조함에 있어서, 제막 과정의 열처리시 질소가스 퍼징을 통해 상기 필름의 황변을 방지하고 투명성을 확보하였으나, 상기 구현예에 따르면 이러한 질소가스 퍼징 없이도 광학적 특성이 우수한 폴리아마이드-이미드 필름을 수득할 수 있다.
상기 폴리아마이드-이미드 필름의 제조방법에 의해 제조된 폴리아마이드-이미드 필름에 대한 설명은 상기 [폴리아마이드-이미드 필름]에 기재된 설명을 참조한다.
예를 들어, 상기 제조방법에 의해 제조된 폴리아마이드-이미드 필름은 상기 일반식 1의 조건을 만족할 수 있다.
[실시예]
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1 내지 7
온도조절이 가능한 이중자켓의 1L용 유리반응기에 20℃의 질소 분위기 하에서 유기 용매인 디메틸아세트아마이드(DMAc)를 채운 후, 방향족 디아민인 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(TFDB)을 서서히 투입하면서 용해시켰다.
이어서, 방향족 디안하이드라이드인 2,2'-비스(3,4-디카복시페닐) 헥사플루오로프로판 디안하이드라이드(6-FDA)를 서서히 투입하면서 1 시간 동안 교반시켰다.
그리고 제1 디카르보닐 화합물로서 1,1'-비페닐-4,4'-디카르보닐디클로라이드(BPDC)를 투입한 뒤 1시간 동안 교반시키고, 제2 디카르보닐 화합물로서 테레프탈로일클로라이드(TPC)를 투입한 뒤 1시간 동안 교반시켜 제1 중합체 용액을 제조하였다.
제조된 제1 중합체 용액의 점도를 측정한 후 측정된 점도가 목표하는 점도에 도달하지 못한 경우, 10만 cps 내지 30만 cps의 점도가 될 때까지, DMAc 유기 용매에 10 중량%의 TPC 용액을 제조하여 1mL 첨가한 후, 30분 동안 교반시키는 과정을 반복하여 제2 중합체 용액을 제조하였다.
상기 제2 중합체 용액을 유리판에 도포한 후, 80℃의 열풍으로 30분 건조하였다. 건조된 폴리아마이드-이미드 중합물을 유리판에서 박리한 후, 핀 프레임에 고정하여 80℃ 내지 500℃ 온도범위에서 2℃/min 내지 80℃/min 속도로 승온시키면서 30 분 동안 열처리하여 두께 50㎛의 폴리아마이드-이미드 필름을 얻었다.
상기 실시예에 따르면 제막 단계 직전(도포 직전)까지 수율이 약 100%에 달하는바, 본 명세서에서 '수율'이란 투입된 소재의 몰(mole) 대비 도포를 위한 용액에 남아있는 소재의 몰(mole)을 의미한다.
종래의 제조방법에 따르면 제막 단계 직전의 수율이 약 60% 정도인데, 이는 폴리이미드화 반응, 침전, 여과 및 건조 등의 단계에서 소재의 손실이 필연적으로 발생하기 때문이다.
실시예 1 내지 7의 경우, TFDB, 6-FDA, TPC 및 BPDC의 몰(mole) 비가 하기 표 1에 기재된 것인 점만 제외하고는, 동일한 방법으로 폴리아마이드-이미드 필름을 제조하였다.
Figure PCTKR2018001498-appb-T000001
비교예 1 내지 3
비교예 1의 경우, SKC코오롱 PI사의 GF 계열의 유색 PI 필름을 사용하였다.
비교예 2의 경우, SKC사의 자체 제작 샘플로서 아크릴계 필름을 사용하였다.
비교예 3의 경우, SKC사의 SG65C 명칭의 PET 필름을 사용하였다.
[평가예]
상기 실시예 1 내지 7 및 비교예 1 내지 3에 따른 필름에 대하여 다음과 같은 물성을 측정 및 평가하였다. 그 결과를 이하의 표 2에 나타내었다.
평가예 1: 필름의 두께 측정
일본 미츠토요사의 디지털 마이크로미터 547-401을 사용하여, 폭방향으로 5 point 측정하여 평균값으로 두께를 측정하였다.
평가예 2: 압축 강도 측정
인스트론사의 만능시험기 UTM 5566A를 이용하여, 샘플의 주 수축 방향과 직교된 방향으로 10 cm 및 주 수축 방향으로 10 cm로 자르고 상기 필름을 UTM 압축 모드로 2.5 mm 구형상의 팁을 사용하여 10 mm/min의 속도로 압축하여, 천공되는 순간의 인장강도를 측정하였다.
평가예 3: 천공 최대 직경 측정
천공된 샘플을 편평한 유리판 위에 올려놓고 타지마(Tajima)사의 길이측정 줄자(GL19-55BL)를 이용하여, 천공 중심에서부터 가장 원거리를 기준으로 직경을 측정하였다.
평가예 4: 모듈러스 (modulus) 측정
인스트론사의 만능시험기 UTM 5566A를 이용하여, 샘플의 주 수축 방향과 직교된 방향으로 5 cm 이상 및 주 수축 방향으로 10 mm로 자르고, 5 cm 간격의 클립에 장착한 후 상온에서 5 mm/min 속도로 신장하면서 파단이 일어날 때까지 스트레스-스트레인 곡선을 얻었다. 상기 스트레스-스트레인 곡선에 있어서, 초기 변형에 대한 하중의 기울기를 모듈러스(GPa)로 하였다.
평가예 5: 표면 경도 측정
표면경도는 연필경도 측정기(CT-PC1, CORE TECH, Korea)에 연필경도 측정용 연필을 45°각도로 끼우고, 일정한 하중 (750g)을 가하면서 연필 속도 300 mm/min으로 측정하였다. 연필은 Mitsubishi 연필을 사용하였는데, H-9H, F, HB, B-6B 등의 강도를 나타내는 연필을 사용하였다.
평가예 6: 황색도 ( YI ) 측정
황색도(Yellow Index, YI)는 분광광도계(UltraScan PRO, Hunter Associates Laboratory)에 의해 CIE 표색계를 이용하여 측정하였다.
평가예 7: 광투과도 헤이즈 (HZ) 측정
일본 덴쇼쿠고교사의 헤이즈미터 NDH-5000W를 사용하여, 550nm에서의 광투과도 및 헤이즈를 측정하였다.
Figure PCTKR2018001498-appb-T000002
상기 표 2에서 확인할 수 있는 바와 같이, 실시예 1 내지 7의 경우, 비교예 1 내지 3과는 달리 특정 천공특성(X/Y) 범위를 확보함으로써, 무색 투명하면서도 기계적 물성과 광학적 물성이 우수함을 확인할 수 있었다.

Claims (21)

  1. 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 형성된 폴리아마이드-이미드 중합체를 포함하고,
    하기 일반식 1의 조건을 만족하는, 폴리아마이드-이미드 필름:
    <일반식 1>
    4 ≤ X/Y ≤ 12
    X: 상기 필름을 UTM 압축 모드로 2.5 mm 구형상의 팁을 사용하여 10 mm/min의 속도로 천공시, 크랙을 포함한 천공 최대 직경(mm)
    Y: 상기 필름의 모듈러스(GPa).
  2. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 압축 강도가 0.4 kgf/㎛ 이상인, 폴리아마이드-이미드 필름.
  3. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 상기 천공 최대 직경(X)이 60 mm 이하인, 폴리아마이드-이미드 필름.
  4. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 모듈러스가 5.0 GPa 이상인, 폴리아마이드-이미드 필름.
  5. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 표면 경도가 HB 이상인, 폴리아마이드-이미드 필름.
  6. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 황색도가 5 이하인, 폴리아마이드-이미드 필름.
  7. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 헤이즈가 2% 이하인, 폴리아마이드-이미드 필름.
  8. 제1항에 있어서,
    상기 폴리아마이드-이미드 필름의 두께 50 ㎛를 기준으로, 550 nm 에서 측정한 광투과도가 85% 이상인, 폴리아마이드-이미드 필름.
  9. 제1항에 있어서,
    상기 방향족 디안하이드라이드 화합물은 불소함유 치환기를 갖는 화합물로 이루어진, 폴리아마이드-이미드 필름.
  10. 제1항에 있어서,
    상기 방향족 디아민 화합물은 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl, TFDB)을 포함하고,
    상기 방향족 디안하이드라이드 화합물은 2,2'-비스(3,4-디카복시페닐)헥사플루오로프로판 디안하이드라이드(2,2'-Bis(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride, 6-FDA)를 포함하는, 폴리아마이드-이미드 필름.
  11. 제1항에 있어서,
    상기 방향족 디아민 화합물 대 상기 방향족 디안하이드라이드 화합물의 몰비는 10 : 2 내지 10 : 4인, 폴리아마이드-이미드 필름.
  12. 제1항에 있어서,
    상기 디카르보닐 화합물은 서로 다른 적어도 2종의 디카르보닐 화합물을 포함하는, 폴리아마이드-이미드 필름.
  13. 제1항에 있어서,
    상기 디카르보닐 화합물은 테레프탈로일클로라이드(terephthaloyl chloride, TPC), 1,1'-비페닐-4,4'-디카르보닐디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC) 또는 이의 조합을 포함하는, 폴리아마이드-이미드 필름.
  14. 방향족 디아민 화합물, 방향족 디안하이드라이드 화합물 및 디카르보닐 화합물을 중합하여 폴리아마이드-이미드 중합체 용액을 제조하는 단계;
    상기 중합체 용액을 탱크에 투입하는 단계;
    상기 탱크 내의 중합체 용액을 압출 및 캐스팅한 후 건조하여, 겔 시트를 제조하는 단계; 및
    상기 겔 시트를 열처리하는 단계;를 포함하고,
    상기 중합체 용액의 점도가 10만 내지 30만 cps이고,
    상기 열처리 단계가 80 내지 500℃의 온도 범위에서 2℃/min 내지 80℃/min 속도로 승온시키면서, 5 내지 40 분 동안 진행되고, 상기 열처리 단계 중 최대 온도가 300 내지 500℃인,
    폴리아마이드-이미드 필름의 제조방법.
  15. 제14항에 있어서,
    상기 탱크의 내부 온도가 -20 내지 0℃인, 폴리아마이드-이미드 필름의 제조방법.
  16. 제14항에 있어서,
    상기 제조된 중합체 용액을 탱크에 투입하는 단계 이후에,
    상기 탱크 내의 압력이 0.2 내지 0.4 bar가 될 때까지 1 내지 2 시간 동안 진공 탈포하는 단계;를 더 포함하는, 폴리아마이드-이미드 필름의 제조방법.
  17. 제14항에 있어서,
    상기 제조된 중합체 용액을 탱크에 투입하는 단계 이후에,
    질소 가스를 사용하여 1 내지 2 기압으로 상기 탱크를 퍼징(purging)하는 단계;를 더 포함하는, 폴리아마이드-이미드 필름의 제조방법.
  18. 제14항에 있어서,
    상기 건조는 60℃ 내지 150℃의 온도로, 5분 내지 60분의 시간 동안 수행되는, 폴리아마이드-이미드 필름의 제조방법.
  19. 제14항에 있어서,
    상기 열처리 단계 중 최대 온도가 400 내지 500℃인, 폴리아마이드-이미드 필름의 제조방법.
  20. 제14항에 있어서,
    상기 열처리 단계 이후에,
    상기 열처리된 시트를 감온시키는 단계;를 더 포함하고,
    상기 감온시키는 단계는 100℃/min 내지 1,000℃/min 속도로 감온시키는 제1 감온 단계 및 40℃/min 내지 400℃/min 속도로 감온시키는 제2 감온 단계를 포함하며,
    상기 제1 감온 단계 이후에 제2 감온 단계가 수행되고,
    상기 제1 감온 단계의 감온 속도가 상기 제2 감온 단계의 감온 속도보다 빠른, 폴리아마이드-이미드 필름의 제조방법.
  21. 제14항에 있어서,
    상기 폴리아마이드-이미드 필름이 하기 일반식 1의 조건을 만족하는, 폴리아마이드-이미드 필름의 제조방법:
    <일반식 1>
    4 ≤ X/Y ≤ 12
    X: 상기 필름을 UTM 압축 모드로 2.5 mm 구형상의 팁을 사용하여 10 mm/min의 속도로 천공시, 크랙을 포함한 천공 최대 직경(mm)
    Y: 상기 필름의 모듈러스(GPa).
PCT/KR2018/001498 2017-02-08 2018-02-05 폴리아마이드-이미드 필름 및 이의 제조방법 WO2018147606A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/477,697 US11702519B2 (en) 2017-02-08 2018-02-05 Polyamide-imide film and method for preparing same
CN202210665931.8A CN114854014A (zh) 2017-02-08 2018-02-05 聚酰胺-酰亚胺膜及其制备方法
JP2019537331A JP6850354B2 (ja) 2017-02-08 2018-02-05 ポリアミドイミドフィルムおよびその製造方法
CN201880010612.5A CN110300773B (zh) 2017-02-08 2018-02-05 聚酰胺-酰亚胺膜及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0017550 2017-02-08
KR20170017550 2017-02-08
KR1020170121939A KR101908121B1 (ko) 2017-02-08 2017-09-21 폴리아마이드-이미드 필름 및 이의 제조방법
KR10-2017-0121939 2017-09-21

Publications (1)

Publication Number Publication Date
WO2018147606A1 true WO2018147606A1 (ko) 2018-08-16

Family

ID=63107671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001498 WO2018147606A1 (ko) 2017-02-08 2018-02-05 폴리아마이드-이미드 필름 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2018147606A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909375A (zh) * 2019-05-07 2020-11-10 斯凯孚公司 酰亚胺组合物和包含该酰亚胺组合物的防腐剂组合物
CN112225921A (zh) * 2019-06-28 2021-01-15 Skc株式会社 聚酰胺膜及其制造方法和包括其的覆盖窗
WO2022145825A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 낮은 염소 농도를 갖는 광학 필름, 그 제조방법 및 이를 포함하는 표시장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130029129A (ko) * 2011-05-18 2013-03-22 삼성전자주식회사 폴리(아미드-이미드) 블록 코폴리머, 이를 포함하는 성형품 및 상기 성형품을 포함하는 디스플레이 장치
KR20160081829A (ko) * 2014-12-30 2016-07-08 코오롱인더스트리 주식회사 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
KR20160083738A (ko) * 2015-01-02 2016-07-12 삼성전자주식회사 표시 장치용 윈도우 및 이를 포함하는 표시 장치
KR20160094086A (ko) * 2015-01-30 2016-08-09 삼성전자주식회사 폴리(이미드-아미드)를 포함하는 성형품 제조용 조성물, 상기 조성물의 제조 방법, 및 폴리(이미드-아미드)를 포함하는 성형품
KR20170001644A (ko) * 2015-06-26 2017-01-04 코오롱인더스트리 주식회사 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130029129A (ko) * 2011-05-18 2013-03-22 삼성전자주식회사 폴리(아미드-이미드) 블록 코폴리머, 이를 포함하는 성형품 및 상기 성형품을 포함하는 디스플레이 장치
KR20160081829A (ko) * 2014-12-30 2016-07-08 코오롱인더스트리 주식회사 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
KR20160083738A (ko) * 2015-01-02 2016-07-12 삼성전자주식회사 표시 장치용 윈도우 및 이를 포함하는 표시 장치
KR20160094086A (ko) * 2015-01-30 2016-08-09 삼성전자주식회사 폴리(이미드-아미드)를 포함하는 성형품 제조용 조성물, 상기 조성물의 제조 방법, 및 폴리(이미드-아미드)를 포함하는 성형품
KR20170001644A (ko) * 2015-06-26 2017-01-04 코오롱인더스트리 주식회사 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909375A (zh) * 2019-05-07 2020-11-10 斯凯孚公司 酰亚胺组合物和包含该酰亚胺组合物的防腐剂组合物
CN112225921A (zh) * 2019-06-28 2021-01-15 Skc株式会社 聚酰胺膜及其制造方法和包括其的覆盖窗
CN112225921B (zh) * 2019-06-28 2023-09-22 爱思开迈克沃有限公司 聚酰胺膜及其制造方法和包括其的覆盖窗
WO2022145825A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 낮은 염소 농도를 갖는 광학 필름, 그 제조방법 및 이를 포함하는 표시장치
TWI797893B (zh) * 2020-12-31 2023-04-01 南韓商可隆股份有限公司 具有低氯濃度之光學膜、其製造方法以及包括其之顯示元件

Similar Documents

Publication Publication Date Title
WO2018147602A1 (ko) 폴리아마이드-이미드 필름
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
EP2553001A2 (en) Polyimide film
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2018147606A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2021060752A1 (ko) 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2018147611A1 (ko) 폴리아마이드-이미드 필름의 제조방법
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750896

Country of ref document: EP

Kind code of ref document: A1