WO2023229235A1 - 생분해성 폴리에스테르 수지 조성물, 이의 제조방법 및 이를 포함하는 생분해성 성형품 - Google Patents
생분해성 폴리에스테르 수지 조성물, 이의 제조방법 및 이를 포함하는 생분해성 성형품 Download PDFInfo
- Publication number
- WO2023229235A1 WO2023229235A1 PCT/KR2023/005506 KR2023005506W WO2023229235A1 WO 2023229235 A1 WO2023229235 A1 WO 2023229235A1 KR 2023005506 W KR2023005506 W KR 2023005506W WO 2023229235 A1 WO2023229235 A1 WO 2023229235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biodegradable polyester
- polyester resin
- resin composition
- hydrolysis
- composition according
- Prior art date
Links
- 229920000229 biodegradable polyester Polymers 0.000 title claims abstract description 407
- 239000004622 biodegradable polyester Substances 0.000 title claims abstract description 407
- 239000011342 resin composition Substances 0.000 title claims abstract description 260
- 238000000034 method Methods 0.000 title claims description 52
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 116
- 150000002009 diols Chemical class 0.000 claims abstract description 116
- 125000003118 aryl group Chemical group 0.000 claims abstract description 56
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 47
- 229920001225 polyester resin Polymers 0.000 claims abstract description 11
- 239000004645 polyester resin Substances 0.000 claims abstract description 11
- 230000007062 hydrolysis Effects 0.000 claims description 134
- 238000006460 hydrolysis reaction Methods 0.000 claims description 134
- 229920001046 Nanocellulose Polymers 0.000 claims description 71
- 229910052751 metal Inorganic materials 0.000 claims description 52
- 239000002184 metal Substances 0.000 claims description 52
- 239000003795 chemical substances by application Substances 0.000 claims description 47
- 230000009467 reduction Effects 0.000 claims description 47
- 230000007423 decrease Effects 0.000 claims description 45
- 238000012643 polycondensation polymerization Methods 0.000 claims description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 42
- 150000003839 salts Chemical class 0.000 claims description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 39
- 239000010703 silicon Substances 0.000 claims description 39
- 229910052710 silicon Inorganic materials 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 29
- -1 aromatic dicarboxylic acids Chemical class 0.000 claims description 23
- 238000000691 measurement method Methods 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 15
- 229920001296 polysiloxane Polymers 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 125000003700 epoxy group Chemical group 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000006065 biodegradation reaction Methods 0.000 abstract description 25
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 abstract 1
- 150000001991 dicarboxylic acids Chemical class 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 127
- 239000011347 resin Substances 0.000 description 127
- 238000007654 immersion Methods 0.000 description 93
- 238000006243 chemical reaction Methods 0.000 description 62
- 238000005886 esterification reaction Methods 0.000 description 58
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 54
- 239000002002 slurry Substances 0.000 description 44
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 36
- 239000010408 film Substances 0.000 description 34
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 31
- 229920006167 biodegradable resin Polymers 0.000 description 29
- 230000008569 process Effects 0.000 description 29
- 239000004970 Chain extender Substances 0.000 description 26
- 239000002245 particle Substances 0.000 description 25
- 229920000515 polycarbonate Polymers 0.000 description 24
- 239000004417 polycarbonate Substances 0.000 description 24
- 239000004721 Polyphenylene oxide Substances 0.000 description 23
- 239000011324 bead Substances 0.000 description 23
- 150000002148 esters Chemical class 0.000 description 23
- 229920000570 polyether Polymers 0.000 description 23
- 229920005862 polyol Polymers 0.000 description 23
- 150000003077 polyols Chemical class 0.000 description 23
- 239000012760 heat stabilizer Substances 0.000 description 22
- 239000008188 pellet Substances 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 239000013585 weight reducing agent Substances 0.000 description 22
- 239000003054 catalyst Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 19
- 239000011256 inorganic filler Substances 0.000 description 19
- 229910003475 inorganic filler Inorganic materials 0.000 description 19
- 239000002361 compost Substances 0.000 description 18
- 239000012779 reinforcing material Substances 0.000 description 18
- 239000006085 branching agent Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 239000001361 adipic acid Substances 0.000 description 15
- 235000011037 adipic acid Nutrition 0.000 description 15
- 238000005227 gel permeation chromatography Methods 0.000 description 15
- 239000000654 additive Substances 0.000 description 13
- 229920002678 cellulose Polymers 0.000 description 13
- 239000001913 cellulose Substances 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 12
- 239000006227 byproduct Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000012805 post-processing Methods 0.000 description 10
- 239000007795 chemical reaction product Substances 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- 230000006750 UV protection Effects 0.000 description 6
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 4
- 230000032050 esterification Effects 0.000 description 4
- 210000003608 fece Anatomy 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000010871 livestock manure Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 239000004629 polybutylene adipate terephthalate Substances 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 2
- 239000001639 calcium acetate Substances 0.000 description 2
- 235000011092 calcium acetate Nutrition 0.000 description 2
- 229960005147 calcium acetate Drugs 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 229920006158 high molecular weight polymer Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920006280 packaging film Polymers 0.000 description 2
- 239000012785 packaging film Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920002961 polybutylene succinate Polymers 0.000 description 2
- 239000004631 polybutylene succinate Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- OLQWMCSSZKNOLQ-ZXZARUISSA-N (3s)-3-[(3r)-2,5-dioxooxolan-3-yl]oxolane-2,5-dione Chemical compound O=C1OC(=O)C[C@H]1[C@@H]1C(=O)OC(=O)C1 OLQWMCSSZKNOLQ-ZXZARUISSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- LTIKIBFTASQKMM-UHFFFAOYSA-N 1-[bis(4-isocyanatophenyl)methyl]-4-isocyanatobenzene Chemical compound C1=CC(N=C=O)=CC=C1C(C=1C=CC(=CC=1)N=C=O)C1=CC=C(N=C=O)C=C1 LTIKIBFTASQKMM-UHFFFAOYSA-N 0.000 description 1
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- GZZLQUBMUXEOBE-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diol Chemical compound OCCC(C)CC(C)(C)CO GZZLQUBMUXEOBE-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- CEAKZVDHZILFGK-UHFFFAOYSA-N 2,4-diethylpentanedioic acid Chemical compound CCC(C(O)=O)CC(CC)C(O)=O CEAKZVDHZILFGK-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- BUYHVRZQBLVJOO-UHFFFAOYSA-N 2-ethyl-2,4-dimethylhexane-1,3-diol Chemical compound CCC(C)C(O)C(C)(CC)CO BUYHVRZQBLVJOO-UHFFFAOYSA-N 0.000 description 1
- QNKRHLZUPSSIPN-UHFFFAOYSA-N 2-ethyl-2-(2-methylpropyl)propane-1,3-diol Chemical compound CCC(CO)(CO)CC(C)C QNKRHLZUPSSIPN-UHFFFAOYSA-N 0.000 description 1
- SDQROPCSKIYYAV-UHFFFAOYSA-N 2-methyloctane-1,8-diol Chemical compound OCC(C)CCCCCCO SDQROPCSKIYYAV-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- HXFIRQHMXJBTRV-UHFFFAOYSA-N 3,4-dimethyloxolane-2,5-dione Chemical compound CC1C(C)C(=O)OC1=O HXFIRQHMXJBTRV-UHFFFAOYSA-N 0.000 description 1
- SIFQWEJOHACJOL-UHFFFAOYSA-N 3,5-dimethyloxane-2,6-dione Chemical compound CC1CC(C)C(=O)OC1=O SIFQWEJOHACJOL-UHFFFAOYSA-N 0.000 description 1
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- YRTGWRSQRUHPKX-UHFFFAOYSA-N 3-ethyloxolane-2,5-dione Chemical compound CCC1CC(=O)OC1=O YRTGWRSQRUHPKX-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- DFATXMYLKPCSCX-UHFFFAOYSA-N 3-methylsuccinic anhydride Chemical compound CC1CC(=O)OC1=O DFATXMYLKPCSCX-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- HBTAOSGHCXUEKI-UHFFFAOYSA-N 4-chloro-n,n-dimethyl-3-nitrobenzenesulfonamide Chemical compound CN(C)S(=O)(=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 HBTAOSGHCXUEKI-UHFFFAOYSA-N 0.000 description 1
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- XRTHSQBLWCISJU-UHFFFAOYSA-N C(C(C(CC(=O)O)C(=O)O)C(=O)O)C(=O)O.C(C(C(CC(=O)O)C(=O)O)C(=O)O)C(=O)O Chemical compound C(C(C(CC(=O)O)C(=O)O)C(=O)O)C(=O)O.C(C(C(CC(=O)O)C(=O)O)C(=O)O)C(=O)O XRTHSQBLWCISJU-UHFFFAOYSA-N 0.000 description 1
- BKFFTWAVRUYWIQ-UHFFFAOYSA-N C=C.C=C.C=C.OP(O)(O)=O Chemical compound C=C.C=C.C=C.OP(O)(O)=O BKFFTWAVRUYWIQ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WJJGAKCAAJOICV-UHFFFAOYSA-N N-dimethyltyrosine Natural products CN(C)C(C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZVOOGERIHVAODX-UHFFFAOYSA-N O-demycinosyltylosin Natural products O=CCC1CC(C)C(=O)C=CC(C)=CC(CO)C(CC)OC(=O)CC(O)C(C)C1OC1C(O)C(N(C)C)C(OC2OC(C)C(O)C(C)(O)C2)C(C)O1 ZVOOGERIHVAODX-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XSXNEQMKRMCUFV-UHFFFAOYSA-N S(=O)(=O)(O)C1=C(C=C(C(=C1)C(=O)O)C(=O)O)C(=O)O.S(=O)(=O)(O)C1=C(C=C(C(=C1)C(=O)O)C(=O)O)C(=O)O Chemical compound S(=O)(=O)(O)C1=C(C=C(C(=C1)C(=O)O)C(=O)O)C(=O)O.S(=O)(=O)(O)C1=C(C=C(C(=C1)C(=O)O)C(=O)O)C(=O)O XSXNEQMKRMCUFV-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- CNNYQGIUGXJEJJ-UHFFFAOYSA-N [Ge+2].C[O-].C[O-] Chemical compound [Ge+2].C[O-].C[O-] CNNYQGIUGXJEJJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- FNGGVJIEWDRLFV-UHFFFAOYSA-N anthracene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=CC3=C(C(O)=O)C(C(=O)O)=CC=C3C=C21 FNGGVJIEWDRLFV-UHFFFAOYSA-N 0.000 description 1
- 239000010692 aromatic oil Substances 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229940067597 azelate Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- VLZAHAJCFCUNGQ-UHFFFAOYSA-N benzene-1,2,4,5-tetracarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O.OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O VLZAHAJCFCUNGQ-UHFFFAOYSA-N 0.000 description 1
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- JVLRYPRBKSMEBF-UHFFFAOYSA-K diacetyloxystibanyl acetate Chemical compound [Sb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JVLRYPRBKSMEBF-UHFFFAOYSA-K 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 229940067572 diethylhexyl adipate Drugs 0.000 description 1
- 229940031578 diisopropyl adipate Drugs 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- MCOFCVVDZHTYIX-UHFFFAOYSA-N ethane-1,1,1-tricarboxylic acid Chemical compound OC(=O)C(C)(C(O)=O)C(O)=O MCOFCVVDZHTYIX-UHFFFAOYSA-N 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000105 evaporative light scattering detection Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-M hydroxide;hydrate Chemical compound O.[OH-] JEGUKCSWCFPDGT-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- RKGQUTNLMXNUME-UHFFFAOYSA-N methanetricarboxylic acid Chemical compound OC(=O)C(C(O)=O)C(O)=O RKGQUTNLMXNUME-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- SHHGHQXPESZCQA-UHFFFAOYSA-N oxiran-2-ylmethylsilicon Chemical compound [Si]CC1CO1 SHHGHQXPESZCQA-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- AJDJKHROQJQURF-UHFFFAOYSA-N phenanthrene-1,2-dicarboxylic acid Chemical compound C1=CC=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1 AJDJKHROQJQURF-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229960004109 potassium acetate Drugs 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- XRVCFZPJAHWYTB-UHFFFAOYSA-N prenderol Chemical compound CCC(CC)(CO)CO XRVCFZPJAHWYTB-UHFFFAOYSA-N 0.000 description 1
- 229950006800 prenderol Drugs 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- NJKRDXUWFBJCDI-UHFFFAOYSA-N propane-1,1,2,3-tetracarboxylic acid Chemical compound OC(=O)CC(C(O)=O)C(C(O)=O)C(O)=O NJKRDXUWFBJCDI-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- VDNSGQQAZRMTCI-UHFFFAOYSA-N sulfanylidenegermanium Chemical compound [Ge]=S VDNSGQQAZRMTCI-UHFFFAOYSA-N 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- GXMNGLIMQIPFEB-UHFFFAOYSA-N tetraethoxygermane Chemical compound CCO[Ge](OCC)(OCC)OCC GXMNGLIMQIPFEB-UHFFFAOYSA-N 0.000 description 1
- QQXSEZVCKAEYQJ-UHFFFAOYSA-N tetraethylgermanium Chemical compound CC[Ge](CC)(CC)CC QQXSEZVCKAEYQJ-UHFFFAOYSA-N 0.000 description 1
- ZRLCXMPFXYVHGS-UHFFFAOYSA-N tetramethylgermane Chemical compound C[Ge](C)(C)C ZRLCXMPFXYVHGS-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical group CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- GGUBFICZYGKNTD-UHFFFAOYSA-N triethyl phosphonoacetate Chemical compound CCOC(=O)CP(=O)(OCC)OCC GGUBFICZYGKNTD-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical group C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/914—Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/916—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/695—Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
- C08G63/6954—Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from polxycarboxylic acids and polyhydroxy compounds
- C08G63/6956—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2230/00—Compositions for preparing biodegradable polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2401/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2401/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K2003/023—Silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- Examples relate to a biodegradable polyester resin composition, a method for manufacturing the same, and a biodegradable molded article containing the same.
- biodegradable polymers In order to overcome these limitations of polymers, research on biodegradable polymers that decompose quickly is being actively conducted.
- biodegradable polymers polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and polybutylene succinate (PBS) are used.
- PLA polylactic acid
- PBAT polybutylene adipate terephthalate
- PBS polybutylene succinate
- Examples are a biodegradable polyester resin composition that has an appropriate initial degree of hydrolysis when exposed to moisture, and at the same time has a high degree of hydrolysis in water and high biodegradability when disposed of, a method for manufacturing the same, and a biodegradable polyester resin composition comprising the same. We would like to provide molded products.
- the method for producing a biodegradable polyester resin composition includes forming a prepolymer by esterifying diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid; Condensation polymerization of the prepolymer to form a condensation polymerization composition; and reacting the condensation polymerization composition and a silicone-based hydrolysis resistant agent.
- the method for producing a biodegradable polyester resin composition according to an embodiment may further include adding a metal salt.
- the metal salt may include iron element.
- the hydrolysis resistant agent may include silane containing two or more functional groups.
- the hydrolysis resistant agent may include an epoxy group or an alkoxy group.
- the step of reacting the condensation polymerization composition and the silicone-based hydrolysis resistant agent is performed by reacting the condensation polymerization composition and the silicone-based hydrolysis resistant agent at about 180°C to about 260°C. It may include reacting at a temperature for 5 to 60 minutes.
- the acid value may be about 2.0 mg KOH/g or less.
- the degree of hydrolysis after 1 week is about 35% to about 60%, and the degree of hydrolysis after 1 week is at a high temperature of about 80° C. and humidity of about 100%.
- the number average molecular weight of the biodegradable polyester resin composition may be reduced compared to the initial state.
- a biodegradable polyester resin composition includes a polyester resin containing diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid; metal salt; and silicon element.
- the metal salt includes an iron element, and the mass ratio of the iron element to the silicon element may be about 0.1 to about 0.7.
- the degree of hydrolysis after 1 week is about 35% to about 60%
- the degree of hydrolysis after about 3 weeks is about 85% or more
- the degree of hydrolysis after 1 week and the above The degree of hydrolysis after 3 weeks can be measured by the following measurement method.
- the degree of hydrolysis after 1 week is the number average molecular weight compared to the initial period of the biodegradable polyester resin composition when the biodegradable polyester resin composition is placed for about 1 week under high temperature and high humidity conditions of about 80° C. and about 100% humidity.
- the degree of hydrolysis after 3 weeks is the initial value of the biodegradable polyester resin composition when the biodegradable polyester resin composition is placed for about 3 weeks under high temperature and high humidity conditions of about 80° C. and about 100% humidity. It is the rate of decrease in number average molecular weight compared to
- the content of the iron element may be about 1 ppm to about 100 ppm, and the content of the silicon element may be about 1 ppm to about 150 ppm.
- the biodegradable polyester resin composition according to one embodiment further includes nanocellulose, and the nanocellulose includes sulfur.
- the wet hardness reduction rate is about 15% or less, and the wet hardness reduction rate can be measured by the following measurement method.
- the biodegradable polyester resin composition is processed to produce a polyester block having a thickness of about 2.5 mm, the initial hardness of the polyester block and the polyester block are immersed in water at about 30° C. for about 24 hours. After the wet hardness is measured, the rate of decline in wet hardness is the difference between the wet hardness and the initial hardness divided by the initial hardness.
- the biodegradable molded article according to the example includes a polyester resin containing diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid; metal salt; and silicon element.
- the metal salt includes an iron element, and the mass ratio of the iron element to the silicon element may be about 0.1 to about 0.7.
- the degree of hydrolysis after 1 week is about 35% to about 60%
- the degree of hydrolysis after about 3 weeks is about 85% or more
- the degree of hydrolysis after 1 week and the above 3 The degree of hydrolysis after a week can be measured by the following measurement method.
- the degree of hydrolysis after 1 week is the number average molecular weight compared to the initial period of the biodegradable polyester resin composition when the biodegradable polyester resin composition is placed for about 1 week under high temperature and high humidity conditions of about 80° C. and about 100% humidity.
- the degree of hydrolysis after 3 weeks is the initial value of the biodegradable polyester resin composition when the biodegradable polyester resin composition is placed for about 3 weeks under high temperature and high humidity conditions of about 80° C. and about 100% humidity. It is the rate of decrease in number average molecular weight compared to
- the content of the iron element may be about 1 ppm to about 100 ppm, and the content of the silicon element may be about 1 ppm to about 150 ppm.
- the biodegradable polyester molded article according to one embodiment further includes nanocellulose, and the nanocellulose may include sulfur.
- the wet hardness reduction rate is about 15% or less, and the wet hardness reduction rate can be measured by the following measurement method.
- the biodegradable polyester molded product is processed to produce a polyester block having a thickness of about 2.5 mm, and the initial hardness of the polyester block and the polyester block after being immersed in water at about 30° C. for about 24 hours Wet hardness is measured, and the rate of decline in wet hardness is the difference between the wet hardness and the initial hardness divided by the initial hardness.
- the method for producing a biodegradable polyester resin composition according to an example includes reacting a condensation polymerization composition and a silicone-based hydrolysis resistant agent. Accordingly, the biodegradable polyester resin composition according to the example may have improved hydrolysis resistance.
- the silicone-based hydrolysis resistant agent may function as a coupling agent to couple the polymer resin included in the condensation polymerization composition.
- the silicone-based hydrolysis resistant agent can improve the degree of polymerization of the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the embodiment includes the silicone-based hydrolysis resistant agent, it may have hydrophobic characteristics and an appropriate degree of hydrolysis.
- the method for producing a biodegradable polyester resin composition according to an embodiment may further include a step of adding a metal salt.
- a metal salt By using the metal salt, the biodegradability of the biodegradable polyester resin composition according to the example can be improved.
- the degree of late hydrolysis can be improved in the biodegradable polyester resin composition according to the example by the metal salt. That is, the biodegradable polyester resin composition according to the embodiment may have an appropriate metal content and an appropriate silicon element content.
- the biodegradable polyester resin composition according to the example has improved physical properties during the actual use period and can be easily biodegraded after use.
- the biodegradable polyester resin composition according to the example can be efficiently applied to packaging films, etc. That is, the film made from the biodegradable polyester resin composition according to the example can be used for general purposes such as packaging. At this time, the biodegradable polyester resin composition according to the embodiment may initially have a low degree of hydrolysis, and the biodegradable polyester film may maintain mechanical and chemical properties above a certain level within a normal period of use by the user.
- the biodegradable polyester resin composition according to the embodiment has a high biodegradability, the film manufactured by the biodegradable polyester resin composition according to the embodiment can be easily decomposed when discarded after use. there is.
- Figure 1 is a schematic diagram showing an apparatus for manufacturing a polyester resin composition according to an example.
- Figure 2 is a diagram showing an example of a biodegradable molded article formed by a polyester resin composition according to an example.
- ppm is a mass-based unit.
- the ppm is 1 per million of the total mass. That is, the ppm is 0.0001wt% based on the total mass.
- the biodegradable polyester resin composition according to the example includes a biodegradable polyester resin.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable polyester resin alone or together with other resins or additives.
- the biodegradable polyester resin includes diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid.
- the biodegradable polyester resin includes a diol moiety, an aromatic dicarboxylic acid moiety, and an aliphatic dicarboxylic acid moiety.
- the diol moiety is derived from the diol
- the aromatic dicarboxylic acid moiety is derived from the aromatic dicarboxylic acid
- the aliphatic dicarboxylic acid moiety is derived from the aliphatic dicarboxylic acid.
- the biodegradable polyester resin includes a diol component, an aromatic dicarboxylic acid component, and an aliphatic dicarboxylic acid component.
- the diol component may be derived from the diol
- the aromatic dicarboxylic acid component may be derived from the aromatic dicarboxylic acid
- the aliphatic dicarboxylic acid component may be derived from the aliphatic dicarboxylic acid.
- the diol residue may be expressed as diol.
- the dicarboxylic acid residue may be expressed as dicarboxylic acid. Additionally, the residue can be expressed as the component.
- the diol may be an aliphatic diol.
- the diol may be a bio-derived diol.
- the diol is ethanediol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl -1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5 -Pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 2,4-dimethyl-2-ethyl-1,
- the diol may be selected from at least one group consisting of 1,4-butanediol, 1,2-ethanediol, 1,3-propanediol, diethylene glycol, neopentyl glycol, or derivatives thereof.
- the diol may be selected from at least one group consisting of 1,4-butanediol, 1,2-ethanediol, 1,3-propanediol, or their derivatives.
- the diol may include 1,4-butanediol or a derivative thereof.
- the aromatic dicarboxylic acids include phthalic acid, terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4'- At least one may be selected from the group consisting of diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, anthracenedicarboxylic acid, phenanthrenedicarboxylic acid, or derivatives thereof.
- the aromatic dicarboxylic acid may be at least one selected from the group consisting of terephthalic acid, dimethyl terephthalate, 2,6-naphthalene dicarboxylic acid, isophthalic acid, or derivatives thereof.
- the aromatic dicarboxylic acid may include terephthalic acid, dimethyl terephthalate, or derivatives thereof.
- the aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, serveric acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and 1,4-cyclohexanedidi. At least one may be selected from the group consisting of carboxylic acids or their derivatives.
- the aliphatic dicarboxylic acid may be at least one selected from the group consisting of adipic acid, succinic acid, sebacic acid, or derivatives thereof.
- the aliphatic dicarboxylic acid may include adipic acid or a derivative thereof.
- the molar ratio of the total diol residues including the diol and the total dicarboxylic acid residues including the aromatic dicarboxylic acid and the aliphatic dicarboxylic acid is about 1:0.9 to about 1: It could be 1.1.
- the molar ratio of total diol residues and total dicarboxylic acid residues may be from about 1:0.95 to about 1:1.05.
- the molar ratio of the aromatic dicarboxylic acid residue and the aliphatic dicarboxylic acid residue may be about 3:7 to about 7:3.
- the molar ratio of the aromatic dicarboxylic acid residue and the aliphatic dicarboxylic acid residue may be about 3.3:6.7 to about 6.7:3.3.
- the molar ratio of the aromatic dicarboxylic acid residue and the aliphatic dicarboxylic acid residue may be about 4:6 to about 6:4.
- the molar ratio of the aromatic dicarboxylic acid residue and the aliphatic dicarboxylic acid residue may be about 4.2:5.8 to about 5:5.
- the biodegradable polyester resin may contain a diol residue derived from 1,4-butanediol in an amount of about 90 mol% or more based on total diol.
- the biodegradable polyester resin may contain a diol residue derived from 1,4-butanediol in an amount of about 95 mol% or more based on total diol.
- the biodegradable polyester resin may contain a diol residue derived from 1,4-butanediol in an amount of about 98 mol% or more based on total diol.
- the biodegradable polyester resin may include an aromatic dicarboxylic acid residue derived from terephthalic acid or dimethyl terephthalate in an amount of about 30 mol% to about 70 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include an aromatic dicarboxylic acid residue derived from terephthalic acid or dimethyl terephthalate in an amount of about 35 mol% to about 65 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include a dicarboxylic acid residue derived from terephthalic acid or dimethyl terephthalate in an amount of about 40 mol% to about 59 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include an aromatic dicarboxylic acid residue derived from terephthalic acid or dimethyl terephthalate in an amount of about 43 mol% to about 53 mol% based on the total dicarboxylic acid
- the biodegradable polyester resin may include an aliphatic dicarboxylic acid residue derived from adipic acid in an amount of about 30 mol% to about 70 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include an aliphatic dicarboxylic acid residue derived from adipic acid in an amount of about 35 mol% to about 65 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include an aliphatic dicarboxylic acid residue derived from adipic acid in an amount of about 41 mol% to about 60 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include an aliphatic dicarboxylic acid residue derived from adipic acid in an amount of about 47 mol% to about 57 mol% based on the total dicarboxylic acid.
- the biodegradable polyester resin may include a first block and a second block.
- the biodegradable polyester resin may have a molecular structure in which the first blocks and the second blocks are alternately bonded.
- the first block may include the diol residue and the aromatic dicarboxylic acid residue.
- the first block may be formed by an esterification reaction of the diol and the aromatic dicarboxylic acid.
- the first block may include only the diol residue and the aromatic dicarboxylic acid residue.
- the first block may include only repeating units formed through an esterification reaction of the diol and the aromatic dicarboxylic acid. That is, the first block may mean the sum of repeating units of the diol and the aromatic dicarboxylic acid before being combined with the aliphatic dicarboxylic acid.
- the second block may include the diol residue and the aliphatic dicarboxylic acid residue.
- the second block may be formed through an esterification reaction of the diol and the aliphatic dicarboxylic acid.
- the second block may include only the diol residue and the aliphatic dicarboxylic acid residue.
- the second block may include only repeating units formed by esterification of the diol and the aliphatic dicarboxylic acid. That is, the second block may mean the sum of repeating units of the diol and the aliphatic dicarboxylic acid before being combined with the aromatic dicarboxylic acid.
- the ratio (X/Y) of the number of first blocks (X) and the number of second blocks (Y) may be about 0.5 to about 1.5. In the biodegradable polyester resin, the ratio (X/Y) of the number of first blocks (X) and the number of second blocks (Y) may be about 0.6 to about 1.4. In the biodegradable polyester resin, the ratio (X/Y) of the number of first blocks (X) and the number of second blocks (Y) may be about 0.7 to about 1.3. In the biodegradable polyester resin, the ratio (X/Y) of the number of first blocks (X) and the number of second blocks (Y) may be about 0.75 to about 1.2. Additionally, in the biodegradable polyester resin, the ratio (X/Y) of the number of first blocks (X) and the number of second blocks (Y) may be 0.8 to 1. The number of first blocks may be smaller than the number of second blocks.
- the number of first blocks may be about 30 to about 300.
- the number of first blocks may be about 40 to about 250.
- the number of first blocks may be about 50 to about 220.
- the number of first blocks may be about 60 to about 200.
- the number of first blocks may be about 70 to about 200.
- the number of first blocks may be about 75 to about 200.
- the number of first blocks may vary depending on the content of the aromatic dicarboxylic acid, the molecular weight of the biodegradable polyester resin, and the alternation ratio described later. That is, as the molar ratio of the aromatic dicarboxylic acid increases, the molecular weight of the biodegradable polyester resin increases, and the alternation ratio described later increases, the number of the first blocks may increase.
- the number of second blocks may be about 30 to about 300.
- the number of second blocks may be about 40 to about 250.
- the number of second blocks may be about 50 to about 220.
- the number of second blocks may be about 60 to about 200.
- the number of second blocks may be about 70 to about 200.
- the number of second blocks may be about 75 to about 200.
- the biodegradable polyester resin composition according to the embodiment may have appropriate mechanical strength and appropriate biodegradability.
- the biodegradable polyester resin composition according to the embodiment may have improved flexibility and, at the same time, improved rigidity. there is. Accordingly, the biodegradable polyester resin composition according to the example can be easily used in injection molded products, etc.
- the biodegradable polyester resin composition according to the embodiment has appropriate durability against ultraviolet rays, etc., and at the same time has appropriate biodegradability. You can have it.
- the first block may be represented by Chemical Formula 1 below.
- R1 is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
- R2 is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms
- m may be 1 to 20.
- R1 may be a substituted or unsubstituted phenylene group, and R2 may be a butylene group.
- the second block may be represented by Chemical Formula 2 below.
- R3 and R4 are each independently a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, and n may be 1 to 20 carbon atoms.
- R3 and R4 may be butylene groups.
- the biodegradable polyester resin may have a structure in which the first block and the second block are alternately combined with each other.
- the biodegradable polyester resin may be represented by Formula 3 below.
- R1 is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
- R2 is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms
- m may be 1 to 20
- R3 and R4 are each independently a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms
- n may be 1 to 20 carbon atoms.
- the diol moiety includes the moiety of 1,4-butanediol or a derivative thereof
- the aromatic dicarboxylic acid moiety includes the moiety of terephthalic acid or a derivative thereof
- the aliphatic dicarboxylic acid moiety includes the moiety of adipic acid or a derivative thereof. It may include residues of
- the biodegradable polyester resin may include a first block containing a residue of 1,4-butanediol or a derivative thereof and a residue of terephthalic acid or a derivative thereof.
- the biodegradable polyester resin may include a first block containing a residue of 1,4-butanediol or a derivative thereof and a residue of dimethyl terephthalate or a derivative thereof.
- the biodegradable polyester resin may include a second block containing a residue of 1,4-butanediol or a derivative thereof and a residue of adipic acid or a derivative thereof.
- the biodegradable polyester resin may include a second block containing a residue of 1,4-butanediol or a derivative thereof and a residue of succinic acid or a derivative thereof.
- the biodegradable polyester resin according to an embodiment of the present invention includes a first block comprising residues of 1,4-butanediol or a derivative thereof and residues of terephthalic acid or a derivative thereof; and a second block comprising a residue of 1,4-butanediol or a derivative thereof and a residue of adipic acid or a derivative thereof.
- the first block may be represented by Formula 4 below, and the second block may be represented by Formula 5 below.
- n may be 1 to 20.
- n may be 1 to 20.
- the biodegradable polyester resin may be represented by Formula 6 below.
- n may be 1 to 20.
- first block and the second block satisfy the above configuration, it can be more advantageous to provide a biodegradable polyester sheet, film, or molded article with excellent biodegradability and water decomposability and improved physical properties.
- the biodegradable polyester resin includes the first block and the second block within the above range
- the biodegradable polyester resin composition according to the embodiment may have appropriate mechanical properties and appropriate UV resistance.
- the mechanical properties of the biodegradable polyester resin composition according to the embodiment can be improved.
- the biodegradable polyester resin composition according to the embodiment may have appropriate UV resistance properties.
- the biodegradable polyester resin composition according to the embodiment may have an appropriate biodegradation rate.
- the biodegradable polyester resin composition according to the embodiment may have an appropriate hydrolysis rate.
- the biodegradable polyester resin may further include a branching agent.
- the branching agent may include at least one from the group consisting of a trivalent or higher alcohol, anhydride, or trihydric or higher carboxylic acid.
- the branching agent may react with the diol, the aromatic dicarboxylic acid, and the aliphatic dicarboxylic acid. Accordingly, the branching agent may be included as part of the molecular structure of the biodegradable polyester resin.
- the trihydric or higher alcohol may be selected from the group consisting of glycerol, pentaerythritol, or trimethylolpropane.
- the above trivalent or higher carboxylic acids include methane tricarboxylic acid, ethanetricarboxylic acid, citric acid, and benzene-1,3,5-tricarboxylic acid.
- Ethane-1,1,2,2-tetracarboxylic acid propane-1,1,2,3-tetracarboxylic acid, butane-1, 2,3,4-tetracarboxylic acid (butane-1,2,3,4-tetracarboxylic acid), cyclopentane-1,2,3,4-tetracarboxylic acid (cyclopentane-1,2,3,4) -tetracarboxylic acid) or benzene-1,2,4,5-tetracarboxylic acid (benz
- the anhydrides include trimellitic anhydride, succinic anhydride, methylsuccinic anhydride, ethylsuccinic anhydride, 2,3-butanedicarboxylic acid anhydride, 2,4-pentanedicarboxylic acid anhydride, and 3,5-heptanedicarboxylic acid. It may include at least one from the group consisting of anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, maleic anhydride, dodecylsuccinic anhydride, or pyromellitic anhydride.
- the branching agent may be included in the biodegradable polyester resin in an amount of about 0.1 wt% to about 5 wt% based on the entire biodegradable polyester resin.
- the branching agent may be included in the biodegradable polyester resin in an amount of about 0.1 wt% to about 3 wt% based on the entire biodegradable polyester resin.
- the branching agent may be included in the biodegradable polyester resin in an amount of about 0.1 wt% to about 1 wt% based on the entire biodegradable polyester resin.
- the biodegradable polyester resin includes the branching agent in the above range
- the biodegradable polyester resin composition according to the embodiment may have appropriate mechanical properties and appropriate biodegradability.
- the biodegradable polyester resin may further include polycarbonate diol.
- the polycarbonate diol may be included in a molecular structure bound to the biodegradable polyester resin.
- the polycarbonate diol can be prepared by dehydration condensation reaction of carbonate and polyhydric alcohol.
- the carbonate may be at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate, or ethylene carbonate.
- the polyhydric alcohol may be at least one selected from the group consisting of ethylene glycol, diethylene glycol, neopentyl glycol, 1,6-hexanediol, or 1,2-propanediol.
- the weight average molecular weight of the polycarbonate diol may be about 500 to about 5000.
- the weight average molecular weight of the polycarbonate diol may be about 700 to about 4000.
- the weight average molecular weight of the polycarbonate diol may be about 800 to about 3500.
- the viscosity of the polycarbonate diol may be about 300 cps to about 20,000 cps.
- the viscosity of the polycarbonate diol may be about 400 cps to about 15,000 cps.
- the viscosity of the polycarbonate diol may be about 500 cps to about 14000 cps.
- the viscosity of the polycarbonate diol can be measured by ASTM/ISO 2555 at room temperature.
- the OH value of the polycarbonate diol may be about 20 mgKOH/g to about 350 mgKOH/g.
- the OH value of the polycarbonate diol may be about 30 mgKOH/g to about 300 mgKOH/g.
- the polycarbonate diol may be included in the biodegradable polyester resin in an amount of about 0.1 parts by weight to about 5 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the polycarbonate diol may be included in the biodegradable polyester resin in an amount of about 0.5 parts by weight to about 3 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the polycarbonate diol may be included in the biodegradable polyester resin in an amount of about 1 part by weight to about 3 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the biodegradable polyester resin composition according to the embodiment may have appropriate wet hardness, appropriate mechanical properties, appropriate solvent resistance, appropriate degree of hydrolysis, and appropriate biodegradability.
- the biodegradable polyester resin may further include polyether polyol.
- the polyether polyol may be included in a molecular structure bound to the biodegradable polyester resin.
- the polyether polyol can be produced by adding propylene oxide (PO) or ethylene oxide (EO) to an initiator having two or more activated hydrogens (-OH or NH2).
- PO propylene oxide
- EO ethylene oxide
- Examples of the polyether polyol include polypropylene glycol, polyethylene glycol, or polytetramethylene glycol.
- the weight average molecular weight of the polyether polyol may be about 500 to about 5000.
- the weight average molecular weight of the polyether polyol may be about 700 to about 4000.
- the weight average molecular weight of the polyether polyol may be about 800 to about 3500.
- the viscosity of the polyether polyol may be about 300 cps to about 20,000 cps.
- the viscosity of the polyether polyol may be about 400 cps to about 15,000 cps.
- the viscosity of the polyether polyol may be about 500 cps to about 14000 cps.
- the viscosity of the polyether polyol can be measured by ASTM/ISO 2555 at room temperature.
- the polyether polyol may be included in the biodegradable polyester resin in an amount of about 0.1 parts by weight to about 5 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the polyether polyol may be included in the biodegradable polyester resin in an amount of about 0.5 parts by weight to about 3 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the polyether polyol may be included in the biodegradable polyester resin in an amount of about 1 part by weight to about 3 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the biodegradable polyester resin composition according to the embodiment may have appropriate wet hardness, appropriate mechanical properties, appropriate solvent resistance, appropriate degree of hydrolysis, and appropriate biodegradability.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 30 wt% or more based on the total weight of the composition.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 50 wt% or more based on the total weight of the composition.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 70 wt% or more based on the total weight of the composition.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 80 wt% or more based on the total weight of the composition.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 90 wt% or more based on the total weight of the composition.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 95 wt% or more based on the total weight of the composition.
- the biodegradable polyester resin composition according to the embodiment may include the biodegradable resin in an amount of about 99 wt% or more based on the total weight of the composition.
- the maximum content of the biodegradable resin in the biodegradable polyester resin composition according to the embodiment may be about 100 wt% based on the total weight of the composition.
- the biodegradable polyester resin composition according to the example may further include a reinforcing material.
- the reinforcing material can improve the mechanical properties of the biodegradable polyester resin composition according to the example and the film or molded product manufactured therefrom.
- the reinforcing material can control the deformation characteristics of the biodegradable polyester resin composition according to the example by ultraviolet rays.
- the reinforcing material can control the hydrolysis characteristics of the biodegradable polyester resin composition according to the example.
- the reinforcing material can control the biodegradability of the biodegradable polyester resin according to the embodiment.
- the reinforcing material may be a fiber derived from biomass.
- the reinforcing material may be a fiber made of organic material.
- the reinforcing material may be nanocellulose.
- the nanocellulose includes nanocrystalline cellulose, cellulose nanofibers, microfibrillated cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, cellulose acetate, methyl cellulose, ethyl cellulose, and propyl cellulose. , butyl cellulose, pentyl cellulose, hexyl cellulose, or cyclohexyl cellulose.
- the nanocellulose may contain an ionic bonded metal.
- the nanocrystalline cellulose may contain elemental sodium. Additionally, the nanocrystalline cellulose may contain sulfate.
- the nanocrystalline cellulose may contain a carboxylic acid salt.
- the nanocrystalline cellulose may be cellulose hydrogen sulphate sodium salt.
- the nanocellulose may be represented by Chemical Formula 7 below.
- x may be 1 to 35, and y may be 1 to 10.
- x may be 15 to 35, and y may be 1 to 10.
- the nanocellulose may have a specific surface area of about 200 m2/g to about 600 m2/g.
- the nanocellulose may have a specific surface area of about 250 m2/g to about 500 m2/g.
- the weight average molecular weight of the nanocellulose may be about 10,000 g/mol to about 40,000 g/mol.
- the weight average molecular weight of the nanocrystalline cellulose may be about 11,000 g/mol to about 35,000 g/mol.
- the water content of the nanocrystalline cellulose may be about 2wt% to about 8wt%.
- the water content of the nanocrystalline cellulose may be about 4wt% to about 6wt%.
- the average diameter of the nanocellulose may be about 0.5 nm to about 10 nm.
- the average diameter of the nanocellulose may be about 1 nm to about 8 nm.
- the average diameter of the nanocellulose may be about 1.5 nm to about 7 nm.
- the average length of the nanocellulose may be about 20 nm to about 300 nm.
- the average length of the nanocellulose may be about 30 nm to about 180 nm.
- the average length of the nanocellulose may be about 35 nm to about 150 nm.
- the biodegradability and physical properties of biodegradable polyester resin, or biodegradable polyester sheets, films, and molded products obtained using it can be further improved.
- the diameter and length of the nanocellulose can be measured by atomic force microscopy while dispersed in water.
- the sulfur content of the nanocellulose may be about 0.1wt% to about 1.2wt% based on the entire nanocrystalline cellulose.
- the sulfur content of the nanocellulose may be about 0.2wt% to about 1.1wt% based on the entire nanocellulose.
- the pH of the nanocellulose may be 5 to 8.
- the pH of the nanocellulose may be 6 to 8.
- the zeta potential of the nanocellulose may be about -25 mV to about -50 mV.
- the zeta potential of the nanocellulose may be about -30 mV to about -45 mV.
- the nanocellulose may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.01 parts by weight to about 2 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the nanocellulose may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.03 parts by weight to about 1.5 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the nanocellulose may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.04 parts by weight to about 1.2 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the nanocellulose may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.05 parts by weight to about 1 part by weight based on 100 parts by weight of the biodegradable polyester resin.
- nanocellulose has the above characteristics, it can be uniformly dispersed in the biodegradable polyester resin composition according to the embodiment.
- nanocellulose Since the nanocellulose has the above characteristics, it can improve the mechanical properties of the biodegradable polyester resin composition according to the example.
- the nanocellulose can function as a crystal nucleating agent and improve the crystallization rate of the biodegradable polyester resin composition according to the example. Accordingly, the nanocellulose can increase the crystallization temperature of the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the embodiment may have appropriate UV resistance properties.
- the biodegradable polyester resin composition according to the embodiment can have an appropriate biodegradation rate.
- the biodegradable polyester resin composition according to the embodiment may have an appropriate hydrolysis rate.
- the biodegradable polyester resin composition according to the example may include a metal salt.
- the metal salt may be included in an amount of about 0.1 ppm to about 1000 ppm based on the total weight of the biodegradable polyester resin composition according to the embodiment.
- the metal salt may be included in an amount of about 1 ppm to about 500 ppm based on the total weight of the biodegradable polyester resin composition according to the embodiment.
- the metal salt may be included in an amount of about 1 ppm to about 100 ppm based on the total weight of the biodegradable polyester resin composition according to the embodiment.
- the metal salt may be included in an amount of about 1 ppm to about 50 ppm based on the total weight of the biodegradable polyester resin composition according to the embodiment.
- the metal salt may be at least one selected from the group consisting of nitrate, sulfate, hydrochloride, or carboxylate.
- the metal salt may be at least one selected from the group consisting of titanium salt, silicon salt, sodium salt, calcium salt, potassium salt, magnesium salt, copper salt, iron salt, aluminum salt, or silver salt.
- the metal salt may be at least one selected from the group consisting of magnesium acetate, calcium acetate, potassium acetate, copper nitrate, silver nitrate, or sodium nitrate.
- the metal salts include iron (Fe), magnesium (Mg), nickel (Ni), cobalt (Co), copper (Cu), palladium (Pd), zinc (Zn), vanadium (V), titanium, (Ti), and indium ( It may include one or more selected from the group consisting of In), manganese (Mn), silicon (Si), and tin (Sn).
- the metal salt includes acetate, nitrate, nitride, sulfide, sulfate, sulfoxide, hydroxide, hydrate, It may be selected from the group consisting of chloride, chlorinate, and bromide.
- biodegradable polyester resin composition according to the embodiment includes the metal salt in the above content, the hydrolysis rate and biodegradation rate can be appropriately controlled.
- biodegradable polyester resin composition according to the embodiment includes the metal salt in the above content, the hydrolysis rate and biodegradation rate can be appropriately adjusted.
- the biodegradable polyester resin composition according to the example may further include a hydrolysis resistant agent.
- the hydrolysis resistant agent may be selected from at least one silicon-based compound such as silane, silazane, or siloxane.
- the hydrolysis resistant agent may include an alkoxy silane.
- the hydrolysis resistant agent may include trimethoxy silane and/or triethoxy silane.
- the hydrolysis resistant agent may include an alkoxy silane containing an epoxy group.
- the hydrolysis resistant agent is 2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-Glycidoxypropyl methyldimethoxysilane , 3-Glycidoxypropyl trimethoxysilane, 3-Glycidoxypropyl methyldiethoxysilane or 3-Glycidoxypropyl triethoxysilane ) may include at least one from the group consisting of.
- the hydrolysis resistant agent may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 1 ppm to about 10000 ppm.
- the hydrolysis resistant agent may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 1 ppm to about 1000 ppm.
- the hydrolysis resistant agent may be included in an amount of about 5ppm to 500ppm in the biodegradable polyester resin composition according to the example.
- the hydrolysis resistant agent may be included in an amount of about 10 ppm to 300 ppm in the biodegradable polyester resin composition according to the example.
- the hydrolysis resistant agent may be bound to the biodegradable polyester resin.
- the hydrolysis-resistant agent may be chemically bonded to the biodegradable polyester resin.
- the hydrolysis-resistant agent may be chemically combined with the polymer contained in the biodegradable polyester resin.
- the hydrolysis-resistant agent can couple the polymers contained in the biodegradable polyester resin to each other.
- biodegradable polyester resin composition according to the embodiment contains the hydrolysis resistance agent in the above range, it may have appropriate hydrolysis resistance properties.
- the biodegradable polyester resin according to the embodiment includes the hydrolysis resistance agent in the above range, it can have appropriate initial hydrolysis characteristics and improved biodegradability.
- the biodegradable polyester resin composition according to the embodiment may contain a silicon element.
- the biodegradable polyester resin composition according to the embodiment may include the silicon element in an amount of about 1 ppm to about 150 ppm.
- the biodegradable polyester resin composition according to the embodiment may include silicon element in an amount of about 0.1 ppm to about 100 ppm.
- the biodegradable polyester resin composition according to the embodiment may include silicon element in an amount of about 0.1 ppm to about 50 ppm.
- the biodegradable polyester resin composition according to the embodiment may include silicon element in an amount of about 0.1 ppm to about 20 ppm.
- the hydrolysis resistant agent may react with terminal carboxyl groups or unreacted carboxyl groups. Accordingly, the biodegradable polyester resin composition according to the example may have a low acid value.
- the hydrolysis-resistant agent couples the polymer contained in the biodegradable polyester resin, so that the biodegradable polyester resin composition according to the embodiment can increase the ratio of high molecular weight polymer. Accordingly, the mechanical properties of the biodegradable polyester resin composition according to the example may be improved.
- the biodegradable polyester resin composition according to the example may further include a chain extender.
- the chain extender may include isocyanate.
- the chain extender may be at least one selected from the group consisting of monofunctional isocyanates or polyfunctional isocyanates.
- the chain extender is tolylene 2,4-diisocyanate, tolylene 2,6-diisocyanate, diphenylmethane 4,4'-diisocyanate and 2,4'-diisocyanate, naphthalene 1,5-diisocyanate, At least one may be selected from the group consisting of xylylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, isophorone diisocyanate, and methylenebis(4-isocyanatocyclohexane).
- the chain extender may include triisocyanate.
- the chain extender may include tri(4-isocyanatophenyl)methane.
- the chain extender may include an acrylic polymer.
- the acrylic polymer may include an acrylic group.
- the acrylic group may be combined as a side chain to the main chain.
- the acrylic polymer may include an epoxy group.
- the epoxy group may be bonded to the main chain as a side chain.
- the chain extender may include a styrene-based copolymer.
- the chain extender may include styrenic glycidyl acrylate.
- the chain extender may be chemically bound to the biodegradable polyester resin.
- the chain extender may be chemically bonded to the polymer contained in the biodegradable polyester resin.
- the chain extender may be bound to the end of the polymer included in the biodegradable polyester resin. Additionally, the chain extender may be bound to the ends of the three polymers included in the biodegradable polyester resin.
- the chain extender may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.1 wt% to about 10 wt% based on the total composition.
- the chain extender may be included in the biodegradable polyester resin composition according to the example in an amount of about 0.2 wt% to about 8 wt% based on the total composition.
- the chain extender may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.3 wt% to about 7 wt% based on the total composition.
- the biodegradable polyester resin composition according to the embodiment includes the chain extender in the above range, it may have appropriate hydrolysis resistance and appropriate biodegradability.
- the chain extender may react with terminal carboxyl groups or unreacted carboxyl groups. Accordingly, the biodegradable polyester resin composition according to the example may have a low acid value.
- the chain extender couples the polymer contained in the biodegradable polyester resin, so that the biodegradable polyester resin composition according to the embodiment can increase the proportion of high molecular weight polymer. Accordingly, the mechanical properties of the biodegradable polyester resin composition according to the example may be improved.
- the biodegradable polyester resin composition according to the example may include an oligomer.
- the molecular weight of the oligomer may be about 400 to about 1300.
- the oligomer may be included in the biodegradable polyester resin composition according to the embodiment at about 3000 ppm to about 30000 ppm based on the total resin composition.
- the oligomer may be included in the biodegradable polyester resin composition according to the embodiment at about 5000 ppm to about 20000 ppm based on the total resin composition.
- the oligomer may be included in the biodegradable polyester resin composition according to the embodiment at about 5000 ppm to about 15000 ppm based on the total resin composition.
- the oligomer may be included in the biodegradable polyester resin composition according to the embodiment at about 7000 ppm to about 15000 ppm based on the total resin composition.
- the oligomer may be a reaction product of at least two of the diol, the aromatic dicarboxylic acid, and the aliphatic dicarboxylic acid.
- the oligomer may be a reaction product of 1,4-butanediol, terephthalic acid, and adipic acid.
- the oligomer may include an oligomer in which the molar ratio of the aliphatic dicarboxylic acid is higher than the molar ratio of the aromatic dicarboxylic acid.
- the ratio of oligomers containing relatively more aliphatic dicarboxylic acids may be higher than the ratio of oligomers containing relatively more aromatic dicarboxylic acids.
- the oligomer can appropriately control the degree of hydrolysis of the biodegradable polyester resin composition according to the example.
- the oligomer may be a hydrolysis regulator that appropriately adjusts the degree of hydrolysis of the biodegradable polyester resin composition according to the example.
- the oligomer can appropriately control the biodegradability of the biodegradable polyester resin composition according to the example.
- the oligomer may be a biodegradation regulator that appropriately adjusts the biodegradability of the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the example may include a heat stabilizer.
- the heat stabilizer may be a phosphorus-based heat stabilizer.
- the heat stabilizer includes amine-based high-temperature heat stabilizers such as tetraethylenepentamine, triethylphosphonoacetate, phosphoric acid, phosphorous acid, polyphosphric acid, trimethyl phosphate (TMP), At least one may be selected from the group consisting of triethyl phosphate, trimethyl phosphine, or triphenyl phosphine.
- amine-based high-temperature heat stabilizers such as tetraethylenepentamine, triethylphosphonoacetate, phosphoric acid, phosphorous acid, polyphosphric acid, trimethyl phosphate (TMP), At least one may be selected from the group consisting of triethyl phosphate, trimethyl phosphine, or triphenyl phosphine.
- the heat stabilizer may be an antioxidant that has an antioxidant function.
- the content of the heat stabilizer may be about 3000 ppm or less based on the total weight of the biodegradable polyester resin.
- the content of the heat stabilizer may be, for example, 10 ppm to 3,000 ppm, 20 ppm to 2,000 ppm, 20 ppm to 1,500 ppm, or 20 ppm to 1,000 ppm, based on the total weight of the biodegradable polyester resin.
- the heat stabilizer can control the reaction rate by suppressing the activation of titanium-based catalysts.
- the biodegradable polyester resin composition according to the example may include an elongation improver.
- the elongation improver include oils such as paraffin oil, naphthenic oil, or aromatic oil, or adipates such as dibutyl adipate, diethylhexyl adipate, dioctyl adipate, or diisopropyl adipate.
- the elongation improver may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.001 parts by weight to about 1 part by weight, based on 100 parts by weight of the biodegradable polyester resin.
- the elongation improver may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 0.01 parts by weight to about 1 part by weight, based on 100 parts by weight of the biodegradable polyester resin.
- the biodegradable polyester resin composition according to the example may include an inorganic filler.
- the inorganic fillers include calcium sulfate, barium sulfate, talc, talcum powder, bentonite, kaolin, chalk powder, calcium carbonate, graphite, gypsum, electrically conductive carbon black, calcium chloride, iron oxide, aluminum oxide, potassium oxide, dolomite, silicon dioxide, and wollastonite. , titanium dioxide, silicate, mica, glass fiber, or mineral fiber.
- the cumulative 50% particle size (D 50 ) based on volume in the particle size distribution obtained by laser diffraction is about 100 ⁇ m or less, about 85 ⁇ m or less, about 70 ⁇ m or less, about 50 ⁇ m or less, about 25 ⁇ m or less. It may be ⁇ m or less, about 10 ⁇ m or less, about 5 ⁇ m or less, about 3 ⁇ m or less, or about 1 ⁇ m or less.
- the specific surface area of the inorganic filler may be about 100 m 2 /g or more.
- the specific surface area of the inorganic filler may be about 100 m 2 /g or more, about 105 m 2 /g or more, or about 110 m 2 /g or more.
- the inorganic filler may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 3 parts by weight to about 50 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the inorganic filler may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 5 parts by weight to about 30 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the inorganic filler may be included in an amount of about 3,000 ppm or less based on the total weight of the biodegradable polyester resin composition according to the example.
- the content of the inorganic filler may be about 3,000 ppm or less, about 1,500 ppm or less, about 1,200 ppm or less, about 800 ppm or less, or about 600 ppm or less based on the total weight of the biodegradable polyester resin composition according to the embodiment. and may be about 50 ppm or more, about 100 ppm or more, about 130 ppm or more, about 150 ppm or more, or about 180 ppm or more.
- biodegradable polyester resin composition according to the embodiment includes the inorganic filler in the above content, the mechanical properties, appropriate UV resistance, appropriate biodegradation rate, and appropriate hydrolysis rate of the biodegradable polyester resin composition according to the example You can have
- the biodegradable polyester resin composition according to the embodiment may further include a heterogeneous biodegradable resin.
- the biodegradable polyester resin composition according to the embodiment may be a composite resin composition containing two or more types of resins, fillers, and additives.
- the heterogeneous biodegradable resins include polybutylene azelate terephthalate (PBAzT), polybutylene sebacate terephthalate (PBSeT), polybutylene succinate terephthalate (PBST), polyhydroxyalkanoate (PHA), or At least one may be selected from the group consisting of polylactic acid (PLA).
- PBAzT polybutylene azelate terephthalate
- PBSeT polybutylene sebacate terephthalate
- PBST polybutylene succinate terephthalate
- PHA polyhydroxyalkanoate
- At least one may be selected from the group consisting of polylactic acid (PLA).
- the heterogeneous biodegradable resin may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 10 parts by weight to about 100 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the heterogeneous biodegradable resin may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 10 parts by weight to about 60 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the heterogeneous biodegradable resin may be included in the biodegradable polyester resin composition according to the embodiment in an amount of about 20 parts by weight to about 50 parts by weight based on 100 parts by weight of the biodegradable polyester resin.
- the heterogeneous biodegradable resin can complement the mechanical, optical and chemical properties of the biodegradable polyester resin. Since the biodegradable polyester resin composition according to the embodiment includes the heterogeneous biodegradable resin in the above content, the biodegradable polyester resin composition according to the embodiment has mechanical properties, appropriate UV resistance, appropriate biodegradation rate, and appropriate It can have a hydrolysis rate.
- the number of carboxyl terminal groups in the biodegradable polyester resin composition according to the example may be about 50 eq/ton or less.
- the number of carboxyl terminal groups of the biodegradable polyester resin according to the embodiment may be about 50 eq/ton or less, about 48 eq/ton or less, about 45 eq/ton or less, or about 42 eq/ton or less.
- the intrinsic viscosity (IV) of the biodegradable polyester resin composition according to the example may be about 0.9 dl/g or more.
- the intrinsic viscosity of the biodegradable polyester resin composition according to the embodiment may be about 0.95 dl/g or more, about 1.0 dl/g or more, about 1.1 dl/g or more, about 1.2 dl/g or more, or about 1.3 dl/g or more.
- the intrinsic viscosity of the biodegradable polyester resin composition according to the example may be from about 0.95 dl/g to about 1.7 dl/g.
- the intrinsic viscosity of the biodegradable polyester resin composition according to the example may be about 1.3 dl/g to about 1.7 dl/g.
- the intrinsic viscosity of the biodegradable polyester resin composition according to the examples may be about 1.4 dl/g to about 1.7 dl/g.
- the process of manufacturing the biodegradable polyester resin composition according to the example is as follows.
- the apparatus for producing the biodegradable polyester resin includes a slurry stirrer (100), an esterification reaction unit (200), a condensation polymerization reaction unit (300), a post-processing unit (400), and a first recovery unit (510). ) and a second recovery unit 520.
- the method for producing the biodegradable polyester resin includes preparing a slurry containing the diol and the aromatic dicarboxylic acid.
- Preparing the slurry includes mixing and treating the diol and the aromatic dicarboxylic acid. That is, the step of preparing the slurry is a pretreatment step before the esterification reaction, and may be a step of mixing the diol and the aromatic dicarboxylic acid and slurrying them.
- the diol may include a biomass-based diol component.
- the temperature of the slurry of the diol and the aromatic dicarboxylic acid may be about 5°C to about 15°C higher than the melting point of the diol. For example, when the diol is 1,4-butanediol, the temperature of the slurry may be about 35°C to about 45°C.
- the diol and the aromatic dicarboxylic acid are added to the slurry stirrer 100 and stirred to prepare the slurry.
- the slurry pretreatment process can play a very important role in providing biodegradable polyester resins, sheets, films, and molded products with excellent physical properties according to embodiments of the present invention and improving reaction efficiency.
- the terephthalic acid When the aromatic dicarboxylic acid is terephthalic acid, the terephthalic acid has complete crystallinity and is a white crystal that sublimates at around 300°C at normal pressure without a melting point. Since the solubility in the diol is very low and a homogeneous reaction is difficult to occur, esterification If a pretreatment process is performed before the reaction, a uniform reaction can be induced by increasing the surface area for reaction with diol within the solid matrix of terephthalic acid.
- the dimethyl terephthalate can be made into a molten state at about 142°C to 170°C through the pretreatment process and reacted with the diol, making the esterification reaction faster and more efficient. You can proceed with .
- the structure and physical properties of the biodegradable polyester resin may vary depending on the particle size, particle size distribution, pretreatment reaction conditions, etc. of the aromatic dicarboxylic acid.
- the aromatic dicarboxylic acid includes terephthalic acid, and the average particle diameter (D50) of the terephthalic acid in particle size distribution (PSD) measured by a particle size analyzer Microtrac S3500 is 10 ⁇ m to 400 ⁇ m, and the average particle diameter (D50)
- PSD particle size distribution
- the standard deviation for may be 100 or less.
- the standard deviation means the square root of the variance.
- the average particle diameter (D50) of the terephthalic acid may be, for example, 20 ⁇ m to 200 ⁇ m, for example, 30 ⁇ m to 180 ⁇ m, or for example, 100 ⁇ m to 160 ⁇ m.
- the diol and the aromatic dicarboxylic acid can be mixed and introduced into the slurry stirrer 100 (tank).
- the slurry agitator 100 for example, has an anchor type at the bottom, has a height of 20 mm or more to the agitator, and is provided with two or more rotary blades, which may be more advantageous in achieving an efficient stirring effect.
- the slurry stirrer 100 may have a height of 20 mm or more, that is, the distance between the reactor and the lowest part of the stirrer may be almost adjacent, and in this case, slurry can be obtained without precipitation. If the shape, form, and rotary blade of the stirrer do not satisfy the above conditions, the aromatic dicarboxylic acid may settle to the bottom when the diol and aromatic dicarboxylic acid are initially mixed, in which case phase separation may occur. there is.
- the pretreatment process for preparing the slurry includes mixing the diol and the aromatic dicarboxylic acid and stirring at about 30° C. to about 100° C. at about 50 rpm to about 200 rpm for 10 minutes or more, such as 10 minutes to 200 minutes. can do.
- the diol may have the characteristics described above.
- the diol can be added all at once or in divided doses.
- the diol can be added separately when mixed with aromatic dicarboxylic acid and when mixed with aliphatic dicarboxylic acid.
- the aromatic dicarboxylic acid may have the characteristics described above.
- the molar ratio of the diol and the aromatic dicarboxylic acid may be about 0.8:1 to about 2:1. In the pretreatment step of preparing the slurry, the molar ratio of the diol and the aromatic dicarboxylic acid may be about 1.1:1 to about 1.5:1. In the pretreatment step of preparing the slurry, the molar ratio of the diol and the aromatic dicarboxylic acid may be about 1.2:1 to about 1.5:1.
- the aromatic dicarboxylic acid can be easily dispersed.
- additives may be added to the slurry.
- the nanocellulose and/or the metal salt may be added to the slurry in the form of a dispersion or solution.
- the method for producing the biodegradable polyester resin includes mixing diol and aromatic dicarboxylic acid and performing an esterification reaction using the slurry obtained by pretreatment to obtain a prepolymer, and subjecting the prepolymer to a condensation polymerization reaction.
- Embodiments of the present invention Accordingly, the structure and physical properties of the desired biodegradable polyester resin can be efficiently achieved.
- the method for producing the biodegradable polyester resin includes producing a prepolymer by esterifying the slurry and the aliphatic dicarboxylic acid.
- the slurry and the aliphatic dicarboxylic acid may be reacted in the ester reaction unit.
- the reaction time can be shortened by using the slurry.
- the slurry obtained in the pretreatment step can shorten the reaction time of the ester reaction by more than 1.5 times.
- the esterification reaction may proceed at least twice. Through the esterification reaction, a prepolymer that is introduced into the condensation polymerization process can be formed.
- the esterification reaction may be performed at once after adding an aliphatic dicarboxylic acid, or a diol and an aliphatic dicarboxylic acid to the slurry. That is, the slurry is input into the esterification reactor, and the aliphatic dicarboxylic acid alone or the aliphatic dicarboxylic acid and the diol are input into the esterification reactor, and the esterification reaction can proceed.
- the diol and the aliphatic dicarboxylic acid may be added to the slurry containing the aromatic dicarboxylic acid in the form of a slurry.
- the average particle diameter (D50) of the aliphatic dicarboxylic acid may be about 50 ⁇ m to about 150 ⁇ m. In the slurry of the diol and the aliphatic dicarboxylic acid, the average particle diameter (D50) of the aliphatic dicarboxylic acid may be about 60 ⁇ m to about 120 ⁇ m.
- the total number of moles of diol added may be about 1.0 to about 1.8 compared to the total number of moles of the aromatic dicarboxylic acid and the aliphatic dicarboxylic acid. In the esterification reaction, the total number of moles of diol added may be about 1.1 to about 1.6 compared to the total number of moles of the aromatic dicarboxylic acid and the aliphatic dicarboxylic acid.
- the temperature of the slurry of the diol and the aliphatic dicarboxylic acid may be about 5°C to about 15°C higher than the melting point of the diol.
- additives such as the nano cellulose may also be added to the slurry of the diol and the aliphatic dicarboxylic acid.
- the esterification reaction may be performed at about 250°C or less for about 0.5 hours to about 5 hours. Specifically, the esterification reaction is carried out at normal or reduced pressure at about 180°C to about 250°C, about 185°C to about 240°C, or about 200°C to about 240°C until water as a by-product theoretically reaches 95%. It can be. For example, the esterification reaction may be performed for 0.5 hours to 5.5 hours, 0.5 hours to 4.5 hours, or 1 hour to 4 hours, but is not limited thereto.
- the polycarbonate diol and/or the polyether polyol may be mixed with the slurry, and a first esterification reaction may proceed.
- the polycarbonate diol and/or the polyether polyol may be added to the second esterification reaction.
- a mixture of the aliphatic dicarboxylic acid and the diol may be added to the esterification reaction unit, and a second ester reaction may proceed together with the first ester reaction product. Additionally, the polycarbonate diol and/or the polyether polyol may be added to the second esterification reaction.
- the first ester reaction may be performed at 250°C or lower for 1.25 to 4 hours. Specifically, the first esterification reaction may be performed at normal or reduced pressure at 180°C to 250°C, 185°C to 240°C, or 200°C to 240°C until water as a by-product theoretically reaches 95%. For example, the first esterification reaction may be performed for 1.25 hours to 4 hours, 1.25 hours to 3.5 hours, or 2.5 hours to 3 hours, but is not limited thereto.
- the second ester reaction may be performed at about 250°C or less for 0.25 to 3.5 hours. Specifically, the second esterification reaction may be performed at normal or reduced pressure at 180°C to 250°C, 185°C to 240°C, or 200°C to 240°C until water as a by-product theoretically reaches 95%. For example, the second esterification reaction may be performed for 0.5 hours to 3 hours, 1 hour to 2.5 hours, or 1.5 hours to 2.5 hours, but is not limited thereto.
- the reaction temperature, reaction time, and the contents of the diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid added are respectively adjusted, so that the first block and the second block The number ratio, etc. can be adjusted. Additionally, when the ester reaction is divided into the first ester reaction and the second ester reaction, the entire ester reaction can be precisely controlled. Accordingly, when the ester reaction proceeds separately, the reaction stability and reaction uniformity of the ester reaction can be improved.
- the branching agent may be additionally added. That is, the mixture of the aliphatic dicarboxylic acid, the diol, the branching agent, and the first ester reaction product may react to form the prepolymer.
- the characteristics and content of the branching agent may be the same as described above.
- a prepolymer By the esterification reaction, a prepolymer can be formed.
- the number average molecular weight of the prepolymer may be about 500 to about 10000 g/mol.
- the number average molecular weight of the prepolymer is about 500 to about 8500 g/mol, about 500 to about 8000 g/mol, about 500 to about 7000 g/mol, about 500 g/mol to about 5000 g/mol, or about 800 g/mol. mol to about 4000 g/mol.
- the number average molecular weight of the prepolymer satisfies the above range, the molecular weight of the polymer can be efficiently increased in the condensation polymerization reaction.
- the number average molecular weight can be measured using gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the data produced by gel permeation chromatography includes several items such as Mn, Mw, and Mp, but the molecular weight can be measured based on the number average molecular weight (Mn).
- the reinforcing material, the branching agent, the polycarbonate diol, the polyether polyol, or the metal salt may be added together with the slurry before the esterification reaction.
- the reinforcing material, the branching agent, the polycarbonate diol, the polyether polyol, and/or the metal salt may be added to the esterification reaction unit 200 in the middle of the esterification reaction.
- the reinforcing material, the branching agent, the polycarbonate diol, the polyether polyol, and/or the metal salt may be added to the ester reaction product after the esterification reaction.
- the reinforcing material, the branching agent, the polycarbonate diol, the polyether polyol, and/or the metal salt may be added together with the aliphatic dicarboxylic acid.
- the reinforcing material, the branching agent, the polycarbonate diol, the polyether polyol, and/or the metal salt may be added to the esterification reaction unit 200 after the first ester reaction and before the second ester reaction. there is.
- the reinforcing material and/or the metal salt are added to the esterification reaction, the reinforcing material and/or the metal salt may be uniformly dispersed in the biodegradable polyester resin.
- the reinforcing material may have the characteristics described above.
- nanocellulose may be used as the reinforcing material.
- the nanocellulose may be pretreated by a bead mill, ultrasonic waves, or high-speed dispersion at about 1000 rpm to about 1500 rpm before being added.
- the nanocellulose may be water-dispersed nanocellulose that has been pretreated with a bead mill or pretreated with ultrasonic waves.
- the bead mill pretreatment can be performed using a vertical mill or horizontal mill as a wet milling device.
- the horizontal mill is preferable because it allows for a larger amount of beads to be filled inside the chamber, reduces uneven wear of the machine, reduces bead wear, and makes maintenance easier, but is not limited to this.
- the bead mill pretreatment may be performed using one or more beads selected from the group consisting of zirconium, zircon, zirconia, quartz, and aluminum oxide.
- the bead mill pretreatment may be performed using beads having a diameter of about 0.3 mm to about 1 mm.
- the bead may have a diameter of about 0.3 mm to about 0.9 mm, about 0.4 mm to about 0.8 mm, about 0.45 mm to about 0.7 mm, or about 0.45 mm to about 0.6 mm.
- the dispersibility of nanocellulose can be further improved. If the diameter of the beads exceeds the above range, the average particle size and particle size deviation of nanocellulose may increase, resulting in lower dispersibility.
- the beads may be one or more selected from the group consisting of zirconium, zircon, zirconia, quartz, and aluminum oxide, which have a specific gravity higher than that of the water-dispersed nanocellulose, and have a specific gravity of more than 4 times that of the water-dispersed nanocellulose.
- High zirconium beads are preferred, but are not limited thereto.
- the ultrasonic pretreatment is a method of physically breaking or pulverizing nanoparticles with waves generated by emitting 20 kHz ultrasound into a solution.
- the ultrasonic pretreatment may be performed for less than 30 minutes at an output of 30,000 J/s or less.
- the ultrasonic pretreatment may be performed for 25 minutes or less, 20 minutes or less, or 18 minutes or less at an output of 25,000 J/s or less or 22,000 J/s or less.
- the effect of ultrasonic pretreatment that is, the improvement in dispersibility, can be maximized. If the output exceeds the above range, the nanoparticles may re-agglomerate and the dispersibility may be lowered.
- Nanocellulose according to embodiments may be bead mill pretreated or ultrasonic pretreated.
- the nanocellulose according to the embodiment may have been subjected to both bead mill pretreatment and ultrasonic pretreatment.
- ultrasonic pretreatment is performed after bead mill pretreatment in order to prevent re-agglomeration and improve dispersibility.
- Nanocellulose according to embodiments may be bead mill pretreated or ultrasonic pretreated.
- the nanocellulose according to the embodiment may have been subjected to both bead mill pretreatment and ultrasonic pretreatment.
- ultrasonic pretreatment is performed after bead mill pretreatment in order to prevent re-agglomeration and improve dispersibility.
- the nanocellulose contains ion-bonded metal, its dispersibility in water is very high.
- an aqueous dispersion with a very high degree of dispersion of the nanocellulose can be obtained.
- the content of nano-cellulose may be about 1 wt% to about 50 wt%.
- a titanium-based catalyst and/or a germanium-based catalyst may be used in the esterification reaction. Specifically, the titanium-based catalyst and/or germanium-based catalyst may be added to the slurry, and the esterification reaction may proceed.
- the titanium-based catalyst and/or the germanium-based catalyst are added to the slurry before the first esterification reaction, and the titanium-based catalyst and/or the germanium-based catalyst are further added to the product of the first esterification reaction. It can be.
- the biodegradable polyester resin consists of titanium isopropoxide, antimony trioxide, dibutyltin oxide, tetrapropyl titanate, tetrabutyl titanate, tetraisopropyl titanate, antimony acetate, calcium acetate, and magnesium acetate. It may include one or more titanium-based catalysts selected from the group, or one or more germanium-based catalysts selected from the group consisting of germanium oxide, germanium methoxide, germanium ethoxide, tetramethyl germanium, tetraethyl germanium, and germanium sulfide.
- the content of the catalyst may be about 50 ppm to 2000 ppm based on the total weight of diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid.
- it may include about 60 ppm to about 1600 ppm, about 70 ppm to about 1400 ppm, about 80 ppm to about 1200 ppm, or about 100 ppm to about 1100 ppm of a titanium-based catalyst or a germanium-based catalyst.
- the catalyst content satisfies the above range, the physical properties can be further improved.
- the heat stabilizer may be added together with the slurry before the esterification reaction.
- the heat stabilizer may be added to the esterification reaction unit 200 during the esterification reaction.
- the heat stabilizer may be added to the ester reaction product after the esterification reaction.
- the heat stabilizer may be added together with the aliphatic dicarboxylic acid. Additionally, the heat stabilizer may be added to the esterification reaction unit 200 after the first ester reaction and before the second ester reaction.
- the characteristics of the heat stabilizer may be the same as described above.
- the content of the heat stabilizer may be 3,000 ppm or less based on the total weight of diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid. Specifically, the content of the heat stabilizer is, for example, 10 ppm to 3,000 ppm, 20 ppm to 2,000 ppm, 20 ppm to 1,500 ppm, or 20 ppm to 1,000 based on the total weight of diol, aromatic dicarboxylic acid, and aliphatic dicarboxylic acid. It may be ppm. When the content of the heat stabilizer satisfies the above range, the deterioration of the polymer due to high temperature during the reaction process can be controlled, the end groups of the polymer can be reduced, and the color can be improved.
- At least one selected from the group consisting of additives such as silica, potassium or magnesium, and color correctors such as cobalt acetate may be further added to the esterification reaction product. That is, after the esterification reaction is completed, the additive and/or color corrector is added and stabilized, and then the condensation polymerization reaction can proceed.
- the additive and/or the color corrector may be added after completion of the esterification reaction and introduced into the condensation polymerization reaction unit 300 together with the prepolymer. Accordingly, the additive and/or the color corrector may be uniformly dispersed in the biodegradable polyester resin.
- the inorganic filler may be added to the esterification reaction product. That is, after the esterification reaction is completed, the inorganic filler is added and stabilized, and then the condensation polymerization reaction can proceed. The characteristics of the inorganic filler are the same as described above.
- the inorganic filler is added to the condensation polymerization reaction unit 300 together with the prepolymer, and the condensation polymerization process may proceed. Accordingly, the inorganic filler can be uniformly dispersed in the biodegradable polyester resin.
- the first recovery unit 510 recovers reaction by-products such as water from the esterification reaction unit 200.
- the first recovery unit 510 may apply vacuum pressure to the esterification reaction unit 200 or perform reflux to recover by-products generated in the esterification reaction.
- the method for producing the biodegradable polyester resin includes subjecting the prepolymer to a condensation polymerization reaction.
- the condensation polymerization reaction may proceed as follows.
- the prepolymer is introduced into the condensation polymerization reaction unit 300. Additionally, at least one of the reinforcing material, the heat stabilizer, the color corrector, the inorganic filler, the metal salt, or other additives may be added to the condensation polymerization reaction unit 300 together with the prepolymer.
- the condensation polymerization reaction may be performed at about 180°C to about 280°C and about 10 torr or less for about 1 hour to about 5 hours.
- the condensation polymerization reaction may be performed at about 190°C to about 270°C, about 210°C to about 260°C, or about 230°C to about 255°C, and at a temperature of about 0.9 torr or less, about 0.7 torr or less, or about 0.2 torr or less.
- condensation polymerization reaction may include primary condensation polymerization and secondary condensation polymerization.
- the primary condensation polymerization is performed at about 260°C or less, about 250°C or less, about 215°C to about 250°C, about 215°C to about 245°C, or about 230°C to about 245°C, and about 1 torr to about 200 torr. torr, about 2 torr to about 100 torr, about 4 torr to about 50 torr, about 5 torr to about 45 torr, or about 8 torr to about 32 torr for about 0.5 hours to about 3.5 hours, about 0.5 hours to about 3.0 hours, or It may be performed for about 0.5 hours to about 2.8 hours.
- the secondary condensation polymerization is performed at about 220°C to about 265°C, about 230°C to about 260°C, or about 235°C to about 255°C, at about 1 torr or less, about 0.8 torr or less, about 0.6 torr or less, about 0.1 torr or less. torr to about 1 torr, about 0.2 torr to about 0.8 torr, or about 0.2 torr to about 0.6 torr, for about 0.5 hours to about 4 hours, about 1 hour to about 3.5 hours, or about 1.5 hours to about 3.5 hours. there is.
- a titanium-based catalyst or a germanium-based catalyst may be further added to the prepolymer before the condensation polymerization reaction.
- additives such as silica, potassium or magnesium may be added to the prepolymer; Amine-based stabilizers such as trimethyl phosphate, triphenyl phosphate, trimethyl phosphine, phosphoric acid, phosphorous acid, or tetraethylenepentamine; And one or more types selected from the group consisting of polymerization catalysts such as antimony trioxide, antimony trioxide, or tetrabutyl titanate may be additionally added.
- the number average molecular weight of the polymer may be about 30000 g/mol or more.
- the number average molecular weight of the polymer may be about 33,000 g/mol or more, about 35,000 g/mol or more, or about 40,000 g/mol to about 90,000 g/mol.
- the number average molecular weight of the polymer satisfies the above range, physical properties, impact resistance, durability, and moldability can be further improved.
- the second recovery unit 520 recovers reaction by-products such as water from the condensation polymerization reaction unit 300.
- the second recovery unit 520 may apply vacuum pressure to the condensation polymerization reaction unit 300 and recover by-products generated in the condensation polymerization reaction.
- the second recovery unit 520 may apply a vacuum pressure of about 0.1 torr to about 1 torr to the interior of the condensation polymerization reaction unit 300.
- the second recovery unit 520 may apply a vacuum pressure of about 0.1 torr to about 0.9 torr to the interior of the condensation polymerization reaction unit 300.
- the hydrolysis resistant agent and/or the chain extender are added to the polymer. Thereafter, the polymer, the hydrolysis resistant agent and the chain extender are mixed uniformly and maintained at a temperature of about 200° C. to about 260° C. for about 1 minute to about 15 minutes. Accordingly, the polymer reacts with the hydrolysis resistant agent and/or the chain extender.
- the hydrolysis resistant agent and/or the chain extender may be added to the condensation polymerization reaction unit 300 through a static mixer and reacted with the polymer.
- the reaction temperature of the hydrolysis resistant agent and/or the chain extender in the condensation polymerization reaction unit 300 may be about 200°C to about 260°C.
- the reaction time of the hydrolysis resistant agent and/or the chain extender in the condensation reaction unit 300 may be about 1 minute to about 15 minutes.
- the chain extender may have the characteristics described above.
- the biodegradable polyester resin composition according to the example may have an appropriate degree of hydrolysis and a high degree of biodegradation.
- pellets can be manufactured from the polymer.
- the cooled polymer can be cut to produce pellets.
- the polymer can be cut at temperatures ranging from about 40°C to about 60°C.
- the cutting step can be performed without limitation using any pellet cutting machine used in the industry, and the pellets can have various shapes.
- the pellet cutting method may include an underwater cutting method or a strand cutting method.
- the pellets may undergo additional post-processing processes.
- the pellets are input into the post-processing unit 400, and the post-processing process may proceed.
- the post-processing process may be performed within the post-processing unit 400.
- the pellets are introduced into the post-processing unit 400. Thereafter, the post-processing unit 400 may melt the input pellets by frictional heat and re-extrude them. That is, the post-processing unit 400 may include an extruder such as a twin-screw extruder.
- the temperature of the post-treatment process may be about 230°C to about 270°C.
- the temperature of the post-treatment process may be about 230°C to about 260°C.
- the temperature of the post-treatment process may be about 240°C to about 265°C.
- the temperature of the post-treatment process may be about 240°C to about 260°C.
- the post-treatment process time may be about 30 seconds to about 3 minutes.
- the post-processing process time may be about 50 seconds to about 2 minutes.
- the post-treatment process time may be about 1 minute to about 2 minutes.
- the resin extruded by the extruder can be cooled, cut, and processed into post-treated pellets. That is, the resin extruded from the extruder can be reprocessed into pellets through the cutting step described above.
- the crystallinity of the pellet may be improved in the post-treatment process. Additionally, the content of residues contained in the pellets can be adjusted in the post-treatment process. In particular, the content of oligomers contained in the pellet can be adjusted by the post-treatment process. The content of residual solvent contained in the pellet can be adjusted by the post-treatment process.
- the post-treatment process can appropriately adjust the mechanical properties, biodegradability, UV resistance, optical properties, or hydrolysis resistance of the biodegradable polyester resin.
- the biodegradable polyester resin can be compounded with the heterogeneous biodegradable resin. Additionally, at least one of the inorganic filler, the light stabilizer, the color corrector, or the other additives may be compounded with the biodegradable polyester resin and the heterogeneous biodegradable resin.
- the compounding process may be as follows.
- the biodegradable polyester resin and the heterogeneous biodegradable resin are mixed with at least one of the inorganic filler, the heat stabilizer, the color corrector, the metal salt, or the other additives, and are put into an extruder.
- the mixed biodegradable polyester resin composition is melted at a temperature of about 120°C to about 260°C in the extruder and mixed with each other.
- the melt-mixed biodegradable polyester resin composition is then extruded, cooled, cut, and re-palletized.
- the biodegradable polyester resin composition according to the example can be manufactured by complexing with the heterogeneous biodegradable resin.
- the inorganic filler, heat stabilizer, color corrector, metal salt, and other additives may be added during the process of polymerizing the biodegradable polyester resin.
- a biodegradable polyester film can be produced using the biodegradable polyester resin according to the example.
- the thickness of the biodegradable polyester film may be about 5 ⁇ m to about 300 ⁇ m.
- the thickness of the biodegradable polyester film is about 5 ⁇ m to about 180 ⁇ m, about 5 ⁇ m to about 160 ⁇ m, about 10 ⁇ m to about 150 ⁇ m, about 15 ⁇ m to about 130 ⁇ m, about 20 ⁇ m to about 20 ⁇ m. It may be 100 ⁇ m, about 25 ⁇ m to about 80 ⁇ m, or about 25 ⁇ m to about 60 ⁇ m.
- the biodegradable polyester film according to the embodiment may have substantially the same degree of hydrolysis and biodegradation as the biodegradable polyester resin composition described above.
- the biodegradable polyester film can be manufactured using the biodegradable polyester resin or biodegradable polyester resin pellets.
- the method for producing the biodegradable polyester film may include preparing a biodegradable resin composition according to an example and drying and melt-extruding the biodegradable resin composition.
- the drying may be performed at about 60°C to about 100°C for about 2 hours to about 12 hours. Specifically, the drying may be performed at about 65°C to about 95°C, about 70°C to about 90°C, or about 75°C to about 85°C for about 3 hours to about 12 hours or about 4 hours to about 10 hours. .
- the pellet drying process conditions satisfy the above range, the quality of the biodegradable polyester film or molded article manufactured can be further improved.
- the melt extrusion may be performed at a temperature of about 270°C or lower.
- the melt extrusion is performed at a temperature of about 265°C or less, about 260°C or less, about 255°C or less, about 150°C to about 270°C, about 150°C to about 255°C, or about 150°C to about 240°C. It can be.
- the melt extrusion may be performed by a blown film process.
- the melt extrusion can be carried out in a T-die.
- the film manufacturing process may be a calendering process.
- a biodegradable polyester molded article can be manufactured using the biodegradable polyester resin.
- the molded article may be manufactured by molding the biodegradable polyester resin composition by methods known in the art, such as extrusion and injection, and the molded article may be manufactured by injection molding, extrusion molding, thin film molding, or blow molding. Alternatively, it may be a blow molded product, 3D filament, architectural interior material, etc., but is not limited thereto.
- the molded product may be in the form of a film or sheet that can be used as an agricultural mulching film, disposable gloves, disposable film, disposable bag, food packaging material, volume-rate garbage bag, etc., and may be in the form of a fabric, knitted fabric, non-woven fabric, or rope. It may be in the form of a fiber that can be used as a rope, etc.
- the molded product may be in the form of a disposable container that can be used as a food packaging container, such as a lunch box.
- the molded product may be of various shapes, such as disposable straws, spoons, food plates, and forks.
- the molded article can be formed from the biodegradable polyester resin, which can improve physical properties such as shock absorption energy and hardness, as well as impact resistance and durability, so it can be used as a packaging material for products stored and transported at low temperatures, and durability. It can demonstrate excellent properties when applied to automobile interior materials, garbage bags, mulching films, and disposable products.
- the physical properties of the biodegradable film and the biodegradable molded article can be measured in a similar manner to the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the example may have a molecular weight reduction rate of about 80% or more.
- the biodegradable polyester resin composition according to the example may have a molecular weight reduction rate of about 85% or more.
- the biodegradable polyester resin composition according to the example may have a molecular weight reduction rate of about 90% or more.
- the biodegradable polyester resin composition was mixed with compost, and an accelerated biodegradation test was conducted at a temperature of 60°C and a humidity of 90%. Gel permeation chromatography (GPC) was used to measure the number average molecular weight in the polyester resin compositions of Examples and Comparative Examples after 63 days.
- the molecular weight reduction rate was derived by dividing the difference between the initial number average molecular weight and the number average molecular weight after a certain period of time by the initial number average molecular weight.
- the molecular weight reduction rate can be derived from Equation 1 below.
- the biodegradable polyester resin composition according to the example is mixed with compost and undergoes an accelerated biodegradation test at a temperature of 60°C and a humidity of 90% for about 63 days.
- the initial number average molecular weight of the biodegradable polyester resin composition before the accelerated biodegradation test was performed and the number average molecular weight after 63 days of the biodegradable polyester resin composition that underwent the accelerated biodegradation test for 63 days were determined by gel permeation chromatography (GPC). It is measured.
- the molecular weight reduction rate was derived by dividing the difference between the initial number average molecular weight and the number average molecular weight after a certain period of time, for example, 63 days, by the initial number average molecular weight.
- the compost may include about 40 wt% of pig manure, about 15 wt% of chicken manure, about 37 wt% of sawdust, about 5 wt% of zeolite, and about 3 wt% of a microbial agent.
- the manufacturer of the compost is Taeheung F&G
- the product name of the compost may be geosaengto (grade 1 compost by-product fertilizer).
- the biodegradable polyester resin composition according to the example was manufactured into a sheet with a thickness of about 300 ⁇ m. Then, the prepared sheet was cut into a size of about 3cm x 3cm. , flakes are manufactured. The flakes are mixed with the compost, and the accelerated biodegradation test is performed.
- the biodegradable polyester film according to the example may have the molecular weight reduction rate as described above. Likewise, the biodegradable polyester film according to the example is cut to a size of about 3 cm x 3 cm, and flakes are produced. The flakes may be mixed with the compost, and the accelerated biodegradation test may be performed.
- the biodegradable polyester resin composition according to the example may have a biodegradability of about 80% or more.
- the biodegradable polyester resin composition according to the example may have a biodegradability of about 85% or more.
- the biodegradable polyester resin composition according to the example may have a biodegradability of about 90% or more.
- the biodegradability can be derived from Equation 2 below.
- the biodegradability of the biodegradable polyester resin composition according to the example can be measured based on the amount of carbon dioxide generated according to KS M3100-1.
- an inoculum container containing only compost produced in a compost factory is prepared, and a test container is prepared in which flakes of the biodegradable polyester resin composition of 5% by weight of the dry weight of the compost are added to the compost.
- the compost and the flakes are cultured for 180 days under conditions of a temperature of 58 ⁇ 2°C, a moisture content of 50%, and an oxygen concentration of 6% or more, and carbon dioxide generated in each container is captured and generated in each container by titration of an aqueous phenolphthalein solution.
- the amount of carbon dioxide generated is measured.
- the biodegradability was derived as the ratio of carbon dioxide generated from the biodegradable polyester resin composition compared to the theoretical amount of carbon dioxide generated.
- flakes of the biodegradable polyester resin composition can be produced substantially the same as flakes when the molecular weight reduction rate is measured.
- the biodegradable polyester film according to the embodiment may have the biodegradability as described above.
- the biodegradable polyester film according to the example is cut to a size of about 3 cm x 3 cm, and flakes are produced. The flakes may be mixed with the compost, and the biodegradation test may be performed.
- the degree of hydrolysis of the biodegradable polyester resin composition according to the example can be measured by the following method.
- the biodegradable resin composition according to the above example is immersed in water (100% RH) at 80°C, and then an accelerated degree of hydrolysis test is performed. After a certain period of time, gel permeation chromatography (GPC) was used to measure the number average molecular weight of the biodegradable polyester resin composition according to the example.
- the degree of hydrolysis was derived as the difference between the initial number average molecular weight and the number average molecular weight after hydrolysis for a certain period of time divided by the initial number average molecular weight.
- the degree of hydrolysis can be expressed by Equation 3 below.
- the biodegradable polyester resin composition according to the example is immersed in water at 80°C and then subjected to an accelerated hydrolysis test for a certain period of time.
- the initial number average molecular weight of the biodegradable polyester resin composition before the accelerated hydrolysis test was performed and the number average molecular weight after hydrolysis of the biodegradable polyester resin composition that underwent the accelerated hydrolysis test for a certain period of time were determined by gel permeation chromatography (GPC). It is measured by
- the degree of hydrolysis was derived as the difference between the initial number average molecular weight and the number average molecular weight after hydrolysis for a certain period of time divided by the initial number average molecular weight.
- the biodegradable polyester resin composition according to the example is manufactured into a sheet with a thickness of about 300 ⁇ m. Afterwards, the prepared sheet is cut into a size of about 3cm x 3cm. , flakes are manufactured. The flakes may be immersed in the hot water to perform the accelerated hydrolysis test.
- the degree of hydrolysis after one week may be about 40% to about 65%. In the biodegradable polyester resin composition according to the example, the degree of hydrolysis after one week may be about 45% to about 63%.
- the degree of hydrolysis after 2 weeks may be about 80% to about 93%. In the biodegradable polyester resin composition according to the example, the degree of hydrolysis after 2 weeks may be about 85% to about 92%.
- the degree of hydrolysis after 3 weeks may be about 90% to about 97%. In the biodegradable polyester resin composition according to the example, the degree of hydrolysis after 3 weeks may be about 91% to about 96%.
- the degree of hydrolysis after 4 weeks may be about 92% to about 99%. In the biodegradable polyester resin composition according to the example, the degree of hydrolysis after 4 weeks may be about 93% to about 97%.
- the degree of hydrolysis after 6 weeks may be about 94% or more. In the biodegradable polyester resin composition according to the example, the degree of hydrolysis after 6 weeks may be about 95% or more.
- the degree of hydrolysis after 9 weeks may be about 95% or more. In the biodegradable polyester resin composition according to the example, the degree of hydrolysis after 9 weeks may be about 96% or more.
- the biodegradable polyester resin composition according to the example may have a reduction rate in wet hardness.
- the wet hardness reduction rate is obtained by dividing the difference between the initial hardness before immersion and the wet hardness after immersion by the initial hardness after the biodegradable polyester resin composition is immersed in water at a certain temperature for a certain period of time.
- the wet hardness reduction rate can be derived from Equation 4 below.
- the wet hardness reduction rate after immersion at a temperature of about 30° C. for about 24 hours may be about 16% or less.
- the rate of decline in wet hardness may be about 15% or less.
- the rate of decline in wet hardness may be about 14% or less.
- the rate of decline in wet hardness may be about 13% or less.
- the rate of decline in wet hardness may be about 12% or less.
- the minimum rate of decline in wet hardness after immersion at a temperature of 30° C. for 24 hours may be about 1%, about 3%, about 5%, or about 6%.
- the rate of decline in wet hardness after immersion at a temperature of 30° C. for 24 hours can be measured by the following measurement method.
- the biodegradable polyester resin composition is processed to produce a polyester block with a thickness of about 2.5 mm.
- the initial hardness of the polyester block is measured before immersion, and the wet hardness of the polyester block is measured immediately after the polyester block is immersed in water at about 30° C. for about 24 hours.
- the rate of decline in wet hardness after immersion at a temperature of 30° C. for 24 hours can be derived according to Equation 4 above.
- the biodegradable polyester resin composition is dried to a moisture content of about 500 ppm at a temperature of about 80°C for about 20 minutes, placed in a stainless steel mold, and incubated at a temperature of about 210°C and a pressure of about 10 MPa for about 5 minutes. When compressed, a polyester block with a thickness of approximately 2.5 mm can be produced.
- the initial hardness may be about 30 to about 45 Shore D hardness.
- the initial hardness may be about 33 to about 43 in Shore D hardness.
- the initial hardness may be about 35 to about 41 Shore D hardness.
- the wet hardness after immersion at a temperature of 30° C. for 24 hours may be about 28 to about 43 in Shore D hardness.
- the wet hardness after immersion at a temperature of 30° C. for 24 hours may be about 29 to about 41 in Shore D hardness.
- wet hardness After immersion for 1 hour at a temperature of 30° C., wet hardness may be about 30 to about 38 in Shore D hardness.
- the rate of decline in wet hardness may be about 16% or less. After immersion for 0.5 hours at a temperature of 30° C., the rate of decline in wet hardness may be about 15% or less. After immersion for 0.5 hours at a temperature of 30° C., the rate of decline in wet hardness may be about 14% or less. After immersion for 0.5 hours at a temperature of 30° C., the rate of decline in wet hardness may be about 13% or less. After immersion for 0.5 hours at a temperature of 30° C., the rate of decline in wet hardness may be about 12% or less. The minimum rate of decline in wet hardness after immersion at a temperature of 30° C. for 0.5 hours may be about 1%, about 3%, about 5%, or about 6%.
- wet hardness After immersion for 0.5 hours at a temperature of 30° C., wet hardness may be about 28 to about 43 in Shore D hardness. After immersion for 0.5 hours at a temperature of 30° C., wet hardness may be about 29 to about 41 in Shore D hardness. The wet hardness after immersion for 0.5 hours at a temperature of 30° C. may be about 30 to about 39 in Shore D hardness.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 0.5 hours may be about 10% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 0.5 hours is the wet hardness after immersion at a temperature of 30°C for 24 hours and 0.5 at a temperature of 30°C. It is the absolute value of the difference in wet hardness after immersion for a period of time divided by the initial hardness.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 0.5 hours may be about 7% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 0.5 hours may be about 5% or less.
- the rate of decline in wet hardness may be about 16% or less. After immersion for 1 hour at a temperature of 30° C., the rate of decline in wet hardness may be about 15% or less. After immersion for 24 hours at a temperature of 30° C., the rate of decline in wet hardness may be about 14% or less. After immersion at the temperature of 30°C for 24 hours, the rate of decline in wet hardness may be about 13% or less. After immersion at the temperature of 30°C for 24 hours, the rate of decline in wet hardness may be about 12% or less.
- the minimum rate of decline in wet hardness after immersion at a temperature of 30° C. for 1 hour may be about 1%, about 3%, about 5%, or about 6%.
- wet hardness After immersion for 1 hour at a temperature of 30° C., wet hardness may be about 28 to about 43 in Shore D hardness. After immersion for 1 hour at a temperature of 30° C., wet hardness may be about 29 to about 41 in Shore D hardness. After immersion for 1 hour at a temperature of 30° C., wet hardness may be about 30 to about 39 in Shore D hardness.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 1 hour and the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours may be about 10% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 1 hour and the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours may be about 7% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 1 hour and the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours may be about 5% or less.
- the rate of decline in wet hardness may be about 16% or less. After immersion at the temperature of 30°C for 18 hours, the rate of decline in wet hardness may be about 15% or less. After immersion at the temperature of 30°C for 18 hours, the rate of decline in wet hardness may be about 14% or less. After immersion for 18 hours at a temperature of 30° C., the rate of decline in wet hardness may be about 13% or less. After immersion at the temperature of 30°C for 18 hours, the rate of decline in wet hardness may be about 12% or less. The minimum rate of decline in wet hardness after immersion at a temperature of 30° C. for 18 hours may be about 1%, about 3%, about 5%, or about 6%.
- wet hardness After immersion for 18 hours at a temperature of 30° C., wet hardness may be about 28 to about 43 in Shore D hardness. The wet hardness after immersion at a temperature of 30° C. for 18 hours may be about 29 to about 41 in Shore D hardness. The wet hardness after immersion at a temperature of 30° C. for 18 hours may be about 30 to about 39 in Shore D hardness.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 18 hours may be about 10% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 18 hours may be about 7% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 30°C for 18 hours may be about 5% or less.
- the rate of decline in wet hardness may be about 16% or less. After immersion at the temperature of 50°C for 24 hours, the rate of decline in wet hardness may be about 15% or less. After immersion at the temperature of 50°C for 24 hours, the rate of decline in wet hardness may be about 14% or less. After immersion at the temperature of 50°C for 24 hours, the rate of decline in wet hardness may be about 13% or less. After immersion at the temperature of 50°C for 24 hours, the rate of decline in wet hardness may be about 12% or less. The minimum rate of decline in wet hardness after immersion at a temperature of 50° C. for 24 hours may be about 1%, about 3%, about 5%, or about 6%.
- the wet hardness after immersion at a temperature of 50° C. for 24 hours may be about 28 to about 43 in Shore D hardness.
- the wet hardness after immersion at a temperature of 50° C. for 24 hours may be about 29 to about 41 in Shore D hardness.
- the wet hardness after immersion at a temperature of 50° C. for 24 hours may be about 30 to about 39 in Shore D hardness.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 50°C for 24 hours may be about 10% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 50°C for 24 hours may be about 7% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 50°C for 24 hours may be about 5% or less.
- the rate of decline in wet hardness may be about 16% or less. After immersion at the temperature of 70°C for 24 hours, the rate of decline in wet hardness may be about 15%. After immersion at the temperature of 70°C for 24 hours, the rate of decline in wet hardness may be about 14% or less. After immersion at a temperature of 70° C. for 24 hours, the rate of decline in wet hardness may be about 13% or less. After immersion at the temperature of 50°C for 24 hours, the rate of decline in wet hardness may be about 12% or less. The minimum rate of decline in wet hardness after immersion at a temperature of 50° C. for 24 hours may be about 1%, about 3%, about 5%, or about 6%.
- the wet hardness after immersion at a temperature of 70° C. for 24 hours may be about 28 to about 43 in Shore D hardness.
- the wet hardness after immersion at a temperature of 70° C. for 24 hours may be about 29 to about 41 in Shore D hardness.
- the wet hardness after immersion at a temperature of 70° C. for 1 hour may be about 30 to about 39 in Shore D hardness.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 70°C for 24 hours may be about 10% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 70°C for 24 hours may be about 7% or less.
- the deviation of the wet hardness reduction rate after immersion at a temperature of 30°C for 24 hours and the wet hardness reduction rate after immersion at a temperature of 70°C for 24 hours may be about 5% or less.
- the acid value of the biodegradable polyester resin composition according to the example may be about 0.01 mg KOH/g to about 3 mg KOH/g.
- the acid value of the biodegradable polyester resin composition according to the embodiment may be about 0.1 mg KOH/g to about 2.8 mg KOH/g.
- the acid value of the biodegradable polyester resin composition according to the embodiment may be about 0.1 mg KOH/g to about 2.5 mg KOH/g.
- biodegradable polyester resin composition according to the embodiment has an acid value within the above range, it may have the same hydrolysis properties and biodegradability properties as above.
- the biodegradable polyester resin composition according to the example may contain silicon element.
- the silicon element may be derived from the hydrolysis resistant agent, etc.
- the content of the silicon element may be about 0.1 ppm to about 1000 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the silicon element may be about 0.5 ppm to about 500 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the silicon element may be about 1 ppm to about 100 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the silicon element may be about 1ppm to about 50ppm based on the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the example may contain a metal element.
- the metal element may be derived from the metal salt.
- the content of the metal element may be about 0.1 ppm to about 200 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the metal element may be about 0.5 ppm to about 150 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the metal element may be about 1ppm to about 100ppm based on the biodegradable polyester resin composition according to the example.
- the content of the metal element may be about 1 ppm to about 50 ppm based on the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the example may contain iron element.
- the elemental iron may be derived from the metal salt.
- the content of the iron element may be about 0.1 ppm to about 200 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the iron element may be about 0.5ppm to about 150ppm based on the biodegradable polyester resin composition according to the example.
- the content of the iron element may be about 1 ppm to about 100 ppm based on the biodegradable polyester resin composition according to the example.
- the content of the iron element may be about 1ppm to about 50ppm based on the biodegradable polyester resin composition according to the example.
- the content ratio of the iron element to the content of the silicon element may be about 0.1 to about 0.8.
- the content ratio of the iron element to the content of the silicon element may be about 0.1 to about 0.7.
- the content ratio of the iron element to the content of the silicon element may be about 0.3 to about 0.7.
- the content ratio of the iron element to the content of the silicon element may be about 0.35 to about 0.65.
- the biodegradable polyester resin composition according to the embodiment contains the silicon element and the iron element in the above range, it may have an appropriate degree of hydrolysis and an appropriate degree of biodegradation.
- the degree of hydrolysis can be appropriately adjusted depending on the content of the silicon element
- the degree of biodegradation can be appropriately adjusted depending on the content of the iron element.
- the content of the silicon element and the metal can be measured by Inductively Coupled Plasma Optical Emission Spectroscopy.
- the wet hardness reduction rate is 15% or less. Accordingly, the biodegradable polyester resin composition according to the example may have high moisture resistance.
- the biodegradable polyester resin composition according to the example can maintain high mechanical properties even when exposed to water or in a high humidity environment.
- the biodegradable polyester resin composition according to the example can minimize variation in mechanical properties when used for packaging moisture-rich foods, etc.
- biodegradable polyester resin composition according to the example may have hydrophobic properties. Accordingly, the biodegradable polyester resin composition according to the example may absorb less moisture in the air. Accordingly, the biodegradable polyester resin composition according to the example may have improved storage stability.
- the biodegradable polyester resin composition according to the example may include a silicone-based hydrolysis resistant agent. Accordingly, the biodegradable polyester resin composition according to the example may have improved hydrolysis resistance.
- the silicone-based hydrolysis resistant agent may function as a coupling agent to couple the polymer resin included in the condensation polymerization composition.
- the silicone-based hydrolysis resistant agent can improve the degree of polymerization of the biodegradable polyester resin composition according to the example.
- the biodegradable polyester resin composition according to the example has improved physical properties during the actual use period and can be easily biodegraded after use.
- the biodegradable polyester resin composition according to the example can be efficiently applied to packaging films, etc. That is, the film made from the biodegradable polyester resin composition according to the example can be used for general purposes such as packaging. At this time, the biodegradable polyester resin composition according to the embodiment may initially have a low degree of hydrolysis, and the biodegradable polyester film may maintain mechanical and chemical properties above a certain level within a normal period of use by the user.
- the biodegradable polyester resin composition according to the embodiment has a high biodegradability, the film manufactured by the biodegradable polyester resin composition according to the embodiment can be easily decomposed when discarded after use. there is.
- Cellulose nanocrystals (NVC-100, manufacturer: Celluforce) in the form of dry powder having a particle size of about 1 ⁇ m to about 50 ⁇ m are dispersed in water at 1% by weight, and then subjected to tip-type ultrasonic waves. Pretreated nanocellulose was prepared by sonicating for 1 minute at an output of 20000 J/s using a disperser.
- Hydrolysis resistant agent 3-glycidoxypropyl methyldiethoxysilane
- Step 1 Obtaining slurry by pretreatment
- terephthalic acid As shown in Table 1, pretreated nanocellulose, iron nitrate, 1,4-butanediol (1,4-BDO) and terephthalic acid (TPA) were mixed at a molar ratio (1,4-BDO:TPA) of 1.4:1 and In the catalytic state, it was put into a slurry tank (the lowest part of the slurry tank is an anchor type, the height to the agitator is 40 mm, and it is equipped with three rotary blades). At this time, the D50 of the terephthalic acid (TPA) was 130 ⁇ m.
- the mixture was pretreated by stirring at 40°C and 100rpm for 1 hour, and a slurry was obtained without phase separation.
- Step 2 Obtaining the prepolymer
- the slurry obtained in the first step is introduced into the reactor through the supply line, and 250 ppm of tetrabutyl titanate (Dupont, Tyzor TnBT product), a titanium-based catalyst, is added thereto, and then 95% of the water as a by-product is dissolved at 220°C and normal pressure.
- the first esterification reaction was carried out for about 1 hour and 30 minutes until discharge.
- the reaction product contains 1,4-butanediol (1,4-BDO) based on the total number of moles of diol components, adipic acid (AA) based on the total number of moles of dicarboxylic acid components, and tetrabutyl titanate, a titanium-based catalyst.
- AA adipic acid
- tetrabutyl titanate a titanium-based catalyst.
- biodegradable polyester resin pellets were dried at 80°C for 5 hours, then melt-extruded at 160°C using a blown film extrusion line (manufacturer: Eugene Engineering) to produce biodegradable polyester with a thickness of 50 ⁇ m. A film was prepared.
- the standard deviation means the square root of the variance, and can be calculated using software.
- particle size and particle size deviation were measured using the principle of dynamic light scattering (DLS) at a temperature of 25°C and a measurement angle of 175° using Zetasizer Nano ZS (manufacturer: Marven).
- DLS dynamic light scattering
- Zetasizer Nano ZS manufactured by Marven.
- PdI polydispersity index
- the biodegradable polyester resin prepared in Examples and Comparative Examples was immersed in water (100% RH) at 80°C, and then an accelerated water solubility test was performed.
- GPC Gel permeation chromatography
- Sample preparation Dissolve 0.035 mg of PBAT chip in 1.5 ml of THF.
- the biodegradable polyester resin prepared in Examples and Comparative Examples was mixed with the following compost, and an accelerated biodegradation test was performed at a temperature of 60°C and a humidity of 90%.
- the gel permeation chromatography was used to measure the number average molecular weight of the polyester resins of Examples and Comparative Examples after a certain period of time.
- the biodegradability was derived by dividing the difference between the initial number average molecular weight and the number average molecular weight after a certain period of time by the initial number average molecular weight.
- Compost ingredients 40wt% pork manure, 15wt% chicken manure, 37wt% sawdust, 5wt% zeolite, 3wt% microbial agent.
- biodegradable polyester pellets prepared in Examples and Comparative Examples were dissolved in 65 wt% nitric acid, and the iron and silicon contents were measured by ICP OES.
- Example 1 52 61 70 78 87 90 Example 2 55 65 72 78 89 91 Example 3 52 60 70 78 87 90 Example 4 55 62 71 79 86 90 Example 5 55 63 72 79 87 92 Comparative Example 1 46 52 65 74 82 85 Comparative Example 2 62 71 79 84 89 92
- Example 1 47 87 94 95 97 97 Example 2 57 89 94 96 97 97 Example 3 47 87 94 95 96 97 Example 4 51 88 94 96 97 97 Example 5 58 89 94 96 97 97 Comparative Example 1 45 86 93 95 96 96 Comparative Example 2 65 90 95 97 97 97 97
- the biodegradable resin composition according to the examples may have an appropriate degree of hydrolysis, an appropriate degree of biodegradation, and a degree of biodegradability per degree of hydrolysis. That is, the biodegradable resin composition according to the embodiments may have a low initial degree of hydrolysis and a high final degree of biodegradation.
- Examples can be used in biodegradable resin compositions, films, and molded articles.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
실시예는 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 포함하는 폴리에스테르 수지를 포함하고, 지방족 카르복실산 당 생분해도가 1.7 이상이고, 상기 지방족 카르복실산 당 생분해도는 9주 후 생분해도를 전체 디카르복실산 중 상기 지방족 디카르복실산의 비율로 나눈 값이고, 상기 9주 후 생분해도는 85% 이상인 생분해성 폴리에스테르 수지 조성물을 제공한다.
Description
실시예는 생분해성 폴리에스테르 수지 조성물, 이의 제조방법 이를 포함하는 생분해성 성형품에 관한 것이다.
최근 환경 문제에 대한 우려가 증가함에 따라 다양한 생활 용품 특히, 일회용 제품의 처리 문제에 대한 해결 방안이 요구되고 있다. 구체적으로, 고분자 재료는 저렴하면서 가공성 등의 특성이 우수하여 필름, 섬유, 포장재, 병, 용기 등과 같은 다양한 제품들을 제조하는데 널리 이용되고 있으나, 사용된 제품의 수명이 다하였을 때 소각 처리시에는 유해한 물질이 배출되고, 자연적으로 완전히 분해되기 위해서는 종류에 따라 수백 년이 걸리는 단점을 가지고 있다.
이러한 고분자의 한계를 극복하기 위하여 빠른 시간 내에 분해되는 생분해성 고분자에 대한 연구가 활발히 진행되고 있다. 생분해성 고분자로서 폴리유산(poly lactic acid, PLA), 폴리부틸렌아디페이트 테레프탈레이트(polybutyleneadipate terephthalate, PBAT), 폴리부틸렌숙시네이트(polybutylene succinate, PBS) 등이 사용되고 있다.
이와 같은 생분해성 수지 조성물과 관련하여, 한국 공개 특허 제2012-0103158호 등에 개시되어 있다.
실시예는 수분에 노출 시, 적절한 초기 가수분해도를 가지면서, 동시에, 폐기시에는 수중에서 높은 가수분해도를 가지고, 높은 생분해도를 가지는 생분해성 폴리에스테르 수지 조성물, 이의 제조방법 및 이를 포함하는 생분해성 성형품을 제공하고자 한다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법은 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 에스테르화 반응시키켜 예비 중합체를 형성하는 단계; 상기 예비 중합체를 축중합하여 축중합 조성물을 형성하는 단계; 및 상기 축중합 조성물 및 실리콘계 내가수분해제를 반응시키는 단계를 포함한다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 금속염을 첨가하는 단계를 더 포함할 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 상기 금속염은 철 원소를 포함할 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 상기 내가수분해제는 2개 이상의 관능기를 포함하는 실란을 포함할 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 상기 내가수분해제는 에폭시기 또는 알콕시기를 포함할 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 상기 축중합 조성물 및 상기 실리콘계 내가수분해제를 반응시키는 단계는 상기 축중합 조성물 및 상기 실리콘계 내가수분해제를 약 180℃ 내지 약 260℃의 온도에서, 5분 내지 60분 동안 반응시키는 단계를 포함할 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 산가가 약 2.0 mg KOH/g 이하일 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법에 있어서, 1주 후 가수분해도가 약 35% 내지 약 60%이고, 상기 1주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 필름이 약 1주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율일 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 포함하는 폴리에스테르 수지; 금속염; 및 실리콘 원소를 포함하다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 있어서, 상기 금속염은 철 원소를 포함하고, 상기 실리콘 원소 대비 철 원소의 질량 비율은 약 0.1 내지 약 0.7일 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 있어서, 1주 후 가수분해도가 약 35% 내지 약 60%이고, 약 3주 후 가수분해도가 약 85% 이상이고, 상기 1주 후 가수 분해도 및 상기 3주 후 가수분해도는 하기의 측정 방법에 의해서 측정될 수 있다.
[측정 방법]
상기 1주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 1주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이고, 상기 3주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 3주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 있어서, 상기 철 원소의 함량은 약 1ppm 내지 약 100ppm이고, 상기 실리콘 원소의 함량은 약 1ppm 내지 약 150ppm일 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 나노 셀룰로오스를 더 포함하고, 상기 나노 셀룰로오스는 황을 포함하는 생분해성 폴리에스테르 수지 조성물.
일 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 있어서, 습윤 경도 저하율이 약 15% 이하이고, 상기 습윤 경도 저하율은 하기의 측정 방법에 의해서 측정될 수 있다.
[측정 방법]
상기 생분해성 폴리에스테르 수지 조성물이 가공되어, 약 2.5㎜의 두께를 가지는 폴리에스테르 블럭이 제조되고, 상기 폴리에스테르 블럭의 초기 경도 및 상기 폴리에스테르 블럭이 약 24시간 동안 약 30℃의 물에 침지된 후의 습윤 경도가 측정되고, 상기 습윤 경도 저하율은 상기 초기 경도에서 상기 습윤 경도의 차이를 상기 초기 경도로 나눈 값이다.
실시예에 따른 생분해성 성형품은 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 포함하는 폴리에스테르 수지; 금속염; 및 실리콘 원소를 포함한다.
일 실시예에 따른 생분해성 폴리에스테르 성형품에 있어서, 상기 금속염은 철 원소를 포함하고, 상기 실리콘 원소 대비 철 원소의 질량 비율은 약 0.1 내지 약 0.7일 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 성형품에 있어서, 1주 후 가수분해도가 약 35% 내지 약 60%이고, 약 3주 후 가수분해도가 약 85% 이상이고, 상기 1주 후 가수 분해도 및 상기 3주 후 가수분해도는 하기의 측정 방법에 의해서 측정될 수 있다.
[측정 방법]
상기 1주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 1주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이고, 상기 3주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 3주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이다.
일 실시예에 따른 생분해성 폴리에스테르 성형품에 있어서, 상기 철 원소의 함량은 약 1ppm 내지 약 100ppm이고, 상기 실리콘 원소의 함량은 약 1ppm 내지 약 150ppm일 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 성형품은 나노 셀룰로오스를 더 포함하고, 상기 나노 셀룰로오스는 황을 포함할 수 있다.
일 실시예에 따른 생분해성 폴리에스테르 성형품에 있어서, 습윤 경도 저하율이 약 15% 이하이고, 상기 습윤 경도 저하율은 하기의 측정 방법에 의해서 측정될 수 있다.
[측정 방법]
상기 생분해성 폴리에스테르 성형품이 가공되어, 약 2.5㎜의 두께를 가지는 폴리에스테르 블럭이 제조되고, 상기 폴리에스테르 블럭의 초기 경도 및 상기 폴리에스테르 블럭이 약 24시간 동안 약 30℃의 물에 침지된 후의 습윤 경도가 측정되고, 상기 습윤 경도 저하율은 상기 초기 경도에서 상기 습윤 경도의 차이를 상기 초기 경도로 나눈 값이다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법은 축중합 조성물 및 실리콘계 내가수분해제를 반응시키는 단계를 포함한다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 향상된 내가수분해성을 가질 수 있다. 또한, 상기 실리콘계 내가수분해제는 상기 축중합 조성물에 포함된 고분자 수지를 커플링시키는 커플링제 기능을 수행할 수 있다.
이에 따라서, 상기 실리콘계 내가수분해제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 중합도를 향상시킬 수 있다.
따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 실리콘계 내가수분해제를 포함하기 때문에, 소수성 특징을 가질 수 있으며, 적절한 가수분해도를 가질 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 제조방법은 금속염을 첨가하는 공정을 더 포함할 수 있다. 상기 금속염에 의해서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 생분해도가 향상될 수 있다. 또한, 상기 금속염에 의해서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서 후기 가수분해도가 향상될 수 있다. 즉, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 금속 함량 및 적절한 실리콘 원소 함량을 가질 수 있다.
이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 실사용 기간에 향상된 물성을 가지면서도, 사용 후, 용이하게 생분해될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 포장용 필름 등에 효율적으로 적용될 수 있다. 즉, 실시예에 따른 생분해성 폴리에스테르 수지 조성물로 제조된 필름은 포장용 등의 일반적인 용도로 사용될 수 있다. 이때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 초기에 낮은 가수 분해도를 가질 수 있고, 사용자가 일반적인 사용 기간 내에는 상기 생분해성 폴리에스테르 필름은 일정 정도 이상의 기계적 및 화학적 물성을 유지할 수 있다.
이와 동시에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 높은 생분해도를 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 의해서 제조된 필름은 사용된 후, 폐기될 때, 용이하게 분해될 수 있다.
도 1은 실시예에 따른 폴리에스테르 수지 조성물을 제조하기 위한 장치를 도시한 개략도이다.
도 2는 실시예에 따른 폴리에스테 수지 조성물에 의해서 형성되는 생분해성 성형품의 일 예를 도시한 도면이다.
이하, 구현예를 통해 발명을 상세하게 설명한다. 구현예는 이하에서 개시된 내용에 한정되는 것이 아니라 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에 기재된 구성요소의 물성 값, 치수 등을 나타내는 모든 수치 범위는 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로 수식되는 것으로 이해하여야 한다.
본 명세서에서 제 1, 제 2, 1차, 2차 등의 용어는 다양한 구성요소를 설명하기 위해 사용되는 것이고, 상기 구성요소들은 상기 용어에 의해 한정되지 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로 구별하는 목적으로만 사용된다.
본 명세서에서, ppm은 질량 기준 단위이다. 상기 ppm은 전체 질량 백만 중 1이다. 즉, 상기 ppm은 전체 질량을 기준으로 0.0001wt%이다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 생분해성 폴리에스테르 수지를 포함한다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 폴리에스테르 수지를 단독으로 포함하거나, 다른 수지 또는 첨가제와 함께 포함할 수 있다.
상기 생분해성 폴리에스테르 수지는 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 포함한다. 상기 생분해성 폴리에스테르 수지는 디올 잔기, 방향족 디카르복실산 잔기 및 지방족 디카르복실산 잔기를 포함한다. 상기 디올 잔기는 상기 디올로부터 유래되고, 상기 방향족 디카르복실산 잔기는 상기 방향족 디카르복실산으로부터 유래되고, 상기 지방족 디카르복실산 잔기는 상기 지방족 디카르복실산으로부터 유래된다. 상기 생분해성 폴리에스테르 수지는 디올 성분, 방향족 디카르복실산 성분 및 지방족 디카르복실산 성분을 포함한다. 마찬가지로, 상기 디올 성분은 상기 디올로부터 유래되고, 상기 방향족 디카르복실산 성분은 상기 방향족 디카르복실산으로부터 유래되고, 상기 지방족 디카르복실산 성분은 상기 지방족 디카르복실산으로부터 유래될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에 대한 설명에서, 디올 잔기는 디올로 표현될 수 있다. 상기 생분해성 폴리에스테르 수지에서, 디카르복실산 잔기는 디카르복실산으로 표현될 수 있다. 또한, 상기 잔기는 상기 성분으로 표현할 수 있다.
상기 디올은 지방족 디올일 수 있다. 상기 디올은 바이오 유래 디올일 수 있다. 상기 디올은 에탄디올, 1,2-프로판디올, 1,3-프로판디올, 2-메틸-1,3-프로판디올, 2,2-디메틸-1,3-프로판디올, 2,2-디에틸-1,3-프로판디올, 2-에틸-2-이소부틸-1,3-프로판디올, 1,2-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 3-메틸-1,5-펜탄디올, 2,2,4-트리메틸-1,3-펜탄디올, 1,6-헥산디올, 2-에틸-1,3-헥산디올, 2,4-디메틸-2-에틸-1,3-헥산디올, 2,2,4-트리메틸-1,6-헥산디올, 2-메틸-1,8-옥탄디올, 1,9-노난디올, 1,10-데칸디올 및 1,12-옥타데칸디올 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 디올은 1,4-부탄디올, 1,2-에탄디올, 1,3-프로판디올, 디에틸렌글리콜, 네오펜틸글리콜 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 디올은 1,4-부탄디올, 1,2-에탄디올, 1,3-프로판디올 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 디올은 1,4-부탄디올 또는 이의 유도체를 포함할 수 있다.
상기 방향족 디카르복실산은 프탈산, 테레프탈산, 이소프탈산, 1,4-나프탈렌디카복실산, 1,5-나프탈렌디카복실산, 2,6-나프탈렌디카복실산, 1,8-나프탈렌디카복실산, 4,4'-디페닐디카복실산, 4,4'-디페닐에테르디카복실산, 안트라센디카복실산, 페난트렌디카복실산 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 방향족 디카르복실산은 테레프탈산, 디메틸 테레프탈레이트, 2,6-나프탈렌 디카르복실산, 이소프탈산 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 방향족 디카르복실산은 테레프탈산, 디메틸 테레프탈레이트 또는 이들의 유도체를 포함할 수 있다.
상기 지방족 디카르복실산은 옥살산, 말론산, 석신산, 말레산, 푸마르산, 글루타르산, 아디프산, 피멜산, 서버산, 아젤라산, 세박산, 도데칸디카복실산, 1,4-시클로헥산디카복실산 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 지방족 디카르복실산은 아디프산, 숙신산, 세바신산 또는 이들의 유도체들로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 지방족 디카르복실산은 아디프산 또는 이의 유도체를 포함할 수 있다.
상기 생분해성 폴리에스테르 수지에서, 상기 디올을 포함하는 전체 디올 잔기 및 상기 방향족 디카르복실산 및 상기 지방족 디카르복실산을 포함하는 전체 디카르복실산 잔기의 몰비는 약 1:0.9 내지 약 1:1.1 일 수 있다. 전체 디올 잔기 및 전체 디카르복실산 잔기의 몰비는 약 1:0.95 내지 약 1:1.05 일 수 있다.
상기 생분해성 폴리에스테르 수지에서, 상기 방향족 디카르복실산 잔기 및 상기 지방족 디카르복실산 잔기의 몰비는 약 3:7 내지 약 7:3일 수 있다. 상기 생분해성 폴리에스테르 수지에서, 상기 방향족 디카르복실산 잔기 및 상기 지방족 디카르복실산 잔기의 몰비는 약 3.3:6.7 내지 약 6.7:3.3일 수 있다. 상기 생분해성 폴리에스테르 수지에서, 상기 방향족 디카르복실산 잔기 및 상기 지방족 디카르복실산 잔기의 몰비는 약 4:6 내지 약 6:4일 수 있다. 상기 생분해성 폴리에스테르 수지에서, 상기 방향족 디카르복실산 잔기 및 상기 지방족 디카르복실산 잔기의 몰비는 약 4.2:5.8 내지 약 5:5일 수 있다.
상기 생분해성 폴리에스테르 수지는 전체 디올을 기준으로 약 90몰% 이상의 함량으로 1,4-부탄디올로부터 유래되는 디올 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디올을 기준으로 약 95몰% 이상의 함량으로 1,4-부탄디올로부터 유래되는 디올 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디올을 기준으로 약 98몰% 이상의 함량으로 1,4-부탄디올로부터 유래되는 디올 잔기를 포함할 수 있다.
상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 30몰% 내지 약 70몰%의 함량으로 테레프탈산 또는 디메틸 테레프탈레이트로부터 유래되는 방향족 디카르복실산 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 35몰% 내지 약 65몰%의 함량으로 테레프탈산 또는 디메틸 테레프탈레이트로부터 유래되는 방향족 디카르복실산 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 40몰% 내지 약 59몰%의 함량으로 테레프탈산 또는 디메틸 테레프탈레이트로부터 유래되는 디카르복실산 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 43몰% 내지 약 53몰%의 함량으로 테레프탈산 또는 디메틸 테레프탈레이트로부터 유래되는 방향족 디카르복실산 잔기를 포함할 수 있다.
상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 30몰% 내지 약 70몰%의 함량으로 아디프산으로부터 유래되는 지방족 디카르복실산 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 35몰% 내지 약 65몰%의 함량으로 아디프산으로부터 유래되는 지방족 디카르복실산 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 41몰% 내지 약 60몰%의 함량으로 아디프산으로부터 유래되는 지방족 디카르복실산 잔기를 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 전체 디카르복실산을 기준으로 약 47몰% 내지 약 57몰%의 함량으로 아디프산으로부터 유래되는 지방족 디카르복실산 잔기를 포함할 수 있다.
또한, 상기 생분해성 폴리에스테르 수지는 제 1 블록 및 제 2 블록을 포함할 수 있다. 상기 생분해성 폴리에스테르 수지는 상기 제 1 블록 및 상기 제 2 블록이 교대로 결합된 분자 구조를 가질 수 있다.
상기 제 1 블록은 상기 디올 잔기 및 상기 방향족 디카르복실산 잔기를 포함할 수 있다. 상기 제 1 블록은 상기 디올 및 상기 방향족 디카르복실산의 에스테르화 반응에 의해서 형성된 것일 수 있다. 상기 제 1 블록은 상기 디올 잔기 및 상기 방향족 디카르복실산 잔기 만을 포함할 수 있다. 상기 제 1 블록은 상기 디올 및 상기 방향족 디카르복실산의 에스테르화 반응에 의해서 형성된 반복 단위 만을 포함할 수 있다. 즉, 상기 제 1 블록은 상기 지방족 디카르복실산 결합되기 전까지의 상기 디올 및 상기 방향족 디카르복실산의 반복 단위의 합을 의미할 수 있다.
상기 제 2 블록은 상기 디올 잔기 및 상기 지방족 디카르복실산 잔기를 포함할 수 있다. 상기 제 2 블록은 상기 디올 및 상기 지방족 디카르복실산의 에스테르화 반응에 의해서 형성된 것 일 수 있다. 상기 제 2 블록은 상기 디올 잔기 및 상기 지방족 디카르복실산 잔기 만을 포함할 수 있다. 상기 제 2 블록은 상기 디올 및 상기 지방족 디카르복실산의 에스테르화 반응에 의해서 형성된 반복 단위 만을 포함할 수 있다. 즉, 상기 제 2 블록은 상기 방향족 디카르복실산 결합되기 전까지의 상기 디올 및 상기 지방족 디카르복실산의 반복 단위의 합을 의미할 수 있다.
상기 생분해성 폴리에스테르 수지에서, 상기 제 1 블록의 개수(X) 및 상기 제 2 블록의 개수(Y)의 비(X/Y)가 약 0.5 내지 약 1.5일 수 있다. 상기 생분해성 폴리에스테르 수지에서, 상기 제 1 블록의 개수(X) 및 상기 제 2 블록의 개수(Y)의 비(X/Y)가 약 0.6 내지 약 1.4일 수 있다. 상기 생분해성 폴리에스테르 수지에서, 상기 제 1 블록의 개수(X) 및 상기 제 2 블록의 개수(Y)의 비(X/Y)가 약 0.7 내지 약 1.3일 수 있다. 상기 생분해성 폴리에스테르 수지에서, 상기 제 1 블록의 개수(X) 및 상기 제 2 블록의 개수(Y)의 비(X/Y)가 약 0.75 내지 약 1.2일 수 있다. 또한, 상기 생분해성 폴리에스테르 수지에서, 상기 제 1 블록의 개수(X) 및 상기 제 2 블록의 개수(Y)의 비(X/Y)는 0.8 내지 1일 수 있다. 상기 제 1 블록의 개수가 상기 제 2 블록의 개수보다 더 작을 수 있다.
상기 제 1 블록의 개수는 약 30 내지 약 300일 수 있다. 상기 제 1 블록의 개수는 약 40 내지 약 250일 수 있다. 상기 제 1 블록의 개수는 약 50 내지 약 220일 수 있다. 상기 제 1 블록의 개수는 약 60 내지 약 200일 수 있다. 상기 제 1 블록의 개수는 약 70 내지 약 200일 수 있다. 상기 제 1 블록의 개수는 약 75 내지 약 200일 수 있다.
상기 제 1 블록의 개수는 상기 방향족 디카르복실산의 함량, 상기 생분해성 폴리에스테르 수지의 분자량 및 후술되는 교대화 비율에 따라서 달라질 수 있다. 즉, 상기 방향족 디카르복실산의 몰비가 높아짐에 따라서, 상기 생분해성 폴리에스테르 수지의 분자량이 커짐에 따라서 및 후술되는 교대화 비율이 높아짐에 따라서, 상기 제 1 블록의 개수는 많아질 수 있다.
상기 제 2 블록의 개수는 약 30 내지 약 300일 수 있다. 상기 제 2 블록의 개수는 약 40 내지 약 250일 수 있다. 상기 제 2 블록의 개수는 약 50 내지 약 220일 수 있다. 상기 제 2 블록의 개수는 약 60 내지 약 200일 수 있다. 상기 제 2 블록의 개수는 약 70 내지 약 200일 수 있다. 상기 제 2 블록의 개수는 약 75 내지 약 200일 수 있다.
상기 생분해성 폴리에스테르 수지가 상기 범위로 상기 제 1 블록 및 상기 제 2 블록을 포함할 때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 기계적 강도를 가지면서, 적절한 생분해도를 가질 수 있다. 또한, 상기 생분해성 폴리에스테르 수지가 상기 범위로 상기 제 1 블록 및 상기 제 2 블록을 포함할 때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 향상된 유연성을 가지면서, 동시에, 향상된 강성을 가질 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 사출품 등에 용이하게 사용될 수 있다. 또한, 상기 생분해성 폴리에스테르 수지가 상기 범위로 상기 제 1 블록 및 상기 제 2 블록을 포함할 때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 자외선 등에 적절한 내구성을 가지면서, 동시에 적절한 생분해성을 가질 수 있다.
상기 제 1 블록은 하기의 화학식 1로 표시될 수 있다.
[화학식 1]
여기서, 상기 R1은 치환 또는 비치환된 탄소수 6 내지 20개인 아릴렌기이고, 상기 R2는 치환 또는 비치환된 탄소수 1 내지 20개인 알킬렌기이고, 상기 m은 1 내지 20일 수 있다.
상기 R1은 치환 또는 비치환된 페닐렌기이고, 상기 R2는 부틸렌기일 수 있다.
상기 제 2 블록은 하기의 화학식 2로 표시될 수 있다.
[화학식 2]
여기서, 상기 R3 및 상기 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20개인 알킬렌기이고, 상기 n은 1 내지 20일 수 있다.
상기 R3 및 상기 R4는 부틸렌기일 수 있다.
상기 생분해성 폴리에스테르 수지는 상기 제 1 블럭 및 상기 제 2 블럭이 서로 교대로 결합된 구조를 가질 수 있다. 상기 생분해성 폴리에스테르 수지는 하기의 화학식 3으로 표시될 수 있다.
[화학식 3]
여기서, 상기 R1은 치환 또는 비치환된 탄소수 6 내지 20개인 아릴렌기이고, 상기 R2는 치환 또는 비치환된 탄소수 1 내지 20개인 알킬렌기이고, 상기 m은 1 내지 20일 수 있다. 또한, 상기 R3 및 상기 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20개인 알킬렌기이고, 상기 n은 1 내지 20일 수 있다.
상기 디올 잔기는 1,4-부탄디올 또는 이의 유도체의 잔기를 포함하고, 상기 방향족 디카르복실산 잔기는 테레프탈산 또는 이의 유도체의 잔기를 포함하며, 상기 지방족 디카르복실산 잔기는 아디프산 또는 이의 유도체의 잔기를 포함할 수 있다.
예컨대, 상기 생분해성 폴리에스테르 수지는 1,4-부탄디올 또는 이의 유도체의 잔기 및 테레프탈산, 또는 이의 유도체의 잔기를 포함하는 제 1 블록을 포함할 수 있다.
또는, 상기 생분해성 폴리에스테르 수지는 1,4-부탄디올 또는 이의 유도체의 잔기 및 디메틸 테레프탈레이트, 또는 이의 유도체의 잔기를 포함하는 제 1 블록을 포함할 수 있다.
상기 생분해성 폴리에스테르 수지는 1,4-부탄디올 또는 이의 유도체의 잔기 및 아디프산, 또는 이의 유도체의 잔기를 포함하는 제 2 블록을 포함할 수 있다.
또는, 상기 생분해성 폴리에스테르 수지는 1,4-부탄디올 또는 이의 유도체의 잔기 및 숙신산, 또는 이의 유도체의 잔기를 포함하는 제 2 블록을 포함할 수 있다.
본 발명의 구현예에 따른 생분해성 폴리에스테르 수지는 1,4-부탄디올 또는 이의 유도체의 잔기 및 테레프탈산, 또는 이의 유도체의 잔기를 포함하는 제 1 블록; 및 1,4-부탄디올 또는 이의 유도체의 잔기 및 아디프산 또는 이의 유도체의 잔기를 포함하는 제 2 블록;를 포함할 수 있다.
상기 제 1 블록은 하기의 화학식 4로 표시되고, 상기 제 2 블록은 하기의 화학식 5로 표시될 수 있다.
[화학식 4]
여기서, 상기 m은 1 내지 20일 수 있다.
[화학식 5]
여기서, 상기 n은 1 내지 20일 수 있다.
상기 생분해성 폴리에스테르 수지는 하기의 화학식 6으로 표시될 수 있다.
[화학식 6]
여기서, 상기 m은 1 내지 20이고, 상기 n은 1 내지 20일 수 있다.
상기 제 1 블록 및 제 2 블록이 상기 구성을 만족하는 경우 생분해성 및 수분해성이 우수하면서도 물성이 향상된 생분해성 폴리에스테르 시트, 필름 또는 성형품을 제공하는 데 더욱 유리 할 수 있다.
또한, 상기 생분해성 폴리에스테르 수지가 상기 범위로 상기 제 1 블록 및 상기 제 2 블록을 포함할 때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 기계적 물성 및 적절한 내 UV 특성을 가질 수 있다.
상기 제 1 블록 및 상기 제 2 블록이 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 기계적 물성을 향상시킬 수 있다.
상기 제 1 블록 및 상기 제 2 블록이 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 내 UV 특성을 가질 수 있다.
상기 제 1 블록 및 상기 제 2 블록이 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 생분해 속도를 가질 수 있다.
상기 제 1 블록 및 상기 제 2 블록이 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 가수 분해 속도를 가질 수 있다.
상기 생분해성 폴리에스테르 수지는 분지제를 더 포함할 수 있다. 상기 분지제는 3가 이상의 알콜, 무수물 또는 3가 이상의 카르복실산으로 구성되는 그룹으로부터 적어도 하나 이상을 포함할 수 있다. 상기 분지제는 상기 디올, 상기 방향족 디카르복실산 및 상기 지방족 디카르복실산과 반응할 수 있다. 이에 따라서, 상기 분지제는 상기 생분해성 폴리에스테르 수지에 분자 구조의 일부로 포함될 수 있다.
상기 3가 이상의 알콜은 글리세롤, 펜타에리스리톨 또는 트리메틸올프로판으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 3가 이상의 카르복실산은 메탄트리카르복실산(methane tricarboxylic acid), 에탄트리카르복실산(ethanetricarboxylic acid), 시트르산(citric acid), 벤젠-1,3,5-트리카르복실산(benzene-1,3,5-tricarboxylic acid) 5-술포-1,2,4-벤젠트리카르복실산(5-sulfo-1,2,4-benzenetricarboxylic acid), 에탄-1,1,2,2-테트라카르복실산(ethane-1,1,2,2-tetracarboxylic acid), 프로판-1,1,2,3-테트라카르복실산(propane-1,1,2,3-tetracarboxylic acid), 부탄-1,2,3,4-테트라카르복실산(butane-1,2,3,4-tetracarboxylic acid), 시클로펜탄-1,2,3,4-테트라카르복실산(cyclopentane-1,2,3,4-tetracarboxylic acid) 또는 벤젠-1,2,4,5-테트라카르복실산(benzene-1,2,4,5-tetracarboxylic acid)으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 무수물은 무수트리멜리트산, 숙신산 무수물, 메틸숙신산 무수물, 에틸숙신산 무수물, 2,3-부탄디카르복실산 무수물, 2,4-펜탄디카르복실산 무수물, 3,5-헵탄디카르복실산 무수물, 1,2,3,4-부탄테트라카르복실산 2무수물, 말레산 무수물, 도데실숙신산 무수물 또는 무수 피로멜리트산으로 구성되는 그룹으로부터 적어도 하나 이상을 포함할 수 있다.
상기 분지제는 상기 생분해성 폴리에스테르 수지 전체를 기준으로 약 0.1wt% 내지 약 5wt%의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다. 상기 분지제는 상기 생분해성 폴리에스테르 수지 전체를 기준으로 약 0.1wt% 내지 약 3wt%의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다. 상기 분지제는 상기 생분해성 폴리에스테르 수지 전체를 기준으로 약 0.1wt% 내지 약 1wt%의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다.
상기 생분해성 폴리에스테르 수지는 상기 분지제를 상기의 범위로 포함하기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 기계적 특성 및 적절한 생분해성을 가질 수 있다.
상기 생분해성 폴리에스테르 수지는 폴리카보네이트 디올을 더 포함할 수 있다. 상기 폴리카보네이트 디올은 상기 생분해성 폴리에스테르 수지에 분자 구조로 결합되어 포함될 수 있다.
상기 폴리카보네이트 디올은 카보네이트 및 다가 알콜의 탈수축합 반응에 의해서 제조될 수 있다. 상기 카보네이트는 디메틸카보네이트, 디에틸카보네이트, 디부틸카보네이트, 디페닐카보네이트 또는 에틸렌카보네이트으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다. 상기 다가 알콜은 에틸렌글리콜, 디에틸렌글리콜, 네오펜틸글리콜, 1,6-헥산디올 또는 1,2프로판디올으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 폴리카보네이트 디올의 중량 평균 분자량은 약 500 내지 약 5000일 수 있다. 상기 폴리카보네이트 디올의 중량 평균 분자량은 약 700 내지 약 4000일 수 있다. 상기 폴리카보네이트 디올의 중량 평균 분자량은 약 800 내지 약 3500일 수 있다.
또한, 상기 폴리카보네이트 디올의 점도는 약 300cps 내지 약 20000cps일 수 있다. 상기 폴리카보네이트 디올의 점도는 약 400cps 내지 약 15000cps일 수 있다. 상기 폴리카보네이트 디올의 점도는 약 500cps 내지 약 14000cps일 수 있다. 상기 폴리카보네이트 디올의 점도는 상온에서 ASTM/ISO 2555에 의해서 측정될 수 있다.
상기 폴리카보네이트 디올의 OH값은 약 20 mgKOH/g 내지 약 350 mgKOH/g일 수 있다. 상기 폴리카보네이트 디올의 OH값은 약 30 mgKOH/g 내지 약 300 mgKOH/g일 수 있다.
상기 폴리카보네이트 디올은 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 0.1 중량부 내지 약 5중량부의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다. 상기 폴리카보네이트 디올은 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 0.5 중량부 내지 약 3중량부의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다. 상기 폴리카보네이트 디올은 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 1 중량부 내지 약 3중량부의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다.
상기 폴리카보네이트 디올은 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 습윤 경도, 적절한 기계적 물성, 적절한 내용제성, 적절한 가수분해도 및 적절한 생분해도를 가질 수 있다.
상기 생분해성 폴리에스테르 수지는 폴리에테르 폴리올을 더 포함할 수 있다. 상기 폴리에테르 폴리올은 상기 생분해성 폴리에스테르 수지에 분자 구조로 결합되어 포함될 수 있다.
상기 폴리에테르 폴리올은 에테르 폴리올은 활성화수소(-OH 또는 NH2)를 2개이상 가진 개시제에 산화프로필렌(PO) 또는 산화에틸렌(EO)을 부가 반응시켜 제조될 수 있다. 상기 폴리에테르 폴리올의 예로서는 폴리프로필렌글리콜(polypropylene glycol), 폴리에틸렌글리콜(polyethylene glycol) 또는 폴리테트라메틸렌에테르글리콜(polytetramethylene glycol) 등을 들 수 있다.
상기 폴리에테르 폴리올의 중량 평균 분자량은 약 500 내지 약 5000일 수 있다. 상기 폴리에테르 폴리올의 중량 평균 분자량은 약 700 내지 약 4000일 수 있다. 상기 폴리에테르 폴리올의 중량 평균 분자량은 약 800 내지 약 3500일 수 있다.
또한, 상기 폴리에테르 폴리올의 점도는 약 300cps 내지 약 20000cps일 수 있다. 상기 폴리에테르 폴리올의 점도는 약 400cps 내지 약 15000cps일 수 있다. 상기 폴리에테르 폴리올의 점도는 약 500cps 내지 약 14000cps일 수 있다. 상기 폴리에테르 폴리올의 점도는 상온에서 ASTM/ISO 2555에 의해서 측정될 수 있다.
상기 폴리에테르 폴리올은 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 0.1 중량부 내지 약 5중량부의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다. 상기 폴리에테르 폴리올은 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 0.5 중량부 내지 약 3중량부의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다. 상기 폴리에테르 폴리올은 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 1 중량부 내지 약 3중량부의 함량으로 상기 생분해성 폴리에스테르 수지에 포함될 수 있다.
상기 폴리에테르 폴리올은 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 습윤 경도, 적절한 기계적 물성, 적절한 내용제성, 적절한 가수분해도 및 적절한 생분해도를 가질 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 30wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 50wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 70wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 80wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 90wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 95wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기 생분해성 수지를 전체 조성물 중량 기준으로 약 99wt% 이상의 함량으로 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 상기 생분해성 수지의 함량의 최대는 전체 조성물 중량 기준으로 약 100wt%일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 보강재를 더 포함할 수 있다. 상기 보강재는 실시예에 따른 생분해성 폴리에스테르 수지 조성물 및 이에 의해서 제조되는 필름 또는 성형품의 기계적 물성을 향상시킬 수 있다. 또한, 상기 보강재는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 자외선에 의한 변형 특성을 조절할 수 있다. 또한, 상기 보강재는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 가수분해 특성을 조절할 수 있다. 또한, 상기 보강재는 실시예에 따른 생분해성 폴리에스테르 수지의 생분해성을 조절할 수 있다.
상기 보강재는 바이오 매스로부터 유래되는 섬유일 수 있다. 상기 보강재는 유기물질로 이루어진 섬유일 수 있다. 상기 보강재는 나노 셀룰로오스 일 수 있다.
상기 나노 셀룰로오스는 나노 결정 셀룰로오스, 셀룰로오스 나노파이버, 마이크로피브릴화 셀룰로오스, 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시프로필메틸 셀룰로오스, 셀룰로오스 아세테이트, 메틸 셀룰로오스, 에틸 셀룰로오스, 프로필 셀룰로오스, 부틸 셀룰로오스, 펜틸 셀룰로오스, 헥실 셀룰로오스 또는 사이클로헥실 셀룰로오스로 이루어 군으로부터 선택된 1종 이상일 수 있다.
상기 나노 셀룰로오스는 이온 결합된 금속을 포함할 수 있다. 상기 나노결정 셀룰로오스는 나트륨 원소를 포함할 수 있다. 또한, 상기 나노결정 셀룰로오스는 황산 염(sulphate)을 포함할 수 있다. 상기 나노 결정 셀룰로오스는 카르복실산 염을 포함할 수 있다. 상기 나노결정 셀룰로오스는 셀룰로오스 황산 수소 나트륨(Cellulose hydrogen sulphate sodium salt)일 수 있다.
상기 나노 셀룰로오스는 하기의 화학식 7로 표시될 수 있다.
[화학식 7]
여기서, 상기 x는 1 내지 35이고, 상기 y는 1 내지 10일 수 있다. 상기 x는 15 내지 35이고, 상기 y는 1 내지 10일 수 있다.
상기 나노 셀룰로오스는 약 200㎡/g 내지 약 600㎡/g의 비표면적을 가질 수 있다. 상기 나노 셀룰로오스는 약 250㎡/g 내지 약 500㎡/g의 비표면적을 가질 수 있다.
상기 나노 셀룰로오스의 중량 평균 분자량은 약 10000g/mol 내지 약 40000g/mol일 수 있다. 상기 나노결정 셀룰로오스의 중량 평균 분자량은 약 11000g/mol 내지 약 35000g/mol일 수 있다.
상기 나노결정 셀룰로오스의 함수율은 약 2wt% 내지 약 8wt%일 수 있다. 상기 나노결정 셀룰로오스의 함수율은 약 4wt% 내지 약 6wt%일 수 있다.
상기 나노 셀룰로오스의 평균 직경은 약 0.5㎚ 내지 약 10㎚일 수 있다. 상기 나노 셀룰로오스의 평균 직경은 약 1㎚ 내지 약 8㎚일 수 있다. 상기 나노 셀룰로오스의 평균 직경은 약 1.5㎚ 내지 약 7㎚일 수 있다.
상기 나노 셀룰로오스의 평균 길이는 약 20㎚ 내지 약 300㎚일 수 있다. 상기 나노 셀룰로오스의 평균 길이는 약 30㎚ 내지 약 180㎚일 수 있다. 상기 나노 셀룰로오스의 평균 길이는 약 35㎚ 내지 약 150㎚일 수 있다.
상기 나노 셀룰로오스의 직경 및 길이가 상기 범위를 만족함으로써, 생분해성 폴리에스테르 수지, 또는 이를 이용하여 얻은 생분해성 폴리에스테르 시트, 필름 및 성형품의 생분해성 및 물성을 더욱 향상시킬 수 있다
상기 나노 셀룰로오스의 직경 및 길이는 물에 분산된 상태에서, 원자력간 현미경(atomic force microscopy)에 의해서 측정될 수 있다.
상기 나노 셀룰로오스의 황 함량는 상기 나노결정 셀룰로오스 전체를 기준으로 약 0.1wt% 내지 약 1.2wt%일 수 있다. 상기 나노 셀룰로오스의 황 함량은 상기 나노 셀룰로오스 전체를 기준으로 약 0.2wt% 내지 약 1.1wt%일 수 있다.
상기 나노 셀룰로오스의 pH는 5 내지 8일 수 있다. 상기 나노 셀룰로오스의 pH는 6 내지 8일 수 있다.
상기 나노 셀룰로오스의 제타 전위는 약 -25 mV 내지 약 -50 mV일 수 있다. 상기 나노 셀룰로오스의 제타 전위는 약 -30 mV 내지 약 -45 mV일 수 있다.
상기 나노 셀룰로오스는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로 약 0.01 중량부 내지 약 2 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 나노 셀룰로오스는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로 약 0.03 중량부 내지 약 1.5 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 나노 셀룰로오스는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로 약 0.04 중량부 내지 약 1.2 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 나노 셀룰로오스는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로 약 0.05 중량부 내지 약 1 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다.
상기 나노 셀룰로오스는 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 균일하게 분산될 수 있다.
상기 나노 셀룰로오스는 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 기계적 물성을 향상시킬 수 있다.
또한, 상기 나노 셀룰로오스는 결정 핵제 기능을 수행하여, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 결정화 속도를 향상시킬 수 있다. 이에 따라서, 상기 나노 셀룰로오스는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 결정화 온도를 증가시킬 수 있다.
상기 나노 셀룰로오스는 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 내 UV 특성을 가질 수 있다.
상기 나노 셀룰로오스는 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 생분해 속도를 가질 수 있다.
상기 나노 셀룰로오스는 상기와 같은 특징을 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 가수 분해 속도를 가질 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 금속염을 포함할 수 있다.
상기 금속염은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 전체 중량을 기준으로 약 0.1ppm 내지 약 1000ppm의 함량으로 포함될 수 있다. 상기 금속염은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 전체 중량을 기준으로 약 1ppm 내지 약 500ppm의 함량으로 포함될 수 있다. 상기 금속염은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 전체 중량을 기준으로 약 1ppm 내지 약 100ppm의 함량으로 포함될 수 있다. 상기 금속염은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 전체 중량을 기준으로 약 1ppm 내지 약 50ppm의 함량으로 포함될 수 있다.
상기 금속염은 질산염, 황산염, 염산염 또는 카르복실산염 등으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다. 상기 금속염은 티타늄염, 실리콘염, 나트륨염, 칼슘염, 칼륨염, 마그네슘염, 구리염, 철염, 알루미늄염 또는 은염 등으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다. 상기 금속염은 마그네슘 아세테이트, 칼슘 아세테이트, 칼륨 아세테이트, 질산 구리, 질산 은 또는 질산 나트륨 등으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 금속염은 철(Fe), 마그네슘(Mg), 니켈(Ni) 코발트(Co), 구리(Cu), 팔라듐(Pd), 아연(Zn), 바나듐(V), 티타늄, (Ti), 인듐(In), 망간(Mn), 실리콘(Si) 및 주석(Sn)으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.
또한, 상기 금속염은 아세테이트(acetate), 나이트레이트(nitrate), 나이트라이드(nitride), 설파이드(sulfide), 설페이트(sulfate), 설폭사이드(sulfoxide), 하이드록사이드(hydroxide), 하이드레이트(hydrate), 클로라이드(chloride), 클로리네이트(chlorinate) 및 브로마이드(bromide)로 이루어진 군에서 선택될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기의 함량으로 상기 금속염을 포함하기 때문에, 가수 분해 속도 및 생분해 속도가 적절하게 조절될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기의 함량으로 상기 금속염을 포함하기 때문에, 가수 분해 속도 및 생분해 속도가 적절하게 조절될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 내가수분해제를 더 포함할 수 있다.
상기 내가수분해제는 실란, 실라잔 또는 실록산 등과 같은 실리콘계 화합물로부터 적어도 하나 이상 선택될 수 있다.
상기 내가수분해제는 알콕시 실란을 포함할 수 있다. 상기 내가수분해제는 트리메톡시 실란 및/또는 트리에톡시 실란을 포함할 수 있다. 상기 내가수분해제는 에폭시기를 포함하는 알콕시 실란을 포함할 수 있다. 상기 내가수분해제는 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란(2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane), 3-글리시독시프로필 메틸디메톡시실란(3-Glycidoxypropyl methyldimethoxysilane), 3-글리시독시프로필 트리메톡시실란(3-Glycidoxypropyl trimethoxysilane), 3-글리시독시프로필 메틸디에톡시실란(3-Glycidoxypropyl methyldiethoxysilane) 또는 3-글리시독시프로필 트리에톡시 실란(3-Glycidoxypropyl triethoxysilane)으로 구성되는 그룹으로부터 적어도 하나 이상을 포함할 수 있다.
상기 내가수분해제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 약 1ppm 내지 약 10000ppm의 함량으로 포함될 수 있다. 상기 내가수분해제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 약 1ppm 내지 약 1000ppm의 함량으로 포함될 수 있다. 상기 내가수분해제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 약 5ppm 내지 500ppm의 함량으로 포함될 수 있다. 상기 내가수분해제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 약 10ppm 내지 300ppm의 함량으로 포함될 수 있다.
상기 내가수분해제는 상기 생분해성 폴리에스테르 수지에 결합될 수 있다. 상기 내가수분해제는 상기 생분해성 폴리에스테르 수지에 화학적으로 결합될 수 있다. 상기 내가수분해제는 상기 생분해성 폴리에스테르 수지에 포함된 고분자와 화학적으로 결합될 수 있다. 상기 내가수분해제는 상기 생분해성 폴리에스테르 수지에 포함된 고분자를 서로 커플링할 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기와 같은 범위로 상기 내가수분해제를 포함하기 때문에, 적절한 내가수분해 특성을 가질 수 있다. 특히, 실시예에 따른 생분해성 폴리에스테르 수지는 상기와 같은 범위로 상기 내가수분해제를 포함하기 때문에, 적절한 초기 가수분해 특성을 가지면서, 향상된 생분해성을 가질 수 있다.
이에 따라서 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 실리콘 원소를 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 1ppm 내지 약 150ppm의 함량으로 상기 실리콘 원소를 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 0.1ppm 내지 약 100ppm의 함량으로 실리콘 원소를 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 0.1ppm 내지 약 50ppm의 함량으로 실리콘 원소를 포함할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 0.1ppm 내지 약 20ppm의 함량으로 실리콘 원소를 포함할 수 있다.
또한, 상기 내가수분해제는 말단 카르복실기 또는 미반응 카르복실기와도 반응할 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 낮은 산가를 가질 수 있다.
또한, 상기 내가수분해제는 상기 생분해성 폴리에스테르 수지에 포함된 고분자를 커플링시켜서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 높은 분자량의 폴리머의 비율을 높일 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 기계적 특성이 향상될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 사슬 연장제를 더 포함할 수 있다.
상기 사슬 연장제는 이소시아네이트를 포함할 수 있다.
상기 사슬 연장제는 1관능성 이소시아네이트 또는 다관능성 이소시아네이트로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 사슬 연장제는 톨릴렌 2,4-디이소시아네이트, 톨릴렌 2,6-디이소시아네이트, 디페닐메탄 4,4'-디이소시아네이트 및 2,4'-디이소시아네이트, 나프탈렌 1,5-디이소시아네이트, 크실릴렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 펜타메틸렌 디이소시아네이트, 이소포론 디이소시아네이트 및 메틸렌비스(4-이소시아나토시클로헥산)로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 사슬 연장제는 트리이소시아네이트를 포함할 수 있다. 상기 사슬 연장제는 트리(4-이소시아나토페닐)메탄을 포함할 수 있다.
상기 사슬 연장제는 아크릴계 폴리머를 포함할 수 있다. 상기 아크릴계 폴리머는 아크릴기를 포함할 수 있다. 상기 아크릴기는 메인 체인에 사이드 체인으로 결합될 수 있다. 상기 아크릴계 폴리머는 에폭시기를 포함할 수 있다. 상기 에폭시기는 상기 메인 체인에 사이드 체인으로 결합될 수 있다.
상기 사슬 연장제는 스티렌계 공중합체를 포함할 수 있다. 상기 사슬 연장제는 스티렌계 글리시딜 아크릴레이트를 포함할 수 있다.
상기 사슬 연장제는 상기 생분해성 폴리에스테르 수지에 화학적으로 결합될 수 있다. 상기 사슬 연장제는 상기 생분해성 폴리에스테르 수지에 포함된 고분자와 화학적으로 결합될 수 있다. 상기 사슬 연장제는 상기 생분해성 폴리에스테르 수지에 포함된 고분자의 말단에 결합될 수 있다. 또한, 상기 사슬 연장제는 상기 생분해성 폴리에스테르 수지에 포함된 3개의 고분자의 말단에 결합될 수 있다.
상기 사슬 연장제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 전체 조성물 기준으로 약 0.1wt% 내지 약 10wt%의 함량으로 포함될 수 있다. 상기 사슬 연장제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 전체 조성물 기준으로 약 0.2wt% 내지 약 8wt%의 함량으로 포함될 수 있다. 상기 사슬 연장제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 전체 조성물 기준으로 약 0.3wt% 내지 약 7wt%의 함량으로 포함될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기와 같은 범위로 상기 사슬 연장제를 포함할 때, 적절한 내가수분해성 및 적절한 생분해성을 가질 수 있다.
또한, 상기 사슬 연장제는 말단 카르복실기 또는 미반응 카르복실기와도 반응할 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 낮은 산가를 가질 수 있다.
또한, 상기 사슬 연장제는 상기 생분해성 폴리에스테르 수지에 포함된 고분자를 커플링시켜서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 높은 분자량의 폴리머의 비율을 높일 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 기계적 특성이 향상될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 올리고머를 포함할 수 있다. 상기 올리고머의 분자량은 약 400 내지 약 1300일 수 있다.
상기 올리고머는 전체 수지 조성물 기준으로 약 3000ppm 내지 약 30000ppm으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 올리고머는 전체 수지 조성물 기준으로 약 5000ppm 내지 약 20000ppm으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 올리고머는 전체 수지 조성물 기준으로 약 5000ppm 내지 약 15000ppm으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 올리고머는 전체 수지 조성물 기준으로 약 7000ppm 내지 약 15000ppm으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다.
상기 올리고머는 상기 디올, 상기 방향족 디카르복실산 및 상기 지방족 디카르복실산 중 적어도 둘 이상의 반응 생성물일 수 있다. 상기 올리고머는 1,4-부탄디올, 테레프탈산 및 아디프산의 반응 생성물일 수 있다.
상기 올리고머는 상기 지방족 디카르복실산의 몰비가 상기 방향족 디카르복실산의 몰비보다 더 높은 올리고머를 포함할 수 있다. 상기 올리고머 중에서, 상기 지방족 디카르복실산을 상대적으로 더 많이 포함하는 올리고머의 비율이 상기 방향족 디카르복실산을 상대적으로 더 많이 포함하는 올리고머의 비율보다 더 높을 수 있다.
상기 올리고머는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 가수분해도를 적절하게 조절할 수 있다. 상기 올리고머는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 가수분해도를 적절하게 조절하는 가수분해 조절제일 수 있다.
또한, 상기 올리고머는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 생분해도를 적절하게 조절할 수 있다. 상기 올리고머는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 생분해도를 적절하게 조절하는 생분해 조절제일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 열 안정제를 포함할 수 있다. 상기 열 안정제는 인계 열 안정제일 수 있다.
상기 열 안정제는 테트라에틸렌펜타아민 등의 아민계 고온 열안정제, 트리에틸포스포노아세테이트, 인산(phosphoric acid), 아인산(phosphorous acid), 폴리인산(polyphosphric acid), 트리메틸포스페이트(trimethyl phosphate: TMP), 트리에틸포스페이트(triethyl phosphate), 트리메틸포스핀(trimethyl phosphine) 또는 트리페닐포스핀(triphenyl phosphine) 등으로 이루어진 군으로부터 적어도 하나 이상 선택될 수 있다.
또한, 상기 열 안정제는 산화 방지 기능을 가지는 산화 방지제일 수 있다.
상기 열 안정제의 함량은 상기 생분해성 폴리에스테르 수지의 총 중량을 기준으로 약 3000ppm 이하일 수 있다. 상기 열 안정제의 함량은 상기 생분해성 폴리에스테르 수지의 총 중량을 기준으로 예를 들어, 10ppm 내지 3,000ppm, 20ppm 내지 2,000ppm, 20ppm 내지 1,500ppm 또는 20ppm 내지 1,000ppm일 수 있다. 상기 열 안정제의 함량이 상기 범위를 만족함으로써, 반응 과정 중 고온에 의한 폴리머의 열화를 제어할 수 있어 폴리머의 말단기를 줄이고, 컬러(color)를 개선 시킬 수 있다. 또한, 상기 열 안정제는 티타늄계 촉매 등의 활성화를 억제하여, 반응 속도를 조절할 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 신율 향상제를 포함할 수 있다. 상기 신율 향상제의 예로서는 파라핀 오일, 나프텐 오일 또는 아로마틱 오일 등과 같은 오일 또는 디부틸아디페이트, 디에틸헥실아디페이트, 디옥틸아디페이트 또는 디이소프로필아디페이트 등과 같은 아디페이트를 들 수 있다.
상기 신율 향상제는 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 0.001중량부 내지 약 1중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 신율 향상제는 상기 생분해성 폴리에스테르 수지 100중량부를 기준으로, 약 0.01중량부 내지 약 1중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 무기 필러를 포함할 수 있다. 상기 무기 필러는 황산칼슘, 황산바륨, 탈크, 활석분, 벤토나이트, 고령토, 백악가루, 탄산칼슘, 흑연, 석고, 전기전도성 카본블랙, 염화칼슘, 산화철, 산화알루미늄, 산화 칼륨, 백운석, 이산화규소, 규회석, 이산화티탄, 규산염, 운모, 유리섬유 또는 광물성 섬유 등으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 무기 필러에 대하여 레이저 레이저 회절법에 의해 얻은 입경 분포에서 부피 기준으로 누적 50%의 입경(D50)은 약 100 ㎛ 이하, 약 85 ㎛ 이하, 약 70 ㎛ 이하, 약 50 ㎛ 이하, 약 25 ㎛ 이하, 약 10 ㎛ 이하, 약 5 ㎛ 이하, 약 3 ㎛ 이하 또는 약 1 ㎛ 이하일 수 있다.
또한, 상기 무기 필러의 비표면적은 약 100 m2/g 이상일 수 있다. 예를 들어, 상기 무기 필러의 비표면적은 약 100 m2/g 이상, 약 105 m2/g 이상 또는 약 110 m2/g 이상일 수 있다.
상기 무기 필러는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로, 약 3중량부 내지 약 50 중량부의 함량으로, 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 무기 필러는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로, 약 5 중량부 내지 약 30 중량부의 함량으로, 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다.
상기 무기 필러는 실시예에 따른 생분해성 폴리에스테르 수지 조성물 전체 중량을 기준으로 약 3,000 ppm 이하의 함량으로 포함될 수 있다. 예를 들어, 상기 무기 필러의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 전체 중량을 기준으로 약 3,000 ppm 이하, 약 1,500 ppm 이하, 약 1,200 ppm 이하, 약 800 ppm 이하 또는 약 600 ppm 이하일 수 있고, 약 50 ppm 이상, 약 100 ppm 이상, 약 130 ppm 이상, 약 150 ppm 이상 또는 약 180 ppm 이상일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기의 함량으로 상기 무기 필러를 포함하기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 기계적 물성, 적절한 내 UV 특성, 적절한 생분해 속도 및 적절한 가수 분해 속도를 가질 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 이종의 생분해성 수지를 더 포함할 수 있다. 실시예 따른 생분해성 폴리에스테르 수지 조성물은 2종류 이상의 수지들, 필러 및 첨가제를 포함하는 복합 수지 조성물일 수 있다.
상기 이종의 생분해성 수지는 폴리부틸렌 아젤레이트 테레프탈레이트 (PBAzT), 폴리부틸렌 세바케이트 테레프탈레이트 (PBSeT) 및 폴리부틸렌 숙시네이트 테레프탈레이트 (PBST), 폴리히드록시알카노에이트(PHA) 또는 폴리락트산(PLA)으로 구성되는 그룹으로부터 적어도 하나 이상 선택될 수 있다.
상기 이종의 생분해성 수지는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로, 약 10 중량부 내지 약 100 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 이종의 생분해성 수지는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로, 약 10 중량부 내지 약 60 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다. 상기 이종의 생분해성 수지는 상기 생분해성 폴리에스테르 수지 100 중량부를 기준으로, 약 20 중량부 내지 약 50 중량부의 함량으로 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 포함될 수 있다.
상기 이종의 생분해성 수지는 상기 생분해성 폴리에스테르 수지의 물성을 기계적, 광학적 및 화학적 물성을 보완할 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기의 함량으로 상기 이종의 생분해성 수지를 포함하기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 기계적 물성, 적절한 내 UV 특성, 적절한 생분해 속도 및 적절한 가수 분해 속도를 가질 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 카르복실기 말단기의 개수는 약 50 eq/ton 이하일 수 있다. 예를 들어, 실시예에 따른 생분해성 폴리에스테르 수지의 카르복실기 말단기의 개수는 약 50 eq/ton 이하, 약 48 eq/ton 이하, 약 45 eq/ton 이하 또는 약 42 eq/ton 이하일 수 있다. 상기 카르복실기 말단기의 개수가 상기 범위로 조절되어, 실시예에 따른 생분해성 폴리에스테르 수지 조성물이 압출되어, 성형품을 형성할 때, 열화를 방지하고, 향상된 기계적 물성을 구현할 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 고유점도(IV)는 약 0.9 dl/g 이상일 수 있다. 실시예에 다른 생분해성 폴리에스테르 수지 조성물의 고유 점도는 약 0.95 dl/g 이상, 약 1.0 dl/g 이상, 약 1.1 dl/g 이상, 약 1.2 dl/g 이상 또는 약 1.3 dl/g 이상일 수 있다. 실시예에 다른 생분해성 폴리에스테르 수지 조성물의 고유 점도는 약 0.95 dl/g 내지 약 1.7 dl/g일 수 있다. 실시예에 다른 생분해성 폴리에스테르 수지 조성물의 고유 점도는 약 1.3 dl/g 내지 약 1.7 dl/g일 수 있다. 실시예에 다른 생분해성 폴리에스테르 수지 조성물의 고유 점도는 약 1.4 dl/g 내지 약 1.7 dl/g일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물이 제조되는 과정은 다음과 같다.
도 1을 참조하면, 상기 생분해성 폴리에스테르 수지의 제조장치는 슬러리 교반기(100), 에스테르화 반응부(200), 축중합 반응부(300), 후 처리부(400), 제 1 회수부(510) 및 제 2 회수부(520)를 포함한다.
상기 생분해성 폴리에스테르 수지의 제조방법은 상기 디올 및 상기 방향족 디카르복실산을 포함하는 슬러리를 제조하는 단계를 포함한다.
상기 슬러리를 제조하는 단계는 상기 디올 및 상기 방향족 디카르복실산을 혼합하고 처리하는 단계를 포함한다. 즉, 상기 슬러리를 제조하는 단계는 에스테르화 반응 전의 전처리 단계이고, 상기 디올 및 상기 방향족 디카르복실산을 혼합하고, 이들을 슬러리화하는 단계일 수 있다. 이때, 상기 디올은 바이오매스(biomas) 기반 디올 성분을 포함할 수 있다. 상기 디올 및 상기 방향족 디카르복실산의 슬러리의 온도는 상기 디올의 융점보다 약 5℃ 내지 약 15℃만큼 더 높을 수 있다. 예를 들어, 상기 디올이 1,4-부탄디올인 경우, 상기 슬러리의 온도는 약 35℃ 내지 약 45℃일 수 있다.
상기 디올 및 상기 방향족 디카르복실산은 상기 슬러리 교반기(100)에 투입되고, 교반되어, 상기 슬러리가 제조될 수 있다.
상기 디올 및 방향족 디카르복실산을 혼합하고 전처리하여 슬러리화함으로써 디올 및 방향족 디카르복실산을 균일하게 반응할 수 있을 뿐만 아니라 에스테르화 반응의 속도를 빠르게 진행하는 데에 효과적이므로 반응 효율성을 높일 수 있다.
특히, 테레프탈산과 같이 방향족 디카르복실산이 완전한 결정성을 갖고, 분말(powder) 형태인 경우, 상기 디올에 대한 용해도가 매우 낮아 균질 반응이 일어나기 어려움이 있을 수 있다. 따라서, 상기 슬러리화하는 전처리 과정은 본 발명의 구현예에 따른 우수한 물성을 갖는 생분해성 폴리에스테르 수지, 시트, 필름 및 성형품을 제공하고, 반응 효율을 증진시키는데 매우 중요한 역할을 할 수 있다.
상기 방향족 디카르복실산이 테레프탈산인 경우, 상기 테레프탈산은 완전한 결정성을 가지고 있고 용융점 없이 상압에서 300℃ 부근에서 승화하는 백색 결정으로, 상기 디올에 대한 용해도가 매우 낮아 균질 반응이 일어나기 어려우므로, 에스테르화 반응 이전에 전처리 과정을 수행하는 경우 테레프탈산의 고체 매트릭스 내에서 디올과 반응하기 위한 표면적을 증가시켜 균일한 반응을 유도할 수 있다.
또한, 상기 방향족 디카르복실산이 디메틸 테레프탈레이트인 경우, 상기 전처리 과정에 의해 상기 디메틸 테레프탈레이트을 약 142℃ 내지 170℃에서 용융 상태로 만들어서 상기 디올과 반응시킬 수 있으므로, 에스테르화 반응 속도를 더욱 빠르고 효율적으로 진행시킬 수 있다.
한편, 상기 슬러리를 제조하는 전처리 단계에 있어서, 상기 방향족 디카르복실산의 입자 크기, 입도 분포, 전처리 반응 조건 등에 따라 상기 생분해성 폴리에스테르 수지의 구조 및 물성이 달라질 수 있다.
예컨대, 상기 방향족 디카르복실산은 테레프탈산을 포함하고, 상기 테레프탈산은 입자 크기 분포(PSD)에서 입도분석기 Microtrac S3500에 의해 측정된 평균 입경(D50)이 10㎛ 내지 400㎛이고, 상기 평균 입경(D50)에 대한 표준편차(Standard Deviation)가 100 이하일 수 있다. 상기 표준편차는 분산의 제곱근을 의미한다. 상기 테레프탈산의 평균 입경(D50)은 예컨대 20㎛ 내지 200㎛, 예컨대 30㎛ 내지 180㎛, 또는 예컨대 100㎛ 내지 160㎛일 수 있다. 상기 테레프탈산의 평균 입경(D50)이 상기 범위를 만족하는 경우, 디올에 대한 용해도 향상 및 반응속도 측면에서 더욱 유리할 수 있다.
상기 전처리 공정에서는, 상기 디올 및 상기 방향족 디카르복실산을 혼합하여 슬러리 교반기(100)(탱크)에 투입할 수 있다.
상기 슬러리 교반기(100)는 예컨대 최하부가 앵커(anchor) 타입이고 교반기(agitator)까지의 높이가 20mm 이상이며, 2개 이상의 회전 날개가 구비된 것이 효율적인 교반 효과를 달성하는 데에 더욱 유리할 수 있다.
예컨대, 상기 슬러리 교반기(100)는 상기 교반기까지의 높이가 20mm 이상, 즉 반응기와 상기 교반기의 최하부 사이가 거의 붙어있을 수 있으며, 이 경우 침전없이 슬러리를 얻을 수 있다. 만일, 상기 교반기의 모양, 형태 및 회전 날개가 상기 조건들을 만족하지 않는 경우, 디올 및 방향족 디카르복실산이 초기 혼합될 때 상기 방향족 디카르복실산이 바닥으로 침강될 수 있고, 이 경우 상분리가 일어날 수 있다.
상기 슬러리를 제조하는 전처리 공정은 상기 디올 및 상기 방향족 디카르복실산을 혼합하여 약 30℃ 내지 약 100℃에서 약 50rpm 내지 약 200rpm으로 10분 이상, 예컨대 10분 내지 200분 동안 교반하는 단계를 포함할 수 있다.
상기 디올은 앞서 설명한 바와 같은 특징을 가질 수 있다.
상기 디올은 한번에 투입하거나, 분할하여 투입할 수 있다. 예컨대, 상기 디올은 방향족 디카르복실산과 혼합 시 및 지방족 디카르복실산과 혼합 시에 나누어 투입할 수 있다.
상기 방향족 디카르복실산은 앞서 설명한 바와 같은 특징을 가질 수 있다.
상기 슬러리를 제조하는 전처리 단계에서, 상기 디올 및 상기 방향족 디카르복실산의 몰비는 약 0.8:1 내지 약 2:1일 수 있다. 상기 슬러리를 제조하는 전처리 단계에서, 상기 디올 및 상기 방향족 디카르복실산의 몰비는 약 1.1:1 내지 약 1.5:1일 수 있다. 상기 슬러리를 제조하는 전처리 단계에서, 상기 디올 및 상기 방향족 디카르복실산의 몰비는 약 1.2:1 내지 약 1.5:1일 수 있다.
상기 디올이 상기 방향족 디카르복실산보다 더 많은 양으로 투입되면, 상기 방향족 디카르복실산이 용이하게 분산될 수 있다.
또한, 상기 슬러리에는 첨가제가 투입될 수 있다. 상기 슬러리에 상기 나노 셀룰로오스 및/또는 상기 금속염이 분산액 또는 용액 형태로 첨가될 수 있다.
상기 생분해성 폴리에스테르 수지의 제조방법은 디올 및 방향족 디카르복실산을 혼합하고 전처리하여 얻은 슬러리를 이용하여 에스테르화 반응시켜 예비 중합체를 얻고, 상기 예비 중합체를 축중합 반응시킴으로써, 본 발명의 구현예에 따라 목적하는 생분해성 폴리에스테르 수지의 구조 및 물성을 효율적으로 달성할 수 있다.
상기 생분해성 폴리에스테르 수지의 제조방법은 상기 슬러리 및 상기 지방족 디카르복실산을 에스테르화 반응시켜서, 예비 중합체를 제조하는 단계를 포함한다. 상기 슬러리 및 상기 지방족 디카르복실산은 상기 에스테르 반응부에서 반응될 수 있다.
상기 에스테르화 반응에서, 상기 슬러리를 이용함으로써 반응 시간이 단축될 수 있다. 예컨대, 상기 전처리 단계에서 얻은 슬러리는 상기 에스테르 반응의 반응시간을 1.5배 이상 단축시킬 수 있다.
상기 에스테르화 반응은 적어도 2회 이상 진행될 수 있다. 상기 에스테르화 반응에 의해서 축중합 공정에 투입되는 예비 중합체가 형성될 수 있다.
일 실시예에서, 상기 에스테르화 반응은 상기 슬러리에 지방족 디카르복실산, 또는 디올 및 지방족 디카르복실산을 투입된 후, 한번에 진행될 수 있다. 즉, 상기 슬러리가 상기 에스테르화 반응기에 투입되고, 상기 지방족 디카르복실산 단독 또는 상기 지방족 디카르복실산 및 상기 디올이 상기 에스테르화 반응기에 투입되어, 상기 에스테르화 반응이 진행될 수 있다.
상기 디올 및 상기 지방족 디카르복실산은 슬러리 형태로 상기 방향족 디카르복실산을 포함하는 슬러리에 첨가될 수 있다.
상기 디올 및 상기 지방족 디카르복실산의 슬러리에서 상기 지방족 디카르복실산의 평균 입경(D50)은 약 50㎛ 내지 약 150㎛일 수 있다. 상기 디올 및 상기 지방족 디카르복실산의 슬러리에서 상기 지방족 디카르복실산의 평균 입경(D50)은 약 60㎛ 내지 약 120㎛일 수 있다.
상기 에스테르화 반응에서, 투입되는 전체 디올의 몰수은 상기 방향족 디카르복실산 및 상기 지방족 디카르복실산 전체 몰수 대비 약 1.0 내지 약 1.8일 수 있다. 상기 에스테르화 반응에서, 투입되는 전체 디올의 몰수은 상기 방향족 디카르복실산 및 상기 지방족 디카르복실산 전체 몰수 대비 약 1.1 내지 약 1.6일 수 있다.
또한, 상기 디올 및 상기 지방족 디카르복실산의 슬러리의 온도는 상기 디올의 융점보다 약 5℃ 내지 약 15℃만큼 더 높을 수 있다.
또한, 상기 나노 셀룰로오스 등 각종 첨가제는 상기 상기 디올 및 상기 지방족 디카르복실산의 슬러리에도 첨가될 수 있다.
상기 에스테르화 반응은 약 250℃ 이하에서 약 0.5시간 내지 약 5시간 동안 수행될 수 있다. 구체적으로, 상기 에스테르화 반응은 약 180℃ 내지 약 250℃, 약 185℃ 내지 약 240℃ 또는 약 200℃ 내지 약 240℃에서 부산물인 물이 이론적으로 95%에 도달할 때까지 상압 또는 감압에서 수행될 수 있다. 예를 들어, 상기 에스테르화 반응은 0.5시간 내지 5.5시간, 0.5시간 내지 4.5시간 또는 1시간 내지 4시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에서, 상기 슬러리에 상기 폴리카보네이트 디올 및/또는 상기 폴리에테르 폴리올이 혼합되고, 제 1 에스테르화 반응이 진행될 수 있다. 이와는 다르게, 상기 폴리카보네이트 디올 및/또는 상기 폴리에테르 폴리올은 제 2 에스테르화 반응에 투입될 수 있다.
또한, 상기 제 1 에스테르 반응 후, 상기 에스테르화 반응부에, 상기 지방족 디카르복실산 및 상기 디올의 혼합물이 투입되고, 상기 제 1 에스테르 반응 생성물과 함께, 제 2 에스테르 반응이 진행될 수 있다. 또한, 상기 폴리카보네이트 디올 및/또는 상기 폴리에테르 폴리올은 상기 제 2 에스테르화 반응에 투입될 수 있다.
상기 제 1 에스테르 반응은 250℃ 이하에서 1.25시간 내지 4시간 동안 수행될 수 있다. 구체적으로, 상기 제 1 에스테르화 반응은 180℃ 내지 250℃, 185℃ 내지 240℃ 또는 200℃ 내지 240℃에서 부산물인 물이 이론적으로 95%에 도달할 때까지 상압 또는 감압에서 수행될 수 있다. 예를 들어, 상기 제 1 에스테르화 반응은 1.25시간 내지 4시간, 1.25시간 내지 3.5시간 또는 2.5시간 내지 3시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 제 2 에스테르 반응은 약 250℃ 이하에서 0.25시간 내지 3.5시간 동안 수행될 수 있다. 구체적으로, 상기 제 2 에스테르화 반응은 180℃ 내지 250℃, 185℃ 내지 240℃ 또는 200℃ 내지 240℃에서 부산물인 물이 이론적으로 95%에 도달할 때까지 상압 또는 감압에서 수행될 수 있다. 예를 들어, 상기 제 2 에스테르화 반응은 0.5시간 내지 3시간, 1시간 내지 2.5시간 또는 1.5시간 내지 2.5시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 제 1 에스테르 반응 및 상기 제 2 에스테르 반응에서, 반응 온도, 반응 시간 및 투입되는 디올, 방향족 디카르복실산 및 지방족 디카르복실산의 함량이 각각 조절되어, 상기 제 1 블럭 및 상기 제 2 블럭의 개수 비 등이 조절될 수 있다. 또한, 상기 에스테르 반응이 상기 제 1 에스테르 반응 및 상기 제 2 에스테르 반응으로 나누어져 진행되는 경우, 전체 에스테르 반응이 정밀하게 제어될 수 있다. 이에 따라서, 상기 에스테르 반응이 나누어 진행되는 경우, 상기 에스테르 반응의 반응 안정성 및 반응 균일성이 향상될 수 있다.
또한, 상기 제 2 에스테르 반응에서, 상기 분지제가 추가로 투입될 수 있다. 즉, 상기 지방족 디카르복실산, 상기 디올의 혼합물, 상기 분지제 및 상기 제 1 에스테르 반응 생성물이 반응하여, 상기 예비 중합체가 형성될 수 있다. 상기 분지제의 특징 및 함량은 앞서 설명한 바와 같을 수 있다.
상기 에스테르화 반응에 의해서, 예비 중합체가 형성될 수 있다.
상기 예비 중합체의 수평균분자량은 약 500 내지 약 10000g/mol일 수 있다. 예를 들어, 상기 예비 중합체의 수평균분자량은 약 500 내지 약 8500g/mol, 약 500 내지 약 8000g/mol, 약 500 내지 약 7000g/mol, 약 500g/mol 내지 약 5000g/mol, 또는 약 800g/mol 내지 약 4000g/mol일 수 있다. 상기 예비 중합체의 수평균분자량이 상기 범위를 만족함으로써, 축중합 반응에서 중합체의 분자량을 효율적으로 증가시킬 수 있다.
상기 수평균분자량은 겔투과크로마토그래피(GPC)를 사용하여 측정할 수 있다. 구체적으로, 겔투과크로마토그래피에 의해서 나온 데이터는 Mn, Mw, Mp 등 여러 가지 항목이 있으나, 이 중 수평균분자량(Mn)을 기준으로 하여 분자량을 측정할 수 있다.
상기 보강재, 상기 분지제, 상기 폴리카보네이트 디올, 상기 폴리에테르 폴리올 또는 상기 금속염은 상기 에스테르화 반응 전에 상기 슬러리와 함께 투입될 수 있다. 상기 보강재, 상기 분지제, 상기 폴리카보네이트 디올, 상기 폴리에테르 폴리올 및/또는 상기 금속염은 상기 에스테르화 반응 중간에 상기 에스테르화 반응부(200)에 투입될 수 있다. 상기 보강재, 상기 분지제, 상기 폴리카보네이트 디올, 상기 폴리에테르 폴리올 및/또는 상기 금속염은 상기 에스테르화 반응 후에 상기 에스테르 반응 생성물에 투입될 수 있다. 또한, 상기 보강재, 상기 분지제, 상기 상기 폴리카보네이트 디올, 상기 폴리에테르 폴리올 및/또는 상기 금속염은 상기 지방족 디카르복실산과 함께 투입될 수 있다. 또한, 상기 보강재, 상기 분지제, 상기 상기 폴리카보네이트 디올, 상기 폴리에테르 폴리올 및/또는 상기 금속염은 상기 제 1 에스테르 반응 후 및 상기 제 2 에스테르 반응 전에 상기 에스테르화 반응부(200)에 투입될 수 있다.
상기 에스테르화 반응에 상기 보강재 및/또는 상기 금속염이 투입되므로, 상기 보강재 및/또는 상기 금속염은 상기 생분해성 폴리에스테르 수지 내에 균일하게 분산될 수 있다.
상기 보강재는 앞서 설명한 특징을 가질 수 있다. 특히, 상기 보강재로 상기 나노 셀룰로오스가 사용될 수 있다.
상기 나노 셀룰로오스는 투입되기 전에 비드밀에 의해서 전처리되거나, 초음파에 의해서 전처리되거나, 약 1000rpm 내지 약 1500rpm의 고속 분산에 의해서 전처리될 수 있다. 구체적으로, 상기 나노 셀룰로오스는 수분산된 나노 셀룰로오스가 비드밀 전처리되거나, 초음파 전처리된 것일 수 있다.
먼저, 상기 비드밀 전처리는 습식 밀링장치로서 수직밀 또는 수평밀로 수행 될 수 있다. 수평밀이 챔버(chamber) 내부에 충진할 수 있는 비드의 양이 더 많고, 기계의 편마모 감소, 비드의 마모 감소 및 유지관리 보수가 보다 용이하다는 점에 서 바람직하나, 이에 한정되는 것은 아니다.
상기 비드밀 전처리는 지르코늄, 지르콘, 지르코니아, 석영 및 산화 알루미늄으로 이루어진 군으로부터 선택된 1종 이상의 비드를 사용하여 수행될 수 있다.
구체적으로, 상기 비드밀 전처리는 약 0.3 mm 내지 약 1 mm의 직경을 갖는 비드를 사용하여 수행될 수 있다. 예를 들어, 상기 비드의 직경은 약 0.3 mm 내지 약 0.9 mm, 약 0.4 mm 내지 약 0.8 mm, 약 0.45 mm 내지 약 0.7 mm 또는 약 0.45 mm 내지 약 0.6 mm일 수 있다.
비드의 직경이 상기 범위를 만족함으로써 나노 셀룰로오스의 분산성을 더욱 향상 시킬수 있다. 비드의 직경이 상기 범위를 초과하는 경우, 나노 셀룰로오스의 평균 입도 및 입도 편차가 증가하여 분산성이 낮아질 수 있다.
또한, 상기 비드밀 전처리는 나노 셀룰로오스의 비중보다 높은 비드를 사용하는 것이 충분한 에너지를 전달할 수 있는 점에서 바람직하다. 예를 들어, 상기 비드는 수분산된 나노셀룰로오스보다 비중이 높은 지르코늄, 지르콘, 지르코니아, 석영 및 산화 알루미늄으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 수분산된 나노셀룰로오스에 비하여 4배 이상 비중이 높은 지르코늄 비드가 바람직하나, 이에 한정되는 것은 아니다.
또한, 상기 초음파 전처리는 20 kHz의 초음파(ultrasound)를 용액 속으로 방출시켜 발생되는 파동으로 나노 입자를 물리적으로 패쇄 또는 분쇄시키는 방법이다.
상기 초음파 전처리는 30000 J/s 이하의 출력으로 30분 미만의 시간 동안 수행될 수 있다. 예를 들어, 상기 초음파 전처리는 25000 J/s 이하 또는 22000 J/s 이하의 출력으로 25분 이하, 20분 이하 또는 18분 이하의 시간 동안 수행될 수 있다. 상기 출력 및 수행 시간이 상기 범위를 만족함으로써, 초음파 전처리의 효과, 즉 분산성의 향상을 극대화할 수 있다. 출력이 상기 범위를 초과하는 경우, 오히려 나노 입자가 재응집되어 분산성이 낮아질 수 있다.
구현예에 따른 나노 셀룰로오스는 비드밀 전처리 또는 초음파 전처리된 것일 수 있다. 또는, 구현예에 따른 나노 셀룰로오스는 비드밀 전처리 및 초음파 전처리가 모두 이루어진 것일 수 있다. 이때, 비드밀 전처리 이후에 초음파 전처리가 수행되는 것이 재응집을 방지하여 분산성을 향상시키는 점에서 바람직하다.
구현예에 따른 나노 셀룰로오스는 비드밀 전처리 또는 초음파 전처리된 것일 수 있다. 또는, 구현예에 따른 나노 셀룰로오스는 비드밀 전처리 및 초음파 전처리가 모두 이루어진 것일 수 있다. 이때, 비드밀 전처리 이후에 초음파 전처리가 수 행되는 것이 재응집을 방지하여 분산성을 향상시키는 점에서 바람직하다.
상기 나노 셀룰로오스는 이온 결합된 금속을 포함하기 때문에, 물에 대한 분산성이 매우 높다. 또한, 상기 비드밀 전처리 및/또는 상기 초음파 전처리에 의해서, 상기 나노 셀룰로오스의 분산도가 매우 높은 수분산액이 얻어질 수 있다. 상기 나노 셀룰로오스 수분산액에서, 상기 나노 셀룰로오스의 함량은 약 1wt% 내지 약 50wt% 일 수 있다.
상기 에스테르화 반응에 티타늄계 촉매 및/또는 게르마늄계 촉매가 사용될 수 있다. 구체적으로, 상기 슬러리에 상기 티타늄계 촉 및/또는 게르마늄계 촉매가 첨가되고, 상기 에스테르화 반응이 진행될 수 있다.
또한, 상기 제 1 에스테르화 반응 전에 상기 슬러리에 상기 티타늄계 촉매 및/또는 상기 게르마늄계 촉매가 첨가되고, 상기 제 1 에스테르화 반응의 생성물에 상기 티타늄계 촉매 및/또는 상기 게르마늄계 촉매가 더 첨가될 수 있다.
상기 생분해성 폴리에스테르 수지는 티타늄이소프로폭사이드, 삼산화안티몬, 디부틸틴옥사이드, 테트라프로필티타네이트, 테트라부틸티타네이트, 테트라이소프로필티타네이트, 안티모니아세테이트, 칼슘아세테이트 및 마그네슘아 세테이트로 이루어진 군으로부터 선택된 1종 이상의 티타늄계 촉매, 또는 게르마늄 옥사이드, 게르마늄메톡사이드, 게르마늄에톡사이드, 테트라메틸게르마늄, 테트라에틸게르마늄 및 게르마늄설파이드로 이루어진 군으로부터 선택된 1종 이상의 게르마늄계 촉매를 포함할 수 있다.
또한, 상기 촉매의 함량은 디올, 방향족 디카르복실산, 및 지방족 디카르복실산의 충 중량을 기준으로 약 50ppm 내지 2000ppm일 수 있다. 예를 들어, 약 60ppm 내지 약 1600ppm, 약 70ppm 내지 약 1400ppm, 약 80ppm 내지 약 1200ppm 또는 약 100ppm 내지 약 1100ppm의 티타늄계 촉매 또는 게르마늄계 촉매를 포함할 수 있다. 촉매의 함량이 상기 범위를 만족함으로써, 물성을 더욱 향상시킬 수 있다.
또한, 상기 열 안정제는 상기 에스테르화 반응 전에 상기 슬러리와 함께 투입될 수 있다. 상기 열 안정제는 상기 에스테르화 반응 중간에 상기 에스테르화 반응부(200)에 투입될 수 있다. 상기 열 안정제는 상기 에스테르화 반응 후에 상기 에스테르 반응 생성물에 투입될 수 있다. 또한, 상기 열 안정제는 상기 지방족 디카르복실산과 함께 투입될 수 있다. 또한, 상기 열 안정제는 상기 제 1 에스테르 반응 후 및 상기 제 2 에스테르 반응 전에 상기 에스테르화 반응부(200)에 투입될 수 있다.
상기 열 안정제의 특징은 앞서 설명한 바와 같을 수 있다.
상기 열 안정제의 함량은 디올, 방향족 디카르복실산, 및 지방족 디카르복실산의 충 중량을 기준으로 3,000ppm 이하일 수 있다. 구체적으로 상기 열 안정제의 함량은 디올, 방향족 디카르복실산, 및 지방족 디카르복실산의 충 중량을 기준으로 예를 들어, 10ppm 내지 3,000ppm, 20ppm 내지 2,000ppm, 20ppm 내지 1,500ppm 또는 20ppm 내지 1,000ppm일 수 있다. 상기 열 안정제의 함량이 상기 범위를 만족함으로써, 반응 과정 중 고온에 의한 폴리머의 열화를 제어할 수 있어 폴리머의 말단기를 줄이고, 컬러(color)를 개선 시킬 수 있다.
상기 에스테르화 반응 종료 후 실리카, 칼륨 또는 마그네슘과 같은 첨가제, 및 코발트아세테이트와 같은 색보정제로 이루어진 군으로부터 선택된 1종 이상이 추가로 상기 에스테르화 반응 생성물에 더 첨가될 수 있다. 즉, 에스테르화 반응 종료 후 상기 첨가제 및/또는 색보정제가 투입되고, 안정화된 후, 축중합 반응이 진행될 수 있다. 상기 첨가제 및/또는 상기 색보정제가 상기 에스테르화 반응 종료 후, 첨가되어, 상기 예비 중합체와 함께 상기 축중합 반응부(300)에 투입될 수 있다. 이에 따라서, 상기 첨가제 및/또는 상기 색보정제는 상기 생분해성 폴리에스테르 수지에 균일하게 분산될 수 있다.
또한, 상기 에스테르화 반응 종료 후, 상기 무기 필러가 상기 에스테르화 반응 생성물에 첨가될 수 있다. 즉, 상기 에스테르화 반응 종료 후, 상기 무기 필러가 투입되고, 안정화 된 후, 상기 축중합 반응이 진행될 수 있다. 상기 무기 필러의 특징은 앞서 설명한 바와 같다. 상기 무기 필러는 상기 예비 중합체와 함께 상기 축중합 반응부(300)에 투입되고, 상기 축중합 공정이 진행될 수 있다. 이에 따라서, 상기 무기 필러는 상기 생분해성 폴리에스테르 수지에 균일하게 분산될 수 있다.
또한, 상기 제 1 회수부(510)는 상기 에스테르화 반응부(200)로부터 물 등과 같은 반응 부산물을 회수한다. 상기 제 1 회수부(510)는 상기 에스테르화 반응부(200)에 진공 압력을 인가하거나, 환류를 진행하여, 상기 에스테르화 반응에서 발생되는 부산물을 회수할 수 있다.
상기 생분해성 폴리에스테르 수지의 제조방법은 상기 예비 중합체를 축중합 반응시키는 단계를 포함한다. 상기 축중합 반응은 다음과 같이 진행될 수 있다.
상기 예비 중합체는 상기 축중합 반응부(300)에 투입된다. 또한, 상기 보강재, 상기 열 안정제, 상기 색 보정제, 상기 무기 필러, 상기 금속염 또는 기타 첨가제 중에서 적어도 하나 이상이 상기 예비 중합체와 함께 상기 축중합 반응부(300)에 투입될 수 있다.
이후, 상기 축중합 반응은 약 180℃ 내지 약 280℃ 및 약 10 torr 이하에서 약 1시간 내지 약 5시간 동안 수행될 수 있다. 예를 들어, 상기 축중합 반응은 약 190℃ 내지 약 270℃, 약 210℃ 내지 약 260℃ 또는 약 230℃ 내지 약 255℃에서 수행될 수 있고, 약 0.9 torr 이하, 약 0.7 torr 이하, 약 0.2 torr 내지 약 10 torr, 약 0.2 torr 내지 약 0.9 torr 또는 약 0.2 torr 내지 약 0.6 torr에서 수행될 수 있으며, 약 1.5시간 내지 약 5시간, 약 2시간 내지 약 4.5시간 또는 약 2시간 내지 약 4시간 동안 수행될 수 있다.
또한, 상기 축중합 반응은 1차 축중합 및 2차 축중합을 포함할 수 있다.
예를 들어, 상기 1차 축중합은 약 260℃ 이하, 약 250℃ 이하, 약 215℃ 내지 약 250℃, 약 215℃ 내지 약 245℃ 또는 약 230℃ 내지 약 245℃에서 약 1 torr 내지 약 200 torr, 약 2 torr 내지 약 100 torr, 약 4 torr 내지 약 50 torr, 약 5 torr 내지 약 45 torr 또는 약 8 torr 내지 약 32 torr에서 약 0.5시간 내지 약 3.5시간, 약 0.5 시간 내지 약 3.0시간 또는 약 0.5시간 내지 약 2.8시간 동안 수행될 수 있다.
또한, 상기 2차 축중합은 약 220℃ 내지 약 265℃, 약 230℃ 내지 약 260℃ 또는 약 235℃ 내지 약 255℃에서, 약 1 torr 이하, 약 0.8 torr 이하, 약 0.6 torr 이하, 약 0.1 torr 내지 약 1 torr, 약 0.2 torr 내지 약 0.8 torr 또는 약 0.2 torr 내지 약 0.6 torr에서, 약 0.5 시간 내지 약 4 시간, 약 1시간 내지 약 3.5시간 또는 약 1.5 시간 내지 약 3.5 시간 동안 수행될 수 있다.
또한, 상기 축중합 반응 전에 상기 예비 중합체에 티타늄계 촉매 또는 게르마늄계 촉매가 더 첨가될 수 있다. 또한, 상기 축중합 반응 전에 상기 예비 중합체에 실리카, 칼륨 또는 마그네슘과 같은 첨가제; 트리메틸포스페이트, 트리페닐포스 페이트, 트리메틸포스핀, 인산, 아인산, 또는 테트라에틸렌펜타아민 등의 아민계 안정화제; 및 안티모니트리옥사이드, 삼산화안티몬 또는 테트라부틸티타네이트와 같은 중합 촉매로 이루어진 군으로부터 선택된 1종 이상을 추가로 투입할 수 있다.
상기 중합체의 수평균분자량은 약 30000g/mol 이상일 수 있다. 예를 들어, 상기 중합체의 수평균분자량은 약 33000g/mol 이상, 약 35000g/mol 이상 또는 약 40000g/mol 내지 약 90000g/mol일 수 있다. 상기 중합체의 수평균분자량이 상기 범위를 만족함으로써, 물성, 내충격성, 내구성 및 성형성을 더욱 향상시킬 수 있다.
또한, 상기 제 2 회수부(520)는 상기 축중합 반응부(300)로부터 물 등과 같은 반응 부산물을 회수한다. 상기 제 2 회수부(520)는 상기 축중합 반응부(300)에 진공 압력을 인가하고, 상기 축중합 반응에서 발생되는 부산물을 회수할 수 있다.
상기 제 2 회수부(520)는 상기 축중합 반응부(300)의 내부에 약 0.1 torr 내지 약 1 torr의 진공 압력을 인가할 수 있다. 상기 제 2 회수부(520)는 상기 축중합 반응부(300)의 내부에 약 0.1 torr 내지 약 0.9 torr의 진공 압력을 인가할 수 있다.
이후, 상기 중합체에 상기 내가수분해제 및/또는 상기 사슬 연장제가 투입된다. 이후, 상기 중합체, 상기 내가수분해제 및 상기 사슬 연장제는 균일하게 혼합되고, 약 200℃ 내지 약 260℃의 온도에서, 약 1분 내지 약 15분 동안 유지된다. 이에 따라서, 상기 중합체는 상기 내가수분해제 및/또는 상기 사슬 연장제와 반응하게 된다.
이와는 다르게, 상기 내가수분해제 및/또는 상기 사슬 연장제는 스태틱 믹서(static mixer)를 통하여, 상기 축중합 반응부(300)에 첨가되어, 상기 중합체에 반응될 수 있다. 상기 축중합 반응부(300) 내에서의 상기 내가수분해제 및/또는 상기 사슬 연장제 반응 온도는 약 200℃ 내지 약 260℃일 수 있다. 또한, 상기 축장합 반응부(300) 내에서의 상기 내가수분해제 및/또는 상기 사슬 연장제 반응 시간은 약 1분 내지 약 15분일 수 있다.
상기 사슬 연장제는 상기 설명한 바와 같은 특징을 가질 수 있다.
이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 적절한 가수분해도 및 높은 생분해도를 가질 수 있다.
이후, 상기 중합체로부터 펠릿(pellet)을 제조할 수 있다.
구체적으로, 상기 중합체를 약 15℃ 이하, 약 10℃ 이하 또는 약 6℃ 이하로 냉각한 후, 상기 냉각된 중합체를 커팅하여 펠릿을 제조할 수 있다. 이와는 다르게, 상기 중합체는 약 40℃ 내지 약 60℃의 온도에서 컷팅될 수 있다.
상기 커팅 단계는 당업계에서 사용되는 펠릿 커팅기라면 제한 없이 사용하여 수행될 수 있으며, 펠릿은 다양한 형태를 가질 수 있다. 상기 펠릿의 커팅 방법으로는 언더워터(underwater) 커팅법, 또는 스트랜드(strand) 커팅법을 포함할 수 있다.
상기 펠렛은 추가적인 후 처리 공정을 거칠 수 있다. 상기 펠렛은 상기 후 처리부(400)에 투입되고, 상기 후 처리 공정이 진행될 수 있다.
상기 후 처리 공정은 상기 후 처리부(400) 내에서 진행될 수 있다. 상기 후 처리부(400) 내에 상기 펠렛이 투입된다. 이후, 상기 후 처리부(400)는 상기 투입된 펠렛을 마찰열에 의해서 용융시키고, 재압출할 수 있다. 즉, 상기 후 처리부(400)는 이축 압출기 등과 같은 압출기를 포함할 수 있다.
상기 후 처리 공정의 온도는 약 230℃ 내지 약 270℃일 수 있다. 상기 후 처리 공정의 온도는 약 230℃ 내지 약 260℃일 수 있다. 상기 후 처리 공정의 온도는 약 240℃ 내지 약 265℃일 수 있다. 상기 후 처리 공정의 온도는 약 240℃ 내지 약 260℃일 수 있다.
상기 후 처리 공정 시간은 약 30초 내지 약 3분 일 수 있다. 상기 후 처리 공정 시간은 약 50초 내지 약 2분 일 수 있다. 상기 후 처리 공정 시간은 약 1분 내지 약 2분 일 수 있다.
이후, 상기 압출기에 의해서 압출된 수지는 냉각되고, 컷팅되어, 후처리된 펠렛으로 가공될 수 있다. 즉, 상기 압출기로부터 압출된 수지는 앞서 설명된 커팅 단계를 통하여, 펠렛으로 재 가공될 수 있다.
상기 펠렛의 결정화도가 상기 후 처리 공정에서 향상될 수 있다. 또한, 상기 펠렛에 포함된 잔유물의 함량이 상기 후 처리 공정에서 조절될 수 있다. 특히, 상기 펠렛에 포함된 올리고머의 함량이 상기 후 처리 공정에 의해서 조절될 수 있다. 상기 펠렛에 포함된 잔류 용매의 함량이 상기 후 처리 공정에 의해서 조절될 수 있다.
이에 따라서, 상기 후 처리 공정은 상기 생분해성 폴리에스테르 수지의 기계적 물성, 생분해도, 내 UV 특성, 광학적 특성 또는 내 가수분해성을 적절하게 조절할 수 있다.
상기 펠렛이 제조된 후, 상기 생분해성 폴리에스테르 수지는 상기 이종의 생분해성 수지와 컴파운딩될 수 있다. 또한, 상기 무기 필러, 상기 광 안정제, 상기 색 보정제 또는 상기 기타 첨가제 중 적어도 하나 이상이 상기 생분해성 폴리에스테르 수지 및 상기 이종의 생분해성 수지와 컴파운딩될 수 있다.
상기 컴파운딩 공정은 다음과 같을 수 있다.
상기 생분해성 폴리에스테르 수지 및 상기 이종의 생분해성 수지는 상기 무기 필러, 상기 열 안정제, 상기 색 보정제, 상기 금속염 또는 상기 기타 첨가제 중 적어도 하나 이상과 혼합되고, 압출기에 투입된다. 상기 혼합된 생분해성 폴리에스테르 수지 조성물은 상기 압출기 내에서 약 120℃ 내지 약 260℃의 온도로 용융되고, 서로 혼합된다. 이후, 상기 용융 혼합된 생분해성 폴리에스테르 수지 조성물은 압출되고, 냉각되고, 컷팅되어, 재 팰렛화된다. 이와 같은 과정에 의해서, 상기 이종의 생분해성 수지와 복합화되어, 실시예에 따른 생분해성 폴리에스테르 수지 조성물이 제조될 수 있다.
이와는 다르게, 상기 무기 필러, 상기 열 안정제, 상기 색 보정제, 상기 금속염 및 상기 기타 첨가제는 상기 생분해성 폴리에스테르 수지를 중합하는 공정 중간에 투입될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지에 의해서, 생분해성 폴리에스테르 필름이 제조될 수 있다.
상기 생분해성 폴리에스테르 필름의 두께는 약 5㎛ 내지 약 300㎛일 수 있다. 예를 들어, 상기 생분해성 폴리에스테르 필름의 두께는 약 5㎛ 내지 약 180㎛, 약 5㎛ 내지 약 160㎛, 약 10㎛ 내지 약 150㎛, 약 15㎛ 내지 약 130㎛, 약 20㎛ 내지 약 100㎛, 약 25㎛ 내지 약 80㎛ 또는 약 25㎛ 내지 약 60㎛일 수 있다.
실시예에 따른 생분해성 폴리에스테르 필름은 앞서 설명한 생분해성 폴리에스테르 수지 조성물과 실질적으로 동일한 가수분해도 및 생분해도를 가질 수 있다.
한편, 상기 생분해성 폴리에스테르 필름은 상기 생분해성 폴리에스테르 수지 또는 생분해성 폴리에스테르 수지 펠렛을 이용하여 제조할 수 있다.
구체적으로, 상기 생분해성 폴리에스테르 필름의 제조방법은 실시예에 따른 생분해성 수지 조성물을 제조하는 단계 및 상기 생분해성 수지 조성물을 건조 및 용융압출하는 단계를 포함할 수 있다.
상기 상기 생분해성 수지 조성물을 건조 및 용융압출하는 단계에서, 상기 건조는 약 60℃ 내지 약 100℃에서 약 2시간 내지 약 12시간 동안 수행될 수 있다. 구체적으로, 상기 건조는 약 65℃ 내지 약 95℃, 약 70℃ 내지 약 90℃ 또는 약 75℃ 내지 약 85℃에서 약 3시간 내지 약 12시간 또는 약 4시간 내지 약 10시간 동안 수행될 수 있다. 펠릿의 건조 공정 조건이 상기 범위를 만족함으로써, 제조되는 생분해성 폴리에스테르 필름, 또는 성형품의 품질을 더욱 향상시킬 수 있다.
상기 건조 및 용융 압출 단계에서, 상기 용융압출은 약 270℃ 이하의 온도에서 수행될 수 있다. 예를 들어, 상기 용융압출은 약 265℃ 이하, 약 260℃ 이하, 약 255℃ 이하, 약 150℃ 내지 약 270℃, 약 150℃ 내지 약 255℃ 또는 약 150℃ 내지 약 240℃의 온도에서 수행될 수 있다. 상기 용융압출은 블로운 필름(blown film) 공정으로 수행될 수 있다. 상기 용융 압출은 T-다이에서 진행될 수 있다.
또한, 상기 필름 제조 공정은 캘린더링 공정일 수 있다.
생분해성 폴리에스테르 성형품
상기 생분해성 폴리에스테르 수지를 이용하여 생분해성 폴리에스테르 성형품이 제조될 수 있다.
구체적으로, 상기 성형품은 상기 생분해성 폴리에스테르 수지 조성물이 압출, 사출 등 당업계에 공지된 방법으로 성형하여 제조될 수 있으며, 상기 성형품은 사출 성형품, 압출 성형품, 박막 성형품, 블로우 몰딩(blow molding) 또는 블로우 성형품, 3D 필라멘트, 건축용 내장재 등일 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 성형품은 농업용 멀칭(mulching) 필름, 일회용 장갑, 일회용 필름, 일회용 봉투, 식품 포장재, 쓰레기 종량제 봉투 등으로 이용될 수 있는 필름 또는 시트 형태일 수 있고, 직물, 편물, 부직포, 로프(rope) 등으로 이용될 수 있는 섬유 형태일 수 있다. 또한, 도 2에 도시된 바와 같이, 상기 성형품은 도시락 등과 같은 식품 포장용 용기로 이용될 수 있는 일회용 용기 형태일 수 있다. 또한, 상기 성형품은 일회용 빨대, 수저(숟가락), 식판, 포크 등의 다양한 형태의 성형품일 수도 있다.
특히, 상기 성형품은 충격흡수에너지 및 경도 등의 물성은 물론, 특히 내충격성 및 내구성을 향상시킬 수 있는 상기 생분해성 폴리에스테르 수지로부터 형성될 수 있으므로, 저온에서 보관 및 운송되는 제품의 포장재, 내구성을 요하는 자동차용 내장재, 쓰레기 봉투, 멀칭 필름 및 일회용 제품에 적용시 우수한 특성을 발휘할 수 있다.
상기 생분해성 필름 및 상기 생분해성 성형품의 물성은 실시예에 따른 생분해성 폴리에스테르 수지 조성물과 유사한 방식으로 측정될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 80% 이상의 분자량 감소율을 가질 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 85% 이상의 분자량 감소율을 가질 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 90% 이상의 분자량 감소율을 가질 수 있다. 상기 분자량 감소율이 측정되기 위해서, 생분해성 폴리에스테르 수지 조성물이 퇴비와 혼합되고, 온도 60℃, 습도 90%에서 생분해 가속화 테스트가 실시되었다. 겔 투과 크로마토그래피(GPC)가 사용되어, 실시예들 및 비교예들의 폴리에스테르 수지 조성물에서, 63일이 도과된 후 수평균 분자량이 측정되었다. 초기 수평균 분자량과 일정 기간 도과 후 수평균 분자량의 차이를 초기 수평균 분자량으로 나눈 값을 분자량 감소율로 도출하였다.
상기 분자량 감소율은 하기의 식 1로 도출될 수 있다.
[식 1]
여기서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 퇴비와 혼합되고, 온도 60℃, 습도 90%에서 약 63일 동안 생분해 가속화 테스트를 거친다. 생분해 가속화 테스트가 진행되기 전 생분해성 폴리에스테르 수지 조성물의 초기 수평균 분자량 및 63일 동안 생분해 가속화 테스트를 거친 생분해성 폴리에스테르 수지 조성물의 63일 후 수평균 분자량이 겔 투과 크로마토그래피(GPC)에 의해서 측정된다.
상기 분자량 감소율은 초기 수평균 분자량과 일정 기간, 예를 들어, 63일 도과 후 수평균 분자량의 차이를 초기 수평균 분자량으로 나눈 값을 분자량 감소율로 도출하였다.
또한, 상기 퇴비는 약 40wt%의 돈분, 약 15wt%의 계분, 약 37wt%의 톱밥, 약 5wt%의 제오라이트 및 약 3wt%의 미생물 제제를 포함할 수 있다.
또한, 상기 퇴비의 제조원은 태흥 F&G이고, 상기 퇴비의 제품명은 지생토(부산물비료 1등급 퇴비)일 수 있다.
또한, 상기 분자량 감소율이 측정될 때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 300㎛의 두께를 가지는 시트로 제조된다 이후, 상기 제조된 시트가 약 3㎝×3㎝의 크기로 절단되어, 플레이크가 제조된다. 상기 플레이크가 상기 퇴비와 혼합되어, 상기 생분해 가속화 테스트가 진행된다.
실시예에 따른 생분해성 폴리에스테르 필름은 상기와 같은 분자량 감소율을 가질 수 있다. 마찬가지로, 실시예에 따른 생분해성 폴리에스테르 필름은 약 3㎝×3㎝의 크기로 절단되어, 플레이크가 제조된다. 상기 플레이크가 상기 퇴비와 혼합되어, 상기 생분해 가속화 테스트가 진행될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 80% 이상의 생분해도를 가질 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 85% 이상의 생분해도를 가질 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 90% 이상의 생분해도를 가질 수 있다. 상기 생분해도는 하기의 식 2로 도출될 수 있다.
[식 2]
실시예에 따른 생분해성 폴리에스테르 수지 조성물의 생분해도는 KS M3100-1에 따라 이산화탄소의 발생량을 기준으로 측정될 수 있다. 구체적으로, 퇴비 공장에서 제조된 퇴비만 있는 접종원 용기가 준비되고, 상기 퇴비에 상기 퇴비의 건조 중량의 5 중량%의 상기 생분해성 폴리에스테르 수지 조성물의 플레이크가 투입된 시험용기가 준비된다. 이후, 상기 퇴비 및 상기 플레이크가 온도 58±2℃, 함수율 50% 및 산소 농도 6% 이상의 조건에서 180일 동안 배양되고, 각 용기에서 발생하는 이산화탄소가 포집되고, 페놀프탈레인 수용액 적정에 의해서 각 용기에서 발생하는 이산화탄소 발생량이 측정된다. 상기 식 2와 같이, 이론적인 이산화 탄소 발생량 대비, 생분해성 폴리에스테르 수지 조성물에서 발생된 이산화 탄소의 비율로 상기 생분해도가 도출되었다.
상기 생분해도가 측정될 때, 상기 생분해성 폴리에스테르 수지 조성물의 플레이크는 상기 분자량 감소율이 측정될 때, 플레이크와 실질적으로 동일하게 제조될 수 있다.
실시예에 따른 생분해성 폴리에스테르 필름은 상기와 같은 생분해도를 가질 수 있다. 마찬가지로, 실시예에 따른 생분해성 폴리에스테르 필름은 약 3㎝×3㎝의 크기로 절단되어, 플레이크가 제조된다. 상기 플레이크가 상기 퇴비와 혼합되어, 상기 생분해 테스트가 진행될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 하기와 같은 방법에 의해서 가수분해도가 측정될 수 있다.
상기 가수분해도가 측정되기 위해서, 상기 실시예에 따른 생분해성 수지 조성물은 80℃의 물(100% RH)에 침지된 후, 가수분해도 가속화 테스트가 실시된다. 일정 기간 도과 후, 겔 투과 크로마토그래피(GPC)가 사용되어, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 수평균 분자량이 측정되었다. 초기 수평균 분자량과 일정 기간 가수분해 후 수평균 분자량의 차이를 초기 수평균 분자량으로 나눈 값으로 상기 가수분해도가 도출되었다.
상기 가수분해도는 하기의 수식 3으로 표시될 수 있다.
[수식 3]
여기서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 80℃의 물에 침지된 후, 일정 기간 동안 가수분해 가속화 테스트를 거친다. 가수분해 가속화 테스트가 진행되기 전 생분해성 폴리에스테르 수지 조성물의 초기 수평균 분자량 및 일정 기간 가수분해 가속화 테스트를 거친 생분해성 폴리에스테르 수지 조성물의 가수분해 후 수평균 분자량이 겔 투과 크로마토그래피(GPC)에 의해서 측정된다.
상기 가수분해도는 초기 수평균 분자량과 일정 기간, 가수분해 후 수평균 분자량의 차이를 초기 수평균 분자량으로 나눈 값으로 도출되었다.
또한, 상기 가수분해도가 측정될 때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 약 300㎛의 두께를 가지는 시트로 제조된다 이후, 상기 제조된 시트가 약 3㎝×3㎝의 크기로 절단되어, 플레이크가 제조된다. 상기 플레이크가 상기 온수에 침지되어, 상기 가수분해 가속화 테스트가 진행될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 1주 후 가수분해도는 약 40% 내지 약 65%일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 상기 1주 후 가수분해도는 약 45% 내지 약 63%일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 2주 후 가수분해도는 약 80% 내지 약 93%일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 상기 2주 후 가수분해도는 약 85% 내지 약 92%일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 3주후 가수분해도는 약 90% 내지 약 97%일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 3주후 가수분해도는 약 91% 내지 약 96%일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 4주후 가수분해도는 약 92% 내지 약 99%일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 4주후 가수분해도는 약 93% 내지 약 97%일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 6주후 가수분해도는 약 94%이상일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 6주후 가수분해도는 약 95%이상이 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 9주후 가수분해도는 약 95%이상일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 9주후 가수분해도는 약 96%이상이 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 습윤 경도 저하율을 가질 수 있다. 상기 습윤 경도 저하율은 상기 생분해성 폴리에스테르 수지 조성물이 일정 온도의 물에 일정 정도의 시간 동안 침지된 후, 침지 전의 초기 경도와 침지 후의 습윤 경도의 차이를 상기 초기 경도로 나눈 값이다.
상기 습윤 경도 저하율은 하기의 수식 4로 도출될 수 있다.
[수식 4]
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 약 30℃의 온도에서 약 24시간 동안 침지 후 습윤 경도 저하율이 약 16% 이하일 수 있다. 상기 30℃의 온도에서 약 24시간 동안 침지 후 습윤 경도 저하율이 약 15% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 14% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 13% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 12% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 최소값은 약 1%, 약 3%, 약 5% 또는 약 6%일 수 있다.
상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율은 하기의 측정 방법에 의해서 측정될 수 있다. 먼저, 상기 생분해성 폴리에스테르 수지 조성물이 가공되어, 약 2.5㎜의 두께를 가지는 폴리에스테르 블록이 제조된다. 상기 폴리에스테르 블록의 초기 경도가 침지 전에 측정되고, 상기 폴리에스테르 블록은 약 30℃의 물에 약 24시간 동안 침지된 후, 바로 상기 폴리에스테르 블록의 습윤 경도가 측정된다. 이후, 상기 수식 4에 의해서 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 도출될 수 있다.
상기 생분해성 폴리에스테르 수지 조성물은 약 80℃의 온도에서 약 20분 동안 약 500ppm의 함수율로 건조되고, 스테인레스 틀 내에 배치되고, 약 210℃의 온도에서, 약 10 MPa의 압력으로, 약 5분 동안 압축되어, 약 2.5㎜의 두께를 가지는 폴리에스테르 블록이 제조될 수 있다.
상기 초기 경도는 쇼어 D 경도로 약 30 내지 약 45일 수 있다. 상기 초기 경도는 쇼어 D 경도로 약 33 내지 약 43일 수 있다. 상기 초기 경도는 쇼어 D 경도로 약 35 내지 약 41일 수 있다.
상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 28 내지 약 43일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 29 내지 약 41일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 30 내지 약 38일 수 있다.
30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율이 약 16% 이하일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율이 약 15% 이하일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율이 약 14% 이하일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율이 약 13% 이하일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율이 약 12% 이하일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율의 최소값은 약 1%, 약 3%, 약 5% 또는 약 6%일 수 있다.
상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 28 내지 약 43일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 29 내지 약 41일 수 있다. 상기 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 30 내지 약 39일 수 있다.
30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율의 편차는 약 10% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율의 편차는 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 및 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도의 차이의 절대값을 상기 초기 경도로 나눈 값이다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율의 편차는 약 7% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 0.5시간 동안 침지 후 습윤 경도 저하율의 편차는 약 5% 이하일 수 있다.
30℃의 온도에서 1시간 동안 침지 후 습윤 경도 저하율이 약 16% 이하일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도 저하율이 약 15% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 14% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 13% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 12% 이하일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도 저하율의 최소값은 약 1%, 약 3%, 약 5% 또는 약 6%일 수 있다.
상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 28 내지 약 43일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 29 내지 약 41일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 30 내지 약 39일 수 있다.
30℃의 온도에서 1시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 10% 이하일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 7% 이하일 수 있다. 상기 30℃의 온도에서 1시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 5% 이하일 수 있다.
30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율이 약 16% 이하일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율이 약 15% 이하일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율이 약 14% 이하일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율이 약 13% 이하일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율이 약 12% 이하일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율의 최소값은 약 1%, 약 3%, 약 5% 또는 약 6%일 수 있다.
상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 28 내지 약 43일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 29 내지 약 41일 수 있다. 상기 30℃의 온도에서 18시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 30 내지 약 39일 수 있다.
상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율의 편차는 약 10% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율의 편차는 약 7% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 30℃의 온도에서 18시간 동안 침지 후 습윤 경도 저하율의 편차는 약 5% 이하일 수 있다.
약 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 16% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 15% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 14% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 13% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 12% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 최소값은 약 1%, 약 3%, 약 5% 또는 약 6%일 수 있다.
상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 28 내지 약 43일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 29 내지 약 41일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 30 내지 약 39일 수 있다.
30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 10% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 7% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 5% 이하일 수 있다.
70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 16% 이하일 수 있다. 상기 70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 15% 일 수 있다. 상기 70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 14% 이하일 수 있다. 상기 70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 13% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율이 약 12% 이하일 수 있다. 상기 50℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 최소값은 약 1%, 약 3%, 약 5% 또는 약 6%일 수 있다.
상기 70℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 28 내지 약 43일 수 있다. 상기 70℃의 온도에서 24시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 29 내지 약 41일 수 있다. 상기 70℃의 온도에서 1시간 동안 침지 후 습윤 경도는 쇼어 D 경도로 약 30 내지 약 39일 수 있다.
30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 10% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 7% 이하일 수 있다. 상기 30℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율 및 70℃의 온도에서 24시간 동안 침지 후 습윤 경도 저하율의 편차는 약 5% 이하일 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 산가는 약 0.01 mg KOH/g 내지 약 3 mg KOH/g 일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 산가는 약 0.1 mg KOH/g 내지 약 2.8 mg KOH/g 일 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 산가는 약 0.1 mg KOH/g 내지 약 2.5 mg KOH/g 일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기의 범위와 같은 산가를 가지기 때문에, 상기와 같은 가수분해도 특성 및 생분해도 특성을 가질 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 실리콘 원소를 포함할 수 있다. 상기 실리콘 원소는 상기 내가수분해제 등에 의해서 유래될 수 있다. 상기 실리콘 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 0.1ppm 내지 약 1000ppm일 수 있다. 상기 실리콘 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 0.5ppm 내지 약 500ppm일 수 있다. 상기 실리콘 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 1ppm 내지 약 100ppm일 수 있다. 상기 실리콘 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 1ppm 내지 약 50ppm일 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 금속 원소를 포함할 수 있다. 상기 금속 원소는 상기 금속염으로부터 유래될 수 있다. 상기 금속 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 0.1ppm 내지 약 200ppm일 수 있다. 상기 금속 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 0.5ppm 내지 약 150ppm일 수 있다. 상기 금속 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 1ppm 내지 약 100ppm일 수 있다. 상기 금속 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 1ppm 내지 약 50ppm일 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 철 원소를 포함할 수 있다. 상기 철 원소는 상기 금속염으로부터 유래될 수 있다. 상기 철 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 0.1ppm 내지 약 200ppm일 수 있다. 상기 철 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 0.5ppm 내지 약 150ppm일 수 있다. 상기 철 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 1ppm 내지 약 100ppm일 수 있다. 상기 철 원소의 함량은 실시예에 따른 생분해성 폴리에스테르 수지 조성물 기준으로 약 1ppm 내지 약 50ppm일 수 있다.
또한, 상기 실리콘 원소의 함량 대비 상기 철 원소의 함량 비율(철 원소의 ppm 함량 / 실리콘 원소의 ppm 함량)은 약 0.1 내지 약 0.8일 수 있다. 상기 실리콘 원소의 함량 대비 상기 철 원소의 함량 비율(철 원소의 ppm 함량 / 실리콘 원소의 ppm 함량)은 약 0.1 내지 약 0.7일 수 있다. 상기 실리콘 원소의 함량 대비 상기 철 원소의 함량 비율(철 원소의 ppm 함량 / 실리콘 원소의 ppm 함량)은 약 0.3 내지 약 0.7일 수 있다. 상기 실리콘 원소의 함량 대비 상기 철 원소의 함량 비율(철 원소의 ppm 함량 / 실리콘 원소의 ppm 함량)은 약 0.35 내지 약 0.65일 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 상기와 같은 범위로 실리콘 원소 및 철 원소를 포함하기 때문에, 적절한 가수분해도 및 적절한 생분해도를 가질 수 있다. 특히, 상기 실리콘 원소의 함량에 따라서, 가수분해도가 적절히 조절되고, 상기 철 원소의 함량에 따라서, 상기 생분해도가 적절히 조절될 수 있다.
상기 실리콘 원소 및 상기 금속의 함량은 유도결합 플라즈마 발광 분석법(Inductively Coupled Plasma Optical Emission Spectroscopy)에 의해서 측정될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물에서, 습윤 경도 저하율이 15%이하이다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 높은 내습성을 가질 수 있다. 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 물에 노출되거나, 고습의 환경에서도 높은 기계적 특성을 유지할 수 있다.
이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 수분이 많은 식품 등의 포장용으로 사용될 때, 기계적 물성 편차를 최소화할 수 있다.
또한, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 소수성 특성을 가질 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 공기 중의 수분을 덜 흡수할 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 향상된 보관 안정성을 가질 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 실리콘계 내가수분해제를 포함할 수 있다. 이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 향상된 내가수분해성을 가질 수 있다. 또한, 상기 실리콘계 내가수분해제는 상기 축중합 조성물에 포함된 고분자 수지를 커플링시키는 커플링제 기능을 수행할 수 있다.
이에 따라서, 상기 실리콘계 내가수분해제는 실시예에 따른 생분해성 폴리에스테르 수지 조성물의 중합도를 향상시킬 수 있다.
이에 따라서, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 실사용 기간에 향상된 물성을 가지면서도, 사용 후, 용이하게 생분해될 수 있다.
실시예에 따른 생분해성 폴리에스테르 수지 조성물은 포장용 필름 등에 효율적으로 적용될 수 있다. 즉, 실시예에 따른 생분해성 폴리에스테르 수지 조성물로 제조된 필름은 포장용 등의 일반적인 용도로 사용될 수 있다. 이때, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 초기에 낮은 가수 분해도를 가질 수 있고, 사용자가 일반적인 사용 기간 내에는 상기 생분해성 폴리에스테르 필름은 일정 정도 이상의 기계적 및 화학적 물성을 유지할 수 있다.
이와 동시에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물은 높은 생분해도를 가지기 때문에, 실시예에 따른 생분해성 폴리에스테르 수지 조성물에 의해서 제조된 필름은 사용된 후, 폐기될 때, 용이하게 분해될 수 있다.
상기 내용을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 실시예의 범위가 이들만으로 한정되는 것은 아니다.
<제조예>
전처리된 셀룰로오스 나노크리스탈의 제조
약 1 ㎛ 내지 약 50 ㎛의 입자 크기를 갖는 건조 분말(dry powder) 형태의 셀룰로오스 나노크리스탈(NVC-100, 제조사: Celluforce)을 1 중량%로 물에 분산시킨 후, 팁(tip) 타입의 초음파 분산기를 이용하여 20000 J/s의 출력으로 1분 동안 초음파 처리하여 전처리된 나노 셀룰로오스를 제조하였다.
내가수분해제 : 3-글리시독시프로필 메틸디에톡시실란
금속염 : 질산 철
<실시예>
실시예 1
생분해성 폴리에스테르 수지의 제조
제 1 단계: 전처리하여 슬러리를 얻는 단계
표 1에 나타낸 바와 같이, 전처리된 나노 셀룰로오스, 질산철, 1,4-부탄디올(1,4-BDO) 및 테레프탈산(TPA)의 몰비(1,4-BDO:TPA) 1.4:1로 혼합하고 무촉매 상태에서 슬러리 탱크(슬러리 탱크의 최하부는 앵커(anchor) 타입, 교반기(agitator)까지의 높이 40mm, 3개의 회전 날개가 구비됨)에 투입하였다. 이때, 상기 테레프탈산(TPA)의 D50은 130㎛이었다.
그 다음, 상기 혼합물을 40℃에서 100rpm으로 1시간 동안 교반하여 전처리 하였고, 상분리 없이 슬러리를 얻었다.
제 2 단계: 예비 중합체를 얻는 단계
상기 제 1 단계에서 얻은 슬러리를 공급 라인을 통해 반응기에 투입하고, 여기에 티타늄계 촉매인 테트라부틸티타네이트(Dupont, Tyzor TnBT 제품) 250ppm을 투입한 후, 220℃ 및 상압에서 부산물인 물의 95% 배출될 때까지 약 1시간 30분 동안 1 차 에스테르화 반응을 진행하였다.
상기 반응 생성물에 디올 성분 총 몰수를 기준으로 1,4-부탄디올(1,4-BDO), 디카르복실산 성분 총 몰수를 기준으로 아디프산(AA), 및 티타늄계 촉매인 테트라부틸티타네이트(Dupont, Tyzor TnBT 제품)를, 디올, 방향족 디카르복실산 및 지방족 디카르복실산의 총 중량을 기준으로 200ppm 투입한 후, 210℃ 및 상압에서 부산물인 물의 95% 배출될 때까지 약 2시간 30분 동안 2차 에스테르화 반응을 진행하여 1500g/mol의 수평균 분자량을 갖는 예비 중합체를 제조하였다.
제 3 단계: 축중합 반응시키는 단계
상기 예비 중합체에 상기 예비 중합체 총 중량을 기준으로 5wt%의 상기 제조된 올리고머, 400ppm의 티타늄계 촉매인 테트라부틸티타네이트(Dupont, Tyzor TnBT 제품) 및 500ppm의 트리에틸렌포스페이트 안정제를 넣고 약 10분 동안 안정화시켰다. 이후, 상기 반응 혼합물을 250℃로 승온한 후, 0.5torr에서 4시간 동안 축중합 반응을 하여 55000g/mol의 수평균분자량을 갖는 중합체를 제조하였다.
이후, 상기 중합체를 기준으로 상기 중합체를 기준으로 약 600ppm의 에폭시 글리시딜 실란이 상기 중합체에 첨가되었다. 이후, 상기 중합체는 약 240℃의 온도에서, 약 10분 동안 말단기 연장 반응이 진행되었다. 이후, 이를 5℃로 냉각한 후, 펠릿 커팅기로 커팅하여 생분해성 폴리에스테르 수지 펠릿을 얻었다.
실시예 2 내지 5 및 비교예 1 및 2
하기의 표 1에 나타낸 바와 같이, 아디프산, 테레프탈산, 셀룰로오스 나노크리스탈 및 내가수분해제의 함량이 달라진다. 상기 함량 및 상기 공정을 제외하고, 나머지 공정은 실시예 1을 실질적으로 참조하여 진행되었다.
생분해성 폴리에스테르 시트의 제조
두 장의 테프론시트를 준비한 뒤, 한 장의 테프론시트위에 스테인리스강(SUS) 틀(면적 12cmX12cm)을 위치시키고, 상기 제조한 폴리에스테르 수지 펠렛 약 7g을 스테인리스강(SUS) 틀(면적 12cmX12cm)에 넣은 뒤 다른 한 장의 테프론시트로 덮고, 약 25cmX25cm의 면크기를 가지는 핫 프레스(Hot Press, 제조사: 위드랩, 모델명 : WL 1600SA)의 중앙에 위치시켰다. 이를, 약 210℃에서, 약 10Mpa의 압력 하에 약 3분간 유지한 후, 탈착하고, 이를 바로 약 20℃ 물에서 약 30초 동안 냉각한 후, 면적 약 10cmX10cm 및 두께 약 300㎛의 생분해성 폴리에스테르 시트를 제조하였다.
생분해성 폴리에스테르 필름의 제조
상기 생분해성 폴리에스테르 수지 펠릿을 80℃에 5시간 동안 건조한 후, 블로운 필름 압출기(Blown Film Extrusion Line, 제조사: 유진 엔지니어링)를 이용하여 160℃에서 용융압출하여 두께가 50㎛인 생분해성 폴리에스테르 필름을 제조하였다.
구분 | 1,4-BDO (mol%) |
TPA (mol%) |
AA (mol%) |
CNC (ppm) |
금속염 (ppm) |
내가수분해제 (ppm) |
실시예 1 | 140 | 53 | 47 | 700 | 70 | 600 |
실시예 2 | 140 | 50 | 50 | 50 | 400 | |
실시예 3 | 140 | 55 | 45 | 90 | 800 | |
실시예 4 | 140 | 55 | 45 | 700 | 70 | 400 |
실시예 5 | 140 | 49 | 51 | 700 | 40 | 200 |
비교예 1 | 140 | 60 | 40 | |||
비교예 2 | 140 | 40 | 60 |
평가예평가예 1: 평균 입경(D50) 및 표준편차
<방향족 디카르복실산의 평균 입경(D50) 및 표준편차>
입자 크기 분포(PSD)에서 입도분석기 Microtrac S3500(Microtrac Inc)를 이용하여 하기 조건으로 방향족 디카르복실산(TPA 또는 DMT)의 평균 입경(D50) 및 표준편차(SD, Standard Deviation)를 구하였다:
사용환경
- 온도: 10 내지 35℃, 습도: 90% RH, 비응축(non-condensing) maximum
- 구간별 평균입도 분포인 D50 및 SD를 측정하였다.
상기 표준편차는 분산의 제곱근을 의미하며, 소프트웨어를 이용하여 산출할수 있다.
<나노 셀룰로오스의 입경>
나노 셀룰로오스에 대하여, Zetasizer Nano ZS(제조사: Marven)를 이용하여 25℃의 온도 및 175°의 측정앵글각도에서 동적 광산란(DLS)의 원리를 통해 입도 및 입도 편차를 측정하였다. 이 때, 0.5의 신뢰구간에서의 다분산지수(PdI)를 통해 도출된 피크(peak)의 값을 입경으로 측정하였다.
평가예 2: 가수분해도
실시예 및 비교예에서 제조된 생분해성 폴리에스테르 수지를 80℃의 물(100% RH)에 침지한 후, 수분해도 가속화 테스트를 실시하였다.
구체적으로 탈이온수(DI Water) 500mL에 실시예 및 비교예의 폴레에스테르 수지를 5g을 넣은 후, 물이 증발하지 않도록 마개로 차단하고 컨벡션(열풍) 오븐 80℃에서 수분해 가속화 테스트를 실시하였다. 생분해성 폴리에스테르 시트의 습도 환경은 물에 침지하기 때문에 100% RH에서 진행하는 것과 동일하다.
겔 투과 크로마토그래피(GPC)가 사용되어, 실시예 및 비교예의 폴리에스테르 수지에서, 일정 기간이 도과된 후 수평균 분자량이 측정되었다. 초기 수평균 분자량과 일정 기간 도과 후 수평균 분자량의 차이를 초기 수평균 분자량으로 나눈 값을 가수분해도로 도출하였다.
샘플 전처리 : PBAT chip 0.035mg을 THF 1.5 ml에 용해
측정 장치: waters 社 e2695
주입 속도(Flow rate): 1ml/min in THF
주입량: 50 ㎕
컬럼 온도(Column Temp): 40℃
감지기(Detector): ELSD
컬럼(Column): Styragel Column HR 5E, HR4, HR2
평가예 3: 생분해도
실시예들 및 비교예들에서 제조된 생분해성 폴리에스테르 수지가 하기의 퇴비와 혼합되고, 온도 60℃, 습도 90%에서 생분해 가속화 테스트가 실시되었다.
상기 겔 투과 크로마토그래피(GPC)가 사용되어, 실시예 및 비교예의 폴리에스테르 수지에서, 일정 기간이 도과된 후 수평균 분자량이 측정되었다. 초기 수평균 분자량과 일정 기간 도과 후 수평균 분자량의 차이를 초기 수평균 분자량으로 나눈 값을 생분해도로 도출하였다.
퇴비
제조원 : 태흥 F&G
제품명 : 지생토 (부산물비료 1등급 퇴비)
퇴비구성성분 : 돈분 40wt%, 계분 15wt%, 톱밥37wt%, 제오라이트 5wt%, 미생물제제 3wt%
평가예 3 : 산가
KOH 및 에탄올이 혼합되어, 0.02N KOH 용액이 제조되었다. 이후, 실시예들 및 비교예들에 따른 생분해성 수지 조성물 약 1g이 클로로포름에 용해되었다. 이후, 페놀프탈레인 시약을 기준으로, 상기 KOH 용액에 의해서, 상기 생분해성 수지 조성물 용액이 적정되어, 산가가 측정되었다.
산가 측정 장비 : Mettler toledo Titrator Excellence T5
평가예 4 : 철 및 실리콘 함량
실시예들 및 비교예들에서 제조된 생분해성 폴리에스테르 펠렛은 65wt%의 질산에 용해되고, ICP OES에 의해서, 철 및 실리콘 함량이 측정되었다.
장치 : Agilent 社 5110 SVDV
측정조건
RF power :1.2 KW
Nebulizer flow : 0.7 L/min
Plasma flow : 12 L/min
Aux fllow :1 L/min
Read time : 5 s
하기의 표 3에 기재된 바와 같이, 생분해도가 측정되었다.
구분 | 7일 분자량 감소율(%) | 14일 분자량 감소율(%) | 21일 분자량 감소율(%) | 28일 분자량 감소율(%) | 42일 분자량 감소율(%) | 63일 분자량 감소율(%) |
실시예 1 | 52 | 61 | 70 | 78 | 87 | 90 |
실시예 2 | 55 | 65 | 72 | 78 | 89 | 91 |
실시예 3 | 52 | 60 | 70 | 78 | 87 | 90 |
실시예 4 | 55 | 62 | 71 | 79 | 86 | 90 |
실시예 5 | 55 | 63 | 72 | 79 | 87 | 92 |
비교예 1 | 46 | 52 | 65 | 74 | 82 | 85 |
비교예 2 | 62 | 71 | 79 | 84 | 89 | 92 |
하기의 표 4에 기재된 바와 같이, 가수분해도가 측정되었다.
구분 | 7일 분자량 감소율(%) | 14일 분자량 감소율(%) | 21일 분자량 감소율(%) | 28일 분자량 감소율(%) | 42일 분자량 감소율(%) | 63일 분자량 감소율(%) |
실시예 1 | 47 | 87 | 94 | 95 | 97 | 97 |
실시예 2 | 57 | 89 | 94 | 96 | 97 | 97 |
실시예 3 | 47 | 87 | 94 | 95 | 96 | 97 |
실시예 4 | 51 | 88 | 94 | 96 | 97 | 97 |
실시예 5 | 58 | 89 | 94 | 96 | 97 | 97 |
비교예 1 | 45 | 86 | 93 | 95 | 96 | 96 |
비교예 2 | 65 | 90 | 95 | 97 | 97 | 97 |
하기의 표 5에 기재된 바와 같이, 지방족 디카르복실산 당 생분해도가 도출되었다.
구분 | 산가(mg KOH/g) | 가수분해도 당 생분해도 |
실시예 1 | 1.05 | 1.91 |
실시예 2 | 2.15 | 1.80 |
실시예 3 | 1.33 | 2.00 |
실시예 4 | 2.06 | 2.00 |
실시예 5 | 1.95 | 1.80 |
비교예 1 | 2.6 | 1.89 |
비교예 2 | 3.9 | 1.42 |
하기의 표 6에서와 같이, 철 원소 및 실리콘 원소의 함량이 측정되었다.
구분 | 철 함량 (ppm) |
실리콘 함량 (ppm) |
실시예 1 | 15 | 35 |
실시예 2 | 8 | 36 |
실시예 3 | 16 | 61 |
실시예 4 | 8 | 23 |
실시예 5 | 6 | 22 |
비교예 1 | 미검출 | 미검출 |
비교예 2 | 미검출 | 미검출 |
상기 표 2 내지 표 6에 기재된 바와 같이, 실시예들에 따른 생분해성 수지 조성물은 적절한 가수분해도, 적절한 생분해도 및 적절한 가수분해도 당 생분해도를 가질 수 있다. 즉, 실시예들에 따른 생분해성 수지 조성물은 낮은 초기 가수분해도를 가지면서, 높은 최종 생분해도를 가질 수 있다.
실시예는 생분해성 수지 조성물, 필름 및 성형품에 이용될 수 있다.
Claims (20)
- 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 에스테르화 반응시키켜 예비 중합체를 형성하는 단계;상기 예비 중합체를 축중합하여 축중합 조성물을 형성하는 단계; 및상기 축중합 조성물 및 실리콘계 내가수분해제를 반응시키는 단계를 포함하는 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 1 항에 있어서, 금속염을 첨가하는 단계를 더 포함하는 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 2 항에 있어서, 상기 금속염은 철 원소를 포함하는 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 1 항에 있어서, 상기 내가수분해제는 2개 이상의 관능기를 포함하는 실란을 포함하는 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 4 항에 있어서, 상기 내가수분해제는 에폭시기 또는 알콕시기를 포함하는 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 1 항에 있어서,상기 축중합 조성물 및 상기 실리콘계 내가수분해제를 반응시키는 단계는상기 축중합 조성물 및 상기 실리콘계 내가수분해제를 약 180℃ 내지 약 260℃의 온도에서, 5분 내지 60분 동안 반응시키는 단계를 포함하는 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 1 항에 있어서, 산가가 약 2.0 mg KOH/g 이하인 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 제 1 항에 있어서, 1주 후 가수분해도가 약 35% 내지 약 60%이고,상기 1주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 필름이 약 1주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율인 생분해성 폴리에스테르 수지 조성물의 제조방법.
- 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 포함하는 폴리에스테르 수지;금속염; 및실리콘 원소를 포함하는 생분해성 폴리에스테르 수지 조성물.
- 제 9 항에 있어서, 상기 금속염은 철 원소를 포함하고,상기 실리콘 원소 대비 철 원소의 질량 비율은 약 0.1 내지 약 0.7인 생분해성 폴리에스테르 수지 조성물.
- 제 10 항에 있어서, 1주 후 가수분해도가 약 35% 내지 약 60%이고,약 3주 후 가수분해도가 약 85% 이상이고,상기 1주 후 가수 분해도 및 상기 3주 후 가수분해도는 하기의 측정 방법에 의해서 측정되는 생분해성 폴리에스테르 수지 조성물.[측정 방법]상기 1주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 1주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이고,상기 3주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 3주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이다.
- 제 10 항에 있어서, 상기 철 원소의 함량은 약 1ppm 내지 약 100ppm이고,상기 실리콘 원소의 함량은 약 1ppm 내지 약 150ppm인 생분해성 폴리에스테르 수지 조성물.
- 제 12 항에 있어서, 나노 셀룰로오스를 더 포함하고,상기 나노 셀룰로오스는 황을 포함하는 생분해성 폴리에스테르 수지 조성물.
- 제 12 항에 있어서,습윤 경도 저하율이 약 15% 이하이고,상기 습윤 경도 저하율은 하기의 측정 방법에 의해서 측정되는 생분해성 폴리에스테르 수지 조성물.[측정 방법]상기 생분해성 폴리에스테르 수지 조성물이 가공되어, 약 2.5㎜의 두께를 가지는 폴리에스테르 블럭이 제조되고, 상기 폴리에스테르 블럭의 초기 경도 및 상기 폴리에스테르 블럭이 약 24시간 동안 약 30℃의 물에 침지된 후의 습윤 경도가 측정되고, 상기 습윤 경도 저하율은 상기 초기 경도에서 상기 습윤 경도의 차이를 상기 초기 경도로 나눈 값이다.
- 디올, 방향족 디카르복실산 및 지방족 디카르복실산을 포함하는 폴리에스테르 수지;금속염; 및실리콘 원소를 포함하는 생분해성 폴리에스테르 성형품.
- 제 15 항에 있어서, 상기 금속염은 철 원소를 포함하고,상기 실리콘 원소 대비 철 원소의 질량 비율은 약 0.1 내지 약 0.7인 생분해성 폴리에스테르 성형품.
- 제 16 항에 있어서, 1주 후 가수분해도가 약 35% 내지 약 60%이고,약 3주 후 가수분해도가 약 85% 이상이고,상기 1주 후 가수 분해도 및 상기 3주 후 가수분해도는 하기의 측정 방법에 의해서 측정되는 생분해성 폴리에스테르 성형품.[측정 방법]상기 1주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 1주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이고,상기 3주 후 가수 분해도는 온도 약 80℃ 및 습도 약 100%의 고온 고습 조건에서 상기 생분해성 폴리에스테르 수지 조성물이 약 3주 동안 배치될 때, 상기 생분해성 폴리에스테르 수지 조성물의 초기 대비 수평균 분자량의 감소율이다.
- 제 16 항에 있어서, 상기 철 원소의 함량은 약 1ppm 내지 약 100ppm이고,상기 실리콘 원소의 함량은 약 1ppm 내지 약 150ppm인 생분해성 폴리에스테르 성형품.
- 제 18 항에 있어서, 나노 셀룰로오스를 더 포함하고,상기 나노 셀룰로오스는 황을 포함하는 생분해성 폴리에스테르 성형품.
- 제 15 항에 있어서,습윤 경도 저하율이 약 15% 이하이고,상기 습윤 경도 저하율은 하기의 측정 방법에 의해서 측정되는 생분해성 폴리에스테르 성형품.[측정 방법]상기 생분해성 폴리에스테르 성형품이 가공되어, 약 2.5㎜의 두께를 가지는 폴리에스테르 블럭이 제조되고, 상기 폴리에스테르 블럭의 초기 경도 및 상기 폴리에스테르 블럭이 약 24시간 동안 약 30℃의 물에 침지된 후의 습윤 경도가 측정되고, 상기 습윤 경도 저하율은 상기 초기 경도에서 상기 습윤 경도의 차이를 상기 초기 경도로 나눈 값이다.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220062445A KR20230162745A (ko) | 2022-05-21 | 2022-05-21 | 생분해성 폴리에스테르 수지 조성물 및 이의 제조방법 |
KR10-2022-0062445 | 2022-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023229235A1 true WO2023229235A1 (ko) | 2023-11-30 |
Family
ID=86469304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/005506 WO2023229235A1 (ko) | 2022-05-21 | 2023-04-21 | 생분해성 폴리에스테르 수지 조성물, 이의 제조방법 및 이를 포함하는 생분해성 성형품 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240002656A1 (ko) |
EP (1) | EP4279533A1 (ko) |
KR (1) | KR20230162745A (ko) |
CN (1) | CN117089174A (ko) |
WO (1) | WO2023229235A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002293901A (ja) * | 2001-03-30 | 2002-10-09 | Daicel Chem Ind Ltd | 生分解性脂肪族ポリエステル共重合体及びその製造方法 |
JP2002363291A (ja) * | 2001-06-12 | 2002-12-18 | Unitika Ltd | 生分解性ポリエステル樹脂微粒子および生分解性ポリエステル樹脂複合微粒子 |
JP2009030206A (ja) * | 2007-07-30 | 2009-02-12 | Toray Monofilament Co Ltd | ポリエステルモノフィラメントおよび織物 |
JP2019043991A (ja) * | 2017-08-30 | 2019-03-22 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物、成形品及び複合体 |
KR20190110192A (ko) * | 2018-03-20 | 2019-09-30 | (주) 티엘씨 코리아 | 지방족 디카르복실산 및 방향족 디카르복실산과 다이올의 에스테르화반응 및 축중합반응에 의한 생분해성 코폴리에스테르수지 및 그 제조방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4393156A (en) * | 1981-07-20 | 1983-07-12 | General Electric Company | Hydrolytically stable polyester-carbonate compositions |
KR20120103158A (ko) | 2011-03-10 | 2012-09-19 | (주)한국벤처그린산업 | 생분해성 플라스틱 조성물 및 이 조성물로 제조된 생분해성 플라스틱 제품 |
WO2013072310A1 (de) * | 2011-11-17 | 2013-05-23 | Basf Se | Additive zur hydrolysestabilisierung von polykondensaten |
WO2019189745A1 (ja) * | 2018-03-30 | 2019-10-03 | 三菱ケミカル株式会社 | 生分解性積層体 |
US11746174B2 (en) * | 2019-11-19 | 2023-09-05 | Industrial Technology Research Institute | Biodegradable polyester |
-
2022
- 2022-05-21 KR KR1020220062445A patent/KR20230162745A/ko not_active Application Discontinuation
-
2023
- 2023-04-21 WO PCT/KR2023/005506 patent/WO2023229235A1/ko unknown
- 2023-05-19 CN CN202310576824.2A patent/CN117089174A/zh active Pending
- 2023-05-19 EP EP23174264.4A patent/EP4279533A1/en active Pending
- 2023-05-19 US US18/320,217 patent/US20240002656A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002293901A (ja) * | 2001-03-30 | 2002-10-09 | Daicel Chem Ind Ltd | 生分解性脂肪族ポリエステル共重合体及びその製造方法 |
JP2002363291A (ja) * | 2001-06-12 | 2002-12-18 | Unitika Ltd | 生分解性ポリエステル樹脂微粒子および生分解性ポリエステル樹脂複合微粒子 |
JP2009030206A (ja) * | 2007-07-30 | 2009-02-12 | Toray Monofilament Co Ltd | ポリエステルモノフィラメントおよび織物 |
JP2019043991A (ja) * | 2017-08-30 | 2019-03-22 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物、成形品及び複合体 |
KR20190110192A (ko) * | 2018-03-20 | 2019-09-30 | (주) 티엘씨 코리아 | 지방족 디카르복실산 및 방향족 디카르복실산과 다이올의 에스테르화반응 및 축중합반응에 의한 생분해성 코폴리에스테르수지 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20230162745A (ko) | 2023-11-28 |
CN117089174A (zh) | 2023-11-21 |
US20240002656A1 (en) | 2024-01-04 |
EP4279533A1 (en) | 2023-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021241931A1 (ko) | 생분해성 폴리에스테르 수지 조성물, 부직포 및 필름, 및 이의 제조방법 | |
EP2976348A1 (en) | Method of preparing poly(alkylene carbonate) via copolymerization of carbon dioxide/epoxide in the presence of novel complex | |
WO2018236192A1 (ko) | 친환경 폴리우레탄 폼 형성용 조성물 및 폴리우레탄 폼의 제조 방법 | |
WO2023229235A1 (ko) | 생분해성 폴리에스테르 수지 조성물, 이의 제조방법 및 이를 포함하는 생분해성 성형품 | |
WO2023229214A1 (ko) | 생분해성 폴리에스테르 수지 조성물 및 이를 포함하는 생분해성 성형품 | |
WO2023229216A1 (ko) | 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물 | |
WO2014092276A1 (ko) | 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법 | |
WO2018124585A1 (ko) | 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법 | |
WO2023229215A1 (ko) | 생분해성 폴리에스테르 수지 조성물, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 성형품 | |
WO2024162813A1 (ko) | 생분해성 폴리에스테르 수지 조성물, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 폴리에스테르 성형품 | |
WO2023229212A1 (ko) | 생분해성 폴리에스테르 수지 조성물 및 이를 포함하는 생분해성 폴리에스테르 성형품 | |
WO2023239039A1 (ko) | 생분해성 폴리에스테르 수지 조성물, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 성형품 | |
WO2022010252A1 (ko) | 알킬렌 옥사이드 부가된 폴리올 조성물, 이를 이용한 폴리우레탄 및 이를 포함하는 핫멜트 접착제 | |
WO2013048156A2 (ko) | 수분산 조성물 및 이를 이용한 광학필름 | |
WO2023229213A1 (ko) | 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물 및 생분해성 폴리에스테르 필름 | |
WO2024155082A1 (ko) | 생분해성 폴리에스테르 수지 조성물, 이의 제조방법, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 폴리에스테르 성형품 | |
WO2023229209A1 (ko) | 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물 | |
WO2014092277A1 (ko) | 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법 | |
WO2021141236A1 (ko) | 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물 및 그 제조방법 | |
WO2014142590A1 (ko) | 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체 | |
WO2024112154A1 (ko) | 생분해성 폴리에스테르 수지 조성물의 제조방법, 및 이를 이용한 생분해성 폴리에스테르 필름의 제조방법 | |
WO2024029818A1 (ko) | 생분해성 수지 조성물 및 이를 포함하는 생분해성 성형품 | |
WO2021137632A1 (ko) | 이중금속시안염 촉매, 이의 제조방법 및 폴리올 제조 방법 | |
WO2020242224A1 (ko) | 언하이드로헥시톨의 에테르 디올 유래 폴리카보네이트 디올 및 그 제조방법, 및 그로부터 제조된 폴리우레탄 및 이를 포함하는 접착제 | |
WO2023075301A1 (ko) | 생분해성 폴리에스테르 수지, 이의 제조 방법, 및 이를 포함하는 생분해성 폴리에스테르 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23812011 Country of ref document: EP Kind code of ref document: A1 |