WO2018122989A1 - シアンフリー置換金めっき液組成物 - Google Patents

シアンフリー置換金めっき液組成物 Download PDF

Info

Publication number
WO2018122989A1
WO2018122989A1 PCT/JP2016/089007 JP2016089007W WO2018122989A1 WO 2018122989 A1 WO2018122989 A1 WO 2018122989A1 JP 2016089007 W JP2016089007 W JP 2016089007W WO 2018122989 A1 WO2018122989 A1 WO 2018122989A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
alkali metal
compound
plating solution
gold plating
Prior art date
Application number
PCT/JP2016/089007
Other languages
English (en)
French (fr)
Inventor
貴大 津田
智明 徳久
拓央 大和田
一敬 千田
Original Assignee
関東化學株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東化學株式会社 filed Critical 関東化學株式会社
Priority to JP2018558587A priority Critical patent/JP6842475B2/ja
Priority to CN201680091924.4A priority patent/CN110114507A/zh
Priority to US16/473,764 priority patent/US20210095378A1/en
Priority to EP16925513.0A priority patent/EP3564407A4/en
Priority to KR1020197021607A priority patent/KR20190096420A/ko
Priority to PCT/JP2016/089007 priority patent/WO2018122989A1/ja
Publication of WO2018122989A1 publication Critical patent/WO2018122989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Definitions

  • the present invention relates to a gold deposition accelerator used for forming a gold plating film on an electronic industrial component such as a printed wiring board, an electroless gold plating solution containing the gold deposition accelerator, and the electroless gold plating solution.
  • the present invention relates to the plating method used and the gold deposition promoting method.
  • the printed circuit board has a metal circuit pattern on the substrate and / or inside the substrate.
  • the circuit uses a metal having a low electrical resistance such as copper, and is further provided with a barrier metal layer for preventing oxidation of the circuit, corrosion and / or migration with gold.
  • the metal used as the barrier metal layer palladium, platinum, silver, cobalt, and alloys thereof can be used in addition to nickel and nickel alloys.
  • the gold film is generally used for preventing corrosion of the circuit and / or as a contact, a highly porous film is used. It is not preferable and a surface with few gaps is required.
  • Known gold plating methods include electrolytic gold plating, autocatalytic electroless gold plating, base catalyst (surface catalyst) gold plating, displacement gold plating, and the like.
  • Autocatalytic electrolytic gold plating performs gold deposition with a reducing agent using gold as a catalyst.
  • gold is deposited by a reducing agent using the base metal as a catalyst.
  • gold is deposited by an electrical substitution reaction between the base metal on the surface to be plated and gold ions and / or gold ion complexes.
  • Patent Document 1 describes an electroless plating solution containing two reducing agents using a water-soluble gold salt such as sodium gold sulfite in place of a cyanide, and is generally used as a complexing agent, ethylenediaminetetraacetic acid (EDTA). ) And oxocarboxylic acids such as tartaric acid are being investigated as reaction accelerators.
  • a water-soluble gold salt such as sodium gold sulfite in place of a cyanide
  • EDTA ethylenediaminetetraacetic acid
  • oxocarboxylic acids such as tartaric acid are being investigated as reaction accelerators.
  • Patent Document 2 describes an electroless plating solution that also uses sodium gold sulfite as a gold source, and is considering using potassium sulfite to improve the gold deposition rate.
  • concentration of potassium sulfite is too high. It is described that the concentration of potassium sulfite is limited to 500 mg / L or less because the plating solution becomes unstable and causes autolysis.
  • Patent Document 3 a compound that releases a halogen ion having a strong action of accelerating the anode reaction is studied as a gold deposition accelerator for an electroless gold plating solution.
  • Patent Document 4 a heavy metal such as thallium salt is used as a gold deposition accelerator.
  • JP 2003-221474 A Japanese Patent No. 4758470 JP 2010-209415 A JP 2007-308796 A
  • the conventional method using a complexing agent such as oxocarboxylic acids or potassium sulfite as a reaction accelerator is expected to promote the precipitation of gold by interfacial complex formation in which complex ions coordinate to metal ions.
  • a complexing agent such as oxocarboxylic acids or potassium sulfite
  • control of the amount added is necessary because erosion of the substrate becomes a problem, or the plating solution becomes unstable due to decomposition of the complexing agent itself and induces self-decomposition of the plating solution.
  • a reducing agent and a stabilizer it is necessary to consider the interaction with these components, and it is difficult to obtain a desired gold deposition rate only with the complexing agent.
  • alkali metal ions have an effect on the rate of gold deposition while investigating a method for promoting gold deposition without depending on a complexing agent. It came to complete.
  • a gold deposition accelerator for electroless gold plating comprising one or more alkali metal compounds, wherein the alkali metal compound is not a compound containing only sodium as an alkali metal, and The gold deposition accelerator, wherein the alkali metal compound is not only alkali metal halide, potassium sulfite alone, or potassium sodium tartrate.
  • An electroless gold plating solution comprising the gold precipitation accelerator according to [1], a water-soluble gold source, and a complexing agent.
  • the electroless gold plating solution according to [2] wherein the concentration of the alkali metal compound is 0.001 to 5 M in terms of alkali metal ions other than sodium.
  • An electroless gold plating solution comprising the gold precipitation accelerator according to [4], a water-soluble gold source, and a complexing agent.
  • a method of forming a gold plating film wherein the electroless gold plating solution according to [2], [3], [5], [6], [7] or [8] Said method comprising applying to a surface.
  • a method for promoting gold deposition in electroless gold plating comprising adding one or more alkali metal compounds to an electroless gold plating solution, wherein the alkali metal compound is used as an alkali metal. The method, wherein the compound is not a compound containing only sodium, and the alkali metal compound is not only an alkali metal halide, only potassium sulfite, or potassium sodium tartrate.
  • the gold deposition rate of the electroless gold plating solution can be easily improved, a sufficient gold deposition rate is achieved even in an electroless gold plating solution with a slow deposition rate that does not use a cyanide as a gold source. can do.
  • the gold deposition rate can be adjusted only by adjusting the concentration of alkali metal ions other than sodium, adjustment with multiple components is possible compared to the case where gold precipitation is promoted depending only on the complexing agent. Therefore, a more stable electroless gold plating solution can be provided.
  • the deposition rate can be improved without increasing the gold concentration, an inexpensive plating solution can be provided.
  • FIG. 1 is a diagram comparing gold deposition rates when alkali metal ions are changed.
  • the gold deposition accelerator of the present invention contains an alkali metal compound.
  • the gold deposition promoting action of the gold deposition accelerator of the present invention is due to alkali metal ions, and the alkali metal compound contained in the gold deposition accelerator of the present invention is capable of dissociating and generating alkali metal ions. Good.
  • sodium ions do not promote the gold precipitation reaction even with the same alkali metal ions. Therefore, the alkali metal compound contained in the gold deposition accelerator of the present invention is not a compound containing only sodium as an alkali metal, but may contain sodium as long as an alkali metal other than sodium is present. An example of such a compound is potassium sodium tartrate.
  • the alkali metal compound contained in the gold precipitation accelerator of the present invention is preferably one or more selected from the group consisting of a potassium compound, a rubidium compound and a cesium compound, and more preferably from the viewpoint of precipitation promotion. Is a rubidium compound and / or a cesium compound. A potassium compound is also preferable from the viewpoint of cost.
  • the alkali metal compound contained in the gold deposition accelerator of the present invention is not limited to this, but includes the following compounds.
  • the counter ion for the alkali metal ion in the compound is not particularly limited.
  • the counter ion include carbonate ion, nitrate ion, sulfate ion, sulfite ion, phosphate ion, borate ion, halide ion, formate ion, acetate ion, propionate ion, butanoate ion, pentanoate ion, Carboxylic acid ions such as hexanoic acid ion, heptanoic acid ion, octanoic acid ion, glycolic acid ion, lactate ion, malic acid ion, citrate ion, tartaric acid ion, isocitrate ion, hydroxy acid ion such as salicylate ion, benzoic acid ion And aromatic carboxylate ions such as phthalate ions, oxalate ions, malonate
  • alkali metal compound other than the compound having a counter ion examples include, but are not limited to, compounds described below.
  • the gold deposition accelerator of the present invention may be an alkali metal compound itself or a composition containing the compound.
  • the composition can be a mixture of two or more alkali metal compounds.
  • the composition may contain a solvent such as water or an organic solvent in addition to one or more alkali metals.
  • the alkali metal compound contained in the gold deposition accelerator is not only an alkali metal halide, potassium sulfite alone, or potassium sodium tartrate. In one embodiment of the gold deposition accelerator of the present invention, the alkali metal compound contained in the gold deposition accelerator is not limited to sulfite. In one embodiment of the gold deposition accelerator of the present invention, the alkali metal compound contained in the gold deposition accelerator is not only tartrate. In one aspect of the gold precipitation accelerator of the present invention, when the gold precipitation accelerator contains only a potassium compound as an alkali metal compound, a potassium compound other than a potassium compound selected from potassium halide, potassium sulfite, and potassium sodium tartrate including.
  • the gold deposition accelerator of the present invention is a plating solution containing the gold deposition accelerator, and the alkali metal compound containing an alkali metal other than sodium has a concentration in terms of alkali metal ions other than sodium of 0.001 M or more, preferably 0. 0.01 M or more, more preferably 0.02 M or more. From the viewpoint of promoting precipitation, the concentration can be adjusted to 0.001M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.02M to 0.5M. Since the concentration dependence of the gold deposition rate is also recognized, the desired gold deposition rate can be adjusted by adjusting the concentration.
  • the gold deposition accelerator of the present invention does not contain potassium sodium tartrate.
  • the concentration of potassium sodium tartrate in the plating solution is 0.11M or more, preferably greater than 0.11M, It is preferable to use it after adjusting so that it may become 0.2M or more. From the viewpoint of promoting precipitation, the concentration is preferably 0.11 M to 5 M, more preferably 0.11 M to 2 M, and particularly preferably 0.11 M to 0.5 M.
  • the gold deposition accelerator of the present invention does not contain potassium sulfite.
  • the gold deposition accelerator of the present invention when it contains potassium sulfite or sulfite, it is preferably used by adjusting the concentration of potassium sulfite in the plating solution to 0.004M or more. . From the viewpoint of promoting precipitation, the concentration is preferably 0.004M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.02M to 0.5M.
  • the present invention also relates to an electroless gold plating solution containing the above-described gold deposition accelerator of the present invention, a water-soluble gold source and a complexing agent.
  • the concentration of the alkali metal compound is preferably 0.001 M or more, more preferably 0.01 M or more, particularly preferably 0 in terms of alkali metal ions other than sodium. 0.02M or more. From the viewpoint of promoting precipitation, the concentration is preferably 0.001M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.02M to 0.5M. Since a certain degree of concentration dependency is recognized in the gold deposition rate, a desired gold deposition rate can be adjusted by adjusting the concentration.
  • the gold source used in the present invention specifically, a water-soluble gold salt such as gold sulfite or chloroaurate can be used. From the viewpoint of safety and waste liquid treatment, it is preferable to use a gold source that does not contain cyan.
  • the concentration of the gold source is preferably from 0.1 to 10 g / L, more preferably from 0.5 to 5 g / L.
  • the concentration range is preferably 0.1 to 10 g / L, more preferably 0.5 to 5 g / L in terms of gold concentration, considering the physical properties of the deposited film. It is.
  • the gold source does not contain an alkali metal other than sodium.
  • the gold deposition accelerator of the present invention contains an alkali metal compound that does not contain gold.
  • the electroless gold plating solution of the present invention when the gold source contains an alkali metal other than sodium, the electroless gold plating solution of the present invention further contains an alkali metal compound not containing gold.
  • the concentration of alkali metal ions other than sodium is preferably 0.001M or more, more preferably 0.01M or more, and particularly preferably 0.02M or more. From the viewpoint of promoting precipitation, the concentration is preferably 0.001M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.02M to 0.5M.
  • concentration of the said alkali metal ion is a density
  • the complexing agent used in the present invention is not particularly limited, and specific examples thereof include compounds capable of forming a complex with monovalent or trivalent gold ions such as sulfites and thiosulfates. It is done.
  • the concentration of the complexing agent is preferably 0.001M to 5M, more preferably 0.01M to 0.5M. When sodium sulfite is used as the complexing agent, for example, the concentration range is 0.001 to 5M is preferable, and 0.01 to 0.5M is more preferable.
  • pH adjuster examples include various acids such as sulfuric acid, hydrochloric acid and phosphoric acid, hydroxide salts such as sodium hydroxide and potassium hydroxide, and limited amines such as NR 4 OH (R: hydrogen or alkyl). Etc. can be used.
  • a phosphate buffer as a pH adjuster, it is preferable to use phosphoric acid and sodium hydroxide or potassium hydroxide.
  • the pH is preferably in the range of 5 to 11 according to the composition, more preferably 6 to 10.
  • the gold deposition accelerator of the present invention can be added to a plating solution for electroless gold plating.
  • the plating solution can be used for self-catalyzed electroless gold plating, base catalyst (surface catalyst) gold plating, displacement gold plating and It can be used for any method of plating in which these are combined. In particular, it is preferably used for displacement gold plating from the viewpoint of deposition acceleration.
  • the plating solution of the present invention may or may not contain a reducing agent.
  • a reducing agent ascorbate such as sodium ascorbate, hydroxylamine or hydroxylamine hydrochloride, hydroxylamine salts such as hydroxylamine sulfate, hydroxylamine derivatives such as hydroxylamine-O-sulfonic acid, hydrazine, dimethylamine
  • examples thereof include amine borane compounds such as borane, borohydride compounds such as sodium borohydride, saccharides such as glucose, hypophosphites and the like.
  • These reducing agents may be used alone or in combination of two or more.
  • any compound can be used as long as it is judged that gold can be reduced and precipitated from gold ions or a gold complex according to the Nernst equation. However, reactivity to other bath components, stability of bath Use in consideration of the above.
  • additives such as a crystal grain shape modifier and a brightener can be used in an appropriate concentration range.
  • Other additives are not particularly limited, and for example, conventionally used additives can be used.
  • crystal grain shape modifiers such as polyethylene glycol, and brighteners such as thallium, copper, antimony, lead and the like.
  • any additive that satisfies the above conditions can be used.
  • the electroless gold plating solution of the present invention does not contain potassium sodium tartrate.
  • the concentration of potassium sodium tartrate or tartrate in the plating solution is 0. 0 in terms of alkali metal ions other than sodium. It is preferable to adjust the concentration to 11M or higher, preferably higher than 0.11M, more preferably 0.2M or higher. From the viewpoint of promoting precipitation, the concentration is preferably 0.01M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.01M to 0.5M.
  • the electroless gold plating solution of the present invention does not contain potassium sulfite.
  • the electroless gold plating solution of the present invention when it contains potassium sulfite, it is preferably used by adjusting the concentration of potassium sulfite in the plating solution to be 0.004M or more. From the viewpoint of promoting precipitation, the concentration is 0.004M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.02M to 0.5M.
  • the electroless gold plating solution of the present invention when the electroless gold plating solution contains only a potassium compound as an alkali metal compound, other than a potassium compound selected from potassium halide, potassium sulfite, and potassium sodium tartrate Contains potassium compounds.
  • the present invention also relates to a gold deposition accelerator containing a rubidium compound and / or a cesium compound. Precipitation of gold is promoted to rubidium ions and cesium ions.
  • the concentration of rubidium ions is preferably 0.001 to 5M, more preferably 0.01 to 2M, and particularly preferably 0.02 to 0.5M.
  • the concentration of cesium ions is preferably 0.001 to 5M, more preferably 0.01 to 2M, and particularly preferably 0.02 to 0.5M.
  • Examples of the rubidium compound and / or cesium compound include the same compounds as those described above as examples of the alkali metal compound.
  • the gold deposition rate of the electroless gold plating solution containing the gold deposition accelerator of the present invention is 0.003 ⁇ m / min or more, preferably 0.004 ⁇ m / min or more on a Ni substrate having a pH of 7, a bath temperature of 80 ° C. and 4 cm 2. More preferably, it may be 0.005 ⁇ m / min or more.
  • the present invention also relates to a method of forming a gold plating film, which includes a step of applying the electroless gold plating solution of the present invention to the surface of an electronic industrial component.
  • the use temperature of the electroless gold plating solution in the above step is preferably 20 to 90 ° C., more preferably 40 to 70 ° C. from the viewpoint of the deposition rate.
  • the pH is preferably 5 to 11 and more preferably 6 to 10 from the viewpoint of the stability of the liquid and the deposition rate.
  • the electronic industrial parts are not particularly limited, but typically include electrodes, wirings and the like.
  • the present invention is also a method for promoting gold deposition in electroless gold plating, comprising adding one or more alkali metal compounds to an electroless gold plating solution, wherein the alkali metal compound is an alkali.
  • the method is not a compound containing only sodium as a metal and the alkali metal compound is not only an alkali metal halide, only potassium sulfite, or potassium sodium tartrate.
  • the concentration of the alkali metal compound is 0.001 to 5 M, preferably 0.01 to 2 M, more preferably 0.02 to 0 in terms of alkali metal ions other than sodium. .5M.
  • the method for promoting gold precipitation of the present invention does not include adding potassium sodium tartrate.
  • the concentration of potassium sodium tartrate in the plating solution is preferably 0.11 M or more in terms of potassium ion, preferably Is preferably adjusted to be larger than 0.11M, more preferably 0.2M or more. From the viewpoint of promoting precipitation, the concentration is preferably 0.11 M to 5 M, more preferably 0.11 M to 2 M, and particularly preferably 0.11 M to 0.5 M.
  • the method for promoting gold deposition of the present invention does not include adding potassium sulfite.
  • the concentration of potassium sulfite in the plating solution is adjusted to 0.004M or more. It is preferable to do. From the viewpoint of promoting precipitation, the concentration is preferably 0.004M to 5M, more preferably 0.01M to 2M, and particularly preferably 0.02M to 0.5M.
  • the present invention also relates to a method of promoting gold deposition in electroless gold plating by adding a rubidium compound and / or a cesium compound.
  • the total concentration of the rubidium compound and / or cesium compound is preferably 0.001M to 5M, more preferably 0.01M to 1M in terms of rubidium ions and / or cesium ions.
  • the preferred concentration is 0.001M to 5M, more preferably 0.01M to 1M in terms of rubidium ions.
  • the cesium compound the preferred concentration is 0.001M to 5M, more preferably 0.001M to 1M in terms of cesium ions.
  • Another aspect of the present invention is a method for promoting gold deposition in electroless gold plating, wherein the concentration of alkali metal ions in the electroless gold plating solution is adjusted to adjust the gold deposition rate.
  • the method The total alkali metal ion concentration in the electroless gold plating solution is adjusted to 0.001M to 5M, preferably 0.01M to 2M, more preferably 0.02M to 0.5M.
  • a gold plating solution is prepared by mixing the gold source, complexing agent and precipitation accelerator shown in Table 1 at the concentrations shown in Table 1, and the pH of the gold plating solution is adjusted to pH 7. using phosphoric acid as a pH adjuster. Adjusted to zero. Using a 4 cm 2 Ni rolled sheet, plating was performed at 80 ° C. for 10 minutes, the film thickness was measured, and the deposition rate was calculated. For the thickness of the gold plating, a fluorescent X-ray film thickness meter “FT-9500X” manufactured by Hitachi was used.
  • FIG. 1 is a comparison of precipitation rates when alkali metal ions are changed based on the results of Comparative Example 1 and Examples 1 to 3 in Table 1. It was found that the gold deposition rate was improved by adding alkali metal ions. Moreover, although Example 1, Example 2, and Example 3 all contained the carbonate ion of the same density
  • An electroless gold plating solution containing a gold deposition accelerator containing at least one alkali metal ion other than sodium ions can be used even if the type of cesium salt, gold source and complexing agent is changed. It was confirmed that the gold deposition rate was higher than that of the electroless gold plating solution not containing.
  • a sufficient gold deposition rate can be realized even in electroless plating using an electroless gold plating solution with a slow deposition rate that does not use a cyanide as a gold source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

無電解金めっきのための金析出促進剤であって、1種または2種以上のアルカリ金属化合物を含み、前記アルカリ金属化合物はアルカリ金属としてナトリウムのみを含む化合物ではなく、かつ、前記アルカリ金属化合物は、アルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない、前記金析出促進剤、当該金析出促進剤を含む無電解金めっき液、それを用いた金めっき方法および金の析出促進方法等を提供する。

Description

シアンフリー置換金めっき液組成物
 本発明は、プリント配線基板等の電子工業部品に金めっき皮膜を形成する場合に使用される金析出促進剤、当該金析出促進剤を含む無電解金めっき液、および当該無電解金めっき液を用いためっき方法および金析出促進方法等に関する。
 プリント基板は、基板上および/または基板内部に金属回路パターンを有する。その回路には銅等の電気的な抵抗の低い金属が用いられ、さらに回路の酸化、腐食防止用および/または金とのマイグレーション防止用のバリアメタル層が設けられる。バリアメタル層として使用される金属としてはニッケルやニッケル合金のほかに、パラジウム、白金、銀、コバルトおよびこれらの合金を使用することができる。また、熱処理によるニッケルの拡散を防ぐ目的でニッケル層の上にパラジウム層を形成する技術もある。これらの下地金属層の形成後、さらに金皮膜で覆い、完成された回路になるが、一般に金皮膜は回路の腐食防止および/または接点として利用するものであるから、有孔度の高い皮膜は好ましくなく、隙間の少ない表面が要求される。
 金めっき方法としては、電解金めっき、自己触媒型無電解金めっき、下地触媒(表面触媒)金めっき、および置換金めっきなどが知られている。自己触媒型電解金めっきは金を触媒とする還元剤により金析出を行う。下地触媒(表面触媒)金めっきは下地金属を触媒として還元剤により金析出を行う。置換金めっきは、被めっき面の下地金属と金イオンおよび/または金イオン錯体との電気的な置換反応により金析出を行う。これらのめっき方法は二種以上を組み合わせて用いられることもある。
 無電解金めっき液としては、金源としてシアン化合物を含むめっき液が多く報告されているが、保管および管理の問題や各種処理時の安全性の問題に加え、廃液処理費用がかさむという問題もある。このため、シアン化合物を含有しない無電解金めっき液の開発が望まれてきた。特許文献1には、シアン化合物に代えて亜硫酸金ナトリウム等の水溶性金塩を使用した二種の還元剤を含む無電解めっき液が記載され、一般に錯化剤として用いられるエチレンジアミン四酢酸(EDTA)や酒石酸等のオキソカルボン酸類を反応促進剤として用いることを検討している。特許文献2には、同じく金源として亜硫酸金ナトリウムを用いる無電解めっき液が記載され、金析出速度を向上させるために亜硫酸カリウムを用いることを検討しているが、亜硫酸カリウムの濃度が大きすぎるとめっき液が不安定になり自己分解を起こすため、亜硫酸カリウムの濃度は500mg/L以下に制限されることが記載されている。特許文献3では、無電解金めっき液の金析出促進剤として、アノード反応を促進する作用の強いハロゲンイオンを放出する化合物が検討されている。特許文献4では、タリウム塩などの重金属を金析出促進剤として用いている。
特開2003-221674号公報 特許第4758470号公報 特開2010-209415号公報 特開2007-308796号公報
 従来のオキソカルボン酸類や亜硫酸カリウムなどの錯化剤を反応促進剤として用いる方法は、錯イオンが金属イオンに配位する界面錯形成により金の析出を促進する作用に期待したものであるが、錯化剤はその添加量によって、下地への侵食が問題となったり、錯化剤自体の分解によりめっき液を不安定にし、めっき液の自己分解を誘起したりするため添加量の制御が必要であり、また還元剤や安定剤を含む場合には、それらの成分との相互作用を考慮しなければならず、錯化剤のみによって所望の金析出速度を得るのは困難であった。一方、タリウムなどの重金属を用いる金析出促進剤は環境への影響が問題となる。
 したがって、本発明は、無電解金めっき液の金析出速度を容易に向上させ、均一な金皮膜を形成することを可能にする金析出促進剤、当該金析出促進剤を含む無電解金めっき液、それを用いた金めっき方法および金の析出促進方法等を提供することにある。
 本発明者らは、錯化剤に依存せずに金の析出を促進する方法を検討する中で、アルカリ金属イオンが金析出速度に影響を与えることを見出し、さらに研究を進めた結果本発明を完成するに至った。
 すなわち、本発明は下記に掲げるものに関する:
[1]無電解金めっきのための金析出促進剤であって、1種または2種以上のアルカリ金属化合物を含み、前記アルカリ金属化合物はアルカリ金属としてナトリウムのみを含む化合物ではなく、かつ、前記アルカリ金属化合物は、アルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない、前記金析出促進剤。
[2]前記[1]に記載の金析出促進剤、水溶性金源および錯化剤を含む、無電解金めっき液。
[3]アルカリ金属化合物の濃度がナトリウム以外のアルカリ金属イオン換算で0.001~5Mである、前記[2]に記載の無電解金めっき液。
[4]ルビジウム化合物および/またはセシウム化合物を含む、金析出促進剤。
[5]前記[4]に記載の金析出促進剤、水溶性金源および錯化剤を含む、無電解金めっき液。
[6]さらにナトリウム化合物を含む、[2]、[3]または[5]に記載の無電解金めっき液。
[7]シアン化合物を含まない、[2]、[3]、[5]または[6]に記載の無電解金めっき液。
[8]pH調整剤として、酸または塩基を含む、[2]、[3]、[5]、[6]または[7]に記載の無電解金めっき液。
[9]金めっき皮膜を形成する方法であって、[2]、[3]、[5]、[6]、[7]または[8]に記載の無電解金めっき液を電子工業部品の表面に適用する工程を含む、前記方法。
[10] 無電解金めっきにおける金の析出を促進する方法であって、1種または2種以上のアルカリ金属化合物を無電解金めっき液に添加することを含み、前記アルカリ金属化合物はアルカリ金属としてナトリウムのみを含む化合物ではなく、かつ、前記アルカリ金属化合物は、アルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない、前記方法。
[11]アルカリ金属化合物の濃度がナトリウム以外のアルカリ金属イオン換算で0.001~5Mである、[10]に記載の方法。
[12]ルビジウム化合物および/またはセシウム化合物を添加することによって無電解金めっきにおける金の析出を促進する方法。
[13]ルビジウム化合物および/またはセシウム化合物の濃度がルビジウムイオンおよび/またはセシウムイオン換算で0.001M~5Mである、[12]に記載の方法。
 本発明によれば、無電解金めっき液の金析出速度を容易に向上させることができるため、シアン化合物を金源としない析出速度が遅い無電解金めっき液においても十分な金析出速度を実現することができる。また、ナトリウム以外のアルカリ金属イオンの濃度を調整することのみによって、金析出速度を調整することができるため、錯化剤のみに依存して金の析出を促進する場合に比べ、多成分による調整が可能であり、より安定な無電解金めっき液を提供することができる。さらに、金濃度を増量させることなく、析出速度を向上させることができるため、安価なめっき液を提供することができる。
図1はアルカリ金属イオンを変更した場合の金析出速度を比較した図である。
 本発明の金析出促進剤は、アルカリ金属化合物を含む。
 本発明の金析出促進剤の金析出促進作用は、アルカリ金属イオンによるものであり、本発明の金析出促進剤に含まれるアルカリ金属化合物は、解離してアルカリ金属イオンを生成するものであればよい。驚くべきことに、同じアルカリ金属イオンでもナトリウムイオンは金析出反応を促進しない。したがって、本発明の金析出促進剤に含まれるアルカリ金属化合物は、アルカリ金属としてナトリウムのみを含む化合物ではないが、ナトリウム以外のアルカリ金属が存在していれば、ナトリウムが含まれていてもよい。このような化合物として、例えば酒石酸カリウムナトリウムが挙げられる。
 本発明の金析出促進剤に含まれるアルカリ金属化合物は、好ましくはカリウム化合物、ルビジウム化合物およびセシウム化合物からなる群から選択される1種または2種以上であり、析出促進性の観点から、より好ましくはルビジウム化合物および/またはセシウム化合物である。コストの観点からはカリウム化合物も好ましい。
 本発明の金析出促進剤に含まれるアルカリ金属化合物は、これに限定するものではないが、以下に記載の化合物が挙げられる。例えば炭酸カリウム、炭酸ルビジウム、炭酸セシウムなどの炭酸塩、硝酸セシウム、硝酸ルビジウム、硝酸セシウムなどの硝酸塩、硫酸カリウム、硫酸ルビジウム、硫酸セシウムなどの硫酸塩、ハロゲン化物が挙げられ、ハロゲン化物としては、フッ化カリウム、フッ化ルビジウム、フッ化セシウムなどのフッ化物、塩化カリウム、塩化ルビジウム、塩化セシウムなどの塩化物、臭化カリウム、臭化ルビジウム、臭化セシウムなどの臭化物、ヨウ化カリウム、ヨウ化ルビジウム、ヨウ化セシウムなどのヨウ化物などが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。
 当該化合物におけるアルカリ金属イオンに対する対イオンは特に制限されない。当該対イオンとしては、例えば、炭酸イオン、硝酸イオン、硫酸イオン、亜硫酸イオン、りん酸イオン、ホウ酸イオン、ハロゲン化物イオン、ギ酸イオン、酢酸イオン、プロピオン酸イオン、ブタン酸イオン、ペンタン酸イオン、ヘキサン酸イオン、ヘプタン酸イオン、オクタン酸イオン等のカルボン酸イオン、グリコール酸イオン、乳酸イオン、リンゴ酸イオン、クエン酸イオン、酒石酸イオン、イソクエン酸イオン、サリチル酸イオン等のヒドロキシ酸イオン、安息香酸イオン、フタル酸イオン等の芳香族カルボン酸イオン、シュウ酸イオン、マロン酸イオン、コハク酸イオン、グルタル酸イオン、アジピン酸イオン、フマル酸イオン、マレイン酸イオン等のジカルボン酸イオンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。
 上記対イオンを有する化合物以外のアルカリ金属化合物としては、これに限定するものではないが、以下に記載の化合物が挙げられる。例えば、アルカリ金属の酸化物、過酸化物、水酸化物、クロム酸化合物、タングステン酸化合物、セレン酸化合物、モリブデン酸化合物、オルトモリブデン酸化合物、ニオブ酸化合物、過マンガン酸化合物、アジド化合物、アミド化合物、トルエンスルホン酸化合物、水素化物、ピクリン酸化合物、テトロヒドロホウ酸化合物、ヘキサフルオロけい酸化合物、過レニウム酸化合物、過よう素酸化合物、よう素酸化合物、亜硝酸化合物、ホスフィン酸化合物、ニトロベンゼンスルホン酸化合物、ベンゼンスルホン酸化合物、アルコキシド化合物、炭酸水素化合物、メタクリル酸化合物などが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。
 このように、本願発明の金析出促進剤は、アルカリ金属化合物自体であってもよく、または当該化合物を含む組成物であってもよい。組成物は2種以上のアルカリ金属化合物からなる混合物であり得る。また、組成物は1種または2種以上のアルカリ金属に加え、水、有機溶媒などの溶媒を含んでいてもよい。
 本発明の金析出促進剤において、金析出促進剤に含まれるアルカリ金属化合物はアルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない。
 本発明の金析出促進剤の一態様において、金析出促進剤に含まれるアルカリ金属化合物は亜硫酸塩のみではない。
 本発明の金析出促進剤の一態様において、金析出促進剤に含まれるアルカリ金属化合物は酒石酸塩のみではない。
 本発明の金析出促進剤の一態様において、金析出促進剤がアルカリ金属化合物としてカリウム化合物のみを含む場合には、ハロゲン化カリウム、亜硫酸カリウムおよび酒石酸カリウムナトリウムから選択されるカリウム化合物以外のカリウム化合物を含む。
 本発明の金析出促進剤は、当該金析出促進剤を含むめっき液において、ナトリウム以外のアルカリ金属を含むアルカリ金属化合物は、ナトリウム以外のアルカリ金属イオン換算の濃度が0.001M以上、好ましくは0.01M以上、より好ましくは0.02M以上となるように調整されて使用することができる。析出促進性の観点から、当該濃度は0.001M~5M、より好ましくは0.01M~2M、特に好ましくは0.02M~0.5Mとなるように調整され得る。金析出速度には濃度依存性も認められるため、濃度を調整することにより、所望の金析出速度を調整することもできる。
 本発明の一態様において、本発明の金析出促進剤は酒石酸カリウムナトリウムを含まない。
 本発明の一態様において、本発明の金析出促進剤が酒石酸カリウムナトリウムまたは酒石酸塩を含む場合は、めっき液中における酒石酸カリウムナトリウムの濃度を0.11M以上、好ましくは0.11Mより大きく、より好ましくは0.2M以上となるように調整して使用することが好ましい。析出促進性の観点から、当該濃度は好ましくは0.11M~5M、より好ましくは0.11M~2M、特に好ましくは0.11M~0.5Mである。
 本発明の一態様において、本発明の金析出促進剤は亜硫酸カリウムを含まない。
 本発明の一態様において、本発明の金析出促進剤は亜硫酸カリウムまたは亜硫酸塩を含む場合は、めっき液中における亜硫酸カリウムの濃度を0.004M以上となるように調整して使用することが好ましい。析出促進性の観点から、当該濃度は好ましくは0.004M~5M、より好ましくは0.01M~2M、特に好ましくは0.02M~0.5Mである。
 本発明はまた、上述した本発明の金析出促進剤、水溶性金源および錯化剤を含む無電解金めっき液に関する。
 本発明の金析出促進剤を含む無電解金めっき液において、アルカリ金属化合物の濃度は、好ましくはナトリウム以外のアルカリ金属イオン換算で0.001M以上、より好ましくは0.01M以上、特に好ましくは0.02M以上である。析出促進性の観点から、当該濃度は好ましくは0.001M~5M、より好ましくは0.01M~2M、特に好ましくは0.02M~0.5Mである。金析出速度には一定程度の濃度依存性も認められるため、濃度を調整することにより、所望の金析出速度を調整することができる。
 本発明に用いられる金源としては、具体的には、亜硫酸金塩や塩化金酸塩等の水溶性金塩を用いることができる。安全性および廃液処理の問題の観点からシアンを含まない金源を用いることが好ましい。金源の濃度は0.1~10g/Lが好ましく、さらに好ましくは0.5~5g/Lである。例えば亜硫酸金ナトリウムを用いる場合には、その濃度範囲は、析出皮膜の物性を考慮すると、金濃度で換算して、0.1~10g/Lが好ましく、さらに好ましくは0.5~5g/Lである。本発明の一態様において、金源はナトリウム以外のアルカリ金属を含まない。また、本発明の一態様において、本発明の金析出促進剤は金を含まないアルカリ金属化合物を含む。
 本発明の一態様において、金源がナトリウム以外のアルカリ金属を含む場合は、本発明の無電解金めっき液は、さらに金を含まないアルカリ金属化合物を含み、この場合、無電解金めっき液におけるナトリウム以外のアルカリ金属イオンの濃度は、好ましくは0.001M以上、より好ましくは0.01M以上、特に好ましくは0.02M以上である。析出促進性の観点から、当該濃度は好ましくは0.001M~5M、より好ましくは0.01M~2M、特に好ましくは0.02M~0.5Mである。当該アルカリ金属イオンの濃度は、金源由来のアルカリ金属イオンおよび前記金を含まないアルカリ金属化合物由来のアルカリ金属イオンを合算した濃度(ナトリウムイオンは含まない)である。
 本発明に用いられる錯化剤としては、特に限定するものではないが、例えば具体的には、亜硫酸塩、チオ硫酸塩等の一価あるいは三価の金イオンと錯体形成可能な化合物等が挙げられる。錯化剤の濃度は0.001M~5Mが好ましく、さらに好ましくは0.01M~0.5Mであり、錯化剤として、例えば亜硫酸ナトリウムを用いる場合には、その濃度範囲は、0.001~5Mが好ましく、さらに好ましくは0.01~0.5Mである。
 pH調整剤としては、例えば、硫酸、塩酸、リン酸等の各種酸、水酸化ナトリウム、水酸化カリウム等の水酸化物塩および制限付きでNROH(R:水素またはアルキル)等のアミン類等を使用することができる。pH調整剤として、例えばリン酸緩衝液を用いる場合は、リン酸と水酸化ナトリウムあるいは水酸化カリウムにより行うのが好ましい。
 pHは、組成に合わせて5~11の範囲が好ましく、さらに好ましくは、6~10である。
 本発明の金析出促進剤は無電解金めっきのためのめっき液に添加することができるが、当該めっき液は自己触媒型無電解金めっき、下地触媒(表面触媒)金めっき、置換金めっきおよびこれらを組み合わせためっきのいずれの方法にも使用することができる。特に、析出促進性の観点から、置換金めっきに使用されることが好ましい。
 本発明のめっき液は還元剤を含んでいても、含んでいなくてもよい。還元剤としては、アスコルビン酸ナトリウム等のアスコルビン酸塩、ヒドロキシルアミンまたはヒドロキシルアミン塩酸塩、ヒドロキシルアミン硫酸塩等のヒドロキシルアミンの塩類、ヒドロキシルアミン-O-スルホン酸等のヒドロキシルアミン誘導体、ヒドラジン、ジメチルアミンボラン等のアミンボラン化合物、水素化ホウ素ナトリウム等の水素化ホウ素化合物、ブドウ糖等の糖類、次亜リン酸塩類等が挙げられる。これらの還元剤は単独で用いても2種以上を併用してもよい。その他、ネルンストの式により、金イオンまたは金錯体より金を還元析出させることが可能と判断される化合物であればいずれを用いてもよいが、他の浴構成成分に対する反応性、浴の安定性等を考慮して使用する。
 本発明のめっき液は、結晶粒形調整剤、光沢剤等のその他の添加剤を適切な濃度範囲で使用することができる。その他の添加剤は特に制限されず、例えば従来から使用されている添加剤を使用することができる。具体的には、ポリエチレングリコール等の結晶粒形調整剤、タリウム、銅、アンチモン、鉛等の光沢剤が挙げられる。これらの添加剤以外でも上記の条件を満たす添加剤であれば使用可能である。
 本発明の一態様において、本発明の無電解金めっき液は酒石酸カリウムナトリウムを含まない。
 本発明の一態様において、本発明の無電解金めっき液は酒石酸カリウムナトリウムまたは酒石酸塩を含む場合は、めっき液中における酒石酸カリウムナトリウムまたは酒石酸塩の濃度がナトリウム以外のアルカリ金属イオン換算で0.11M以上、好ましくは0.11Mより大きく、より好ましくは0.2M以上の濃度となるように調整して使用することが好ましい。析出促進性の観点から、当該濃度は好ましくは0.01M~5M、より好ましくは0.01M~2M、特に好ましくは0.01M~0.5Mである。
 本発明の一態様において、本発明の無電解金めっき液は亜硫酸カリウムを含まない。
 本発明の一態様において、本発明の無電解金めっき液は亜硫酸カリウムを含む場合は、めっき液中における亜硫酸カリウムの濃度を0.004M以上となるように調整して使用することが好ましい。析出促進性の観点から、当該濃度は0.004M~5M、より好ましくは0.01M~2M、特に好ましくは0.02M~0.5Mである。
 本発明の無電解金めっき液の一態様において、無電解金めっき液がアルカリ金属化合物としてカリウム化合物のみを含む場合には、ハロゲン化カリウム、亜硫酸カリウムおよび酒石酸カリウムナトリウムから選択されるカリウム化合物以外のカリウム化合物を含む。
 本発明はまたルビジウム化合物および/またはセシウム化合物を含む、金析出促進剤に関する。ルビジウムイオンおよびセシウムイオンに金の析出が促進される。ルビジウムイオンの濃度は好ましくは0.001~5M、より好ましくは0.01~2M、特に好ましくは0.02~0.5Mである。セシウムイオンの濃度は好ましくは0.001~5M、より好ましくは0.01~2M、特に好ましくは0.02~0.5Mである。ルビジウム化合物および/またはセシウム化合物の例としては上述のアルカリ金属化合物の例として挙げた化合物と同様のものが挙げられる。
 本発明の金析出促進剤を含む無電解金めっき液の金析出速度は、pH7、浴温80℃、4cmのNi基板上において、0.003μm/分以上、好ましくは0.004μm/分以上、より好ましくは0.005μm/分以上であり得る。
 本発明はまた、金めっき皮膜を形成する方法であって、本発明の無電解金めっき液を電子工業部品の表面に適用する工程を含む、前記方法に関する。前記工程における無電解金めっき液の使用温度は、析出速度の観点から、20~90℃が好ましく、より好ましくは40~70℃である。pHは、液の安定性と析出速度の観点から5~11が好ましく、より好ましくは6~10である。電子工業部品は特に限定されないが、典型的には、電極、配線等が挙げられる。
 本発明はまた、無電解金めっきにおける金の析出を促進する方法であって、1種または2種以上のアルカリ金属化合物を無電解金めっき液に添加することを含み、前記アルカリ金属化合物はアルカリ金属としてナトリウムのみを含む化合物ではなく、かつ、前記アルカリ金属化合物は、アルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない、前記方法に関する。
 本発明の金の析出を促進する方法における、前記アルカリ金属化合物の濃度は、ナトリウム以外のアルカリ金属イオン換算で0.001~5M、好ましくは0.01~2M、より好ましくは0.02~0.5Mであり得る。
 本発明の一態様において、本発明の金の析出を促進する方法は酒石酸カリウムナトリウムを添加することを含まない。
 本発明の一態様において、本発明の金の析出を促進する方法が酒石酸カリウムナトリウムを添加することを含む場合は、めっき液中における酒石酸カリウムナトリウムの濃度をカリウムイオン換算で0.11M以上、好ましくは0.11Mより大きく、より好ましくは0.2M以上となるように調整して添加することが好ましい。析出促進性の観点から、当該濃度は好ましくは0.11M~5M、より好ましくは0.11M~2M、特に好ましくは0.11M~0.5Mである。
 本発明の一態様において、本発明の金の析出を促進する方法は亜硫酸カリウムを添加することを含まない。
 本発明の一態様において、本発明の金の析出を促進する方法が亜硫酸カリウムを添加することを含む場合は、めっき液中における亜硫酸カリウムの濃度を0.004M以上となるように調整して添加することが好ましい。析出促進性の観点から、当該濃度は好ましくは0.004M~5M、より好ましくは0.01M~2M、特に好ましくは0.02M~0.5Mである。
 本発明はまた、ルビジウム化合物および/またはセシウム化合物を添加することによって無電解金めっきにおける金の析出を促進する方法に関する。好ましくは、ルビジウム化合物および/またはセシウム化合物の濃度の合計は、ルビジウムイオンおよび/またはセシウムイオン換算で好ましくは0.001M~5Mであり、より好ましくは0.01M~1Mである。ルビジウム化合物のみを添加する場合、その好ましい濃度はルビジウムイオン換算で0.001M~5Mあり、より好ましくは0.01M~1Mある。セシウム化合物のみを添加する場合、好ましい濃度はセシウムイオン換算で0.001M~5Mあり、より好ましくは0.001M~1Mある。
 本発明はまた、別の一態様において、無電解金めっきにおける金の析出を促進する方法であって、無電解金めっき液中のアルカリ金属イオンの濃度を調整して、金析出速度を調整する、前記方法に関する。
 無電解金めっき液中の全アルカリ金属イオンの濃度が0.001M~5M、好ましくは0.01M~2M、より好ましくは0.02M~0.5Mとなるように調整する。
 以下、本発明の無電解金めっき液について、実施例および比較例によって更に詳しく説明するが、これらは本発明を何ら限定するものでない。めっき試片には銅板を用い、これに以下の手順でNi合金めっきを行い試験に用いた。
[比較例1~3]
 表1に記載の金源、錯化剤を表1に記載の濃度で混合して金めっき液を調製し、pH調整剤としてりん酸を用いて金めっき液のpHをpH7.0に調整した。4cmのNi圧延板を用い、80℃で10分間めっきを行い、膜厚を測定し、析出速度を算出した。
[実施例1~6]
 表1に記載の金源、錯化剤、析出促進剤を表1に記載の濃度で混合して金めっき液を調製し、pH調整剤としてりん酸を用いて金めっき液のpHをpH7.0に調整した。4cmのNi圧延板を用い、80℃で10分間めっきを行い、膜厚を測定し、析出速度を算出した。金めっき膜厚は、日立製蛍光X線膜厚計「FT-9500X」を使用した。
Figure JPOXMLDOC01-appb-T000001
 図1は表1の比較例1、実施例1~3の結果を基にアルカリ金属イオンを変更した場合の析出速度を比較したものである。アルカリ金属イオンを添加することによって、金析出速度が向上することが認められた。また、実施例1、実施例2および実施例3は全て同濃度の炭酸イオンを含むにもかかわらず、金析出速度が異なることから、金析出速度がアルカリ金属イオンに依存することが認められた。
 ナトリウムイオン以外の少なくとも1種以上のアルカリ金属イオンを含む金析出促進剤を含有する無電解金めっき液は、セシウム塩、金源および錯化剤の種類を変更しても、金析出促進剤を含まない無電解金めっき液に比べ、金析出速度が大きいことが認められた。
 本発明により、シアン化合物を金源としない析出速度が遅い無電解金めっき液を用いた無電解めっきにおいても十分な金析出速度を実現することができる。

Claims (13)

  1.  無電解金めっきのための金析出促進剤であって、1種または2種以上のアルカリ金属化合物を含み、前記アルカリ金属化合物はアルカリ金属としてナトリウムのみを含む化合物ではなく、かつ、前記アルカリ金属化合物は、アルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない、前記金析出促進剤。
  2.  請求項1に記載の金析出促進剤、水溶性金源および錯化剤を含む、無電解金めっき液。
  3.  アルカリ金属化合物の濃度がナトリウム以外のアルカリ金属イオン換算で0.001~5Mである、請求項2に記載の無電解金めっき液。
  4.  ルビジウム化合物および/またはセシウム化合物を含む、金析出促進剤。
  5.  請求項4に記載の金析出促進剤、水溶性金源および錯化剤を含む、無電解金めっき液。
  6.  さらにナトリウム化合物を含む、請求項2、3または5に記載の無電解金めっき液。
  7.  シアン化合物を含まない、請求項2、3、5または6に記載の無電解金めっき液。
  8.  pH調整剤として、酸または塩基を含む、請求項2、3、5、6または7に記載の無電解金めっき液。
  9.  金めっき皮膜を形成する方法であって、請求項2、3、5、6、7または8に記載の無電解金めっき液を電子工業部品の表面に適用する工程を含む、前記方法。
  10.  無電解金めっきにおける金の析出を促進する方法であって、1種または2種以上のアルカリ金属化合物を無電解金めっき液に添加することを含み、前記アルカリ金属化合物はアルカリ金属としてナトリウムのみを含む化合物ではなく、かつ、前記アルカリ金属化合物は、アルカリ金属のハロゲン化物のみ、亜硫酸カリウムのみ、または酒石酸カリウムナトリウムのみではない、前記方法。
  11.  アルカリ金属化合物の濃度がナトリウム以外のアルカリ金属イオン換算で0.001M~5Mである、請求項10に記載の方法。
  12.  ルビジウム化合物および/またはセシウム化合物を添加することによって無電解金めっきにおける金の析出を促進する方法。
  13.  ルビジウム化合物および/またはセシウム化合物の濃度がルビジウムイオンおよび/またはセシウムイオン換算で0.001M~5Mである、請求項12に記載の方法。
PCT/JP2016/089007 2016-12-27 2016-12-27 シアンフリー置換金めっき液組成物 WO2018122989A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018558587A JP6842475B2 (ja) 2016-12-27 2016-12-27 シアンフリー置換金めっき液組成物
CN201680091924.4A CN110114507A (zh) 2016-12-27 2016-12-27 无氰置换镀金液组合物
US16/473,764 US20210095378A1 (en) 2016-12-27 2016-12-27 Cyanide-free liquid composition for immersion gold plating
EP16925513.0A EP3564407A4 (en) 2016-12-27 2016-12-27 CYANIDE-FREE SUBSTITUTION GOLD PLATING SOLUTION TYPE COMPOSITION
KR1020197021607A KR20190096420A (ko) 2016-12-27 2016-12-27 무시안화물 치환 금 도금액 조성물
PCT/JP2016/089007 WO2018122989A1 (ja) 2016-12-27 2016-12-27 シアンフリー置換金めっき液組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/089007 WO2018122989A1 (ja) 2016-12-27 2016-12-27 シアンフリー置換金めっき液組成物

Publications (1)

Publication Number Publication Date
WO2018122989A1 true WO2018122989A1 (ja) 2018-07-05

Family

ID=62708094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089007 WO2018122989A1 (ja) 2016-12-27 2016-12-27 シアンフリー置換金めっき液組成物

Country Status (6)

Country Link
US (1) US20210095378A1 (ja)
EP (1) EP3564407A4 (ja)
JP (1) JP6842475B2 (ja)
KR (1) KR20190096420A (ja)
CN (1) CN110114507A (ja)
WO (1) WO2018122989A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734258A (ja) * 1993-07-16 1995-02-03 Okuno Chem Ind Co Ltd 置換型無電解金めっき液
JP2003221674A (ja) 2002-01-30 2003-08-08 Kanto Chem Co Inc 無電解金めっき液
JP2005146410A (ja) * 2003-10-22 2005-06-09 Kanto Chem Co Inc 無電解金めっき液
JP2007308796A (ja) 2006-04-18 2007-11-29 Hitachi Chem Co Ltd 無電解金めっき液及び無電解金めっき方法
JP2008208392A (ja) * 2007-02-23 2008-09-11 Kanto Chem Co Inc 無電解金めっき液およびそれを用いためっき方法
JP2010180467A (ja) * 2009-02-09 2010-08-19 Ne Chemcat Corp 非シアン無電解金めっき液及び導体パターンのめっき方法
JP2010209415A (ja) 2009-03-10 2010-09-24 Kanto Chem Co Inc 金微細構造体形成用無電解金めっき液およびこれを用いた金微細構造体形成方法ならびにこれを用いた金微細構造体
JP4758470B2 (ja) 2008-12-18 2011-08-31 シャープ株式会社 突起電極の形成方法及び置換金めっき液

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350570A (ja) * 1986-08-12 1988-03-03 ニツカン工業株式会社 金属メツキされたチタン酸アルカリおよびその製造方法
US4985076A (en) * 1989-11-03 1991-01-15 General Electric Company Autocatalytic electroless gold plating composition
US4978559A (en) * 1989-11-03 1990-12-18 General Electric Company Autocatalytic electroless gold plating composition
US5206055A (en) * 1991-09-03 1993-04-27 General Electric Company Method for enhancing the uniform electroless deposition of gold onto a palladium substrate
DE102010012204B4 (de) * 2010-03-19 2019-01-24 MacDermid Enthone Inc. (n.d.Ges.d. Staates Delaware) Verbessertes Verfahren zur Direktmetallisierung von nicht leitenden Substraten
JP2017210630A (ja) * 2014-10-02 2017-11-30 日本板硝子株式会社 無電解めっき下地剤及びその製造方法並びに該無電解めっき下地剤を用いためっき積層体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734258A (ja) * 1993-07-16 1995-02-03 Okuno Chem Ind Co Ltd 置換型無電解金めっき液
JP2003221674A (ja) 2002-01-30 2003-08-08 Kanto Chem Co Inc 無電解金めっき液
JP2005146410A (ja) * 2003-10-22 2005-06-09 Kanto Chem Co Inc 無電解金めっき液
JP2007308796A (ja) 2006-04-18 2007-11-29 Hitachi Chem Co Ltd 無電解金めっき液及び無電解金めっき方法
JP2008208392A (ja) * 2007-02-23 2008-09-11 Kanto Chem Co Inc 無電解金めっき液およびそれを用いためっき方法
JP4758470B2 (ja) 2008-12-18 2011-08-31 シャープ株式会社 突起電極の形成方法及び置換金めっき液
JP2010180467A (ja) * 2009-02-09 2010-08-19 Ne Chemcat Corp 非シアン無電解金めっき液及び導体パターンのめっき方法
JP2010209415A (ja) 2009-03-10 2010-09-24 Kanto Chem Co Inc 金微細構造体形成用無電解金めっき液およびこれを用いた金微細構造体形成方法ならびにこれを用いた金微細構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564407A4 *

Also Published As

Publication number Publication date
CN110114507A (zh) 2019-08-09
JPWO2018122989A1 (ja) 2019-12-26
US20210095378A1 (en) 2021-04-01
EP3564407A4 (en) 2020-10-21
EP3564407A1 (en) 2019-11-06
KR20190096420A (ko) 2019-08-19
JP6842475B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
US9353443B2 (en) Stable catalysts for electroless metallization
US8828131B2 (en) Catalyst application solution, electroless plating method using same, and direct plating method
JP6307300B2 (ja) めっき触媒および方法
WO2018122989A1 (ja) シアンフリー置換金めっき液組成物
JP2013108170A (ja) 無電解パラジウムめっき液
JP6719437B2 (ja) 無電解ニッケルめっき浴
TWI794751B (zh) 無氰化物之置換鍍金液組成物
TWI765877B (zh) 無氰化物之置換鍍金液組成物
EP3156517A1 (en) Use of water soluble and air stable phosphaadamantanes as stabilizer in electrolytes for electroless metal deposition
WO2018211727A1 (ja) 無電解白金めっき液及びそれを用いて得られた白金皮膜
JP7335280B2 (ja) 無電解銅又は銅合金めっき浴及びめっきする方法
JP4603320B2 (ja) 無電解金めっき液
JP2006265648A (ja) 無電解金めっき液再調製方法、無電解金めっき方法及び金イオン含有液
JP2004323963A (ja) 金めっき液
KR101224208B1 (ko) 음이온 계면활성제를 포함하는 배선용 무전해 동도금액 및 이에 의해 제조된 동 피막
JP6945050B1 (ja) 非シアン系の置換金めっき液及び置換金めっき方法
JP2013253282A (ja) 無電解めっき浴および無電解めっき膜
WO2017109834A1 (ja) クロムめっき液、電気めっき方法及びクロムめっき液の製造方法
KR101224207B1 (ko) 양이온 계면활성제를 포함하는 배선용 무전해 동도금액 및 이에 의해 제조된 동 피막
JP2024061524A (ja) 無電解めっき液組成物および貴金属の析出方法
JP2023157562A (ja) 無電解銅めっき液及びこれを用いる無電解銅めっき方法
JP2021175816A (ja) 無電解金めっき浴および無電解金めっき方法
JP2003342742A (ja) 無電解金めっき液
JP2022123819A (ja) パラジウムめっき液及びパラジウムめっき補充液
JP2013177654A (ja) 電解硬質金めっき液、めっき方法、及び、金−鉄合金被膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197021607

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016925513

Country of ref document: EP

Effective date: 20190729

ENP Entry into the national phase

Ref document number: 2018558587

Country of ref document: JP

Kind code of ref document: A