EP3564407A1 - Cyanide-free substitution gold plating solution composition - Google Patents
Cyanide-free substitution gold plating solution composition Download PDFInfo
- Publication number
- EP3564407A1 EP3564407A1 EP16925513.0A EP16925513A EP3564407A1 EP 3564407 A1 EP3564407 A1 EP 3564407A1 EP 16925513 A EP16925513 A EP 16925513A EP 3564407 A1 EP3564407 A1 EP 3564407A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gold
- alkali metal
- compound
- plating solution
- gold plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010931 gold Substances 0.000 title claims abstract description 206
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 204
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 200
- 238000007747 plating Methods 0.000 title claims abstract description 107
- 239000000203 mixture Substances 0.000 title description 7
- 238000006467 substitution reaction Methods 0.000 title 1
- 230000008021 deposition Effects 0.000 claims abstract description 112
- 150000001339 alkali metal compounds Chemical class 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 24
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 23
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 23
- 239000011734 sodium Substances 0.000 claims abstract description 23
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 claims abstract description 22
- 235000019252 potassium sulphite Nutrition 0.000 claims abstract description 22
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 20
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 20
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 claims abstract description 19
- 229940074439 potassium sodium tartrate Drugs 0.000 claims abstract description 19
- 235000011006 sodium potassium tartrate Nutrition 0.000 claims abstract description 19
- 150000004820 halides Chemical class 0.000 claims abstract description 9
- -1 cesium compound Chemical class 0.000 claims description 63
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 25
- 239000008139 complexing agent Substances 0.000 claims description 20
- 150000003298 rubidium compounds Chemical class 0.000 claims description 13
- 229910052792 caesium Inorganic materials 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 10
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 claims description 6
- 229910001419 rubidium ion Inorganic materials 0.000 claims description 6
- 239000002585 base Substances 0.000 claims description 2
- 150000003388 sodium compounds Chemical class 0.000 claims description 2
- 238000000151 deposition Methods 0.000 description 104
- 230000001105 regulatory effect Effects 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 150000003112 potassium compounds Chemical class 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 150000002343 gold Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- ZWZLRIBPAZENFK-UHFFFAOYSA-J sodium;gold(3+);disulfite Chemical compound [Na+].[Au+3].[O-]S([O-])=O.[O-]S([O-])=O ZWZLRIBPAZENFK-UHFFFAOYSA-J 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 229940111695 potassium tartrate Drugs 0.000 description 2
- 235000011005 potassium tartrates Nutrition 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Chemical compound [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 2
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Chemical compound [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000000994 L-ascorbates Chemical class 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- DEMJYWYZJFNNNB-UHFFFAOYSA-N OP(O)(O)=O.OP(O)(O)=O.OP(O)(O)=O Chemical compound OP(O)(O)=O.OP(O)(O)=O.OP(O)(O)=O DEMJYWYZJFNNNB-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-L Oxalate Chemical compound [O-]C(=O)C([O-])=O MUBZPKHOEPUJKR-UHFFFAOYSA-L 0.000 description 1
- GRTSOKMSAFRDNI-UHFFFAOYSA-N P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O Chemical compound P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O.P(=O)(O)(O)O GRTSOKMSAFRDNI-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- WYNAWAKUKHILJH-UHFFFAOYSA-L S(=O)([O-])[O-].[Au+3].[Na+].[Au+3] Chemical compound S(=O)([O-])[O-].[Au+3].[Na+].[Au+3] WYNAWAKUKHILJH-UHFFFAOYSA-L 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- DQPBABKTKYNPMH-UHFFFAOYSA-N amino hydrogen sulfate Chemical compound NOS(O)(=O)=O DQPBABKTKYNPMH-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 229940063013 borate ion Drugs 0.000 description 1
- MOOAHMCRPCTRLV-UHFFFAOYSA-N boron sodium Chemical compound [B].[Na] MOOAHMCRPCTRLV-UHFFFAOYSA-N 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- SRCZENKQCOSNAI-UHFFFAOYSA-H gold(3+);trisulfite Chemical compound [Au+3].[Au+3].[O-]S([O-])=O.[O-]S([O-])=O.[O-]S([O-])=O SRCZENKQCOSNAI-UHFFFAOYSA-H 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- BJEPYKJPYRNKOW-UWTATZPHSA-M malate ion Chemical compound [O-]C(=O)[C@H](O)CC(O)=O BJEPYKJPYRNKOW-UWTATZPHSA-M 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 1
- 229910000344 rubidium sulfate Inorganic materials 0.000 description 1
- GANPIEKBSASAOC-UHFFFAOYSA-L rubidium(1+);sulfate Chemical compound [Rb+].[Rb+].[O-]S([O-])(=O)=O GANPIEKBSASAOC-UHFFFAOYSA-L 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003475 thallium Chemical class 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
Definitions
- the present invention relates to a gold deposition accelerator for use in formation of a gold plating film on an electronic industrial component such as a printed wiring board, an electroless gold plating solution comprising said gold deposition accelerator, and a plating method and a gold deposition accelerating method using said electroless gold plating solution.
- a printed board has a metal circuit pattern on and/or within the board.
- a metal with a low electrical resistance such as copper is used, and further, a barrier metal layer is provided for preventing an oxidation, corrosion of the circuit and/or preventing a migration with gold.
- a metal used as the barrier metal layer palladium, platinum, silver, cobalt, and an alloy thereof can be used, as well as nickel or a nickel alloy.
- a technique of forming a palladium layer on a nickel layer in order to prevent a diffusion of nickel due to a thermal treatment.
- a gold film is, in general, used for preventing corrosion of a circuit and/or is used as a contact, thus a film with a high porosity is not preferable and a surface with few gaps is required.
- electrolytic gold plating As a gold plating method, electrolytic gold plating, autocatalytic electroless gold plating, substrate-catalytic (surface-catalytic) gold plating, and immersion gold plating and the like are known.
- Autocatalytic electrolytic gold plating performs gold deposition by a reducing agent of which gold is a catalyst.
- Substrate-catalytic (surface-catalytic) gold plating performs gold deposition by a reducing agent of which a substrate metal is a catalyst.
- Immersion gold plating performs gold deposition by an electrical displacement reaction between a substrate metal on a surface to be plated and a gold ion and/or a gold ion complex. These plating methods may also be used in combination of two or more kinds.
- Patent Literature 1 describes an electroless plating solution containing two types of reducing agents using water-soluble gold salts such as gold sodium sulfite in place of cyanide compounds, and considers using ethylenediamine tetraacetic acid (EDTA), and oxocarboxylic acids such as tartaric acid and the like, which are generally used as complexing agents, as reaction accelerators.
- EDTA ethylenediamine tetraacetic acid
- oxocarboxylic acids such as tartaric acid and the like
- Patent Literature 2 similarly describes an electroless plating solution that uses gold sodium sulfite as a source of gold, and considers using potassium sulfite to improve the gold deposition speed, while the concentration of potassium sulfite is described to be limited to equal to or less than 500 mg/L, since the plating solution becomes unstable and causes self-decomposition when the concentration of potassium sulfite is too large.
- Patent Literature 3 a compound which releases a halogen ion having a strong action of promoting an anode reaction is considered as a gold deposition accelerator of an electroless gold plating solution.
- Patent Literature 4 uses a heavy metal such as thallium salt as a gold deposition accelerator.
- the present invention is to provide a gold deposition accelerator which readily improves the gold deposition speed of an electroless gold plating solution and enables to form a uniform gold film, an electroless gold plating solution containing said gold deposition accelerator, a gold plating method and a gold deposition accelerating method etc., using the same.
- the present invention relates to the following:
- the present invention can readily improve the gold deposition speed of an electroless gold plating solution, thus, it can realize a sufficient gold deposition speed even in an electroless gold plating solution which does not have a cyanide compound as a source of gold and has a slow deposition speed. Also, since the gold deposition speed can be regulated only by regulating the concentration of alkali metal ions other than sodium, a regulation by many ingredients is possible as compared to when gold deposition is accelerated depending only on a complexing agent, thus being able to provide a more stable electroless gold plating solution. Furthermore, since the deposition speed can be improved without increasing the concentration of gold, an inexpensive plating solution can be provided.
- FIG. 1 is a figure comparing gold deposition speeds when alkali metal ions are changed.
- the gold deposition accelerator of the present invention comprises an alkali metal compound.
- the gold deposition accelerating action of the gold deposition accelerator of the present invention is of an alkali metal ion
- the alkali metal compound comprised in the gold deposition accelerator of the present invention may be anything that dissociates to generate an alkali metal ion.
- a sodium ion does not accelerate the gold deposition reaction.
- the alkali metal compound comprised in the gold deposition accelerator of the present invention is not a compound comprising only sodium as an alkali metal, but may comprise sodium as long as an alkali metal other than sodium is present.
- Such compounds include, for example, potassium sodium tartrate.
- the alkali metal compound comprised in the gold deposition accelerator of the present invention is preferably one or more selected from the group consisting of a potassium compound, rubidium compound and cesium compound, and more preferably, in terms of deposition accelerativity, a rubidium compound and/or cesium compound. In terms of cost, a potassium compound is also preferable.
- the alkali metal compound comprised in the gold deposition accelerator of the present invention includes, but not limited to the following compounds.
- carbonates such as potassium carbonate, rubidium carbonate, cesium carbonate
- nitrates such as cesium nitrate, rubidium nitrate, cesium nitrate
- sulfates such as potassium sulfate, rubidium sulfate, cesium sulfate
- halides are included, and as halides, fluorides such as potassium fluoride, rubidium fluoride, cesium fluoride
- chlorides such as potassium chloride, rubidium chloride, cesium chloride
- bromides such as potassium bromide, rubidium bromide, cesium bromide
- iodides such as potassium iodide, rubidium iodide, cesium iodide are included.
- These compounds may be used alone or in combination of two or more.
- a counterion to an alkali metal ion in said compound is not particularly limited.
- Alkali metal compounds other than compounds having the above-mentioned counterion include, but not limited to, the following compounds.
- the gold deposition accelerator of the present invention may be an alkali metal compound itself, or may be a composition comprising said compound.
- the composition may be a mixture consisting of two or more alkali metal compounds.
- the composition may comprise water, a solvent such as organic solvent, in addition to one or more alkali metal(s).
- the alkali metal compound comprised in the gold deposition accelerator is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- the alkali metal compound comprised in the gold deposition accelerator is not only sulfite.
- the alkali metal compound comprised in the gold deposition accelerator is not only tartrate.
- the gold deposition accelerator of the present invention when the gold deposition accelerator comprises only a potassium compound as an alkali metal compound, it comprises a potassium compound other than potassium compounds selected from potassium halide, potassium sulfite, and potassium sodium tartrate.
- the gold deposition accelerator of the present invention in the plating solution comprising said gold deposition accelerator, can use an alkali metal compound comprising an alkali metal other than sodium by regulating the concentration on an alkali metal ion basis other than sodium to equal to or more than 0.001 M, preferably equal to or more than 0.01 M, more preferably equal to or more than 0.02 M.
- concentration may be regulated to 0.001 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M. Since a concentration dependency is also recognized for the gold deposition speed, the desired gold deposition speed can be regulated by regulating the concentration.
- the gold deposition accelerator of the present invention does not comprise potassium sodium tartrate.
- the gold deposition accelerator of the present invention comprises potassium sodium tartrate or tartrate
- potassium sodium tartrate in the plating solution by regulating the concentration thereof to equal to or more than 0.11 M, preferably more than 0.11 M, more preferably equal to or more than 0.2 M.
- said concentration is preferably 0.11 M to 5 M, more preferably 0.11 M to 2 M, particularly preferably 0.11 M to 0.5 M.
- the gold deposition accelerator of the present invention does not comprise potassium sulfite.
- the gold deposition accelerator of the present invention comprises potassium sulfite or sulfite
- potassium sulfite in the plating solution by regulating the concentration thereof to equal to or more than 0.004 M.
- said concentration is preferably 0.004 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- the present invention also relates to an electroless gold plating solution comprising the above-mentioned gold deposition accelerator of the present invention, a water-soluble source of gold and a complexing agent.
- the concentration of the alkali metal compound is preferably equal to or more than 0.001 M, more preferably equal to or more than 0.01 M, particularly preferably equal to or more than 0.02 M on an alkali metal ion basis other than sodium.
- said concentration is preferably 0.001 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M. Since a concentration dependency to a certain extent is also recognized for the gold deposition speed, the desired gold deposition speed can be regulated by regulating the concentration.
- a source of gold used for the present invention water-soluble gold salts such as a gold sulfite salt and a chloroauric acid salt can be used, in particular. It is preferable to use a source of gold comprising no cyanide in terms of safety and waste water treatment issues.
- the concentration of the source of gold is preferably 0.1 to 10 g/L, even preferably 0.5 to 5 g/L.
- sodium gold sulfite is used for example, its concentration range is preferably 0.1 to 10 g/L, even preferably 0.5 to 5 g/L on a gold concentration basis, considering the property of the deposition film.
- the source of gold does not comprise any alkali metal other than sodium.
- the gold deposition accelerator of the present invention comprises an alkali metal compound comprising no gold.
- the electroless gold plating solution of the present invention further comprises an alkali metal compound comprising no gold, and in this case, the concentration of the alkali metal ion other than sodium in the electroless gold plating solution is preferably equal to or more than 0.001 M, more preferably equal to or more than 0.01 M, particularly preferably equal to or more than 0.02 M.
- said concentration is preferably 0.001 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- the concentration of said alkali metal ion is the combined concentration of the alkali metal ion derived from the source of gold and the alkali metal ion derived from the above-mentioned alkali metal compound comprising no gold (not including sodium ion).
- the complexing agent used for the present invention is not particularly limited, but include, for example in particular, a compound capable of forming a complex with a monovalent or trivalent gold ion such as sulfite, thiosulfite, and the like.
- concentration of the complexing agent is preferably 0.001 M to 5 M, even preferably 0.01 M to 0.5 M, and when sodium sulfite is for example used as a complexing agent, its concentration range is preferably 0.001 to 5 M, even preferably 0.01 to 0.5 M.
- a pH regulator various acids such as sulfuric acid, hydrochloric acid, phosphoric acid; hydroxide salts such as potassium hydroxide; and amines such as NR 4 OH (R: hydrogen or alkyl) with a restriction and the like can be used for example.
- a phosphate buffer is used for example as a pH regulator, it is preferable to perform by phosphoric acid and sodium hydroxide or potassium hydroxide.
- pH is preferably in the range of 5 to 11, even preferably 6 to 10, depending on its composition.
- the gold deposition accelerator of the present invention can be added to a plating solution for electroless gold plating
- said plating solution can also be used for any of the methods of autocatalytic electroless gold plating, substrate-catalytic (surface-catalytic) gold plating, immersion gold plating and plating in combination thereof.
- deposition accelerativity it is preferable to be used for immersion gold plating.
- the plating solution of the present invention may or may not comprise a reducing agent.
- the reducing agent includes ascorbates such as sodium ascorbate; hydroxylamine or salts of hydroxylamine such as hydroxylamine hydrochloride, hydroxylamine sulfate; hydroxylamine derivatives such as hydroxylamine-O-sulfonic acid; hydrazine; amine borane compounds such as dimethylamine borane; boron hydride compounds such as sodium boron hydride, sugars such as glucose; hypophosphites, etc.
- These reducing agents may be used alone or in combination of two or more.
- any compound judged to be capable of depositing gold by reduction from gold ions or gold complexes according to the Nernst equation may be used, but is used in consideration of the reactivity toward other bath components, the bath stability, etc.
- the plating solution of the present invention can use other additives such as grain-shape regulator, brightener in an appropriate range of concentration.
- Other additives are not particularly limited, and additives that have conventionally been used can be used for example. Namely, grain-shape regulators such as polyethylene glycol, brighteners such as thallium, copper, antimony, lead are included. Any other additives besides these additives can be used as long as they meet the above-mentioned condition.
- the electroless gold plating solution of the present invention does not comprise potassium sodium tartrate.
- the electroless gold plating solution of the present invention comprises potassium sodium tartrate or tartrate
- potassium sodium tartrate in the plating solution by regulating the concentration thereof to equal to or more than 0.11 M, preferably more than 0.11 M, more preferably equal to or more than 0.2 M on an alkali metal ion basis other than sodium.
- said concentration is preferably 0.01 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.01 M to 0.5 M.
- the electroless gold plating solution of the present invention does not comprise potassium sulfite.
- the electroless gold plating solution of the present invention comprises potassium sulfite
- said concentration is 0.004 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- the electroless gold plating solution of the present invention when the electroless gold plating solution comprises only a potassium compound as an alkali metal compound, it comprises a potassium compound other than potassium compounds selected from potassium halide, potassium sulfite and potassium sodium tartrate.
- the present invention also relates to a gold deposition accelerator comprising a rubidium compound and/or cesium compound.
- Gold deposition is accelerated by a rubidium ion and cesium ion.
- the concentration of the rubidium ion is preferably 0.001 to 5 M, more preferably 0.01 to 2M, particularly preferably 0.02 to 0.5 M.
- the concentration of the cesium ion is preferably 0.001 to 5 M, more preferably 0.01 to 2 M, particularly preferably 0.02 to 0.5 M.
- Examples of rubidium compounds and/or cesium compounds include the similar compounds included as the examples for the above-mentioned alkali metal compounds.
- the gold deposition speed of the electroless gold plating solution comprising the gold deposition accelerator of the present invention may be equal to or more than 0.003 ⁇ m/min, preferably equal to or more than 0.004 ⁇ m/min, more preferably equal to or more than 0.005 ⁇ m/min on 4 cm 2 Ni substrate at pH 7, bath temperature of 80 °C.
- the present invention also relates to a method of forming a gold plating film comprising a step of applying the electroless gold plating solution of the present invention on a surface of an electronic industrial component.
- the operating temperature of the electroless gold plating solution in said step is preferably 20 to 90 °C, more preferably 40 to 70 °C.
- pH is preferably 5 to 11, more preferably 6 to 10.
- the electronic industrial component is not particularly limited, but typically includes electrodes, wirings, etc.
- the present invention also relates to a method of accelerating gold deposition in electroless gold plating comprising adding one or more alkali metal compound(s) in an electroless gold plating solution, wherein said alkali metal compound is not a compound comprising only sodium as an alkali metal, and said alkali metal compound is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- the concentration of said alkali metal compound in the method of accelerating gold deposition of the present invention may be 0.001 to 5 M, preferably 0.01 to 2 M, more preferably 0.02 to 0.5 M on an alkali metal ion basis other than sodium.
- the method of accelerating gold deposition of the present invention does not comprise potassium sodium tartrate.
- the method of accelerating gold deposition of the present invention comprises potassium sodium tartrate
- said concentration is preferably 0.11 M to 5 M, more preferably 0.11 M to 2 M, particularly preferably 0.11 M to 0.5 M.
- the method of accelerating gold deposition of the present invention does not comprise potassium sulfite.
- the method of accelerating gold deposition of the present invention comprises potassium sulfite
- said concentration is preferably 0.004 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- the present invention also relates to a method of accelerating gold deposition in electroless gold plating by adding a rubidium compound and/or cesium compound.
- the total concentration of the rubidium compound and/or cesium compound is preferably 0.001 M to 5 M, more preferably 0.01 M to 1 M on a rubidium ion and/or cesium ion basis.
- its preferable concentration is 0.001 M to 5 M, more preferably 0.01 M to 1 M on a rubidium ion basis.
- a preferable concentration is 0.001 M to 5 M, more preferably 0.001 M to 1 M on a cesium ion basis.
- the present invention also relates to, in another embodiment, a method of accelerating gold deposition in electroless gold plating, wherein the concentration of an alkali metal ion in an electroless gold plating solution is regulated to regulate a gold deposition speed.
- the concentration of the total alkali metal ions in the electroless gold plating solution is regulated to be 0.001 M to 5 M, preferably 0.01 M to 2 M, more preferably 0.02 M to 0.5 M.
- the electroless gold plating solution of the present invention is explained further in detail below by reference to working examples and comparative examples, which however are not to limit the present invention in any way.
- a copper plate was used as a plating sample, and this was subjected to Ni alloy plating by the procedure below and used for testing.
- the sources of gold, the complexing agents in Table 1 were mixed in the concentrations in Table 1 to prepare gold plating solutions, and pH of the gold plating solutions were regulated to pH 7.0 by using phosphoric acid as a pH regulator.
- a 4 cm 2 Ni rolling plate was used, plating was performed for 10 minutes at 80 °C, the film thickness was measured, and the deposition speed was calculated.
- the sources of gold, the complexing agents, the deposition accelerators in Table 1 were mixed in the concentrations in Table 1 to prepare gold plating solutions, and pH of the gold plating solutions were regulated to pH 7.0 by using phosphoric acid as a pH regulator.
- a 4 cm 2 Ni rolling plate was used, plating was performed for 10 minutes at 80 °C, the film thickness was measured, and the deposition speed was calculated.
- "FT-9500X” X-ray fluorescence film thickness meter by Hitachi was used.
- Fig. 1 is of a comparison of deposition speeds when an alkali metal ion is changed based on the results of comparative example 1, working examples 1-3 of Table 1. It was recognized that a gold deposition speed improves by adding an alkali metal ion. In addition, it was recognized that a gold deposition speed depends on an alkali metal ion, since working example 1, working example 2 and working example 3 have different gold deposition speeds in spite of them all comprising a carbonate ion in the same concentration.
- the gold deposition speed is large as compared to an electroless gold plating solution comprising no gold deposition accelerator, even after changing the kinds of cesium salt, source of gold and complexing agent.
- a sufficient gold deposition speed can be realized even in electroless plating using an electroless gold plating solution which does not have cyanide compound as a source of gold and has a slow deposition speed.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
Description
- The present invention relates to a gold deposition accelerator for use in formation of a gold plating film on an electronic industrial component such as a printed wiring board, an electroless gold plating solution comprising said gold deposition accelerator, and a plating method and a gold deposition accelerating method using said electroless gold plating solution.
- A printed board has a metal circuit pattern on and/or within the board. For the circuit, a metal with a low electrical resistance such as copper is used, and further, a barrier metal layer is provided for preventing an oxidation, corrosion of the circuit and/or preventing a migration with gold. As a metal used as the barrier metal layer, palladium, platinum, silver, cobalt, and an alloy thereof can be used, as well as nickel or a nickel alloy. There is also a technique of forming a palladium layer on a nickel layer in order to prevent a diffusion of nickel due to a thermal treatment. After these substrate metal layers are formed, they are further covered with a gold film to be a complete circuit. However, a gold film is, in general, used for preventing corrosion of a circuit and/or is used as a contact, thus a film with a high porosity is not preferable and a surface with few gaps is required.
- As a gold plating method, electrolytic gold plating, autocatalytic electroless gold plating, substrate-catalytic (surface-catalytic) gold plating, and immersion gold plating and the like are known. Autocatalytic electrolytic gold plating performs gold deposition by a reducing agent of which gold is a catalyst. Substrate-catalytic (surface-catalytic) gold plating performs gold deposition by a reducing agent of which a substrate metal is a catalyst. Immersion gold plating performs gold deposition by an electrical displacement reaction between a substrate metal on a surface to be plated and a gold ion and/or a gold ion complex. These plating methods may also be used in combination of two or more kinds.
- Although, as for an electroless gold plating solution, many plating solutions containing a cyanide compound as a source of gold have been reported, there are storage and management issues, safety issues during various treatments, as well as a cost issue for a waste liquid treatment. Because of this, a development of an electroless gold plating solution containing no cyanide compound has been desired. Patent Literature 1 describes an electroless plating solution containing two types of reducing agents using water-soluble gold salts such as gold sodium sulfite in place of cyanide compounds, and considers using ethylenediamine tetraacetic acid (EDTA), and oxocarboxylic acids such as tartaric acid and the like, which are generally used as complexing agents, as reaction accelerators. Patent Literature 2 similarly describes an electroless plating solution that uses gold sodium sulfite as a source of gold, and considers using potassium sulfite to improve the gold deposition speed, while the concentration of potassium sulfite is described to be limited to equal to or less than 500 mg/L, since the plating solution becomes unstable and causes self-decomposition when the concentration of potassium sulfite is too large. In Patent Literature 3, a compound which releases a halogen ion having a strong action of promoting an anode reaction is considered as a gold deposition accelerator of an electroless gold plating solution. Patent Literature 4 uses a heavy metal such as thallium salt as a gold deposition accelerator.
-
- [PATENT LITERATURE 1]
JP, A, 2003-221674 - [PATENT LITERATURE 2]
JP, B, 4758470 - [PATENT LITERATURE 3]
JP, A, 2010-209415 - [PATENT LITERATURE 4]
JP, A, 2007-308796 - The conventional methods using complexing agents such as oxocarboxylic acids and potassium sulfite as reaction accelerators were to anticipate in the accelerating effect in gold deposition by interfacial complexation in which a complex ion coordinates to a metal ion. However, it was difficult to obtain the desired gold deposition speed only by a complexing agent. This was because a complexing agent, depending on its amount to be added, has a problem of erosion to a substrate, and due to decomposition of the complexing agent itself, makes a plating solution unstable and induces the self-decomposition of the plating solution, thus the amount of the complexing agent to be added needs to be controlled. Also, when reducing agents and stabilizers are included, one must consider the interaction with such ingredients. On the other hand, a gold deposition accelerator using heavy metals such as thallium has an issue with an impact on the environment.
- Thus, the present invention is to provide a gold deposition accelerator which readily improves the gold deposition speed of an electroless gold plating solution and enables to form a uniform gold film, an electroless gold plating solution containing said gold deposition accelerator, a gold plating method and a gold deposition accelerating method etc., using the same.
- While considering a method to accelerate gold deposition without depending on complexing agents, the present inventors found that alkali metal ions influence a gold deposition speed, and as a result of further proceeding of the research, the present invention has been accomplished.
- That is, the present invention relates to the following:
- [1] A gold deposition accelerator for electroless gold plating comprising one or more alkali metal compound(s), wherein said alkali metal compound is not a compound comprising only sodium as an alkali metal, and said alkali metal compound is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- [2] An electroless gold plating solution comprising the gold deposition accelerator according to [1], a water-soluble source of gold and a complexing agent.
- [3] The electroless gold plating solution according to [2], wherein the concentration of the alkali metal compound is 0.001 to 5 M on an alkali metal ion basis other than sodium.
- [4] A gold deposition accelerator comprising a rubidium compound and/or cesium compound.
- [5] An electroless gold plating solution comprising the gold deposition accelerator according to [4], a water-soluble source of gold and a complexing agent.
- [6] The electroless gold plating solution according to [2], [3] or [5] further comprising a sodium compound.
- [7] The electroless gold plating solution according to [2], [3], [5] or [6] comprising no cyanide compound.
- [8] The electroless gold plating solution according to [2], [3], [5], [6] or [7] comprising an acid or a base as a pH regulator.
- [9] A method of forming a gold plating film comprising a step of applying the electroless gold plating solution according to [2], [3], [5], [6], [7] or [8] on a surface of an electronic industrial component.
- [10] A method of accelerating gold deposition in electroless gold plating comprising adding one or more alkali metal compound(s) in an electroless gold plating solution, wherein said alkali metal compound is not a compound comprising only sodium as an alkali metal, and said alkali metal compound is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- [11] The method according to [10], wherein the concentration of the alkali metal compound is 0.001 to 5 M on an alkali metal ion basis other than sodium.
- [12] A method of accelerating gold deposition in electroless gold plating by adding a rubidium compound and/or cesium compound.
- [13] The method according to [12], wherein the concentration of the rubidium compound and/or cesium compound is 0.001 M to 5 M on a rubidium ion and/or cesium ion basis.
- According to the present invention, it can readily improve the gold deposition speed of an electroless gold plating solution, thus, it can realize a sufficient gold deposition speed even in an electroless gold plating solution which does not have a cyanide compound as a source of gold and has a slow deposition speed. Also, since the gold deposition speed can be regulated only by regulating the concentration of alkali metal ions other than sodium, a regulation by many ingredients is possible as compared to when gold deposition is accelerated depending only on a complexing agent, thus being able to provide a more stable electroless gold plating solution. Furthermore, since the deposition speed can be improved without increasing the concentration of gold, an inexpensive plating solution can be provided.
- [
FIG.1] Fig. 1 is a figure comparing gold deposition speeds when alkali metal ions are changed. - The gold deposition accelerator of the present invention comprises an alkali metal compound.
- The gold deposition accelerating action of the gold deposition accelerator of the present invention is of an alkali metal ion, and the alkali metal compound comprised in the gold deposition accelerator of the present invention may be anything that dissociates to generate an alkali metal ion. Surprisingly, although it is the same alkali metal ion, a sodium ion does not accelerate the gold deposition reaction. Thus, the alkali metal compound comprised in the gold deposition accelerator of the present invention is not a compound comprising only sodium as an alkali metal, but may comprise sodium as long as an alkali metal other than sodium is present. Such compounds include, for example, potassium sodium tartrate.
- The alkali metal compound comprised in the gold deposition accelerator of the present invention is preferably one or more selected from the group consisting of a potassium compound, rubidium compound and cesium compound, and more preferably, in terms of deposition accelerativity, a rubidium compound and/or cesium compound. In terms of cost, a potassium compound is also preferable.
- The alkali metal compound comprised in the gold deposition accelerator of the present invention includes, but not limited to the following compounds. For example, carbonates such as potassium carbonate, rubidium carbonate, cesium carbonate; nitrates such as cesium nitrate, rubidium nitrate, cesium nitrate; sulfates such as potassium sulfate, rubidium sulfate, cesium sulfate; halides are included, and as halides, fluorides such as potassium fluoride, rubidium fluoride, cesium fluoride; chlorides such as potassium chloride, rubidium chloride, cesium chloride; bromides such as potassium bromide, rubidium bromide, cesium bromide; iodides such as potassium iodide, rubidium iodide, cesium iodide are included. These compounds may be used alone or in combination of two or more.
- A counterion to an alkali metal ion in said compound is not particularly limited. As said counterion, carbonate ion, nitrate ion, sulfate ion, sulfite ion, phosphate ion, borate ion, halide ion; carbonate ion such as formate ion, acetate ion, propionate ion, butanoate ion, pentanoate ion, hexanoate ion, heptanoate ion, octanoate ion; hydroxy acid ions such as glycolate ion, lactate ion, malate ion, citrate ion, tartrate ion, isocitrate ion, salicylate ion; aromatic carboxylate ions such as benzoate ion, phthalate ion; dicarboxylate ions such as oxalate ion, malonate ion, succinate ion, glutarate ion, adipate ion, fumarate ion, maleate ion are included, for example. These compounds may be used alone or in combination of two or more.
- Alkali metal compounds other than compounds having the above-mentioned counterion include, but not limited to, the following compounds. For example, oxide, peroxide, hydroxide, chromic acid compound, tungstic acid compound, selenic acid compound, molybdic acid compound, orthomolybdic acid compound, niobic acid compound, permanganic acid compound, azide compound, amide compound, toluene sulfonic acid compound, hydride, picric acid compound, tetrahydroboric acid compound, hexafluorosilicic acid compound, perrhenic acid compound, periodic acid compound, iodic acid compound, nitrous acid compound, phosphinic acid compound, nitrobenzene sulfonic acid compound, benzenesulfonic acid compound, alkoxide compound, hydrogen carbonate compound, methacrylic acid compound etc. of alkali metals are included. These compounds may be used alone or in combination of two or more.
- As such, the gold deposition accelerator of the present invention may be an alkali metal compound itself, or may be a composition comprising said compound. The composition may be a mixture consisting of two or more alkali metal compounds. Also, the composition may comprise water, a solvent such as organic solvent, in addition to one or more alkali metal(s).
- In the gold deposition accelerator of the present invention, the alkali metal compound comprised in the gold deposition accelerator is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- In one embodiment of the gold deposition accelerator of the present invention, the alkali metal compound comprised in the gold deposition accelerator is not only sulfite.
- In one embodiment of the gold deposition accelerator of the present invention, the alkali metal compound comprised in the gold deposition accelerator is not only tartrate.
- In one embodiment of the gold deposition accelerator of the present invention, when the gold deposition accelerator comprises only a potassium compound as an alkali metal compound, it comprises a potassium compound other than potassium compounds selected from potassium halide, potassium sulfite, and potassium sodium tartrate.
- The gold deposition accelerator of the present invention, in the plating solution comprising said gold deposition accelerator, can use an alkali metal compound comprising an alkali metal other than sodium by regulating the concentration on an alkali metal ion basis other than sodium to equal to or more than 0.001 M, preferably equal to or more than 0.01 M, more preferably equal to or more than 0.02 M. In terms of deposition accelerativity, said concentration may be regulated to 0.001 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M. Since a concentration dependency is also recognized for the gold deposition speed, the desired gold deposition speed can be regulated by regulating the concentration.
- In one embodiment of the present invention, the gold deposition accelerator of the present invention does not comprise potassium sodium tartrate.
- In one embodiment of the present invention, when the gold deposition accelerator of the present invention comprises potassium sodium tartrate or tartrate, it is preferable to use potassium sodium tartrate in the plating solution by regulating the concentration thereof to equal to or more than 0.11 M, preferably more than 0.11 M, more preferably equal to or more than 0.2 M. In terms of deposition accelerativity, said concentration is preferably 0.11 M to 5 M, more preferably 0.11 M to 2 M, particularly preferably 0.11 M to 0.5 M.
- In one embodiment of the present invention, the gold deposition accelerator of the present invention does not comprise potassium sulfite.
- In one embodiment of the present invention, when the gold deposition accelerator of the present invention comprises potassium sulfite or sulfite, it is preferable to use potassium sulfite in the plating solution by regulating the concentration thereof to equal to or more than 0.004 M. In terms of deposition accelerativity, said concentration is preferably 0.004 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- The present invention also relates to an electroless gold plating solution comprising the above-mentioned gold deposition accelerator of the present invention, a water-soluble source of gold and a complexing agent.
- In the electroless gold plating solution comprising the gold deposition accelerator of the present invention, the concentration of the alkali metal compound is preferably equal to or more than 0.001 M, more preferably equal to or more than 0.01 M, particularly preferably equal to or more than 0.02 M on an alkali metal ion basis other than sodium. In terms of deposition accelerativity, said concentration is preferably 0.001 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M. Since a concentration dependency to a certain extent is also recognized for the gold deposition speed, the desired gold deposition speed can be regulated by regulating the concentration.
- As a source of gold used for the present invention, water-soluble gold salts such as a gold sulfite salt and a chloroauric acid salt can be used, in particular. It is preferable to use a source of gold comprising no cyanide in terms of safety and waste water treatment issues. The concentration of the source of gold is preferably 0.1 to 10 g/L, even preferably 0.5 to 5 g/L. When sodium gold sulfite is used for example, its concentration range is preferably 0.1 to 10 g/L, even preferably 0.5 to 5 g/L on a gold concentration basis, considering the property of the deposition film. In one embodiment of the present invention, the source of gold does not comprise any alkali metal other than sodium. Also, in one embodiment of the present invention, the gold deposition accelerator of the present invention comprises an alkali metal compound comprising no gold.
- In one embodiment of the present invention, when the source of gold comprises an alkali metal other than sodium, the electroless gold plating solution of the present invention further comprises an alkali metal compound comprising no gold, and in this case, the concentration of the alkali metal ion other than sodium in the electroless gold plating solution is preferably equal to or more than 0.001 M, more preferably equal to or more than 0.01 M, particularly preferably equal to or more than 0.02 M. In terms of deposition accelerativity, said concentration is preferably 0.001 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M. The concentration of said alkali metal ion is the combined concentration of the alkali metal ion derived from the source of gold and the alkali metal ion derived from the above-mentioned alkali metal compound comprising no gold (not including sodium ion).
- The complexing agent used for the present invention is not particularly limited, but include, for example in particular, a compound capable of forming a complex with a monovalent or trivalent gold ion such as sulfite, thiosulfite, and the like. The concentration of the complexing agent is preferably 0.001 M to 5 M, even preferably 0.01 M to 0.5 M, and when sodium sulfite is for example used as a complexing agent, its concentration range is preferably 0.001 to 5 M, even preferably 0.01 to 0.5 M.
- As a pH regulator, various acids such as sulfuric acid, hydrochloric acid, phosphoric acid; hydroxide salts such as potassium hydroxide; and amines such as NR4OH (R: hydrogen or alkyl) with a restriction and the like can be used for example. When a phosphate buffer is used for example as a pH regulator, it is preferable to perform by phosphoric acid and sodium hydroxide or potassium hydroxide.
- pH is preferably in the range of 5 to 11, even preferably 6 to 10, depending on its composition.
- While the gold deposition accelerator of the present invention can be added to a plating solution for electroless gold plating, said plating solution can also be used for any of the methods of autocatalytic electroless gold plating, substrate-catalytic (surface-catalytic) gold plating, immersion gold plating and plating in combination thereof. Particularly, in terms of deposition accelerativity, it is preferable to be used for immersion gold plating.
- The plating solution of the present invention may or may not comprise a reducing agent. The reducing agent includes ascorbates such as sodium ascorbate; hydroxylamine or salts of hydroxylamine such as hydroxylamine hydrochloride, hydroxylamine sulfate; hydroxylamine derivatives such as hydroxylamine-O-sulfonic acid; hydrazine; amine borane compounds such as dimethylamine borane; boron hydride compounds such as sodium boron hydride, sugars such as glucose; hypophosphites, etc. These reducing agents may be used alone or in combination of two or more. Furthermore, any compound judged to be capable of depositing gold by reduction from gold ions or gold complexes according to the Nernst equation may be used, but is used in consideration of the reactivity toward other bath components, the bath stability, etc.
- The plating solution of the present invention can use other additives such as grain-shape regulator, brightener in an appropriate range of concentration. Other additives are not particularly limited, and additives that have conventionally been used can be used for example. Namely, grain-shape regulators such as polyethylene glycol, brighteners such as thallium, copper, antimony, lead are included. Any other additives besides these additives can be used as long as they meet the above-mentioned condition.
- In one embodiment of the present invention, the electroless gold plating solution of the present invention does not comprise potassium sodium tartrate.
- In one embodiment of the present invention, when the electroless gold plating solution of the present invention comprises potassium sodium tartrate or tartrate, it is preferable to use potassium sodium tartrate in the plating solution by regulating the concentration thereof to equal to or more than 0.11 M, preferably more than 0.11 M, more preferably equal to or more than 0.2 M on an alkali metal ion basis other than sodium. In terms of deposition accelerativity, said concentration is preferably 0.01 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.01 M to 0.5 M.
- In one embodiment of the present invention, the electroless gold plating solution of the present invention does not comprise potassium sulfite.
- In one embodiment of the present invention, when the electroless gold plating solution of the present invention comprises potassium sulfite, it is preferable to use potassium sulfite in the plating solution by regulating the concentration thereof to equal to or more than 0.004 M. In terms of deposition accelerativity, said concentration is 0.004 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- In one embodiment of the electroless gold plating solution of the present invention, when the electroless gold plating solution comprises only a potassium compound as an alkali metal compound, it comprises a potassium compound other than potassium compounds selected from potassium halide, potassium sulfite and potassium sodium tartrate.
- The present invention also relates to a gold deposition accelerator comprising a rubidium compound and/or cesium compound. Gold deposition is accelerated by a rubidium ion and cesium ion. The concentration of the rubidium ion is preferably 0.001 to 5 M, more preferably 0.01 to 2M, particularly preferably 0.02 to 0.5 M. The concentration of the cesium ion is preferably 0.001 to 5 M, more preferably 0.01 to 2 M, particularly preferably 0.02 to 0.5 M. Examples of rubidium compounds and/or cesium compounds include the similar compounds included as the examples for the above-mentioned alkali metal compounds.
- The gold deposition speed of the electroless gold plating solution comprising the gold deposition accelerator of the present invention may be equal to or more than 0.003 µm/min, preferably equal to or more than 0.004 µm/min, more preferably equal to or more than 0.005 µm/min on 4 cm2 Ni substrate at pH 7, bath temperature of 80 °C.
- The present invention also relates to a method of forming a gold plating film comprising a step of applying the electroless gold plating solution of the present invention on a surface of an electronic industrial component. In terms of deposition speed, the operating temperature of the electroless gold plating solution in said step is preferably 20 to 90 °C, more preferably 40 to 70 °C. In terms of the liquid stability and deposition speed, pH is preferably 5 to 11, more preferably 6 to 10. The electronic industrial component is not particularly limited, but typically includes electrodes, wirings, etc.
- The present invention also relates to a method of accelerating gold deposition in electroless gold plating comprising adding one or more alkali metal compound(s) in an electroless gold plating solution, wherein said alkali metal compound is not a compound comprising only sodium as an alkali metal, and said alkali metal compound is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- The concentration of said alkali metal compound in the method of accelerating gold deposition of the present invention may be 0.001 to 5 M, preferably 0.01 to 2 M, more preferably 0.02 to 0.5 M on an alkali metal ion basis other than sodium.
- In one embodiment of the present invention, the method of accelerating gold deposition of the present invention does not comprise potassium sodium tartrate.
- In one embodiment of the present invention, when the method of accelerating gold deposition of the present invention comprises potassium sodium tartrate, it is preferable to use potassium sodium tartrate in the plating solution by regulating the concentration thereof to equal to or more than 0.11 M, preferably more than 0.11 M, more preferably equal to or more than 0.2 M on a potassium ion basis. In terms of deposition accelerativity, said concentration is preferably 0.11 M to 5 M, more preferably 0.11 M to 2 M, particularly preferably 0.11 M to 0.5 M.
- In one embodiment of the present invention, the method of accelerating gold deposition of the present invention does not comprise potassium sulfite.
- In one embodiment of the present invention, when the method of accelerating gold deposition of the present invention comprises potassium sulfite, it is preferable to use potassium sulfite in the plating solution by regulating the concentration thereof to equal to or more than 0.004 M. In terms of deposition accelerativity, said concentration is preferably 0.004 M to 5 M, more preferably 0.01 M to 2 M, particularly preferably 0.02 M to 0.5 M.
- The present invention also relates to a method of accelerating gold deposition in electroless gold plating by adding a rubidium compound and/or cesium compound. Preferably, the total concentration of the rubidium compound and/or cesium compound is preferably 0.001 M to 5 M, more preferably 0.01 M to 1 M on a rubidium ion and/or cesium ion basis. When only a rubidium compound is added, its preferable concentration is 0.001 M to 5 M, more preferably 0.01 M to 1 M on a rubidium ion basis. When only a cesium compound is added, a preferable concentration is 0.001 M to 5 M, more preferably 0.001 M to 1 M on a cesium ion basis.
- The present invention also relates to, in another embodiment, a method of accelerating gold deposition in electroless gold plating, wherein the concentration of an alkali metal ion in an electroless gold plating solution is regulated to regulate a gold deposition speed.
- The concentration of the total alkali metal ions in the electroless gold plating solution is regulated to be 0.001 M to 5 M, preferably 0.01 M to 2 M, more preferably 0.02 M to 0.5 M.
- The electroless gold plating solution of the present invention is explained further in detail below by reference to working examples and comparative examples, which however are not to limit the present invention in any way. A copper plate was used as a plating sample, and this was subjected to Ni alloy plating by the procedure below and used for testing.
- The sources of gold, the complexing agents in Table 1 were mixed in the concentrations in Table 1 to prepare gold plating solutions, and pH of the gold plating solutions were regulated to pH 7.0 by using phosphoric acid as a pH regulator. A 4 cm2 Ni rolling plate was used, plating was performed for 10 minutes at 80 °C, the film thickness was measured, and the deposition speed was calculated.
- The sources of gold, the complexing agents, the deposition accelerators in Table 1 were mixed in the concentrations in Table 1 to prepare gold plating solutions, and pH of the gold plating solutions were regulated to pH 7.0 by using phosphoric acid as a pH regulator. A 4 cm2 Ni rolling plate was used, plating was performed for 10 minutes at 80 °C, the film thickness was measured, and the deposition speed was calculated. For the gold plating film thickness, "FT-9500X", X-ray fluorescence film thickness meter by Hitachi was used.
-
Table 1. Composition of plating solutions and plating conditions Comparative example 1 Working example 1 Working example 2 Working example 3 Working example 4 Comparative example 2 Working example 5 Comparative example 3 Working example 6 Substrate Ni Ni Ni Ni Ni Ni Ni Ni Ni Source of gold Sodium gold sulfite mol/L as Au 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Sodium chloroaurate mol/L as Au - - - - - 0.005 0.005 - - Complexing agent Sodium sulfite mol/L 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - Sodium thiosulfate mol/L - - - - - - - 0.05 0.05 Deposition accelerator Potassium carbonate mol/L - 0.05 - - - - - - - Rubidium carbonate mol/L - - 0.05 - - - - - - Cesium carbonate mol/L - - - 0.05 - - 0.05 - 0.005 Cesium chloride mol/L - - - - 0.1 - - - - pH regulator Phosphoric acid Phosphoric acid Phosphoric acid Phosphoric acid Phosphoric acid Phosphoric acid Phosphoric acid Phosphoric acid Phosphoric acid pH 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Bath temperature 80°C 80°C 80°C 80°C 80°C 80°C 80°C 80°C 80°C Deposition speed(µm /10min) 0.03 0.05 0.06 0.08 0.05 0.02 0.05 0.24 0.41 -
Fig. 1 is of a comparison of deposition speeds when an alkali metal ion is changed based on the results of comparative example 1, working examples 1-3 of Table 1. It was recognized that a gold deposition speed improves by adding an alkali metal ion. In addition, it was recognized that a gold deposition speed depends on an alkali metal ion, since working example 1, working example 2 and working example 3 have different gold deposition speeds in spite of them all comprising a carbonate ion in the same concentration. - It was recognized that, for an electroless gold plating solution containing a gold deposition accelerator comprising at least one or more alkali metal ion(s) other than a sodium ion, the gold deposition speed is large as compared to an electroless gold plating solution comprising no gold deposition accelerator, even after changing the kinds of cesium salt, source of gold and complexing agent.
- By the present invention, a sufficient gold deposition speed can be realized even in electroless plating using an electroless gold plating solution which does not have cyanide compound as a source of gold and has a slow deposition speed.
Claims (13)
- A gold deposition accelerator for electroless gold plating comprising one or more alkali metal compound(s), wherein said alkali metal compound is not a compound comprising only sodium as an alkali metal, and said alkali metal compound is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- An electroless gold plating solution comprising the gold deposition accelerator according to claim 1, a water-soluble source of gold and a complexing agent.
- The electroless gold plating solution according to claim 2, wherein the concentration of the alkali metal compound is 0.001 to 5 M on an alkali metal ion basis other than sodium.
- A gold deposition accelerator comprising a rubidium compound and/or cesium compound.
- An electroless gold plating solution comprising the gold deposition accelerator according to claim 4, a water-soluble source of gold and a complexing agent.
- The electroless gold plating solution according to claim 2, 3 or 5 further comprising a sodium compound.
- The electroless gold plating solution according to claim 2, 3, 5 or 6 comprising no cyanide compound.
- The electroless gold plating solution according to claim 2, 3, 5, 6 or 7 comprising an acid or a base as a pH regulator.
- A method of forming a gold plating film comprising a step of applying the electroless gold plating solution according to claim 2, 3, 5, 6, 7 or 8 on a surface of an electronic industrial component.
- A method of accelerating gold deposition in electroless gold plating comprising adding one or more alkali metal compound(s) in an electroless gold plating solution, wherein said alkali metal compound is not a compound comprising only sodium as an alkali metal, and said alkali metal compound is not only halide, only potassium sulfite, or only potassium sodium tartrate of an alkali metal.
- The method according to claim 10, wherein the concentration of the alkali metal compound is 0.001 M to 5 M on an alkali metal ion basis other than sodium.
- A method of accelerating gold deposition in electroless gold plating by adding a rubidium compound and/or cesium compound.
- The method according to claim 12, wherein the concentration of the rubidium compound and/or cesium compound is 0.001 M to 5 M on a rubidium ion and/or cesium ion basis.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/089007 WO2018122989A1 (en) | 2016-12-27 | 2016-12-27 | Cyanide-free substitution gold plating solution composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3564407A1 true EP3564407A1 (en) | 2019-11-06 |
EP3564407A4 EP3564407A4 (en) | 2020-10-21 |
Family
ID=62708094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16925513.0A Withdrawn EP3564407A4 (en) | 2016-12-27 | 2016-12-27 | Cyanide-free substitution gold plating solution composition |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210095378A1 (en) |
EP (1) | EP3564407A4 (en) |
JP (1) | JP6842475B2 (en) |
KR (1) | KR20190096420A (en) |
CN (1) | CN110114507A (en) |
WO (1) | WO2018122989A1 (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6350570A (en) * | 1986-08-12 | 1988-03-03 | ニツカン工業株式会社 | Metal plated alkali titanate and its production |
US4985076A (en) * | 1989-11-03 | 1991-01-15 | General Electric Company | Autocatalytic electroless gold plating composition |
US4978559A (en) * | 1989-11-03 | 1990-12-18 | General Electric Company | Autocatalytic electroless gold plating composition |
US5206055A (en) * | 1991-09-03 | 1993-04-27 | General Electric Company | Method for enhancing the uniform electroless deposition of gold onto a palladium substrate |
JP3227505B2 (en) * | 1993-07-16 | 2001-11-12 | 奥野製薬工業株式会社 | Substitution type electroless gold plating solution |
JP3892730B2 (en) * | 2002-01-30 | 2007-03-14 | 関東化学株式会社 | Electroless gold plating solution |
JP4603320B2 (en) * | 2003-10-22 | 2010-12-22 | 関東化学株式会社 | Electroless gold plating solution |
JP5526462B2 (en) | 2006-04-18 | 2014-06-18 | 日立化成株式会社 | Electroless gold plating solution and electroless gold plating method |
JP5026107B2 (en) * | 2007-02-23 | 2012-09-12 | 関東化学株式会社 | Electroless gold plating solution and plating method using the same |
JP4758470B2 (en) | 2008-12-18 | 2011-08-31 | シャープ株式会社 | Method for forming protruding electrode and displacement gold plating solution |
JP5371465B2 (en) * | 2009-02-09 | 2013-12-18 | メタローテクノロジーズジャパン株式会社 | Non-cyan electroless gold plating solution and conductor pattern plating method |
JP5370886B2 (en) | 2009-03-10 | 2013-12-18 | 関東化学株式会社 | Electroless gold plating solution for forming gold microstructure, method for forming gold microstructure using the same, and gold microstructure using the same |
DE102010012204B4 (en) * | 2010-03-19 | 2019-01-24 | MacDermid Enthone Inc. (n.d.Ges.d. Staates Delaware) | Improved process for direct metallization of non-conductive substrates |
JP2017210630A (en) * | 2014-10-02 | 2017-11-30 | 日本板硝子株式会社 | Electroless plating substrate agent, production method thereof, and plated laminate using electroless plating substrate agent |
-
2016
- 2016-12-27 JP JP2018558587A patent/JP6842475B2/en active Active
- 2016-12-27 CN CN201680091924.4A patent/CN110114507A/en active Pending
- 2016-12-27 KR KR1020197021607A patent/KR20190096420A/en unknown
- 2016-12-27 US US16/473,764 patent/US20210095378A1/en not_active Abandoned
- 2016-12-27 WO PCT/JP2016/089007 patent/WO2018122989A1/en unknown
- 2016-12-27 EP EP16925513.0A patent/EP3564407A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US20210095378A1 (en) | 2021-04-01 |
WO2018122989A1 (en) | 2018-07-05 |
JP6842475B2 (en) | 2021-03-17 |
EP3564407A4 (en) | 2020-10-21 |
CN110114507A (en) | 2019-08-09 |
JPWO2018122989A1 (en) | 2019-12-26 |
KR20190096420A (en) | 2019-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9353443B2 (en) | Stable catalysts for electroless metallization | |
US6869637B2 (en) | Bath and method of electroless plating of silver on metal surfaces | |
US9234282B2 (en) | Plating catalyst and method | |
US9617644B2 (en) | Method for direct metallization of non-conductive substrates | |
EP3480339B1 (en) | Electroless platinum plating bath | |
EP3334853A1 (en) | Electroless silver plating bath and method of using the same | |
EP3564407A1 (en) | Cyanide-free substitution gold plating solution composition | |
EP3134562B1 (en) | Process for the preparation of iron boron alloy coatings and plating bath therefor | |
KR102708269B1 (en) | Electroless gold(i) plating bath and electroless gold(i) concentrated plating solution | |
WO2018211727A1 (en) | Electroless platinum plating solution and platinum film obtained using same | |
KR20180041565A (en) | Electroless nickel plating bath | |
TWI794751B (en) | Cyanide-free liquid composition for immersion gold plating | |
JP4603320B2 (en) | Electroless gold plating solution | |
TWI765877B (en) | Cyanide-free liquid composition for immersion gold plating | |
EP3578683B1 (en) | Electroless copper or copper alloy plating bath and method for plating | |
JP2012087386A (en) | Electroless nickel plating bath and electroless nickel plating method using the same | |
JP2015209592A (en) | ELECTROLESS DEPOSITION OF CONTINUOUS PALLADIUM LAYER USING Co2+ METAL ION COMPLEX OR Ti3+ METAL ION COMPLEX AS REDUCER | |
JP2024061524A (en) | Electroless plating solution composition and method for depositing noble metal | |
KR100752504B1 (en) | Fabrication Method of Metal Interconnection by Electroless Plating | |
KR101224207B1 (en) | Electroless copper plating solution including cationic surfactant for wiring and copper coating layer prepared by the same | |
JP2021175816A (en) | Electroless gold plating bath and electroless gold plating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190716 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200921 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 18/42 20060101ALI20200915BHEP Ipc: C23C 18/44 20060101AFI20200915BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230701 |