WO2018100922A1 - 多層配線基板 - Google Patents

多層配線基板 Download PDF

Info

Publication number
WO2018100922A1
WO2018100922A1 PCT/JP2017/038178 JP2017038178W WO2018100922A1 WO 2018100922 A1 WO2018100922 A1 WO 2018100922A1 JP 2017038178 W JP2017038178 W JP 2017038178W WO 2018100922 A1 WO2018100922 A1 WO 2018100922A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer wiring
wiring board
resin
surface layer
layer
Prior art date
Application number
PCT/JP2017/038178
Other languages
English (en)
French (fr)
Inventor
伸一 荒木
秀幸 田口
隼史 野間
亮介 ▲高▼田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018553710A priority Critical patent/JP6497487B2/ja
Priority to CN201790001419.6U priority patent/CN210579551U/zh
Publication of WO2018100922A1 publication Critical patent/WO2018100922A1/ja
Priority to US16/412,489 priority patent/US10959327B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0382Continuously deformed conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer

Definitions

  • the present invention relates to a flat multilayer wiring board, and more particularly to a multilayer wiring board in which a surface layer made of a resin having a high elastic modulus is formed on a resin layer.
  • a conventional multilayer wiring board is prepared by preparing a plurality of resin sheets made of substantially the same material with conductive patterns and interlayer connection conductors, and applying heat and pressure while these resin sheets are stacked, It was produced by bonding (see, for example, Patent Document 1).
  • the mechanical characteristics of the resin sheet may be lowered. Further, since the resin sheet having a low elastic modulus is easily deformed, there is a problem that it is difficult to mount the surface mount component. Furthermore, the multilayer wiring board in which the surface sheets having different elastic moduli are laminated on the resin sheet has a problem that the mechanical strength is low due to a difference in thermal expansion coefficient.
  • an object of the present invention is to provide a multilayer wiring board having a flat surface and excellent mechanical strength.
  • the present invention relates to a flat multilayer wiring board, wherein a bonding surface between a resin layer and a surface layer has irregularities.
  • the present invention is a method for producing a flat multilayer wiring board, comprising preparing at least two resin layers including an insulating base and a conductive pattern provided on the insulating base; Place the resin layer in layers, form a concavo-convex with a heating press and join the resin layers together, layer the surface layer with a higher elastic modulus than the resin layer, and heat from the surface layer
  • a multilayer wiring board characterized by having a step of pressure-pressing on a flat surface in a state and bonding the resin layer and the surface layer, wherein the bonding surface of the resin layer and the surface layer has irregularities Regarding the method.
  • the surface of the resin layer is uneven, the surface layer is not easily peeled off from the resin layer due to a difference in thermal expansion coefficient or an impact, and the multilayer wiring board has a high reliability and a flat surface. Can be obtained.
  • FIG. 1 It is sectional drawing of the multilayer wiring board concerning Embodiment 1 of this invention. It is a cross-sectional photograph of a multilayer wiring board when the topsheet is formed from an epoxy resin containing a glass filler. 3 is an enlarged cross-sectional photograph of the multilayer wiring board of FIG. It is a particle size distribution (single peak distribution) of the glass filler. It is a cross-sectional photograph of the surface sheet containing the glass filler which has a particle size distribution of FIG. This is a particle size distribution (bimodal distribution) of the glass filler. It is a cross-sectional photograph of the surface sheet containing the glass filler which has a particle size distribution of FIG.
  • At least two resin layers including an insulating base material and a conductive pattern provided on the insulating base material are laminated, and a surface layer having a higher elastic modulus than the insulating base material is formed thereon.
  • a multi-layered wiring board having a flat surface and a bonding surface between a resin layer and a surface layer having irregularities. In such a multilayer wiring board, since the surface of the resin layer is uneven, the surface layer is difficult to peel off due to a difference in thermal expansion coefficient or an impact, and the multilayer wiring board has a high reliability and a flat surface.
  • the surface layer contains a glass filler.
  • the elastic modulus of a surface layer improves because a surface layer contains a glass filler.
  • the difference in the thermal mechanical properties due to the difference in the density of the glass filler in the surface layer is prevented, and the property change due to deformation is less likely to occur.
  • the particle size of the glass filler is smaller than the uneven step on the joint surface. Since the particle size is smaller than the step, a narrow region can be uniformly filled.
  • a part of the glass filler is disposed in the concave portion of the joint surface.
  • the entire glass filler is disposed in the concave portion of the joint surface. Thereby, the physical properties of the surface layer can be made uniform.
  • the particle size of the glass filler is smaller than the film thickness of the conductive pattern. Since the particle size is smaller than the film thickness of the conductive pattern, a narrow region can be uniformly filled.
  • the particle size of the glass filler is not more than one-third of the smaller one of the uneven step on the joint surface and the film thickness of the conductive pattern.
  • a narrow region can be uniformly filled by setting the particle size to be one third or less of the uneven step of the joint surface and the film thickness of the conductive pattern.
  • the glass filler is also present in the thinnest part of the surface layer.
  • the characteristics of the surface layer can be made uniform.
  • the glass filler has a bimodal distribution of particle sizes.
  • the closest packing of the glass filler is possible, and the characteristics can be made uniform while improving the rigidity of the surface layer.
  • the particle size of the glass filler is measured by cutting a cross section of an arbitrary portion of the glass filler, projecting the exposed cross section with an SEM, and measuring the size of the glass filler in the field of view. In the measurement method, the average of the maximum length and the minimum length of the glass filler cross section is defined as the particle size of the glass filler.
  • the observation magnification of SEM was, for example, 5000 times (FIGS. 5 and 7), and VE-7800 manufactured by Keyence Corporation was used as the SEM.
  • the surface layer is made of a thermosetting resin.
  • a thermosetting resin By using a thermosetting resin, it can be finally cured in a hot press process, and an uneven joint surface can be easily formed.
  • thermosetting resin is made of an epoxy resin. Manufacturing cost can be reduced by using a general-purpose epoxy resin.
  • the glass filler is glass fiber.
  • the elastic modulus of a surface layer improves because a surface layer contains glass fiber.
  • the resin layer is made of a thermoplastic resin.
  • the resin layers can be directly joined in a pressure press process.
  • the resin layer further includes an interlayer connection conductor including a resin component and penetrating the insulating substrate
  • the surface layer further includes an interlayer not penetrating the surface layer and not including the resin component.
  • a surface conductor having a film thickness larger than that of the conductive pattern included in the resin layer is provided on the surface of the surface layer opposite to the bonding surface.
  • the back layer having a higher elastic modulus than the insulating base material is bonded on the surface of the resin layer opposite to the bonding surface.
  • the joint surface between the back surface layer and the resin layer has irregularities. Since the bonding surface between the back surface layer and the resin layer has irregularities, the back surface layer is hardly peeled off due to a difference in thermal expansion coefficient or an impact, and the reliability is improved.
  • the front surface layer and the back surface layer are made of the same material. Thereby, the front surface layer and the back surface layer can be simultaneously manufactured under the same manufacturing conditions.
  • the resin layer includes a portion bonded to the front surface layer or the back surface layer and a portion not bonded to the front surface layer and the back surface layer.
  • portions of the resin layer that are not joined to the front surface layer and the back surface layer are curved. Even in a state where the resin layer is curved, a mounting substrate or the like can be mounted on the region of the resin layer where the front surface layer and the back surface layer are provided.
  • the twenty-first aspect of the present invention further includes a mounting component electrically connected to the conductive pattern. This makes it possible to connect a three-dimensional wiring to the mounted component.
  • a method for manufacturing a flat multilayer wiring board wherein at least two resin layers including an insulating base material and a conductive pattern provided on the insulating base material are prepared.
  • a process a process in which the resin layers are stacked, a process in which the resin layers are bonded together by heating and pressing, and a surface having a higher elastic modulus than the resin layer is formed on the resin layer.
  • the pressing step is performed without pressure, after maintaining the temperature of the surface layer at a temperature between the melting start temperature and the minimum viscosity temperature of the temperature viscosity curve, A step of pressurizing at a temperature.
  • the surface layer is softened and deformed into a shape along the unevenness of the surface of the resin layer and then pressurized, so that the bonding strength of the bonding surface can be improved.
  • the method further includes a step of fixing the mounting component on the surface layer. This makes it possible to connect a three-dimensional wiring to the mounted component.
  • FIG. 1 is a cross-sectional view of a flat multilayer wiring board according to a first embodiment of the present invention, the whole of which is represented by 100.
  • the multilayer wiring board 100 includes resin sheets 10, 20, and 30 that constitute a resin layer.
  • the resin sheet 10 includes an insulating substrate 13 and a conductive pattern 15 formed on the surface thereof.
  • the insulating base material 13 is made of a thermoplastic resin such as liquid crystal polymer (LCP), and the conductive pattern 15 is made of a conductive metal such as copper (insulating base materials 23 and 33, conductive material).
  • LCP liquid crystal polymer
  • the resin sheet may be a printed resin sheet used for a build-up type substrate.
  • flat form should just have a substantially flat surface and back surface, even if the surface and back surface are not necessarily smooth.
  • the resin sheet 20 includes an insulating base material 23, a conductive pattern 25 formed on the surface thereof, and an interlayer connection conductor 27 including a via conductor formed so as to penetrate the insulating base material 23 from the front surface to the back surface. .
  • the interlayer connection conductor 27 electrically connects the conductive pattern 15 and the conductive pattern 25.
  • the resin sheet 30 includes an insulating base material 33 and a conductive pattern 35 formed on the surface thereof.
  • Resin sheets 10, 20, and 30 are made of a thermoplastic resin, and are directly joined by thermocompression bonding without sandwiching an adhesive made of different materials between them. For this reason, compared with the case where an adhesive agent is pinched
  • the surface of the resin sheet 30 is covered with a surface sheet 50 constituting a surface layer.
  • the top sheet 50 is made of, for example, a thermosetting resin such as an epoxy resin, and may be an epoxy resin (glass epoxy) containing a filler such as glass fiber or spherical glass, or may be an epoxy resin containing another filler such as ceramic. .
  • the surface of the topsheet 50 is flat.
  • a surface conductor 60 made of, for example, copper foil is provided, and an interlayer connection conductor 69 made of a through-hole plated conductor is further connected to the lower conductive pattern 35 through the surface conductor 60. Is provided.
  • the interlayer connection conductor 69 may have a structure in which the conductor covers the wall surface of the through hole, or a structure in which the entire through hole is buried with the conductor.
  • the conductor used for the interlayer connection conductor 69 is made of a plating material such as copper plating that does not contain a resin component.
  • FIG. 2 is a cross-sectional photograph of the multilayer wiring board when the topsheet is formed from an epoxy resin containing a glass filler
  • FIG. 3 is an enlarged cross-sectional photograph of FIG. 2 and 3
  • a top sheet 104 is provided on a resin sheet 103 composed of an insulating substrate 101 and a conductive pattern 102.
  • the bright area is a spherical glass filler
  • the dark area is an epoxy resin.
  • the content of the spherical glass filler in the top sheet 104 is preferably about 20 volume% to about 70 volume%.
  • the spherical glass filler includes, for example, an ellipsoidal shape in addition to the true spherical glass filler.
  • FIG. 4 shows the particle size distribution of the glass filler.
  • the horizontal axis represents the particle size of the spherical glass filler, and the vertical axis represents the frequency.
  • FIG. 5 is a cross-sectional photograph of the top sheet containing the glass filler having such a particle size distribution.
  • the particle size distribution of the spherical glass filler is a unimodal distribution with an average particle size of about 400 nm.
  • the average particle diameter of 400 nm of the spherical glass filler is very small compared to, for example, the film thickness of 6 ⁇ m of the conductive pattern 102 and the film thickness of 20 ⁇ m of the top sheet 104.
  • the flowability of the spherical glass filler is high. Therefore, when the surface sheet 104 is bonded onto the resin sheet 103, the unevenness of the bonding surface is followed.
  • the spherical glass filler can move. As a result, it is possible to form the top sheet 104 with a thin film thickness and a spherical glass filler uniformly distributed.
  • the particle size of the spherical glass filler is preferably smaller than the uneven step on the joint surface, more preferably smaller than the film thickness of the conductive pattern. More preferably, the particle size of the spherical glass filler is 1/3 or less of the uneven step of the joint surface and the smaller thickness of the conductive pattern.
  • the particle size of the spherical glass filler is such a size, the spherical glass filler can be easily filled around the unevenness of the joint surface and the periphery of the conductive pattern. Further, it is possible to fill a thin portion of the surface sheet such as above the convex portion of the joint surface. As a result, the spherical glass filler is uniformly distributed over the entire surface sheet, and the characteristics of the surface sheet can be made uniform.
  • the particle size distribution of the spherical glass filler may be a bimodal distribution as shown in FIG.
  • the horizontal axis represents the particle size of the spherical glass filler
  • the vertical axis represents the frequency.
  • FIG. 7 is a cross-sectional photograph of a surface sheet containing a glass filler having such a particle size distribution.
  • the particle size distribution of the spherical glass filler is a two-peak distribution in which the average particle size has peaks at 400 nm and 1500 nm.
  • the spherical glass filler has a bimodal distribution, that is, by including the spherical glass filler having a large particle size and a small particle size, the spherical glass filler can be packed most closely. Moreover, the spherical glass filler having a large particle size can improve the rigidity, and the spherical glass filler having a small particle size is uniformly distributed and has a large specific surface area, and is easily fixed by the epoxy resin in the surface sheet. By using a spherical glass filler having a particle size with a bimodal distribution, it is possible to obtain a surface sheet having a combination of these characteristics, high rigidity, uniform physical properties, and a firmly bonded surface.
  • the surface of the surface sheet 50 is covered with a protective film 70 made of, for example, a solder resist.
  • An opening 77 is provided in the protective film 70 as necessary, and the surface conductor 60 is exposed at the bottom of the opening 77. Using this opening 77, the surface mount component (see FIG. 8) mounted on the protective film 70 and the surface conductor 60 are electrically connected.
  • FIG. 8 is a cross-sectional view when the surface-mounted component 80 is mounted on the multilayer wiring board 100 according to the first embodiment of the present invention.
  • the electrode 85 of the surface mount component 80 is electrically connected to the surface conductor 60 by solder 75 such as lead-free solder.
  • the top surface of the topsheet 50 is flat.
  • the surfaces of the surface conductor 60 and the protective film 70 formed on the surface sheet 50 are also flattened, and the connection reliability with the surface mount component 80 mounted on the multilayer wiring board 100 can be enhanced.
  • the resin sheets 10, 20, and 30 are covered with the top sheet 50 having a high elastic modulus, deformation due to external impact is unlikely to occur, and the connection reliability of the surface mounting component 80 can be improved.
  • the method for manufacturing the multilayer wiring board 100 includes the following steps 1 to 5. 9 to 13, the same reference numerals as those in FIGS. 1 and 8 indicate the same or corresponding portions.
  • Process 1 As shown in FIG. 9, the resin sheets 10, 20, and 30 which comprise a resin layer are prepared.
  • conductive patterns 15, 25, and 35 are formed on the surfaces of the insulating base materials 13, 23, and 33, respectively.
  • the conductive patterns 15, 25, and 35 are formed by attaching a conductive material layer on the insulating base materials 13, 23, and 33 and patterning it using photolithography and etching.
  • the opening 21 is provided in the insulating base material 23 of the resin sheet 20, and a conductive paste is filled therein.
  • the opening 21 is formed only in the resin sheet 20, but may be formed in other resin sheets 10 and 20 as necessary.
  • Process 2 As shown in FIG. 10, the resin sheet 10 is mounted on a smooth base (not shown) made of a hard material, and the resin sheets 20 and 30 are sequentially stacked thereon. In this state, for example, heating is performed at 250 ° C. or more and 300 ° C. or less, and an isotropic pressure pressing using a hydrostatic pressure or a pseudo isotropic pressure press is performed. For example, a cushion layer such as silicon resin may be stacked on the resin sheet 30 and pressed. Since the resin sheets 10, 20, and 30 are made of a thermoplastic resin, the resin sheets 10, 20, and 30 are bonded to each other by being pressed in a softened state. In this step, the conductive paste embedded in the opening 21 is also heated and cured to form the interlayer connection conductor 27. Resin components remain in the interlayer connection conductor 27.
  • Step 2 the resin sheets 10, 20, and 30 are softened, but the conductive patterns 15, 25, and 35 and the interlayer connection conductor 27 made of metal such as copper foil are not softened. For this reason, after the step 2, as shown in FIG. 10, the back surface of the resin sheet 10 in contact with a smooth base made of a hard material is flat, but the surface side to be pressurized is deformed, and the resin sheet 30 The surface of has irregularities.
  • Step 3 The surface sheet 50 and the surface conductor 60 are placed on the surface of the resin sheet 30 in a state where the resin sheets 10, 20, and 30 are placed on a smooth base (not shown) made of a hard material.
  • a top sheet 50 for example, an epoxy resin, or a thermosetting resin such as an epoxy resin (glass epoxy) containing glass fiber or spherical glass filler is used.
  • an epoxy resin glass epoxy
  • a thermosetting resin such as an epoxy resin (glass epoxy) containing glass fiber or spherical glass filler
  • the surface sheet 50 containing a spherical glass filler for example, a bisphenol A type diglycidyl ether resin added with 25% by volume of a glass filler is used.
  • FIG. 14 is a temperature profile and a pressure profile in step 3.
  • T indicates a temperature profile
  • Pa and Pb indicate pressure profiles used in the manufacturing method according to the first embodiment and the conventional manufacturing method, respectively.
  • step 3 the temperature is raised from room temperature to a temperature t 1 lower than the lowest viscosity temperature, for example, 120 ° C. or more and 150 ° C. or less, and the temperature is kept constant.
  • a temperature t 1 lower than the lowest viscosity temperature for example, 120 ° C. or more and 150 ° C. or less.
  • the upper surface of the surface conductor 60 is applied in the Z-axis direction shown in FIG. 9 in a state of being heated to a temperature t 2 higher than the minimum viscosity temperature, for example, 200 ° C. or more and 250 ° C. or less.
  • Press for the pressurization, for example, a vacuum press in a vacuum state is used.
  • the surface sheet 50 is bonded onto the resin sheet 30, and the surface conductor 60 is bonded thereon.
  • the surfaces of the surface sheet 50 and the surface conductor 60 are flat.
  • the surface sheet 50 may be composed of a plurality of layers, and in this case, for example, it can be realized by repeating the process of Step 3.
  • step 3 of the first embodiment by using the pressure profile Pa, the surface sheet 50 is softened and then pressurized, so that the surface sheet 50 is sufficiently filled with the unevenness of the resin sheet 30. Is possible.
  • the heating rate of Atsushi Nobori rate up to t 1, and from t 1 to t 2, for example 10 degrees / min 50 ° / min, preferably 20 degrees / min 40 ° / min, for example 30 degrees / Minutes are used. If the rate of temperature increase is too fast, the time at the minimum viscosity is shortened, so that the fluidity for following the irregularities on the surface of the resin sheet 30 is insufficient. On the other hand, if the rate of temperature rise is too slow, the curing reaction of the thermosetting resin proceeds, so that the minimum viscosity becomes high, and the fluidity for following the irregularities on the surface of the resin sheet 30 is also insufficient. In order to obtain a sufficiently low minimum viscosity and to follow the unevenness while ensuring a flow time, it is preferable to use a temperature increase rate as described above.
  • FIG. 15 shows the change in viscosity of the thermosetting resin contained in the top sheet 50 during the curing reaction process.
  • the thermosetting resin When the thermosetting resin is heated, the resin starts to melt at a predetermined melting temperature, and the viscosity decreases as the temperature increases.
  • the viscosity changes from a decrease to an increase at a certain point (minimum viscosity point).
  • minimum viscosity temperature the temperature at which the viscosity becomes the lower limit
  • melting temperature the temperature at which the melting starts and the viscosity starts to decrease
  • the surface conductor 60 is patterned into a predetermined shape using a lithography technique and an etching technique.
  • the film thickness (thickness in the Z-axis direction) of the surface conductor 60 is preferably thicker than the film thicknesses of the other conductive patterns 15, 25 and 35.
  • Step 5 As shown in FIG. 13, an opening 67 is formed in the surface conductor 60 and the surface sheet 50 using a lithography technique and an etching technique, and is embedded in, for example, copper plating to form an interlayer connection conductor 69.
  • the interlayer connection conductor 69 is preferably made of the same material as the surface conductor 60.
  • the lengths of the interlayer connection conductors 69 provided on the topsheet 50 are different from each other.
  • the interlayer connection conductor 69 is formed by plating, the interlayer connection conductor 69 does not contain resin, and the conductor resistance can be reduced as compared with the case of containing resin, so that the difference in resistance due to the length of the interlayer connection conductor 69 can be reduced. .
  • top sheet 50 and the top conductor 60 are covered with a protective film 70 such as a solder resist and patterned to form an opening 77.
  • a protective film 70 such as a solder resist
  • the surface conductor 60 is exposed at the bottom of the opening 77.
  • the multilayer wiring substrate 100 according to the first embodiment of the present invention as shown in FIG. 1 is completed.
  • this manufacturing method it is possible to obtain a flat multilayer wiring board having flat surfaces.
  • the joining strength of a joining surface improves because the joining surface of a resin sheet and a surface sheet has an unevenness
  • FIG. 16 is a cross-sectional view of the multilayer wiring board according to the second exemplary embodiment of the present invention, which is indicated as a whole by 200, and shows a state where the surface mounting component 80 is mounted.
  • the same reference numerals as those in FIGS. 1 and 8 indicate the same or corresponding portions.
  • a back sheet 90 constituting a back layer is further provided on the back surface of the resin sheet 10. Similar to the top sheet 50, the back sheet 90 is formed from a thermosetting resin such as an epoxy resin or an epoxy resin (glass epoxy) containing glass fiber or spherical glass filler. Since the glass fiber has a higher elastic modulus than the epoxy resin and can hardly deform the top sheet 50 and the back sheet 90, the connection reliability can be improved.
  • the top sheet 50 and the back sheet 90 may be formed from the same material.
  • the back sheet 90 is heated by sandwiching the top sheet 50 between a smooth base (not shown) made of a hard material and the resin sheet 10 in step 3 (FIG. 11) of the first embodiment. It can be joined to the back surface of the sheet 10.
  • the back sheet 90 having a higher elastic modulus than the resin sheets 10, 20, 30 is provided on the back surface of the resin sheet 10. Curvature and the like can be prevented by increasing the elastic modulus.
  • FIG. 17 is a cross-sectional view of a state in which the surface mounting component 80 is mounted on the surface of the multilayer wiring board according to the third embodiment of the present invention, which is indicated as a whole by 300, and is mounted on the mounting board 500. The figure is shown.
  • the same reference numerals as those in FIGS. 1 and 8 denote the same or corresponding parts.
  • the back sheet 90 is bonded to the back surface of the resin sheet 10 with a bonding surface having unevenness as well as the front surface side, and the surface conductor 60 is provided thereon. It has been. Such irregularities on the front and back surfaces can be obtained, for example, by sandwiching and pressing the laminated resin sheets between cushion layers.
  • solder 75 is provided in the opening provided in the protective film 70 and connected to the conductive pattern 505 provided on the mounting substrate 500. On the conductive pattern 505, another mounting component 550 is connected as necessary.
  • the multilayer wiring board 300 As described above, in the multilayer wiring board 300 according to the third embodiment of the present invention, it is possible to connect a surface mounting board or the like to both the front side and the back side of the multilayer wiring board 300, thereby improving the mounting density. Moreover, since the hard back surface sheet 90 is bonded to the back surface through a bonding surface having irregularities, the connection reliability with the mounting substrate 500 is increased.
  • the top sheet 50 and the back sheet 90 are preferably formed from the same material.
  • FIG. 18 shows a case where the mounting boards 520 and 510 are mounted on the two rigid parts 410b and 410c sandwiching the flexible part 410a of the multilayer wiring board according to the fourth embodiment of the present invention, the whole being represented by 400. It is sectional drawing.
  • the multilayer wiring board 400 includes a resin sheet 410.
  • the resin sheet 410 is formed by laminating a plurality of resin sheets made of an insulating base material and a conductive pattern, but individual resin sheets are not shown in FIG.
  • the surface sheet 50 is bonded to the surface of one end of the resin sheet 410 with an uneven bonding surface, and the protective film 70 is formed thereon. Further, a mounting substrate 520 is mounted thereon.
  • the back surface sheet 90 is also bonded to the back surface of the other end of the resin sheet 410 with an uneven bonding surface, and the protective film 70 is formed thereon. Further, a mounting substrate 510 is attached thereon.
  • the top sheet 50 and the back sheet 90 are preferably made of the same material.
  • the resin sheet 410 and the mounting substrate 520 are joined by, for example, solder.
  • the resin sheet 410 and the mounting substrate 510 are connected by fitting a connector 450 fixed to the resin sheet 410 and a connector 460 fixed to the mounting substrate 510.
  • both end portions where the topsheet 50 or the backsheet 90 are joined have a higher elastic modulus than the central portion where the topsheet 50 and the backsheet 90 are not joined.
  • both end portions where the topsheet 50 and the backsheet 90 are joined are respectively referred to as flexible portions 410a.
  • the mounting board 520 is first soldered to the rigid part 410b of the multilayer wiring board 400.
  • the connector 450 fixed to the multilayer wiring board 400 is fitted and connected to the connector 460 fixed to the mounting board 510.
  • the flexible portion 410a of the multilayer wiring board 400 is easily deformed, so that the connectors 450 and 460 can be easily fitted.
  • FIG. 19 is a cross-sectional view when the rigid portions 410b and 410c are connected to the mounting substrates 520 and 510 in a state where the flexible portion 410a of the multilayer wiring board 400 is curved. Even when two mounting boards 510 and 520 are arranged at positions as shown in FIG. 11, the multilayer wiring board 400 and the mounting boards 510 and 520 can be connected by bending the flexible portion 410 a of the multilayer wiring board 400. It becomes.
  • the surface sheet 50 or the back sheet 90 having a high elastic modulus is bonded to the surface of the resin sheet 410 with the uneven bonding surface. Therefore, the top sheet 50 and the back sheet 90 are difficult to peel from the resin sheet 410, and a highly reliable connection is possible.
  • the resin sheet has three layers.
  • the present invention is not limited to this and may be two layers.
  • interlayer connection conductors such as via conductors and through-hole plating conductors are provided as necessary.
  • the present invention can be applied to a build-up type multilayer wiring board in which a laminated structure is produced by repeating drilling and wiring formation.
  • a build-up type multilayer wiring board the surface of the laminated resin sheet is almost flat. For example, by pressing the surface of the resin sheet while heating using a hard substrate with a saw-shaped cross section, the resin sheet Concavities and convexities can be formed on the surface of the sheet to obtain a concavity and convexity-shaped joint surface.
  • the present invention can be used as a wiring layer for information terminals such as smartphones and electronic devices.

Abstract

熱膨張係数の違いや衝撃によっても樹脂層から表面層が剥がれにくく、信頼性の高い、平板状の多層配線基板を提供する。絶縁基材と絶縁基材の上に設けられた導電性パターンとを含む樹脂層が少なくとも2層積層され、その上に絶縁基材より弾性率の高い表面層が接合された、平板状の多層配線基板において、樹脂層と表面層との接合面が凹凸を有する。また、平板状の多層配線基板の製造方法が、樹脂層の上に、樹脂層より弾性率の高い表面層を重ねる工程と、表面層の上から加熱状態で平坦な面で加圧プレスを行い、樹脂層と表面層とを接合する工程とを含み、樹脂層と表面層との接合面は凹凸を有する。

Description

多層配線基板
 本発明は、平板状の多層配線基板に関し、特に、樹脂層の上に高い弾性率を有する樹脂からなる表面層が形成された多層配線基板に関する。
 従来の多層配線基板は、導電性パターンや層間接続導体を備えた実質同一材料からなる樹脂シートを複数準備し、これらの樹脂シートを重ねた状態で熱および圧力を加えることにより、樹脂シート同士を接合させて作製していた(例えば、特許文献1参照)。
特許第5574071号公報
 しかしながら、電気特性を優先して樹脂シートの材料を選択すると、樹脂シートの機械的特性が低くなることがあった。また、弾性率の低い樹脂シートは変形しやすいため、表面実装部品が実装しにくいという問題があった。更に、樹脂シートの上に弾性率の異なる表面シートを積層した多層配線基板では、熱膨張係数の違い等により機械的強度が低いという問題もあった。
 そこで、本発明は、表面が平坦で、機械的強度の優れた多層配線基板の提供を目的とする。
 本発明は、絶縁基材と絶縁基材の上に設けられた導電性パターンとを含む樹脂層が少なくとも2層積層され、その上に絶縁基材より弾性率の高い表面層が接合された、平板状の多層配線基板であって、樹脂層と表面層との接合面が凹凸を有することを特徴とする多層配線基板に関する。
 また、本発明は、平板状の多層配線基板の製造方法であって、絶縁基材と絶縁基材の上に設けられた導電性パターンとを含む樹脂層を、少なくとも2枚準備する工程と、樹脂層を重ねて配置し、加熱プレスで凹凸を形成し樹脂層同士を接合する工程と、樹脂層の上に、樹脂層より弾性率の高い表面層を重ねる工程と、表面層の上から加熱状態で平坦な面で加圧プレスを行い、樹脂層と表面層とを接合する工程と、を含み、樹脂層と表面層との接合面が凹凸を有することを特徴とする多層配線基板の製造方法に関する。
 以上のように、本発明では、樹脂層の表面が凹凸形状であるため、熱膨張係数の違いや衝撃によっても樹脂層から表面層が剥がれにくく、信頼性が高く、表面が平坦な多層配線基板を得ることができる。
本発明の実施の形態1にかかる多層配線基板の断面図である。 表面シートがガラスフィラーを含むエポキシ樹脂から形成された場合の多層配線基板の断面写真である。 図2の多層配線基板の拡大断面写真である。 ガラスフィラーの粒径の分布(単峰分布)である。 図4の粒径分布を有するガラスフィラーを含む表面シートの断面写真である。 ガラスフィラーの粒径の分布(2峰分布)である。 図6の粒径分布を有するガラスフィラーを含む表面シートの断面写真である。 本発明の実施の形態1にかかる多層配線基板の上に表面実装部品を実装した場合の断面図である。 本発明の実施の形態1にかかる多層配線基板の製造工程の断面図である。 本発明の実施の形態1にかかる多層配線基板の製造工程の断面図である。 本発明の実施の形態1にかかる多層配線基板の製造工程の断面図である。 本発明の実施の形態1にかかる多層配線基板の製造工程の断面図である。 本発明の実施の形態1にかかる多層配線基板の製造工程の断面図である。 工程3における温度プロファイルおよび圧力プロファイルである。 表面シートに含まれる熱硬化性樹脂の硬化反応過程における粘度の変化である。 本発明の実施の形態2にかかる多層配線基板の上に表面実装部品を実装した場合の断面図である。 本発明の実施の形態3にかかる多層配線基板の上に表面実装部品を実装し、多層配線基板を実装基板の上に実装した場合の断面図である。 本発明の実施の形態4にかかる多層配線基板の、フレキシブル部を挟む2つのリジッド部に実装基板を実装した場合の断面図である。 本発明の実施の形態4にかかる多層配線基板を湾曲させた状態で実装基板に接続した場合の断面図である。
 本発明の第1の態様では、絶縁基材と絶縁基材の上に設けられた導電性パターンとを含む樹脂層が少なくとも2層積層され、その上に絶縁基材より弾性率の高い表面層が接合された、平板状の多層配線基板であって、樹脂層と表面層との接合面が凹凸を有することを特徴とする多層配線基板である。かかる多層配線基板は、樹脂層の表面が凹凸形状であるため、熱膨張係数の違いや衝撃によっても表面層が剥がれにくく、信頼性が高く、表面が平坦な多層配線基板となる。
 本発明の第2の態様では、表面層は、ガラスフィラーを含有する。表面層がガラスフィラーを含有することで、表面層の弾性率が向上する。また、表面層内におけるガラスフィラーの密度差に伴う、熱的機械的特性の差が生じるのを防ぎ、変形による特性変化を起こりにくくする。
 本発明の第3の態様では、ガラスフィラーの粒径は、接合面の凹凸の段差より小さい。粒径が段差より小さいことで、狭い領域にも均一に充填することができる。
 本発明の第4の態様では、ガラスフィラーの一部が、接合面の凹部内に配置される。これにより表面層の物性の均一化が可能になる。
 本発明の第5の態様では、ガラスフィラーの全体が、接合面の凹部内に配置される。これにより表面層の物性の均一化が可能になる。
 本発明の第6の態様では、ガラスフィラーの粒径は、導電性パターンの膜厚より小さい。粒径が導電性パターンの膜厚より小さいことで、狭い領域にも均一に充填することができる。
 本発明の第7の態様では、ガラスフィラーの粒径は、接合面の凹凸の段差および導電性パターンの膜厚のうち、小さい方の3分の1以下である。粒径を接合面の凹凸の段差および導電性パターンの膜厚のうち小さい方の3分の1以下とすることで、狭い領域にも均一に充填することができる。
 本発明の第8の態様では、ガラスフィラーは、表面層の最も膜厚の薄い部分にも存在する。ガラスフィラーを均一に充填することで、表面層の特性を均一にできる。
 本発明の第9の態様では、ガラスフィラーは、粒径の分布が2峰分布である。ガラスフィラーの最密充填が可能となり、表面層の剛性を向上させつつ、特性を均一にできる。なお、ガラスフィラーの粒径の測定は、ガラスフィラーの任意の場所を断面切削し、露出した断面をSEMで投影し、視野内のガラスフィラーのサイズを測定して行う。測定方法では、ガラスフィラー断面の最大長さと最小長さの平均を当該ガラスフィラーの粒径とする。SEMの観察倍率は、例えば5000倍(図5、図7)とし、SEMはキーエンス社製のVE-7800を用いた。
 本発明の第10の態様では、表面層は、熱硬化性樹脂からなる。熱硬化性樹脂を用いることにより、加熱プレス工程で最終的に硬化して、凹凸形状の接合面を容易に形成できる。
 本発明の第11の態様では、熱硬化性樹脂は、エポキシ樹脂からなる。汎用的なエポキシ樹脂を使用することで、製造コストを低減できる。
 本発明の第12の態様では、ガラスフィラーは、ガラス繊維である。表面層がガラス繊維を含有することで、表面層の弾性率が向上する。
 本発明の第13の態様では、樹脂層は、熱可塑性樹脂からなる。樹脂層を熱可塑性樹脂から形成することで、加圧プレス工程で樹脂層同士を直接接合できる。
 本発明の第14の態様では、樹脂層は、更に、絶縁基材を貫通し、樹脂成分を含む層間接続導体を含み、表面層は、更に、表面層を貫通し、樹脂成分を含まない層間接続導体を含む。表面層に層間接続導体を形成することにより、表面層の厚さに応じて層間接続導体の長さが異なっても、抵抗値のばらつきを抑制できる。
 本発明の第15の態様では、表面層の、接合面と反対側の面上に、樹脂層に含まれる導電性パターンより膜厚の大きな表面導体が設けられる。表面層上の表面導体の膜厚を大きくすることで、表面導体および表面層が変形しにくくなり、表面層が剥離しにくくなる。
 本発明の第16の態様では、樹脂層の、接合面と反対側の面上に、絶縁基材より弾性率の高い裏面層が接合される。裏面層を設けることにより、更に多層配線基板の弾性率を高くすることができる。
 本発明の第17の態様では、裏面層と樹脂層との接合面が凹凸を有する。裏面層と樹脂層との接合面が凹凸を有することにより、熱膨張係数の違いや衝撃によっても裏面層が剥がれにくく、信頼性が高くなる。
 本発明の第18の態様では、表面層と裏面層とが、同じ材料からなる。これにより同一の製造条件で表面層と裏面層とを同時に作製できる。
 本発明の第19の態様では、樹脂層は、表面層または裏面層に接合された部分と、表面層および裏面層に接合されていない部分とを含む。表面層および裏面層で覆われていない樹脂層の部分を変形させることで、表面層および裏面層が設けられた領域に実装基板等を容易に実装できる。
 本発明の第20の態様では、樹脂層の、表面層および裏面層に接合されていない部分が湾曲している。樹脂層が湾曲した状態でも、樹脂層の、表面層および裏面層が設けられた領域に、実装基板等を実装できる。
 本発明の第21の態様では、更に、導電性パターンに電気的に接続された実装部品を含む。これにより実装部品に3次元の配線を接続することが可能になる。
 本発明の第22の態様は、平板状の多層配線基板の製造方法であって、絶縁基材と絶縁基材の上に設けられた導電性パターンとを含む樹脂層を、少なくとも2枚準備する工程と、樹脂層を重ねて配置し、加熱プレスを行って樹脂層同士を接合するとともに、樹脂層の表面に凹凸を形成する工程と、樹脂層の上に、樹脂層より弾性率の高い表面層を重ねる工程と、表面層の上から加熱状態で平坦な面で加圧プレスを行い、樹脂層と表面層とを接合する工程と、を含み、樹脂層と表面層との接合面が凹凸を有することを特徴とする多層配線基板の製造方法である。かかる製造方法により、両面が平坦な平板状の多層配線基板を得ることができる。また、樹脂層と表面層との接合面が凹凸を有することで、接合面の接合強度を向上できる。
 本発明の第23の態様では、プレス工程は、無加圧で表面層の温度を、温度粘性曲線の、溶融開始温度から最低粘度温度までの間の温度に保持した後に、最低粘度温度以上の温度で加圧する工程を含む。かかる工程では、表面層を軟化させて、樹脂層の表面の凹凸に沿った形状に変形させた後に加圧するため、接合面の接合強度を向上できる。
 本発明の第24の態様では、更に表面層の上に、実装部品を固定する工程を含む。これにより実装部品に3次元の配線を接続することが可能になる。
 以下において、図面を用いながら、本発明の実施に形態について説明する。図面において、理解を容易にするために、いくつかの要素の大きさは拡張され、縮尺通りには記載されていない。
(実施の形態1)
 図1は、全体が100で表される本発明の実施の形態1にかかる平板状の多層配線基板の断面図である。多層配線基板100は、樹脂層を構成する樹脂シート10、20、30を含む。樹脂シート10は、絶縁基材13と、その表面上に形成された導電性パターン15からなる。絶縁基材13は、例えば液晶ポリマー(LCP:Liquid Crystal Polymer)のような熱可塑性樹脂からなり、導電性パターン15は、例えば銅のような導電性金属からなる(絶縁基材23、33、導電性パターン25、35も同じ)。なお、樹脂シートは、ビルドアップ型基板に用いられるような印刷形成された樹脂シートでも良い。また、平板状とは、必ずしも表面や裏面が平滑でなくても、おおよそ平坦な表面および裏面を有すれば良い。
 樹脂シート20は、絶縁基材23と、その表面上に形成された導電性パターン25と、絶縁基材23を表面から裏面に貫通するように形成されたビア導体からなる層間接続導体27からなる。層間接続導体27は、導電性パターン15と導電性パターン25とを電気的に接続する。なお、以下において、図1のZ軸の+側を上または表、-側を下または裏と呼ぶ。
 樹脂シート30は、絶縁基材33と、その表面上に形成された導電性パターン35からなる。
 樹脂シート10、20、30は熱可塑性樹脂で構成され、異種材料からなる接着剤をそれらの間に挟むことなく、直接熱圧着で接合されている。このため、接着剤を挟む場合に比較して樹脂シート同士の接続強度は向上する。樹脂シート30の表面は、導電性パターン15等の影響を受けて、凹凸を有する。
 樹脂シート30の表面は、表面層を構成する表面シート50により覆われている。表面シート50は、例えばエポキシ樹脂のような熱硬化性樹脂からなり、例えばガラス繊維や球状ガラスのようなフィラーを含むエポキシ樹脂(ガラエポ)でも良く、セラミック等の他のフィラーを含むエポキシ樹脂でも良い。表面シート50の表面は、平坦になっている。表面シート50の表面上には、例えば銅箔からなる表面導体60が設けられ、更に表面導体60を通って下方の導電性パターン35に接続するようにスルーホールめっき導体からなる層間接続導体69が設けられている。層間接続導体69は、スルーホールの壁面を導体が覆う構造でも、スルーホール全体を導体で埋め込む構造でも良い。層間接続導体69に用いられる導体は、樹脂成分を含まない、例えば銅めっき等のめっき材料からなる。
 図2は、表面シートがガラスフィラーを含むエポキシ樹脂から形成された場合の多層配線基板の断面写真であり、図3は、図2の拡大断面写真である。図2、3において、絶縁基材101と導電性パターン102からなる樹脂シート103の上に、表面シート104が設けられている。
 図3の表面シート104において、明るい領域が球状ガラスフィラーであり、暗い領域がエポキシ樹脂である。表面シート104中の球状ガラスフィラーの含有量は、約20体積%~約70体積%程度が好ましい。なお、球状ガラスフィラーには、真球状のガラスフィラー以外に、例えば楕円体のような形状も含まれる。
 図4に、ガラスフィラーの粒径の分布を示す。図4において、横軸は球状ガラスフィラーの粒径、縦軸は頻度を示す。また、図5は、このような粒径分布を有するガラスフィラーを含む表面シートの断面写真である。
 図4に示すように、球状ガラスフィラーの粒径分布は、平均粒径が400nm程度の単峰分布となっている。球状ガラスフィラーの平均粒径400nmは、例えば導電性パターン102の膜厚6μmや、表面シート104の膜厚20μmに比較して非常に小さい。このような小粒径の球状ガラスフィラーを含む表面シート104では、球状ガラスフィラーの流動性が高いため、樹脂シート103の上に表面シート104を接着する場合に、接合面の凹凸に追従して球状ガラスフィラーが移動できる。この結果、膜厚が薄く、球状ガラスフィラーが均一に分布した表面シート104を形成することができる。
 球状ガラスフィラーの粒径は、好ましくは接合面の凹凸の段差より小さく、より好ましくは、導電性パターンの膜厚より小さい。更に好ましくは、球状ガラスフィラーの粒径は、接合面の凹凸の段差および導電性パターンの膜厚の小さい方の3分の1以下である。球状ガラスフィラーの粒径がこのような大きさであれば、接合面の凹凸や導電性パターンの周辺にも球状ガラスフィラーを容易に充填できる。また、接合面の凸部の上方のような表面シートの膜厚の薄い部分にも充填できる。この結果、表面シート全体に渡って球状ガラスフィラーが均一に分布し、表面シートの特性を均一にできる。
 球状ガラスフィラーの粒径分布は、図6に示すような2峰分布でも良い。図6において、横軸は球状ガラスフィラーの粒径、縦軸は頻度を示す。図7は、このような粒径分布を有するガラスフィラーを含む表面シートの断面写真である。図6からわかるように、球状ガラスフィラーの粒径分布は、平均粒径が400nmと1500nmにピークを持つ2峰分布となっている。
 このように、球状ガラスフィラーが2峰分布を有することにより、即ち、大粒径と小粒径の球状ガラスフィラーを含むことにより、球状ガラスフィラーを最密充填することができる。また、粒径の大きな球状ガラスフィラーは剛性を向上させることができ、粒径の小さな球状ガラスフィラーは、均一に分布すると共に、比表面積が大きく、表面シート中のエポキシ樹脂により、固定されやすい。2峰分布の粒径を有する球状ガラスフィラーを用いることにより、これらの特性が組み合わされて、剛性が高く、物性が均一で、かつ接合面が強固に接着された表面シートを得ることができる。
 表面シート50の表面上は、例えばソルダーレジストからなる保護膜70で覆われている。保護膜70には、必要に応じて開口部77が設けられ、開口部77の底部には、表面導体60が露出している。この開口部77を用いて、保護膜70の上に実装される表面実装部品(図8参照)と表面導体60とを電気的に接続する。
 図8は、本発明の実施の形態1にかかる多層配線基板100の上に、表面実装部品80を実装した場合の断面図である。表面実装部品80の電極85が、例えば鉛フリー半田のような半田75により表面導体60に電気的に接続される。
 このように、本発明の実施の形態1にかかる多層配線基板100では、表面シート50の上面が平坦になっている。このため、表面シート50の上に形成された表面導体60や保護膜70の表面も平坦となり、多層配線基板100の上に実装される表面実装部品80との接続信頼性を高めることができる。
 また、樹脂シート10、20、30が弾性率の高い表面シート50で覆われているため、外部衝撃による変形が生じにくく、表面実装部品80の接続信頼性を高められる。
 次に、本発明の実施の形態1にかかる平板状の多層配線基板100の製造方法について、図9~13を用いて説明する。多層配線基板100の製造方法は、以下の工程1~5を含む。なお、図9~13中、図1、8と同一符合は、同一または相当箇所を示す。
 工程1:図9に示すように、樹脂層を構成する樹脂シート10、20、30を準備する。樹脂シート10、20、30では、絶縁基材13、23、33の表面上には、それぞれ導電性パターン15、25、35が形成されている。導電性パターン15、25、35は、絶縁基材13、23、33の上に導電性材料層を貼り付け、フォトリソグラフィおよびエッチングを用いてパターニングして形成する。
 樹脂シート20の絶縁基材23には、開口部21が設けられ、その中に導電性ペーストが充填される。図3に示す断面図では、樹脂シート20のみに開口部21が形成されているが、必要に応じて他の樹脂シート10、20に形成しても良い。
 工程2:図10に示すように、硬質材料からなる平滑な台(図示せず)の上に樹脂シート10を載せ、その上に樹脂シート20、30を順次積み重ねる。この状態で、例えば250℃以上、300℃以下に加熱し、静水圧等を用いた等方圧加圧プレスや疑似等方圧プレスを行う。例えばシリコン樹脂のようなクッション層を樹脂シート30の上に重ねてプレスしても良い。樹脂シート10、20、30は、熱可塑性樹脂からなるため、軟化した状態で加圧することにより互いに接合する。この工程で、開口部21に埋め込まれた導電性ペーストも加熱されて硬化し、層間接続導体27となる。層間接続導体27中には、樹脂成分が残っている。
 なお、工程2において、樹脂シート10、20、30は軟化するが、例えば銅箔のような金属からなる導電性パターン15、25、35や層間接続導体27は軟化しない。このため、工程2の後において、図10に示すように、硬質材料からなる平滑な台に接触する樹脂シート10の裏面は平坦であるが、加圧される表面側は変形し、樹脂シート30の表面は凹凸を有する。
 工程3:樹脂シート10、20、30を硬質材料からなる平滑な台(図示せず)に載せた状態で、樹脂シート30の表面上に、表面シート50、表面導体60を載せる。表面シート50には、例えばエポキシ樹脂や、ガラス繊維や球状ガラスフィラーを含むエポキシ樹脂(ガラエポ)等の熱硬化性樹脂が用いられる。球状ガラスフィラーを含む表面シート50としては、例えばビスフェノールA型ジグリシジルエーテル樹脂にガラスフィラー25体積%を添加したものが用いられる。
 この状態で、加熱して表面シート50を軟化させた状態で加圧を行う。図14は、工程3における温度プロファイルおよび圧力プロファイルである。図14において、Tは温度プロファイルを示し、Pa、Pbはそれぞれ本実施の形態1にかかる製造方法および従来の製造方法で使用される圧力プロファイルを示す。
 工程3では、室温から最低粘度温度より低い温度t、例えば120℃以上、150℃以下の温度まで昇温し、温度を一定に保つ。この状態で加圧することなく保持することで、表面シート50を軟化させて、樹脂シート30の表面の凹凸に沿った形状に変形させる。
 続いて、最低粘度温度より高い温度t、例えば200℃以上、250℃以下の温度に加熱した状態で、平坦な板状体で表面導体60の上面を、図9に示すZ軸方向に加圧する。加圧には、例えば真空状態で行われる真空加圧プレスが用いられる。
 この結果、図11に示すように、樹脂シート30の上に表面シート50が接合され、その上に表面導体60が接合される。表面シート50および表面導体60の表面は、平坦となる。かかる工程では、樹脂シート30の表面が凹凸形状であるため、樹脂シート30の表面が平坦な場合と比較して表面シート50との接合力が向上する。なお、表面シート50は複数層からなっても良く、その場合、例えば工程3のプロセスを繰り返すことにより実現できる。
 従来は、図14に破線で示したような圧力プロファイルPbで加圧していたため、接合面の段差が大きい場合や、段差の幅が狭い場合には、表面シート50で樹脂シート30の凹凸を十分に充填出来ない場合があった。これに対して、本実施の形態1の工程3では加圧プロファイルPaを用いることにより、表面シート50を軟化させた後に加圧するため、表面シート50で樹脂シート30の凹凸を十分に充填することが可能となる。
 なお、tまでの昇温速度、およびtからtまでの昇温速度は、例えば10度/分から50度/分、好ましくは20度/分から40度/分であり、例えば30度/分が用いられる。昇温速度が速すぎると、最低粘度での時間が短くなるため、樹脂シート30の表面の凹凸に追従するための流動性が不足する。一方で、昇温速度が遅すぎると、熱硬化性樹脂の硬化反応が進行するため、最低粘度が高くなってしまい、やはり樹脂シート30の表面の凹凸に追従するための流動性が不足する。十分低い最低粘度が得られ、かつ流動時間を確保して凹凸に追従するには、上述のような昇温速度を用いることが好ましい。
 ここで、図15に、表面シート50に含まれる熱硬化性樹脂の、硬化反応過程における粘度の変化を示す。熱硬化性樹脂を加熱すると、所定の溶融温度で樹脂は溶融を開始し、温度の上昇と共に粘度は低下する。一方で、加熱により硬化反応が進行するため、ある点(最低粘度点)で粘度は低下から上昇に転換する。このため、温度に対する粘度の関係は、図15に示すような、最低粘度を有する下方向に凸のプロファイルとなる。ここでは、粘度が下限となる温度を「最低粘度温度」と呼び、溶融を開始し粘度が低下し始める温度を「溶融温度」と呼ぶ。
 工程4:図12に示すように、リソグラフィ技術およびエッチング技術を用いて、表面導体60を所定の形状にパターニングする。表面導体60の膜厚(Z軸方向の厚さ)は、他の導電性パターン15、25、35の膜厚より厚いことが好ましい。表面導体60の膜厚を厚くすることにより、表面導体60および表面シート50が変形しにくくなり、表面シート50が剥離しにくくなる。
 工程5:図13に示すように、リソグラフィ技術およびエッチング技術を用いて、表面導体60および表面シート50に開口部67を形成し、例えば銅めっきで埋め込んで層間接続導体69とする。層間接続導体69は、表面導体60と同じ材料からなることが好ましい。
 表面シート50は凹凸面の上に形成されるため、表面シート50に設けられた層間接続導体69の長さは互いに異なる。層間接続導体69をめっきにより形成した場合、層間接続導体69は樹脂を含まず、樹脂を含む場合に比較して導体抵抗が低減できるため、層間接続導体69の長さによる抵抗の差を小さくできる。
 続いて、表面シート50および表面導体60の上をソルダーレジスト等の保護膜70で覆い、パターニングして開口部77を形成する。開口部77の底部には、表面導体60が露出している。
 以上の工程1~5で、図1に示すような本発明の実施の形態1にかかる多層配線基板100が完成する。かかる製造方法により、両面が平坦な平板状の多層配線基板を得ることができる。また、樹脂シートと表面シートとの接合面が凹凸を有することで、接合面の接合強度が向上する。
(実施の形態2)
 図16は、全体が200で表される本発明の実施の形態2にかかる多層配線基板の断面図であり、表面実装部品80が実装された状態を示す。図16中、図1、8と同一符号は、同一または相当箇所を示す。
 本発明の実施の形態2にかかる多層配線基板200では、樹脂シート10の裏面に、更に裏面層を構成する裏面シート90が設けられている。裏面シート90は、表面シート50と同様に、例えばエポキシ樹脂や、ガラス繊維や球状ガラスフィラーを含むエポキシ樹脂(ガラエポ)等の熱硬化性樹脂から形成される。ガラス繊維はエポキシ樹脂よりも弾性率が高く、表面シート50や裏面シート90を変形しにくくできるため、接続信頼性を高められる。表面シート50と裏面シート90とは、同じ材料から形成されても良い。
 裏面シート90は、実施の形態1の工程3(図11)において、硬質材料からなる平滑な台(図示せず)と樹脂シート10との間に表面シート50を挟んで加熱することにより、樹脂シート10の裏面に接合させることができる。
 このように本発明の実施の形態2にかかる多層配線基板200では、樹脂シート10の裏面に、樹脂シート10、20、30より弾性率の高い裏面シート90が設けられるため、多層配線基板200の弾性率をより高くして湾曲等を防止できる。
(実施の形態3)
 図17は、全体が300で表される本発明の実施の形態3にかかる多層配線基板の表面に表面実装部品80が実装された状態で、かつ実装基板500の上に実装された状態の断面図を示す。図17中、図1、8と同一符号は、同一または相当箇所を示す。
 本発明の実施の形態3にかかる多層配線基板300では、樹脂シート10の裏面にも、表面側と同様に、凹凸を有する接合面で裏面シート90が接合され、その上に表面導体60が設けられている。かかる表面および裏面の凹凸は、例えば積層した樹脂シートの上下をクッション層で挟み、プレスすることで得られる。
 裏面シート90および表面導体60に設けられた開口部67には銅めっき等が埋め込まれて層間接続導体69が形成され、その裏面側に保護膜70が設けられている。保護膜70に設けられた開口部中に半田75が設けられ、実装基板500に設けられた導電性パターン505に接続されている。導電性パターン505の上には、必要に応じて他の実装部品550が接続されている。
 このように、本発明の実施の形態3にかかる多層配線基板300では、多層配線基板300の表側および裏側の双方に、表面実装基板等の接続が可能となり、実装密度を向上できる。また、裏面にも、硬質な裏面シート90を、凹凸を有する接合面を介して接合しているため、実装基板500との接続信頼性が高くなる。表面シート50と裏面シート90とは、同じ材料から形成されることが好ましい。
(実施の形態4)
 図18は、全体が400で表される本発明の実施の形態4にかかる多層配線基板の、フレキシブル部410aを挟む2つのリジッド部410b、410cに、それぞれ実装基板520、510を実装した場合の断面図である。
 多層配線基板400は、樹脂シート410を含む。実施の形態1と同様に、樹脂シート410は、絶縁基材と導電性パターンからなる複数の樹脂シートを積層して形成されるが、図10には個々の樹脂シートは記載していない。
 樹脂シート410の一端の表面には、表面シート50が凹凸のある接合面で接合され、その上に保護膜70が形成されている。更に、その上には実装基板520が実装されている。一方、樹脂シート410の他端の裏面にも、裏面シート90が凹凸のある接合面で接合され、その上に保護膜70が形成されている。更に、その上に実装基板510が取り付けられている。表面シート50と裏面シート90は同じ材料であることが好ましい。
 ここで、樹脂シート410と実装基板520とは、例えば半田で接合される。一方、樹脂シート410と実装基板510とは、樹脂シート410に固定されたコネクタ450と、実装基板510に固定されたコネクタ460とを嵌合させて接続されている。
 多層配線基板400の内、表面シート50または裏面シート90が接合された両端部分は、表面シート50および裏面シート90が接合されていない中央部分より弾性率が高くなっている。ここでは、図18に示すように、表面シート50、裏面シート90が接合された両端部分をそれぞれリジッド部410b、410c、2つのリジッド部410b、410cに挟まれた部分をフレキシブル部410aと呼ぶ。
 このように、リジッド部410b、410cとフレキシブル部410aとを有する多層配線基板400では、実装基板510、520を実装するために、まず、多層配線基板400のリジッド部410bに実装基板520を半田で接続した後、実装基板510に固定されたコネクタ460に、多層配線基板400に固定されたコネクタ450を嵌合させて接続する。この接続工程では、多層配線基板400のフレキシブル部410aが容易に変形するため、コネクタ450、460の嵌合作業が行い易くなる。
 図19は、多層配線基板400のフレキシブル部410aを湾曲させた状態で、リジッド部410b、410cが、実装基板520、510に接続された場合の断面図を示す。図11のような位置に2つの実装基板510、520が配置された場合でも、多層配線基板400のフレキシブル部410aを湾曲させることにより、多層配線基板400と実装基板510、520との接続が可能となる。
 このように多層配線基板400のフレキシブル部410aが湾曲した場合でも、リジッド部410b、410cでは、樹脂シート410の表面に、弾性率の高い表面シート50または裏面シート90が凹凸のある接合面で接合されているため、樹脂シート410から表面シート50および裏面シート90は剥離しにくく、信頼性の高い接続が可能となる。
 なお、本発明の実施の形態1~4では、樹脂シートを3層としたが、これに限定されるものではなく2層等でも良い。また、ビア導体やスルーホールめっき導体等の層間接続導体は必要に応じて設けるものとする。
 また、本発明の実施の形態1~4では、樹脂シートを積層して、加熱しながら加圧することで多層配線基板を作製する場合について述べたが、本発明は、絶縁基材を一層毎積層し、穴あけ加工、配線形成を繰り返すことによって積層構造を作製するビルドアップ型の多層配線基板にも適用できる。ビルドアップ型の多層配線基板では、積層した樹脂シートの表面はほぼ平坦であるため、例えば断面が鋸の刃状の硬質基材を用いて加熱しながら樹脂シートの表面をプレスすることで、樹脂シートの表面に凹凸を形成し、凹凸形状の接合面を得ることができる。
 本発明は、スマートフォン等の情報端末や電子機器の配線層として利用できる。
  10、20、30 樹脂シート(樹脂層)
  13、23、33 絶縁基材
  15、25、35 導電性パターン
  27 層間接続導体(ビア導体)
  50 表面シート(表面層)
  60 表面導体
  69 層間接続導体(スルーホールめっき導体)
  70 保護膜
  77 開口部
  90 裏面シート(裏面層)
  100 多層配線基板

Claims (24)

  1.  絶縁基材と該絶縁基材の上に設けられた導電性パターンとを含む樹脂層が少なくとも2層積層され、その上に該絶縁基材より弾性率の高い表面層が接合された、平板状の多層配線基板であって、
     該樹脂層と該表面層との接合面が凹凸を有することを特徴とする多層配線基板。
  2.  上記表面層は、ガラスフィラーを含有することを特徴とする請求項1に記載の多層配線基板。
  3.  上記ガラスフィラーの粒径は、上記接合面の凹凸の段差より小さいことを特徴とする請求項2に記載の多層配線基板。
  4.  上記ガラスフィラーの一部が、上記接合面の凹部内に配置されることを特徴とする請求項3に記載の多層配線基板。
  5.  上記ガラスフィラーの全体が、上記接合面の凹部内に配置されることを特徴とする請求項3に記載の多層配線基板。
  6.  上記ガラスフィラーの粒径は、上記導電性パターンの膜厚より小さいことを特徴とする請求項2に記載の多層配線基板。
  7.  上記ガラスフィラーの粒径は、上記接合面の凹凸の段差および上記導電性パターンの膜厚のうち、小さい方の3分の1以下であることを特徴とする請求項2に記載の多層配線基板。
  8.  上記ガラスフィラーは、上記表面層の最も膜厚の薄い部分にも存在することを特徴とする請求項2~7のいずれかに記載の多層配線基板。
  9.  上記ガラスフィラーは、粒径の分布が2峰分布であることを特徴とする請求項2~8のいずれかに記載の多層配線基板。
  10.  上記表面層は、熱硬化性樹脂からなることを特徴とする請求項1~9のいずれかに記載の多層配線基板。
  11.  上記熱硬化性樹脂は、エポキシ樹脂であることを特徴とする請求項10に記載の多層配線基板。
  12.  上記ガラスフィラーは、ガラス繊維であることを特徴とする請求項2に記載の多層配線基板。
  13.  上記樹脂層は、熱可塑性樹脂からなることを特徴とする請求項1~12のいずれかに記載の多層配線基板。
  14.  上記樹脂層は、更に、上記絶縁基材を貫通し、樹脂成分を含む層間接続導体を含み、
     上記表面層は、更に、該表面層を貫通し、樹脂成分を含まない層間接続導体を含むことを特徴とする請求項1~13のいずれかに記載の多層配線基板。
  15.  上記表面層の、上記接合面と反対側の面上に、上記樹脂層に含まれる導電性パターンより膜厚の大きな表面導体が設けられたことを特徴とする請求項1~14のいずれかに記載の多層配線基板。
  16.  上記樹脂層の、上記接合面と反対側の面上に、上記絶縁基材より弾性率の高い裏面層が接合されたことを特徴とする請求項1~15のいずれかに記載の多層配線基板。
  17.  上記裏面層と上記樹脂層との接合面が凹凸を有することを特徴とする請求項16に記載の多層配線基板。
  18.  上記表面層と上記裏面層とが、同じ材料からなることを特徴とする請求項16または17に記載の多層配線基板。
  19.  上記樹脂層は、上記表面層または上記裏面層に接合された部分と、該表面層および該裏面層に接合されていない部分とを含むことを特徴とする請求項16~18のいずれかに記載の多層配線基板。
  20.  上記樹脂層の、上記表面層および上記裏面層に接合されていない部分が湾曲したことを特徴とする請求項19に記載の多層配線基板。
  21.  更に、上記導電性パターンに電気的に接続された実装部品を含むことを特徴とする請求項1~20のいずれかに記載の多層配線基板。
  22.  平板状の多層配線基板の製造方法であって、
     絶縁基材と該絶縁基材の上に設けられた導電性パターンとを含む樹脂層を、少なくとも2枚準備する工程と、
     該樹脂層を重ねて配置し、加熱プレスを行って樹脂層同士を接合するとともに、該樹脂層の表面に凹凸を形成する工程と、
     該樹脂層の上に、該樹脂層より弾性率の高い表面層を重ねる工程と、
     該表面層の上から加熱状態で平坦な面で加圧プレスを行い、該樹脂層と該表面層とを接合するプレス工程と、を含み、
     該樹脂層と該表面層との接合面が凹凸を有することを特徴とする多層配線基板の製造方法。
  23.  上記プレス工程は、
     無加圧で表面層の温度を、温度粘性曲線の、溶融開始温度から最低粘度温度までの間の温度に保持した後に、該最低粘度温度以上の温度で加圧する工程を含むことを特徴とする請求項22に記載の多層配線基板の製造方法。
  24.  更に、上記表面層の上に、実装部品を固定する工程を含むことを特徴とする請求項22または23に記載の多層配線基板の製造方法。
PCT/JP2017/038178 2016-12-02 2017-10-23 多層配線基板 WO2018100922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018553710A JP6497487B2 (ja) 2016-12-02 2017-10-23 多層配線基板
CN201790001419.6U CN210579551U (zh) 2016-12-02 2017-10-23 多层布线基板
US16/412,489 US10959327B2 (en) 2016-12-02 2019-05-15 Multilayer wiring substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016235365 2016-12-02
JP2016-235365 2016-12-02
JP2017108417 2017-05-31
JP2017-108417 2017-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/412,489 Continuation US10959327B2 (en) 2016-12-02 2019-05-15 Multilayer wiring substrate

Publications (1)

Publication Number Publication Date
WO2018100922A1 true WO2018100922A1 (ja) 2018-06-07

Family

ID=62242546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038178 WO2018100922A1 (ja) 2016-12-02 2017-10-23 多層配線基板

Country Status (4)

Country Link
US (1) US10959327B2 (ja)
JP (3) JP6497487B2 (ja)
CN (1) CN210579551U (ja)
WO (1) WO2018100922A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246214B2 (en) 2018-09-27 2022-02-08 Murata Manufacturing Co., Ltd. Resin multilayer board
CN114175860A (zh) * 2019-08-08 2022-03-11 株式会社村田制作所 树脂多层基板以及树脂多层基板的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216247A1 (ja) * 2018-05-09 2019-11-14 日立化成株式会社 支持体付き層間絶縁層用樹脂フィルム、多層プリント配線板及び多層プリント配線板の製造方法
EP4081005A1 (en) * 2021-04-23 2022-10-26 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077397A1 (ja) * 2011-11-22 2013-05-30 パナソニック株式会社 フレキシブル金属張基材、フレキシブル金属張基材の製造方法、プリント配線板、多層フレキシブルプリント配線板、及びフレックスリジッドプリント配線板
JP2014232853A (ja) * 2013-05-30 2014-12-11 京セラ株式会社 多層配線基板およびプローブカード用基板
JP2015070101A (ja) * 2013-09-27 2015-04-13 株式会社村田製作所 多層基板及びその製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324695A (ja) 1986-07-17 1988-02-02 東芝ケミカル株式会社 多層プリント配線板の製造方法
US5519177A (en) * 1993-05-19 1996-05-21 Ibiden Co., Ltd. Adhesives, adhesive layers for electroless plating and printed circuit boards
JP3087152B2 (ja) * 1993-09-08 2000-09-11 富士通株式会社 樹脂フィルム多層回路基板の製造方法
EP0844809B1 (en) * 1996-11-20 2011-08-17 Ibiden Co, Ltd. Solder resist composition and printed circuit boards
JPH10190173A (ja) * 1996-12-25 1998-07-21 Kyocera Corp 配線基板
WO1999034654A1 (fr) * 1997-12-29 1999-07-08 Ibiden Co., Ltd. Plaquette a circuits imprimes multicouche
US6565954B2 (en) * 1998-05-14 2003-05-20 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
JP2000013024A (ja) * 1998-06-23 2000-01-14 Matsushita Electric Works Ltd 多層板の製造方法、及び多層板製造用平板
JP3335945B2 (ja) 1999-04-26 2002-10-21 富山日本電気株式会社 多層プリント配線板の製造方法
JP2001313468A (ja) * 2000-04-28 2001-11-09 Kyocera Corp 配線基板
KR100882664B1 (ko) * 2001-03-14 2009-02-06 이비덴 가부시키가이샤 다층 프린트 배선판
US6847527B2 (en) * 2001-08-24 2005-01-25 3M Innovative Properties Company Interconnect module with reduced power distribution impedance
JP2003332705A (ja) * 2002-05-16 2003-11-21 Shinko Electric Ind Co Ltd 配線基板およびその製造方法
CN1756654B (zh) * 2002-12-27 2011-05-11 日本电气株式会社 薄片材料及布线板
JP2005005684A (ja) * 2003-05-20 2005-01-06 Matsushita Electric Ind Co Ltd 多層基板及びその製造方法
JP2005072187A (ja) * 2003-08-22 2005-03-17 Denso Corp 多層回路基板およびその製造方法
JP4346541B2 (ja) * 2004-11-26 2009-10-21 日東電工株式会社 配線回路基板およびその製造方法
EP1872940A4 (en) * 2005-04-20 2008-12-10 Toyo Boseki ADHESIVE SHEET, METAL LAMINATED SHEET AND PRINTED CIRCUIT BOARD
JP4341588B2 (ja) * 2005-06-09 2009-10-07 株式会社デンソー 多層基板及びその製造方法
JP4754357B2 (ja) * 2006-01-12 2011-08-24 株式会社デンソー 多層基板の製造方法及び多層基板の製造装置
JP4668940B2 (ja) * 2006-03-24 2011-04-13 日本特殊陶業株式会社 配線基板、埋め込み用セラミックチップ
WO2011052744A1 (ja) * 2009-10-30 2011-05-05 三洋電機株式会社 素子搭載用基板およびその製造方法、半導体モジュール、ならびに携帯機器
JP5484176B2 (ja) * 2010-04-26 2014-05-07 日東電工株式会社 配線回路基板およびその製造方法
JP2011243870A (ja) * 2010-05-20 2011-12-01 Denso Corp コイル実装基板
JP5559674B2 (ja) * 2010-12-21 2014-07-23 パナソニック株式会社 フレキシブルプリント配線板及びフレキシブルプリント配線板製造用積層物
KR20120130515A (ko) * 2011-05-23 2012-12-03 삼성테크윈 주식회사 회로 기판 및 그의 제조 방법
JP5533914B2 (ja) * 2011-08-31 2014-06-25 株式会社デンソー 多層基板
JP5099272B1 (ja) * 2011-12-26 2012-12-19 パナソニック株式会社 多層配線基板とその製造方法
JP2013197136A (ja) * 2012-03-16 2013-09-30 Ngk Spark Plug Co Ltd 部品内蔵配線基板の製造方法
US9049805B2 (en) * 2012-08-30 2015-06-02 Lockheed Martin Corporation Thermally-conductive particles in printed wiring boards
JP5574071B1 (ja) 2012-12-26 2014-08-20 株式会社村田製作所 部品内蔵基板
JP6107941B2 (ja) 2013-04-30 2017-04-05 株式会社村田製作所 複合基板
KR20150083278A (ko) * 2014-01-09 2015-07-17 삼성전기주식회사 다층기판 및 다층기판의 제조방법
JP2015222753A (ja) * 2014-05-22 2015-12-10 イビデン株式会社 プリント配線板及びその製造方法
CN113147109A (zh) * 2015-03-30 2021-07-23 大日本印刷株式会社 装饰片
CN107041068B (zh) * 2016-02-04 2019-10-25 毅嘉科技股份有限公司 电路板结构及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077397A1 (ja) * 2011-11-22 2013-05-30 パナソニック株式会社 フレキシブル金属張基材、フレキシブル金属張基材の製造方法、プリント配線板、多層フレキシブルプリント配線板、及びフレックスリジッドプリント配線板
JP2014232853A (ja) * 2013-05-30 2014-12-11 京セラ株式会社 多層配線基板およびプローブカード用基板
JP2015070101A (ja) * 2013-09-27 2015-04-13 株式会社村田製作所 多層基板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246214B2 (en) 2018-09-27 2022-02-08 Murata Manufacturing Co., Ltd. Resin multilayer board
CN114175860A (zh) * 2019-08-08 2022-03-11 株式会社村田制作所 树脂多层基板以及树脂多层基板的制造方法

Also Published As

Publication number Publication date
JP6996595B2 (ja) 2022-01-17
JPWO2018100922A1 (ja) 2019-04-11
CN210579551U (zh) 2020-05-19
JP2020191469A (ja) 2020-11-26
JP6497487B2 (ja) 2019-04-10
US20190269010A1 (en) 2019-08-29
JP2019134172A (ja) 2019-08-08
US10959327B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
JP6996595B2 (ja) 多層配線基板
JP6542616B2 (ja) 部品内蔵配線基板の製造方法、部品内蔵配線基板および電子部品固定用テープ
US7341890B2 (en) Circuit board with built-in electronic component and method for manufacturing the same
EP1814373A1 (en) Multilayer printed wiring board and its manufacturing method
TWI335779B (en) Process for producing multilayer board
JPWO2006100909A1 (ja) 半導体装置及びその製造方法
JP2016207893A (ja) プリント配線板およびその製造方法
WO2010103695A1 (ja) 部品内蔵モジュールの製造方法及び部品内蔵モジュール
US20110266033A1 (en) Multilayer board
JP2004274035A (ja) 電子部品内蔵モジュールとその製造方法
JP2014146650A (ja) 配線基板およびその製造方法
JP2008141007A (ja) 多層基板の製造方法
CN103687333B (zh) 电路元器件内置基板的制造方法
TWI412313B (zh) 多層印刷配線板及其製法
JP2014216599A (ja) 配線基板およびその製造方法
TWI552662B (zh) A manufacturing method of a substrate in which an element is incorporated, and a substrate having a built-in element manufactured by the method
JP6897890B2 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
TWI669035B (zh) 電路板及電路板的製作方法
WO2019107289A1 (ja) フレキシブルプリント配線板の製造方法及びフレキシブルプリント配線板
JP2019057694A (ja) 多層基板の製造方法、部品実装基板の製造方法、多層基板、および、部品実装基板
JP2004128387A (ja) 多層基板の製造方法及び多層基板
TWI584711B (zh) A multi - layer circuit board manufacturing method for embedded electronic components
JP5585035B2 (ja) 回路基板の製造方法
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JP2006041299A (ja) 半導体装置用テープキャリアおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876941

Country of ref document: EP

Kind code of ref document: A1