WO2018084009A1 - 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 - Google Patents

有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 Download PDF

Info

Publication number
WO2018084009A1
WO2018084009A1 PCT/JP2017/038138 JP2017038138W WO2018084009A1 WO 2018084009 A1 WO2018084009 A1 WO 2018084009A1 JP 2017038138 W JP2017038138 W JP 2017038138W WO 2018084009 A1 WO2018084009 A1 WO 2018084009A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
charge transporting
group
structural unit
organic electronic
Prior art date
Application number
PCT/JP2017/038138
Other languages
English (en)
French (fr)
Inventor
和幸 加茂
直紀 浅野
啓 高井良
伊織 福島
重昭 舟生
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to EP17867662.3A priority Critical patent/EP3537490A4/en
Priority to JP2018548631A priority patent/JPWO2018084009A1/ja
Priority to US16/347,991 priority patent/US11398604B2/en
Priority to KR1020197012468A priority patent/KR102498458B1/ko
Priority to CN201780068366.4A priority patent/CN109937490B/zh
Publication of WO2018084009A1 publication Critical patent/WO2018084009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1642End groups comprising organic end groups comprising reactive double bonds or triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1644End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • Embodiments of the present invention relate to an organic electronic material and an organic layer formed using the material. Moreover, other embodiment of this invention is related with the display element, the illuminating device, and display apparatus using the organic electronics element and organic electroluminescent element which have the said organic layer, and this organic electroluminescent element.
  • Organic electronics elements are elements that perform electrical operations using organic substances, and are expected to exhibit features such as energy saving, low cost, and flexibility, and are attracting attention as a technology that can replace conventional inorganic semiconductors based on silicon. ing.
  • Examples of organic electronics elements include organic electroluminescence elements (hereinafter also referred to as “organic EL elements”), organic photoelectric conversion elements, organic transistors, and the like.
  • Organic EL elements are attracting attention as large-area solid-state light source applications that can replace, for example, incandescent lamps or gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
  • LCD liquid crystal display
  • FPD flat panel display
  • Organic EL elements are roughly classified into two types, low molecular organic EL elements and high molecular organic EL elements, from the organic materials used.
  • the polymer organic EL element a polymer compound is used as an organic material
  • the low molecular organic EL element a low molecular compound is used.
  • the manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system, and a wet process in which film formation is performed by plate printing such as relief printing and intaglio printing, and plateless printing such as inkjet. It is roughly divided into two. Since simple film formation is possible, the wet process is expected as an indispensable method for future large-screen organic EL displays.
  • an organic EL device manufactured using a polymer compound according to a wet process has a feature that it is easy to reduce the cost and increase the area.
  • an organic EL device having an organic layer produced using a conventional polymer compound is desired to be further improved in device characteristics such as drive voltage, light emission efficiency, and light emission lifetime.
  • conventional polymer compounds used as charge transporting compounds are susceptible to thermal degradation due to their low thermal stability.
  • the heat resistance of the polymer compound is insufficient, for example, the organic layer is thermally deteriorated by a high-temperature process at the time of device fabrication, and it is difficult to obtain desired device characteristics due to deterioration of the original performance.
  • the drive voltage is likely to increase due to, for example, thermal deterioration of the organic layer during high-temperature baking. Therefore, development of a charge transporting compound having excellent heat resistance is desired.
  • an embodiment of the present invention provides an organic electronic material including a charge transporting compound suitable for a wet process and having excellent heat resistance, and an organic layer having excellent heat resistance using the material.
  • Another embodiment of the present invention is an organic electronics element and an organic EL element having excellent heat resistance using the organic layer, and a display element, an illuminating device, and a display apparatus using the organic EL element. The purpose is to provide.
  • a charge transporting compound having a specific structure is suitable for a wet process and exhibits excellent heat resistance, and is suitable as an organic electronic material, thereby completing the present invention. I came to let you.
  • the embodiment of the present invention relates to an organic electronic material having a structural moiety represented by the following formula (I) and containing a charge transporting compound having a weight average molecular weight of more than 40,000.
  • Ar is an arylene group or heteroarylene group having 2 to 30 carbon atoms
  • X is at least one linking group selected from the group consisting of the following formulas (x1) to (x10)
  • Y is a carbon number of 1 to 10
  • Z represents a substituted or unsubstituted polymerizable functional group.
  • each R independently represents a hydrogen atom, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, or an aryl group or heteroaryl group having 2 to 30 carbon atoms.
  • the polymerizable functional group preferably includes at least one selected from the group consisting of an oxetane group, an epoxy group, a vinyl group, an acryloyl group, and a methacryloyl group.
  • the structural site represented by the above formula (I) is located at the terminal of the charge transporting compound.
  • the thermal weight reduction of the charge transporting compound when heated at 300 ° C. is 5% or less.
  • the charge transporting compound is preferably a hole injection layer material.
  • the charge transporting compound preferably contains a divalent structural unit having charge transporting property.
  • the charge transporting compound preferably includes at least one structure selected from the group consisting of an aromatic amine structure, a carbazole structure, a thiophene structure, a bithiophene structure, a benzene structure, a phenoxazine structure, and a fluorene structure. .
  • the charge transporting compound preferably has a structure branched in three or more directions.
  • the charge transporting compound is preferably a charge transporting polymer.
  • the organic electronic material of the above embodiment further includes a polymerization initiator.
  • the polymerization initiator preferably contains a cationic polymerization initiator.
  • the cationic polymerization initiator preferably contains an onium salt.
  • the organic electronic material of the above embodiment further includes a solvent.
  • the solvent is preferably a nonpolar solvent.
  • Another embodiment of the present invention relates to an organic layer formed of the organic electronic material of the above embodiment.
  • Another embodiment of the present invention relates to an organic electronic device including the organic layer.
  • the organic electroluminescent element preferably has a light emitting layer containing a phosphorescent material or a light emitting layer containing a thermally activated delayed fluorescent material.
  • the organic electroluminescent element preferably further includes a flexible substrate or a resin film substrate.
  • Another embodiment of the present invention relates to a display device including the above-described illumination device and a liquid crystal element as a display unit.
  • an organic electronic material including a charge transporting compound suitable for a wet process and having excellent heat resistance can be provided.
  • the organic layer which has the outstanding heat resistance using the said organic electronics material can be provided.
  • by forming an organic layer using the organic electronics material an organic electronics element, an organic EL element having excellent heat resistance, and the same are used.
  • a display element, a lighting device, and a display device can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic EL element according to an embodiment of the present invention.
  • Organic electronic material of the embodiment of the present invention is characterized by containing one or more charge transporting compounds having a specific structural site represented by the following formula (I).
  • Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms
  • X represents a linking group
  • Y represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • Z represents a substituted or unsubstituted group. Represents a polymerizable functional group.
  • the organic electronic material may contain two or more kinds of the charge transporting compound having the specific structural portion, or may further contain another charge transporting compound.
  • the charge transporting compound which is a feature of the present invention, has one or more structural units having charge transporting properties, and at least one of the structural units includes a structural portion represented by the formula (I).
  • the structural site represented by the formula (I) will be described in detail.
  • Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • An arylene group means a group having a structure in which two hydrogen atoms are removed from an aromatic hydrocarbon.
  • a heteroarylene group means a group having a structure in which two hydrogen atoms are removed from an aromatic heterocycle.
  • Each of the aromatic hydrocarbon and the aromatic heterocyclic ring may have a monocyclic structure such as benzene, or may have a condensed ring structure in which the rings are condensed with each other like naphthalene.
  • aromatic hydrocarbons include benzene, naphthalene, anthracene, tetracene, fluorene, and phenanthrene.
  • aromatic heterocycle include pyridine, pyrazine, quinoline, isoquinoline, acridine, phenanthroline, furan, pyrrole, thiophene, carbazole, oxazole, oxadiazole, thiadiazole, triazole, benzoxazole, benzoxiadiazole, benzothiadiazole, Examples include benzotriazole and benzothiophene.
  • the aromatic hydrocarbon and the aromatic heterocycle may have a polycyclic structure in which two or more selected from a single ring and a condensed ring are bonded via a single bond.
  • Examples of the aromatic hydrocarbon having such a polycyclic structure include biphenyl, terphenyl, and triphenylbenzene.
  • the aromatic hydrocarbon and aromatic heterocycle may each be unsubstituted or have one or more substituents.
  • the substituent may be, for example, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms. The number of carbon atoms is more preferably 1 to 15, further preferably 1 to 12, and particularly preferably 1 to 6.
  • Ar is preferably a phenylene group or a naphthylene group, and more preferably a phenylene group.
  • X is at least one linking group selected from the group consisting of the following formulas (x1) to (x10).
  • each R independently represents a hydrogen atom, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, or an aryl group or heteroaryl group having 2 to 30 carbon atoms.
  • R is preferably a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms.
  • the number of carbon atoms is more preferably 2 to 16, further preferably 3 to 12, and particularly preferably 4 to 8.
  • R is preferably an aryl group having 6 to 30 carbon atoms, more preferably a phenyl group or a naphthyl group, and further preferably a phenyl group.
  • the linking group X is preferably x1.
  • the charge transporting compound preferably has a structural moiety represented by the following formula (I-1).
  • Y is a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • the aliphatic hydrocarbon group may have a structure that is linear, branched, cyclic, or a combination thereof.
  • the aliphatic hydrocarbon group may be saturated or unsaturated.
  • Y is preferably an aliphatic hydrocarbon group having a linear structure, and more preferably saturated, from the viewpoint of easy availability of a monomer as a raw material. From these viewpoints, in the formula (I), Y is preferably — (CH 2 ) n —. That is, in one embodiment, the charge transporting compound preferably has a structural moiety represented by the following formula (I-2).
  • n is 1 to 10, preferably 1 to 8, and more preferably 1 to 6. From the viewpoint of heat resistance, n is more preferably 1 to 4, and n is most preferably 1 or 2.
  • the charge transporting compound preferably has a structural moiety represented by at least one of the above formulas (I-1) and (I-2), and is represented by the following formula (I-3). It is more preferable to have a structural site.
  • Z represents a polymerizable functional group.
  • the “polymerizable functional group” refers to a functional group that can form a bond by applying heat and / or light.
  • the polymerizable functional group Z may be unsubstituted or may have a substituent.
  • the polymerizable functional group Z include a group having a carbon-carbon multiple bond (for example, vinyl group, allyl group, butenyl group, ethynyl group, acryloyl group, methacryloyl group, etc.), a group having a small ring (for example, Cyclic alkyl groups such as cyclopropyl and cyclobutyl groups; Cyclic ether groups such as epoxy groups (oxiranyl groups) and oxetane groups (oxetanyl groups); Diketene groups; Episulfide groups; Lactone groups; Lactam groups; , Furan-yl group, pyrrole-yl group, thiophene-yl group, siloyl-yl group) and the like.
  • a group having a carbon-carbon multiple bond for example, vinyl group, allyl group, butenyl group, ethynyl group, acryloyl group, methacryloyl group
  • a vinyl group, an acryloyl group, a methacryloyl group, an epoxy group, and an oxetane group are particularly preferable. From the viewpoint of reactivity and characteristics of the organic electronics element, a vinyl group, an oxetane group, or an epoxy group is more preferable.
  • These polymerizable functional groups may have a substituent.
  • the substituent is preferably a linear, cyclic or branched saturated alkyl group having 1 to 22 carbon atoms. The number of carbon atoms is more preferably 1-8, and still more preferably 1-4. Most preferably, the substituent is a 1-4 straight chain saturated alkyl group.
  • the polymerizable functional group Z is preferably an oxetane group represented by the following formula (z1).
  • R may be a hydrogen atom or a saturated alkyl group having 1 to 4 carbon atoms.
  • R is particularly preferably a methyl group or an ethyl group.
  • the charge transporting compound having at least one structural moiety represented by the formula (I) contains at least one polymerizable functional group Z in the structure.
  • the compound containing a polymerizable functional group can be cured by a polymerization reaction, and the solubility in a solvent can be changed by curing. Therefore, the charge transporting compound having at least one structural moiety represented by the formula (I) has excellent curability and is a material suitable for a wet process.
  • the charge transporting compound in the present invention only needs to have the structural moiety represented by the above formula (I) and the ability to transport charges.
  • the transport charge is preferably holes. Any compound having a hole transporting property can be used as a material for a hole injection layer or a hole transport layer of an organic EL element, for example. Moreover, if it is an electron transportable compound, it can be used as a material of an electron carrying layer or an electron injection layer. In addition, any compound that transports both holes and electrons can be used as a material for the light emitting layer.
  • the charge transporting compound is preferably used as a material for a hole injection layer and / or a hole transport layer, and more preferably used as a material for a hole injection layer.
  • the charge transporting compound has a thermal weight reduction upon heating at 300 ° C. of 5% by mass or less with respect to the mass before heating.
  • the thermal weight reduction is more preferably 3.5% by mass or less.
  • the thermal mass reduction is preferably 2.5% by mass or less, 1.5% by mass or less, and 1.0% by mass or less in order, and most preferably 0.5% by mass or less.
  • thermogravimetric-indicating heat TG-DTA
  • the charge transporting compound has one or more structural units having a charge transporting property, and at least one of the structural units has a structural portion represented by the above formula (I).
  • the charge transporting compound may have a structure branched in three or more directions.
  • the charge transporting compound is roughly classified into a low molecular compound composed of one structural unit and a polymer compound composed of a plurality of structural units, and any of these may be used.
  • the structural unit constituting the charge transporting compound is as described below.
  • the charge transporting compound is a low molecular weight compound, it is preferable in that a highly pure material can be easily obtained.
  • the charge transporting compound is a polymer compound, it is preferable in that the composition can be easily prepared and the film formability is excellent. Furthermore, from the viewpoint of obtaining the advantages of both, it is possible to use a mixture of a low molecular compound and a high molecular compound as the charge transporting compound.
  • a polymer compound composed of a plurality of structural units having charge transportability will be described more specifically as an example of the charge transport compound.
  • charge transporting polymer When the charge transporting compound is a polymer compound, the charge transporting compound may be a polymer or an oligomer. Hereinafter, these are collectively referred to as “charge transporting polymer”.
  • the charge transporting polymer has at least one structural moiety represented by the following formula (I) in the molecule.
  • a charge transporting polymer containing a structural moiety represented by —Ar—CH 2 —O— at the terminal portion tends to cleave the intramolecular bond by heating and tends to have poor heat resistance.
  • the heat resistance of the charge transporting polymer can be improved by constituting the charge transporting polymer having the structural moiety represented by the formula (I).
  • the thermal degradation of the organic layer due to a high-temperature process at the time of device fabrication is improved, so that the performance of the organic layer can be easily maintained.
  • the thermal degradation of the organic layer due to a high-temperature process at the time of device fabrication is improved, so that the performance of the organic layer can be easily maintained.
  • an organic layer is formed according to a coating method using the charge transporting polymer according to the present embodiment, even when a high temperature baking treatment is applied, a decrease in the performance of the organic layer is suppressed and high carrier mobility can be maintained. It becomes possible.
  • the charge transporting polymer may be linear or have a branched structure.
  • the charge transporting polymer preferably includes at least a divalent structural unit L having charge transporting properties and a monovalent structural unit T constituting a terminal portion, and a trivalent or higher structural unit B constituting a branched portion. Further, it may be included.
  • the charge transporting polymer may contain only one type of each structural unit, or may contain a plurality of types. In the charge transporting polymer, each structural unit is bonded to each other at a binding site of “monovalent” to “trivalent or more”.
  • the charge transporting polymer is not limited to a polymer having the following partial structure.
  • L represents the structural unit L
  • T represents the structural unit T
  • B represents the structural unit B.
  • * Represents a binding site with another structural unit.
  • a plurality of L may be the same structural unit or different structural units. The same applies to T and B.
  • the charge transporting polymer preferably has a charge transporting divalent structural unit L.
  • the charge transporting polymer preferably has a structure branched in three or more directions, that is, the structural unit B.
  • the charge transporting polymer preferably includes at least one structure selected from the group consisting of an aromatic amine structure, a carbazole structure, a thiophene structure, a bithiophene structure, a benzene structure, a phenoxazine structure, and a fluorene structure.
  • This structure may be preferably included in the structural unit L described later, but may be included in the structural unit B, and may be included in both the structural unit L and the structural unit B.
  • the charge transporting polymer contains any of the above structures, the charge transporting property, particularly the hole transporting property can be improved.
  • the charge transporting polymer may contain a structural site represented by the formula (I) in at least one of the structural units L, B, and T constituting the polymer, and the introduction position thereof is There is no particular limitation.
  • the structural site represented by the formula (I) is preferably present in the structural unit T constituting at least one terminal portion of the charge transporting polymer.
  • the structural site represented by the formula (I) is preferably present in the structural unit T constituting the terminal part from the viewpoint of easy synthesis of the monomer compound constituting the charge transporting polymer.
  • the structural unit of the charge transporting polymer will be described more specifically.
  • the structural unit L is a divalent structural unit having charge transportability.
  • the structural unit L is not particularly limited as long as it contains an atomic group having the ability to transport charges.
  • the structural unit L is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxaline structure, acridine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxadiazole structure, thiazole structure, thiadiazole structure, triazole structure, benzo Thiophene structure, benzoxazole structure, benzoo
  • the structural unit L includes a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these from the viewpoint of obtaining excellent hole transport properties.
  • it is selected from a structure containing one or more of these, and is selected from a substituted or unsubstituted aromatic amine structure, carbazole structure, and a structure containing one or more of these Is more preferable.
  • the structural unit L is a substituted or unsubstituted fluorene structure, benzene structure, phenanthrene structure, pyridine structure, quinoline structure, and one or two of these. It is preferably selected from structures containing more than one species.
  • structural unit L includes the following.
  • the structural unit L is not limited to the following.
  • Each R independently represents a hydrogen atom or a substituent.
  • R is a substituent, preferably each R is independently —R 1 (excluding a hydrogen atom), —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a substituent selected from the group consisting of a halogen atom and a group containing a polymerizable functional group.
  • R 1 to R 8 of the above substituents are each independently a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or heteroaryl group having 2 to 30 carbon atoms.
  • the aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • a heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
  • the alkyl group may be further substituted with an aryl group or heteroaryl group having 2 to 20 carbon atoms, and the aryl group or heteroaryl group may be further linear, cyclic or branched having 1 to 22 carbon atoms. It may be substituted with an alkyl group.
  • R is preferably a hydrogen atom or a substituent selected from the group consisting of an alkyl group, an aryl group, and an alkyl-substituted aryl group.
  • R is more preferably a substituent from the viewpoint of increasing the molecular weight of the polymer.
  • R is a substituent, it is easy to increase the molecular weight of the charge transporting polymer, and it is easy to obtain excellent heat resistance.
  • the charge transport polymer is used with a nonpolar solvent.
  • the nonpolar solvent include benzene, toluene, hexane, ethyl acetate, dioxane, tetrahydrofuran and the like. In general, the solubility of polymers in nonpolar solvents tends to decrease with increasing molecular weight.
  • Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • An arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon.
  • a heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded via a single bond.
  • Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a single bond.
  • the structural unit B is a trivalent or higher-valent structural unit that constitutes a branched portion when the charge transporting polymer has a branched structure.
  • the structural unit B is preferably hexavalent or less, more preferably trivalent or tetravalent, from the viewpoint of improving the durability of the organic electronic element.
  • the structural unit B is preferably a unit having charge transportability.
  • the structural unit B is a substituted or unsubstituted aromatic amine structure, carbazole structure, condensed polycyclic aromatic hydrocarbon structure, and one or two of these from the viewpoint of improving the durability of the organic electronic device. Selected from structures containing more than one species.
  • structural unit B includes the following.
  • the structural unit B is not limited to the following.
  • W represents a trivalent linking group, for example, an arenetriyl group or a heteroarenetriyl group having 2 to 30 carbon atoms.
  • the arenetriyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon.
  • the heteroarene triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocyclic ring.
  • Ar each independently represents a divalent linking group, for example, each independently represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • Y represents a divalent linking group.
  • one R atom in the structural unit L (excluding a group containing a polymerizable functional group) has one more hydrogen atom from a group having one or more hydrogen atoms.
  • divalent groups excluding. Z represents any of a carbon atom, a silicon atom, or a phosphorus atom.
  • the benzene ring and Ar may have a substituent. Examples of the substituent include the substituents described as R in the structural unit L.
  • the structural unit T is a monovalent structural unit constituting the terminal portion of the charge transporting polymer.
  • the charge transporting polymer preferably has a polymerizable functional group at the terminal portion from the viewpoint of enhancing curability.
  • the charge transporting polymer preferably includes a structural unit T1 having a structure represented by the following formula (I). In the formula, Ar, X, Y, and Z are as described above.
  • the structural unit T1 preferably has at least one of the formulas (I-1) and (I-2) shown above.
  • the structural unit T1 more preferably has the structure of the formula (I-3) shown above.
  • the charge transporting polymer may further include a monovalent structural unit that constitutes a terminal portion different from the structural unit T1 within a range that does not decrease charge transporting property and curability.
  • the charge transporting polymer may include a monovalent structural unit T2 having a structure represented by the following formula (II) in addition to the structural unit T1.
  • a monovalent structural unit T2 having a structure represented by the following formula (II) in addition to the structural unit T1.
  • Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • J is a single bond or an ester bond (—COO—) and any one of 2 selected from the group consisting of (x1) to (x10) exemplified as the linking group X in the formula (I). Represents a valent linking group.
  • R represents a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • Ar in the formula (II) is preferably an arylene group having 6 to 30 carbon atoms.
  • a phenylene group or a naphthylene group is more preferable, and a phenylene group is more preferable.
  • J in formula (II) is preferably a single bond, an ester bond, or a linking group (—NR—) having a structure obtained by further removing one hydrogen atom from an amino group.
  • R is more preferably a phenyl group.
  • R1 in the formula (II) is a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, and the carbon number is more preferably 2 to 16, further preferably 3 to 12. Particularly preferred is 4 to 8.
  • R1 in the above formula (II) is preferably a cyclic alkyl group (cycloalkyl group) having 3 to 30 carbon atoms.
  • the number of carbon atoms is more preferably 5-20, and still more preferably 6-15.
  • the cycloalkyl group may be saturated or unsaturated, but is more preferably saturated.
  • R1 include an adamantyl group.
  • R1 in the above formula (II) is preferably an aryl group having 6 to 30 carbon atoms, more preferably a phenyl group or a naphthyl group, and further preferably a phenyl group.
  • the structural unit T2 has a structure in which J is an ester bond and R1 is a cycloalkyl group in the above formula (II).
  • the proportion of the structural unit T1 having the structure represented by the formula (I) is 50 mol based on the total structural unit T. % Or more is preferable, 75 mol% or more is more preferable, and 85 mol% or more is more preferable.
  • the proportion of the structural unit T1 may be 100 mol%.
  • the structural unit T2 in addition to the structural unit T1 from the viewpoint of further improving the heat resistance of the charge transporting polymer.
  • the ratio of the structural unit T2 is preferably 75 mol% or less, more preferably 50 mol% or less, and further preferably 25% or less, based on the total structural unit T (T1 + T2).
  • the proportion of the structural unit T1 is preferably 25 mol% or more, more preferably 50 mol%, and further preferably 75 mol% or more.
  • the amount contained in the charge transporting polymer is small.
  • the content of the polymerizable functional group can be appropriately set in consideration of these.
  • the number of polymerizable functional groups per molecule of the charge transporting polymer is preferably 2 or more, more preferably 3 or more from the viewpoint of obtaining a sufficient change in solubility.
  • the number of polymerizable functional groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.
  • the number of polymerizable functional groups means the total of the polymerizable functional group Z contained in the structural site represented by the formula (I) and other polymerizable functional groups.
  • the number of polymerizable functional groups per molecule of the charge transporting polymer is the number of monomers having polymerizable functional groups with respect to the total amount of monomers charged corresponding to each structural unit used to synthesize the charge transporting polymer.
  • the average value can be obtained by using the ratio of the charged amount, the weight average molecular weight of the charge transporting polymer, and the like.
  • the number of polymerizable functional groups is the ratio between the integral value of the signal derived from the polymerizable functional group and the integral value of the entire spectrum in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transporting polymer, the charge transporting polymer
  • the weight average molecular weight can be used to calculate the average value. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • the number average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and further preferably 2,000 or more from the viewpoint of excellent charge transportability.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable.
  • the weight average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, and still more preferably 10,000 or more, from the viewpoint of excellent charge transportability. From the viewpoint of easily obtaining excellent heat resistance, the weight average molecular weight is preferably larger than 40,000, more preferably 41,000 or more. Further, the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable.
  • the number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) under the following conditions using a standard polystyrene calibration curve.
  • Liquid feed pump L-6050 Hitachi High-Technologies UV-Vis detector: L-3000 Hitachi High-Technologies columns: Gelpack (registered trademark) GL-A160S / GL-A150S Hitachi Chemical Co., Ltd.
  • Eluent THF (for HPLC, without stabilizer) Wako Pure Chemical Industries, Ltd.
  • Flow rate 1 mL / min
  • Column temperature Room temperature molecular weight standard: Standard polystyrene
  • the proportion of the structural unit L contained in the charge transporting polymer is preferably 10 mol% or more, more preferably 20 mol% or more, and more preferably 30 mol% or more based on the total structural unit from the viewpoint of obtaining sufficient charge transportability. Is more preferable. Further, the ratio of the structural unit L is preferably 95 mol% or less, more preferably 90 mol% or less, and further preferably 85 mol% or less in consideration of the structural unit T and the structural unit B introduced as necessary.
  • the proportion of the structural unit T contained in the charge transporting polymer is based on the total structural unit from the viewpoint of improving the characteristics of the organic electronics element or suppressing the increase in the viscosity and satisfactorily synthesizing the charge transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is more preferable. Further, the proportion of the structural unit T is preferably 60 mol% or less, more preferably 55 mol% or less, and further preferably 50 mol% or less from the viewpoint of obtaining sufficient charge transportability. In one embodiment, the proportion of the structural unit T means the proportion of the structural unit T1 having the structural moiety represented by the formula (I). In another embodiment, the ratio of the structural unit T means the total amount of the structural unit T1 and the other structural unit T2.
  • the proportion of the structural unit B is preferably 1 mol% or more, more preferably 5 mol% or more, based on the total structural units, from the viewpoint of improving the durability of the organic electronics element.
  • 10 mol% or more is more preferable.
  • the proportion of the structural unit B is preferably 50 mol% or less, preferably 40 mol% or less, from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge transporting polymer or obtaining sufficient charge transportability. Is more preferable, and 30 mol% or less is more preferable.
  • the proportion of the polymerizable functional group in the charge transporting polymer is preferably 0.1 mol% or more, more preferably 1 mol% or more, based on the total structural unit, from the viewpoint of efficiently curing the charge transporting polymer. More preferably, it is at least mol%. Further, the proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, and further preferably 50 mol% or less from the viewpoint of obtaining good charge transportability.
  • the “ratio of polymerizable functional groups” refers to the ratio of structural units having a polymerizable functional group to the total structural units.
  • a structure having polymerizable substituents Z and Z ′ with respect to all structural units means the ratio of the total amount of units.
  • 100: 20 to 180: 20 to 90 is more preferable, and 100: 40 to 160: 30 to 80 is more preferable.
  • the proportion of the structural unit can be determined by using the charged amount of the monomer corresponding to each structural unit used for synthesizing the charge transporting polymer. Moreover, the ratio of the structural unit can be calculated as an average value using an integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transporting polymer. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • the charge transporting polymer is a hole transporting material
  • a unit having an aromatic amine structure and / or a unit having a carbazole structure is used as a main structural unit. It is preferable that it is a compound which has. From this viewpoint, the ratio of the total number of units having an aromatic amine structure and / or carbazole structure to the total number of structural units in the polymer compound (excluding the terminal structural unit) is 40% or more. Preferably, 45% or more is more preferable, and 50% or more is more preferable. The ratio of the total number of units having an aromatic amine structure and / or carbazole structure may be 100%.
  • the charge transporting polymer can be produced by various synthetic methods and is not particularly limited.
  • known coupling reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Stille coupling, Buchwald-Hartwig coupling and the like can be used.
  • Suzuki coupling causes a cross coupling reaction using a Pd catalyst between an aromatic boronic acid derivative and an aromatic halide.
  • Suzuki coupling a charge transporting polymer can be easily produced by bonding desired aromatic rings together.
  • a Pd (0) compound, a Pd (II) compound, a Ni compound, or the like is used as a catalyst.
  • a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate and the like with a phosphine ligand can also be used.
  • the description of International Publication No. WO2010 / 140553 can be referred to.
  • the organic electronic material may further contain a dopant.
  • the dopant is not particularly limited as long as it is a compound that can be added to the organic electronic material to develop a doping effect and improve the charge transport property.
  • Doping includes p-type doping and n-type doping.
  • p-type doping a substance serving as an electron acceptor is used as a dopant
  • n-type doping a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability.
  • the dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. Further, one kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.
  • the dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and ⁇ -conjugated compounds.
  • Lewis acid FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like;
  • protonic acid HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeCl 3
  • Lewis acids ionic compounds, ⁇ -conjugated compounds, and the like, and more preferred are ionic compounds.
  • ionic compounds onium salts are particularly preferred.
  • the onium salt means a compound composed of a cation moiety containing onium ions such as iodonium and ammonium, and an anion moiety.
  • the dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • alkali metals such as Li and Cs
  • alkaline earth metals such as Mg and Ca
  • alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • a compound that can act as a polymerization initiator for the polymerizable functional group as a dopant.
  • the substance having both the function as a dopant and the function as a polymerization initiator for example, the above ionic compound can be mentioned.
  • the organic electronic material may further contain a charge transporting low molecular weight compound, other charge transporting polymers, and the like.
  • the content of the charge transporting compound is preferably 50% by weight or more, more preferably 70% by weight or more, and more preferably 80% by weight or more based on the total weight of the organic electronic material from the viewpoint of obtaining good charge transporting properties. preferable. It may be 100% by mass.
  • the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more.
  • 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is further more preferable.
  • the organic electronic material of the present embodiment preferably contains a polymerization initiator.
  • a polymerization initiator known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators and the like can be used. From the viewpoint of easily preparing the ink composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator.
  • the onium salt described above can be suitably used as a cationic polymerization initiator having a function as a dopant.
  • a salt of a perfluoroanion and a cation such as iodonium ion or ammonium ion can be mentioned. Specific examples of the onium salt include the following compounds.
  • the organic electronic material may be an ink composition further containing a solvent capable of dissolving or dispersing the organic electronic material of the above-described embodiment.
  • the organic layer can be easily formed by a simple method such as a coating method.
  • solvent water, an organic solvent, or a mixed solvent thereof can be used.
  • Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, 2,4
  • Amide solvents dimethyl sulfoxide, tetrahydrofuran, acetone, chloroform, methylene chloride and the like can be mentioned.
  • the ink composition may further contain an additive as an optional component.
  • additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.
  • the content of the solvent in the ink composition can be determined in consideration of application to various coating methods.
  • the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferred is an amount of
  • the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. .
  • the organic layer which is embodiment of this invention is a layer formed using the organic electronics material of the said embodiment.
  • the organic electronic material of the above embodiment may be used as an ink composition.
  • the organic layer can be favorably formed by a coating method.
  • the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc.
  • a known method such as a plateless printing method may be used.
  • the organic layer (coating layer) obtained after the coating may be dried using a hot plate or an oven to remove the solvent.
  • the solubility of the organic layer may be changed by advancing the polymerization reaction of the charge transporting compound by light irradiation, heat treatment or the like. By laminating organic layers with different solubility, it is possible to easily increase the number of organic electronics elements.
  • the heat treatment can be performed at a temperature higher than 200 ° C. (also referred to as a high temperature baking treatment), and thermal deterioration of the organic layer after the heat treatment can be suppressed.
  • the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more. Further, the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and further preferably 100 nm or less, from the viewpoint of reducing electrical resistance.
  • the organic electronics element which is embodiment of this invention has the organic layer of the said embodiment at least.
  • Examples of the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor.
  • the organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes.
  • the organic EL element which is embodiment of this invention has an organic layer of the said embodiment at least.
  • the organic EL element usually includes a light emitting layer, an anode, a cathode, and a substrate, and other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer are provided as necessary. I have. Each layer may be formed by a vapor deposition method or a coating method.
  • the organic EL element preferably has an organic layer as a light emitting layer or other functional layer, more preferably as a functional layer, and still more preferably as at least one of a hole injection layer and a hole transport layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic EL element according to an embodiment of the present invention.
  • the organic EL element of FIG. 1 is an element having a multilayer structure, and includes a substrate 8, an anode 2, a hole injection layer 3 and a hole transport layer 6 made of the organic layer of the above embodiment, a light emitting layer 1, an electron transport layer 7
  • the electron injection layer 5 and the cathode 4 are provided in this order.
  • each layer will be described.
  • the hole injection layer 3 and the hole transport layer 6 are organic layers formed using the above-described organic electronics material.
  • the organic EL of the embodiment of the present invention is not limited to such a structure, and other organic layers may be organic layers formed using the organic electronic material.
  • Light emitting layer As a material used for the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.
  • TADF thermally activated delayed fluorescent material
  • Fluorescent materials such as perylene, coumarin, rubrene, quinacdrine, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinylcarbazole, fluorene-benzothiadiazole copolymer , Fluorene-triphenylamine copolymers, polymers thereof such as derivatives thereof, and mixtures thereof.
  • a metal complex containing a metal such as Ir or Pt can be used as the phosphorescent material.
  • Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), and Ir (ppy) 3 that emits green light.
  • a host material is further contained in addition to the phosphorescent material.
  • a host material a low molecular compound, a polymer, or a dendrimer can be used.
  • the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′- Bis (carbazol-9-yl) -2,2′-dimethylbiphenyl), derivatives thereof, and the like.
  • the polymer include the organic electronic materials, polyvinyl carbazole, polyphenylene, polyfluorene, derivatives thereof, and the like of the above embodiment. It is done.
  • thermally activated delayed fluorescent materials include Adv.AMater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012) ; Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385) (2013); Chem. Lett., 43, 319 (2014) and the like.
  • the hole injection layer 3 and the hole transport layer 6 are organic layers formed using the above-described organic electronics material.
  • the organic EL element according to the embodiment is not limited to such a structure.
  • the organic layer may be an organic layer formed using the organic electronic material. It is preferably used as at least one of a hole transport layer and a hole injection layer formed using the organic electronic material, and more preferably used as at least a hole transport layer.
  • a known material can be used for the hole injection layer.
  • a known material is used for the hole transport layer. Can be used.
  • Examples of materials that can be used for the hole injection layer and the hole transport layer include aromatic amine compounds (for example, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine ( Aromatic diamines such as ⁇ -NPD), phthalocyanine compounds, thiophene compounds (eg, thiophene conductive polymers (eg, poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate)) (PEDOT: PSS) and the like.
  • aromatic amine compounds for example, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine
  • Aromatic diamines such as ⁇ -NPD
  • phthalocyanine compounds such as ⁇ -NPD
  • thiophene compounds eg, thiophene conductive polymers (eg, poly (3,4-ethylenedioxythiophene): poly (4-s
  • Electrode transport layer examples include phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, condensed ring tetracarboxylic anhydrides such as naphthalene and perylene, carbodiimides, and the like.
  • cathode As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • anode for example, a metal (for example, Au) or another material having conductivity is used.
  • examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
  • substrate glass, plastic or the like can be used.
  • the substrate is preferably transparent.
  • substrate flexible board
  • the resin film examples include films made of polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate, and the like. Can be mentioned.
  • the resin film may be coated with an inorganic material such as silicon oxide or silicon nitride in order to suppress permeation of water vapor, oxygen, and the like.
  • the emission color of the organic EL element is not particularly limited.
  • the white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.
  • a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used.
  • a combination of a plurality of emission colors is not particularly limited, but a combination containing three emission maximum wavelengths of blue, green and red, a combination containing two emission maximum wavelengths of blue and yellow, yellow green and orange, etc. Is mentioned.
  • the emission color can be controlled by adjusting the type and amount of the light emitting material.
  • the display element which is embodiment of this invention is equipped with the organic EL element of the said embodiment.
  • a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB).
  • Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
  • the lighting device according to the embodiment of the present invention includes the organic EL element according to the embodiment of the present invention.
  • the display apparatus which is embodiment of this invention is equipped with the illuminating device and the liquid crystal element as a display means.
  • the display device may be a display device using a known liquid crystal element as a display unit, that is, a liquid crystal display device, using the illumination device according to the embodiment of the present invention as a backlight.
  • the number average molecular weight of the obtained charge transporting polymer 1 was 13,600, and the weight average molecular weight was 72,800.
  • the charge transporting polymer 1 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), and a structural unit T1 (derived from the monomer T1a). , 45.5%, 18.2%, and 36.3%.
  • the number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent.
  • the measurement conditions are as follows. Liquid feed pump: L-6050 Hitachi High-Technologies Corporation UV-Vis detector: L-3000 Hitachi High-Technologies Corporation Column: Gelpack (registered trademark) GL-A160S / GL-A150S Hitachi Chemical Co., Ltd. Eluent: THF (for HPLC, without stabilizer) Wako Pure Chemical Industries, Ltd. Flow rate: 1 mL / min Column temperature: Room temperature Molecular weight standard: Standard polystyrene
  • the number average molecular weight of the obtained charge transporting polymer 2 was 24,700, and the weight average molecular weight was 49,100.
  • the charge transporting polymer 2 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), and a structural unit T1 (derived from the monomer T1b). In order, they were 45.5%, 18.2%, and 36.3%.
  • the number average molecular weight of the obtained charge transporting polymer 3 was 15,100, and the weight average molecular weight was 58,200.
  • the charge transporting polymer 3 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), and a structural unit T1 (derived from the monomer T1c). In order, they were 45.5%, 18.2%, and 36.3%.
  • the number average molecular weight of the obtained charge transporting polymer 4 was 15,700, and the weight average molecular weight was 56,400.
  • the charge transporting polymer 4 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2a). The proportion of each structural unit was 45.5%, 18.2%, 9.1%, and 27.2%.
  • the number average molecular weight of the obtained charge transporting polymer 5 was 12,800, and the weight average molecular weight was 41,800.
  • the charge transporting polymer 5 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2a).
  • the proportion of each structural unit was 45.5%, 18.2%, 10.9%, and 25.4%, respectively.
  • the number average molecular weight of the obtained charge transporting polymer 6 was 12,600, and the weight average molecular weight was 41,000.
  • the charge transporting polymer 6 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2a).
  • the proportion of each structural unit was 45.5%, 18.2%, 14.5%, and 21.8% in this order.
  • the number average molecular weight of the obtained charge transporting polymer 7 was 13,500, and the weight average molecular weight was 42,100.
  • the charge transporting polymer 7 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2a).
  • the proportion of each structural unit was 45.5%, 18.2%, 18.15%, and 18.15% in this order.
  • the number average molecular weight of the obtained charge transporting polymer 8 was 13,000, and the weight average molecular weight was 45,100.
  • the charge transporting polymer 8 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2b). The proportion of each structural unit was 45.5%, 18.2%, 18.15%, and 18.15% in this order.
  • the number average molecular weight of the obtained charge transporting polymer 9 was 12,300, and the weight average molecular weight was 55,800.
  • the charge transporting polymer 9 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2b).
  • the proportion of each structural unit was 45.5%, 18.2%, 9.1%, and 27.2%, respectively.
  • the number average molecular weight of the obtained charge transporting polymer 10 was 15,700, and the weight average molecular weight was 45,100.
  • the charge transporting polymer 10 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2c).
  • the proportion of each structural unit was 45.5%, 18.2%, 18.15%, and 18.15% in this order.
  • the number average molecular weight of the obtained charge transporting polymer 11 was 16,400, and the weight average molecular weight was 46,900.
  • the charge transporting polymer 11 has a structural unit L (derived from the monomer L1), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2c).
  • the proportion of each structural unit was 45.5%, 18.2%, 9.1%, and 27.2%, respectively.
  • the number average molecular weight of the obtained charge transporting polymer 12 was 18,900, and the weight average molecular weight was 49,100.
  • the charge transporting polymer 12 has a structural unit L (derived from the monomer L2), a structural unit B (derived from the monomer B1), a structural unit T1 (derived from the monomer T1c), and a structural unit T2 (derived from the monomer T2a).
  • the ratio of each structural unit was 45.5%, 18.2%, 9.1%, and 27.2% in order.
  • thermogravimetric decrease (mass%) was measured using a thermogravimetric-indicating heat (TG-DTA) analyzer (“DTG-60 / 60H” manufactured by Shimadzu Corporation), 10 mg of the charge transporting polymer, It is a value measured when heated to 300 ° C. under a temperature rising condition of 5 ° C./min in the air, the smaller the measured value, the better the heat resistance.
  • TG-DTA thermogravimetric-indicating heat
  • the charge transporting polymers 3 to 12 having a specific structural site represented by the formula (I) are compared with the charge transporting polymers 1 and 2 having no specific structural site. It can be seen that the decrease in thermal weight during heating at 300 ° C. is clearly small and has excellent heat resistance. Therefore, it becomes possible to provide an organic electronic material having excellent heat resistance by using a charge transporting polymer having a specific structural site represented by the formula (I).
  • the heat resistance of the polymers 4 to 9 and 12 is superior to that of the polymer 3, so that the heat resistance can be increased by increasing the proportion of the ring structure contained in the molecule. It can be seen that further improvement is possible.
  • organic hole-only device (Example 1) Under the atmosphere, the charge transporting polymer 3 (10.0 mg) prepared above, the following polymerization initiator 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition.
  • the ink composition was spin-coated on a glass substrate patterned with a width of 1.6 mm at a rotation speed of 3,000 min ⁇ 1 and then cured by heating on a hot plate at 200 ° C. for 30 minutes to form a hole injection layer (100 nm) was formed.
  • the glass substrate obtained above is transferred into a vacuum vapor deposition machine, and ⁇ -NPD (20 nm) and Al (100 nm) are formed in this order on the hole injection layer by vapor deposition, and sealing treatment is performed to obtain organic HOD1. Produced.
  • the ink composition is spin-coated at a rotation speed of 3,000 min ⁇ 1 on a glass substrate patterned with a width of 1.6 mm by the same method as the production of organic HOD1, and heated on a hot plate at 200 ° C. for 30 minutes. did. Furthermore, organic HOD2 was produced in the same manner as in the production of organic HOD1, except that the hole injection layer was formed by additional heating at 230 ° C. for 30 minutes in a nitrogen atmosphere.
  • Example 2 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 4 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • Example 3 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 5 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1.
  • Example 4 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 6 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1.
  • Example 5 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 7 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • Example 6 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 8 in the hole injection layer forming step in the organic HODs 1 and 2 of Example 1. .
  • Example 7 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 9 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • Example 8 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 10 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • Example 9 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 11 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • Example 10 Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 12 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • Each organic HOD was produced in the same manner as in Example 1 except that the charge transporting polymer 3 was changed to the charge transporting polymer 1 in the step of forming the hole injection layer in the organic HODs 1 and 2 of Example 1. .
  • the ink composition was spin-coated on a quartz glass plate at room temperature (25 ° C.) at a rotation speed of 3,000 min ⁇ 1 to form an organic thin film.
  • the quartz glass plate having the organic thin film was heated on a hot plate at 200 ° C. for 30 minutes to cure the organic thin film.
  • the quartz glass plate was grasped with tweezers and immersed in a 200 mL beaker filled with toluene (25 ° C.), and the quartz glass plate was vibrated 10 times in 10 seconds in the thickness direction of the quartz glass plate.
  • the remaining film ratio of the organic thin film was obtained by the following formula. The higher the remaining film ratio, the better the curability of the ink composition.
  • Remaining film ratio (%) Abs of organic thin film after immersion / Abs ⁇ 100 of organic thin film before immersion The absorbance was measured using a spectrophotometer (U-3310 manufactured by Hitachi, Ltd.), and the absorbance of the organic thin film at the maximum absorption wavelength in the wavelength range of 300 to 500 nm was measured.
  • Driving voltage 1 It is a value measured at a current density of 300 mA / cm for organic HOD1 (heated at 200 ° C. for 30 minutes).
  • Driving voltage 2 Organic HOD2 (heated at 200 ° C. for 30 minutes and further heated at 230 ° C. for 30 minutes) is a value measured at a current density of 300 mA / cm.
  • the organic HOD of Examples 1 to 10 resulted in a smaller drive voltage increase than Comparative Examples 1 and 2. That is, from the viewpoint of the constituent material of the hole injection layer, the driving voltage after high-temperature heating is reduced by using an organic electronic material containing a charge transporting polymer (having excellent heat resistance) with little thermogravimetric loss. It can be seen that the rise is suppressed. From this, it turns out that the thermal deterioration of an organic layer is suppressed by using the organic electronics material which is embodiment of this invention. It can also be seen that the organic electronic materials (Examples 1 to 10) which are the embodiments of the present invention are all excellent in curability and suitable for wet processes.
  • Example 11 Under an air atmosphere, the charge transporting polymer 3 (10.0 mg), the polymerization initiator 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition.
  • the ink composition was spin-coated on a glass substrate patterned with ITO to a width of 1.6 mm at a rotation speed of 3,000 min ⁇ 1 , and then cured by heating on a hot plate at 200 ° C. for 10 minutes. Furthermore, it was heated at 230 ° C. for 30 minutes in a nitrogen atmosphere to form a hole injection layer (30 nm).
  • the glass substrate having the hole injection layer was transferred into a vacuum deposition machine, and ⁇ -NPD (40 nm), CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm) was formed on the hole injection layer. , TPBi (30 nm), LiF (0.8 nm), and Al (100 nm) were formed in this order by a vapor deposition method. Then, the sealing process was performed and the organic EL element was produced.
  • Example 12 An organic EL device was produced in the same manner as in Example 11 except that the charge transporting polymer 3 was changed to the charge transporting polymer 4 in the step of forming the hole injection layer in the organic EL device of Example 11.
  • Example 13 An organic EL device was produced in the same manner as in Example 11 except that the charge transporting polymer 3 was changed to the charge transporting polymer 12 in the step of forming the hole injection layer in the organic EL device of Example 11.
  • the organic EL elements of Examples 11 to 13 have a hole injection layer obtained by applying a high temperature baking process. In all cases, excellent results were obtained in drive voltage, light emission efficiency, and light emission lifetime. That is, it can be seen that by using a charge transporting polymer having excellent heat resistance as the hole injection layer material, thermal deterioration is suppressed and the hole injection property can be maintained.
  • the effect of the embodiment of the present invention was shown by the examples. However, according to the present invention, the same effect can be obtained by using other charge transporting compounds without departing from the scope of the present invention, not limited to the charge transporting polymers used in the examples.
  • the organic electronic material of the present invention it is not limited to the organic EL elements shown in the examples, and in other organic electronic elements, it is possible to suppress the thermal deterioration of the organic layer. I understand.

Abstract

式(I)で表される構造部位を有し、かつ重量平均分子量が40,000より大きい電荷輸送性化合物を含有する、有機エレクトロニクス材料。 -Ar-X-Y-Z (I) [式中、Arは炭素数2~30のアリーレン基又はヘテロアリーレン基、Xは連結基、Yは炭素数1~10の脂肪族炭化水素基、Zは置換又は非置換の重合性官能基を表す。]

Description

有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
 本発明の実施形態は、有機エレクトロニクス材料、及び該材料を用いて形成された有機層に関する。また、本発明の他の実施形態は、上記有機層を有する有機エレクトロニクス素子及び有機エレクトロルミネセンス素子、並びに該有機エレクトロルミネセンス素子を用いた表示素子、照明装置、及び表示装置に関する。
 有機エレクトロニクス素子は、有機物を用いて電気的な動作を行う素子であり、省エネルギー、低価格、柔軟性といった特長を発揮できると期待され、従来のシリコンを主体とした無機半導体に替わる技術として注目されている。有機エレクトロニクス素子の一例として、有機エレクトロルミネセンス素子(以下、「有機EL素子」ともいう)、有機光電変換素子、有機トランジスタなどが挙げられる。
 有機EL素子は、例えば、白熱ランプ又はガス充填ランプの代替えとなる大面積ソリッドステート光源用途として注目されている。また、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイ(LCD)に置き換わる最有力の自発光ディスプレイとしても注目されており、製品化が進んでいる。
 有機EL素子は、使用される有機材料から、低分子型有機EL素子及び高分子型有機EL素子の2つに大別される。高分子型有機EL素子では、有機材料として高分子化合物が用いられ、低分子型有機EL素子では、低分子化合物が用いられる。一方、有機EL素子の製造方法は、主に真空系で成膜が行われる乾式プロセスと、凸版印刷、凹版印刷等の有版印刷、インクジェット等の無版印刷などにより成膜が行われる湿式プロセスの2つに大別される。簡易成膜が可能であるため、湿式プロセスは、今後の大画面有機ELディスプレイには不可欠な方法として期待されている。
 このため、湿式プロセスに適した材料の開発が進められており、例えば、重合性官能基を有する化合物を利用して多層構造を形成する検討が行われている(例えば、特許文献1及び非特許文献1参照)。
特開2006-279007号公報
廣瀬健吾、熊木大介、小池信明、栗山晃、池畑誠一郎、時任静士、第53回応用物理学関係連合講演会、26p-ZK-4(2006)
 一般に、高分子化合物を用いて湿式プロセスに従い作製した有機EL素子は、低コスト化及び大面積化が容易であるという特長を有している。しかし、従来の高分子化合物を用いて作製した有機層を有する有機EL素子は、駆動電圧、発光効率、及び発光寿命といった素子特性において、さらなる改善が望まれている。
 特に、電荷輸送性化合物として使用される従来の高分子化合物は、熱安定性が低いため、熱劣化しやすい。高分子化合物の耐熱性が不十分であると、例えば、素子作製時の高温プロセスによって有機層が熱劣化し、本来の性能が低下することによって所望とする素子特性を得ることが困難となる。なかでも、有機EL素子では、例えば高温ベーク処理時の有機層の熱劣化によって、駆動電圧が上昇しやすい。そのため、優れた耐熱性を有する電荷輸送性化合物の開発が望まれている。
 本発明の実施形態は、上記に鑑み、湿式プロセスに適し、かつ優れた耐熱性を有する電荷輸送性化合物を含む有機エレクトロニクス材料、及び該材料を用いて優れた耐熱性を有する有機層を提供することを目的とする。また、本発明の他の実施形態は、上記有機層を用いて、優れた耐熱性を有する、有機エレクトロニクス素子及び有機EL素子、並びに該有機EL素子を用いた表示素子、照明装置、及び表示装置を提供することを目的とする。
 本発明者らは、鋭意検討した結果、特定の構造を有する電荷輸送性化合物が、湿式プロセスに適し、かつ優れた耐熱性を示し、有機エレクトロニクス材料として好適であることを見出し、本発明を完成させるに至った。
 すなわち、本発明の実施形態は、下式(I)で表される構造部位を有し、かつ重量平均分子量が40,000より大きい電荷輸送性化合物を含有する、有機エレクトロニクス材料に関する。
    -Ar-X-Y-Z   (I)
 式中、Arは炭素数2~30のアリーレン基又はヘテロアリーレン基、Xは下式(x1)~(x10)からなる群から選択される少なくとも1種の連結基、Yは炭素数1~10の脂肪族炭化水素基、Zは置換又は非置換の重合性官能基を表す。
Figure JPOXMLDOC01-appb-C000002
 式中、Rは、それぞれ独立に、水素原子、炭素数1~22の直鎖、環状若しくは分岐のアルキル基、又は、炭素数2~30のアリール基若しくはヘテロアリール基を表す。
 上記実施形態の有機エレクトロニクス材料において、上記重合性官能基は、オキセタン基、エポキシ基、ビニル基、アクリロイル基、及びメタクリロイル基からなる群から選択される少なくとも1種を含むことが好ましい。また、上記式(I)で表される構造部位は、電荷輸送性化合物の末端に位置することが好ましい。
 上記実施形態の有機エレクトロニクス材料において、上記電荷輸送性化合物の300℃加熱時の熱重量減少は5%以下であることが好ましい。上記電荷輸送性化合物は、正孔注入層材料であることが好ましい。
 上記実施形態の有機エレクトロニクス材料において、上記電荷輸送性化合物は、電荷輸送性を有する2価の構造単位を含有することが好ましい。また、上記電荷輸送性化合物は、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、フェノキサジン構造、及びフルオレン構造からなる群から選択される少なくとも1種の構造を含むことが好ましい。
 上記実施形態の有機エレクトロニクス材料において、上記電荷輸送性化合物は、3方向以上に分岐した構造を有することが好ましい。また、上記電荷輸送性化合物は、電荷輸送性ポリマーであることが好ましい。
 上記実施形態の有機エレクトロニクス材料は、さらに重合開始剤を含むことが好ましい。上記重合開始剤は、カチオン重合開始剤を含むことが好ましい。上記カチオン重合開始剤はオニウム塩を含むことが好ましい。
 上記実施形態の有機エレクトロニクス材料は、さらに溶媒を含むことが好ましい。上記溶媒は、非極性溶媒であることが好ましい。
 本発明の他の実施形態は、上記実施形態の有機エレクトロニクス材料により形成された有機層に関する。
 本発明の他の実施形態は、上記有機層を含む、有機エレクトロニクス素子に関する。
 本発明の他の実施形態は、上記有機層を含む、有機エレクトロルミネセンス素子に関する。上記有機エレクトロルミネセンス素子は、燐光材料を含む発光層を有するか、又は熱活性化遅延蛍光材料を含む発光層を有することが好ましい。上記有機エレクトロルミネセンス素子は、フレキシブル基板、又は樹脂フィルム基板をさらに有することが好ましい。
 本発明の他の実施形態は、上記有機エレクトロルミネセンス素子を備えた、表示素子に関する。
 本発明の他の実施形態は、上記有機エレクトロルミネセンス素子を備えた、照明装置に関する。
 本発明の他の実施形態は、上記照明装置と、表示手段として液晶素子とを備えた、表示装置に関する。
 本発明の実施形態によれば、湿式プロセスに適し、かつ優れた耐熱性を有する電荷輸送性化合物を含む有機エレクトロニクス材料を提供することができる。また、上記有機エレクトロニクス材料を用いて優れた耐熱性を有する有機層を提供することができる。さらに、本発明の他の実施形態によれば、上記有機エレクトロニクス材料を使用して有機層を形成することによって、優れた耐熱性を有する、有機エレクトロニクス素子、有機EL素子、並びに、それを用いた表示素子、照明装置、及び表示装置を提供することが可能となる。
 本願の開示は、国際出願番号PCT/JP2016/082991に記載の主題と関連しており、それらのすべての開示内容は引用によりここに援用される。
図1は、本発明の実施形態である有機EL素子の一例を示す断面模式図である。
 以下、本発明の実施形態について説明する。
 <有機エレクトロニクス材料>
 本発明の実施形態の有機エレクトロニクス材料は、下式(I)で示される特定の構造部位を有する電荷輸送性化合物を1種以上含有することを特徴とする。
    -Ar-X-Y-Z   (I)
 式中、Arは炭素数2~30のアリーレン基又はヘテロアリーレン基を表し、Xは連結基を表し、Yは炭素数1~10の脂肪族炭化水素基を表し、Zは置換又は非置換の重合性官能基を表す。
 有機エレクトロニクス材料は、上記特定の構造部位を有する電荷輸送性化合物の2種以上を含有しても、さらに他の電荷輸送性化合物を含んでもよい。
 [電荷輸送性化合物]
 本発明の特徴となる上記電荷輸送性化合物は、電荷輸送性を有する構造単位を1以上有し、上記構造単位の少なくとも1つが、上記式(I)で表される構造部位を含む。以下、式(I)で表される構造部位について詳細に説明する。
 式(I)において、Arは炭素数2~30のアリーレン基又はヘテロアリーレン基を表す。アリーレン基は、芳香族炭化水素から水素原子を2個取り除いた構造を有する基を意味する。ヘテロアリーレン基は、芳香族複素環から水素原子を2個取り除いた構造を有する基を意味する。芳香族炭化水素及び芳香族複素環は、それぞれ、例えばベンゼンのような単環構造であってもよく、例えばナフタレンのように環が互いに縮合してなる縮合環構造であってもよい。
 芳香族炭化水素の具体例として、ベンゼン、ナフタレン、アントラセン、テトラセン、フルオレン、及びフェナントレンが挙げられる。芳香族複素環の具体例として、ピリジン、ピラジン、キノリン、イソキノリン、アクリジン、フェナントロリン、フラン、ピロール、チオフェン、カルバゾール、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、及びベンゾチオフェンが挙げられる。
 芳香族炭化水素及び芳香族複素環は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環構造であってもよい。このような多環構造を有する芳香族炭化水素の一例として、ビフェニル、ターフェニル、及びトリフェニルベンゼンが挙げられる。芳香族炭化水素及び芳香族複素環は、それぞれ、非置換であるか、又は1以上の置換基を有してよい。置換基は、例えば、炭素数1~22の直鎖、環状又は分岐のアルキル基であってよい。炭素数は、より好ましくは1~15、さらに好ましくは1~12、特に好ましくは1~6である。
 一実施形態において、Arは、好ましくは、フェニレン基、又はナフチレン基であり、より好ましくはフェニレン基である。
 式(I)において、Xは、下式(x1)~(x10)からなる群から選択される少なくとも1種の連結基である。
Figure JPOXMLDOC01-appb-C000003
 式中、Rは、それぞれ独立に、水素原子、炭素数1~22の直鎖、環状若しくは分岐のアルキル基、又は、炭素数2~30のアリール基若しくはヘテロアリール基を表す。一実施形態において、Rは、炭素数1~22の直鎖、環状若しくは分岐のアルキル基であることが好ましい。上記炭素数は、より好ましくは2~16、さらに好ましくは3~12、特に好ましくは4~8である。他の実施形態において、Rは、炭素数6~30のアリール基であることが好ましく、フェニル基又はナフチル基であることがより好ましく、フェニル基であることがさらに好ましい。
 一実施形態において、上記連結基Xは、x1であることが好ましい。すなわち、電荷輸送性化合物は、下式(I-1)で表される構造部位を有することが好ましい。
    -Ar-O-Y-Z   (I-1)
 式(I)において、Yは、炭素数1~10の2価の脂肪族炭化水素基である。脂肪族炭化水素基は、直鎖、分岐、環状、又はこれらを組み合わせた構造を有してよい。脂肪族炭化水素基は、飽和であっても、不飽和であってもよい。
 一実施形態において、原料となるモノマーの入手が容易である観点から、Yは、直鎖構造を有する脂肪族炭化水素基であることが好ましく、飽和であることがより好ましい。これらの観点から、式(I)において、Yは、-(CH-であることが好ましい。すなわち、一実施形態において、電荷輸送性化合物は、下式(I-2)で表される構造部位を有することが好ましい。
    -Ar-X-(CH-Z   (I-2)
 式中、nは1~10であり、好ましくは1~8、より好ましくは1~6である。耐熱性の観点から、nは1~4であることがさらに好ましく、nは1又は2であることが最も好ましい。
 上述のように、電荷輸送性化合物は、上式(I-1)及び(I-2)の少なくとも一方で表される構造部位を有することが好ましく、下式(I-3)で表される構造部位を有することがより好ましい。
    -Ar-O-(CH-Z   (I-3)
 上記各式において、Zは、重合性官能基を表す。「重合性官能基」とは、熱及び/又は光を加えることにより、結合を形成し得る官能基をいう。重合性官能基Zは、非置換であっても、置換基を有してよい。重合性官能基Zの具体例として、炭素-炭素多重結合を有する基(例えば、ビニル基、アリル基、ブテニル基、エチニル基、アクリロイル基、メタクリロイル基等)、小員環を有する基(例えば、シクロプロピル基、シクロブチル基等の環状アルキル基;エポキシ基(オキシラニル基)、オキセタン基(オキセタニル基)等の環状エーテル基;ジケテン基;エピスルフィド基;ラクトン基;ラクタム基等)、複素環基(例えば、フラン-イル基、ピロール-イル基、チオフェン-イル基、シロール-イル基)などが挙げられる。
 重合性官能基Zとしては、特に、ビニル基、アクリロイル基、メタクリロイル基、エポキシ基、及びオキセタン基が好ましい。反応性及び有機エレクトロニクス素子の特性の観点から、ビニル基、オキセタン基、又はエポキシ基がより好ましい。これらの重合性官能基は、置換基を有してもよい。置換基は、炭素数1~22の直鎖、環状、又は分岐の飽和アルキル基が好ましい。上記炭素数は1~8がより好ましく、1~4がさらに好ましい。置換基は、1~4の直鎖の飽和アルキル基であることが最も好ましい。
 一実施形態において、保存安定性の観点から、重合性官能基Zは、下式(z1)で表されるオキセタン基であることが好ましい。式中、Rは、水素原子、又は炭素数1~4の飽和のアルキル基であってよい。Rは、メチル基、又はエチル基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(I)で表される構造部位を少なくとも1つ有する電荷輸送性化合物は、その構造内に少なくとも1つの重合性官能基Zを含むことになる。重合性官能基を含む化合物は、重合反応によって硬化可能であり、硬化によって溶剤への溶解度を変化させることが可能である。そのため、式(I)で表される構造部位を少なくとも1つ有する電荷輸送性化合物は、優れた硬化性を有し、湿式プロセスに適した材料となる。
 本発明における電荷輸送性化合物は、上記式(I)で表される構造部位を有し、かつ、電荷を輸送する能力を有していればよい。一実施形態において、輸送する電荷は、正孔が好ましい。正孔輸送性の化合物であれば、例えば、有機EL素子の正孔注入層や正孔輸送層の材料として用いることができる。また、電子輸送性の化合物であれば、電子輸送層や電子注入層の材料として用いることができる。また、正孔と電子の両方を輸送する化合物であれば、発光層の材料などに用いることができる。一実施形態において、上記電荷輸送性化合物は、正孔注入層及び/又は正孔輸送層の材料として使用することが好ましく、正孔注入層材料として使用することがより好ましい。
 また、一実施形態において、耐熱性の観点から、電荷輸送性化合物は、300℃加熱時の熱重量減少が、加熱前の質量に対して5質量%以下であることが好ましい。上記熱重量減少は、3.5質量%以下であることがより好ましい。さらに、上記熱質量減少が、2.5質量%以下、1.5質量%以下、1.0質量%以下であることが順に好ましく、0.5質量%以下であることが最も好ましい。
 電荷輸送性化合物として、後述する特定の電荷輸送性ポリマーを使用した場合、材料の熱重量減少を上記範囲内に調整することが容易となる。ここで、「300℃加熱時の熱重量減少」とは、10mgの試料を、空気中で、5℃/分の昇温条件で300℃まで加熱した際の熱重量減少(質量%)をいう。上記熱重量減少の測定は、熱重量-示査熱(TG-DTA)分析装置を用いて実施することができる。
 電荷輸送性化合物は、1つ又は2つ以上の電荷輸送性を有する構造単位を有し、上記構造単位の少なくとも1つが上記式(I)で表される構造部位を有する。一実施形態において、電荷輸送性化合物は、3方向以上に分岐した構造を有してもよい。電荷輸送性化合物は、1つの構造単位から構成される低分子化合物と、複数の構造単位から構成される高分子化合物とに大別され、これらのいずれであってもよい。電荷輸送性化合物を構成する構造単位は、後述のとおりである。
 電荷輸送性化合物が低分子化合物である場合、高純度の材料が容易に得られる点で好ましい。電荷輸送性化合物が高分子化合物である場合、組成物の作製が容易であり、また、成膜性に優れる点で好ましい。さらに、両者の利点を得る観点から、電荷輸送性化合物として低分子化合物と高分子化合物とを混合して用いることも可能である。以下、電荷輸送性化合物の一例として、電荷輸送性を有する複数の構造単位から構成される高分子化合物について、より具体的に説明する。
 [電荷輸送性ポリマー]
 電荷輸送性化合物が高分子化合物である場合、電荷輸送性化合物は、ポリマー又はオリゴマーであってよい。以下、これらをまとめて「電荷輸送性ポリマー」と称する。電荷輸送性ポリマーは、その分子内に、先に説明した下式(I)で表される少なくとも1つの構造部位を有する。
    -Ar-X-Y-Z   (I)
 末端部に-Ar-CH-O-で表される構造部位を含む電荷輸送性ポリマーは、加熱によって分子内の結合が切断しやすく、耐熱性に乏しい傾向がある。これに対し、本願発明の実施形態によれば、式(I)で表される構造部位を有する電荷輸送性ポリマーを構成することによって、電荷輸送性ポリマーの耐熱性を改善することができる。
 耐熱性の向上に伴い、例えば、素子作製時の高温プロセスによる有機層の熱劣化が改善されるため、有機層の性能を維持することが容易になる。特に、本実施形態による電荷輸送性ポリマーを用いて塗布法に従い有機層を形成する場合、高温ベーク処理を適用しても、有機層の性能低下が抑制され、高いキャリア移動度を維持することが可能となる。
 電荷輸送性ポリマーは、直鎖状であっても、又は、分岐構造を有していてもよい。電荷輸送性ポリマーは、好ましくは、電荷輸送性を有する2価の構造単位Lと末端部を構成する1価の構造単位Tとを少なくとも含み、分岐部を構成する3価以上の構造単位Bをさらに含んでもよい。電荷輸送性ポリマーは、各構造単位を、それぞれ1種のみ含んでいても、又は、それぞれ複数種含んでいてもよい。電荷輸送性ポリマーにおいて、各構造単位は、「1価」~「3価以上」の結合部位において互いに結合している。
 (電荷輸送性ポリマーの構造)
 電荷輸送性ポリマーに含まれる部分構造の例として、以下が挙げられる。電荷輸送性ポリマーは以下の部分構造を有するポリマーに限定されない。部分構造中、「L」は構造単位Lを、「T」は構造単位Tを、「B」は構造単位Bを表す。「*」は、他の構造単位との結合部位を表す。以下の部分構造中、複数のLは、互いに同一の構造単位であっても、互いに異なる構造単位であってもよい。T及びBについても、同様である。
 直鎖状の電荷輸送性ポリマー
Figure JPOXMLDOC01-appb-C000005
 分岐構造を有する電荷輸送性ポリマー
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 一実施形態において、電荷輸送性ポリマーは、電荷輸送性の2価の構造単位Lを有することが好ましい。また、一実施形態において、電荷輸送性ポリマーは、3方向以上に分岐した構造を有する、すなわち上記構造単位Bを有することが好ましい。電荷輸送性ポリマーは、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、フェノキサジン構造、及びフルオレン構造からなる群から選択される少なくとも1種の構造を含むことが好ましい。この構造は、好ましくは、後述する構造単位Lに含まれてもよいが、構造単位Bに含まれてもよく、構造単位L及び構造単位Bの双方に含まれてもよい。電荷輸送性ポリマーが上記構造のいずれかを含むことによって、電荷輸送性、特に、正孔輸送性を向上させることができる。
 一実施形態において、電荷輸送性ポリマーは、ポリマーを構成する構造単位L、B、及びTの少なくとも1つに、式(I)で表される構造部位を含んでいればよく、その導入位置は特に限定されない。好ましい実施形態において、硬化性を高める観点から、式(I)で表される構造部位は、電荷輸送性ポリマーの少なくとも1つの末端部を構成する構成単位Tに存在することが好ましい。式(I)で表される構造部位は、電荷輸送性ポリマーを構成するモノマー化合物の合成が容易であるという観点からも、末端部を構成する構造単位Tに存在することが好ましい。以下、電荷輸送性ポリマーの構造単位についてより具体的に説明する。
 (構造単位L)
 構造単位Lは、電荷輸送性を有する2価の構造単位である。構造単位Lは、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。例えば、構造単位Lは、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造、テトラセン構造、フェナントレン構造、ジヒドロフェナントレン構造、ピリジン構造、ピラジン構造、キノリン構造、イソキノリン構造、キノキサリン構造、アクリジン構造、ジアザフェナントレン構造、フラン構造、ピロール構造、オキサゾール構造、オキサジアゾール構造、チアゾール構造、チアジアゾール構造、トリアゾール構造、ベンゾチオフェン構造、ベンゾオキサゾール構造、ベンゾオキサジアゾール構造、ベンゾチアゾール構造、ベンゾチアジアゾール構造、ベンゾトリアゾール構造、及び、これらの1種又は2種以上を含む構造から選択される。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。
 一実施形態において、構造単位Lは、優れた正孔輸送性を得る観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ピロール構造、及び、これらの1種又は2種以上を含む構造から選択されることが好ましく、置換又は非置換の、芳香族アミン構造、カルバゾール構造、及び、これらの1種又は2種以上を含む構造から選択されることがより好ましい。他の実施形態において、構造単位Lは、優れた電子輸送性を得る観点から、置換又は非置換の、フルオレン構造、ベンゼン構造、フェナントレン構造、ピリジン構造、キノリン構造、及び、これらの1種又は2種以上を含む構造から選択されることが好ましい。
 構造単位Lの具体例として、以下が挙げられる。構造単位Lは、以下に限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 Rは、それぞれ独立に、水素原子又は置換基を表す。Rが置換基である場合、好ましくは、Rは、それぞれ独立に、-R(水素原子を除く)、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、重合性官能基を含む基からなる群から選択される置換基であってよい。
 上記置換基のR~Rは、それぞれ独立に、水素原子;炭素数1~22個の直鎖、環状又は分岐アルキル基;又は、炭素数2~30個のアリール基又はヘテロアリール基を表す。アリール基は、芳香族炭化水素から水素原子1個を除いた原子団である。ヘテロアリール基は、芳香族複素環から水素原子1個を除いた原子団である。アルキル基は、さらに、炭素数2~20個のアリール基又はヘテロアリール基により置換されていてもよく、アリール基又はヘテロアリール基は、さらに、炭素数1~22個の直鎖、環状又は分岐アルキル基により置換されていてもよい。Rは、好ましくは、水素原子、又はアルキル基、アリール基、及びアルキル置換アリール基からなる群から選択される置換基である。
 一実施形態において、ポリマーの分子量を大きくする観点から、Rは置換基であることがより好ましい。Rが置換基の場合、電荷輸送性ポリマーの分子量を大きくすることが容易であり、また優れた耐熱性を得ることが容易である。
 一実施形態において、電荷輸送性ポリマーは、非極性溶媒とともに用いられる。非極性溶媒の例として、ベンゼン、トルエン、ヘキサン、酢酸エチル、ジオキサン、テトラヒドロフラン等が挙げられる。一般に、ポリマーは分子量の増加に伴い非極性溶媒への溶解性が低下しやすい。これに対し、置換基の導入によってポリマーの分子量を増加させた場合、溶解性の低下を抑制することが容易となる。
 Arは、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。アリーレン基は、芳香族炭化水素から水素原子2個を除いた原子団である。ヘテロアリーレン基は、芳香族複素環から水素原子2個を除いた原子団である。Arは、好ましくはアリーレン基であり、より好ましくはフェニレン基である。
 芳香族炭化水素としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。芳香族複素環としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。
 (構造単位B)
 構造単位Bは、電荷輸送性ポリマーが分岐構造を有する場合に、分岐部を構成する3価以上の構造単位である。構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、好ましくは6価以下であり、より好ましくは3価又は4価である。構造単位Bは、電荷輸送性を有する単位であることが好ましい。例えば、構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、縮合多環式芳香族炭化水素構造、及び、これらの1種又は2種以上を含有する構造から選択される。
 構造単位Bの具体例として、以下が挙げられる。構造単位Bは、以下に限定されない。
Figure JPOXMLDOC01-appb-C000010
 Wは、3価の連結基を表し、例えば、炭素数2~30個のアレーントリイル基又はヘテロアレーントリイル基を表す。アレーントリイル基は、芳香族炭化水素から水素原子3個を除いた原子団である。ヘテロアレーントリイル基は、芳香族複素環から水素原子3個を除いた原子団である。Arは、それぞれ独立に2価の連結基を表し、例えば、それぞれ独立に、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基、より好ましくはフェニレン基である。Yは、2価の連結基を表し、例えば、構造単位LにおけるR(ただし、重合性官能基を含む基を除く。)のうち水素原子を1個以上有する基から、さらに1個の水素原子を除いた2価の基が挙げられる。Zは、炭素原子、ケイ素原子、又はリン原子のいずれかを表す。構造単位中、ベンゼン環及びArは、置換基を有していてもよい。置換基の例として、構造単位LにおけるRとして説明した置換基が挙げられる。
 (構造単位T)
 構造単位Tは、電荷輸送性ポリマーの末端部を構成する1価の構造単位である。電荷輸送性ポリマーは硬化性を高める観点から末端部に重合性官能基を有することが好ましい。一実施形態において、電荷輸送性ポリマーは、下式(I)で表される構造を有する構造単位T1を含むことが好ましい。式中、Ar、X、Y、Zは先に説明したとおりである。
    -Ar-X-Y-Z   (I)
 上記構造単位T1を含む電荷輸送性ポリマーを使用することによって、優れた硬化性及び耐熱性を得ることが容易となる。構造単位T1は、先に示した式(I-1)及び(I-2)の少なくとも一方を有することが好ましい。構造単位T1は、先に示した式(I-3)の構造を有することがより好ましい。
 電荷輸送性ポリマーは、電荷輸送性、及び硬化性を低下させない範囲で、上記構造単位T1とは異なる末端部を構成する1価の構造単位をさらに含んでもよい。
 一実施形態において、電荷輸送性ポリマーは、上記構造単位T1に加えて、下式(II)で表される構造を有する1価の構造単位T2を含んでよい。電荷輸送性ポリマーが、構造単位T1と構造単位T2とを有する場合、耐熱性をさらに高めることが容易となる。
    -Ar-J-R1  (II)
 式中、Arは、炭素数2~30のアリーレン基又はヘテロアリーレン基を表す。
 Jは、単結合、又は、エステル結合(-COO-)、及び先に式(I)における連結基Xとして例示された(x1)~(x10)からなる群から選択されるいずれか1つの2価の連結基を表す。
 上記連結基において、Rは、炭素数1~22の直鎖、環状若しくは分岐のアルキル基、又は、炭素数6~30のアリール基を表す。
 一実施形態において、式(II)におけるArは、炭素数6~30のアリーレン基であることが好ましい。フェニレン基又はナフチレン基であることがより好ましく、フェニレン基であることがさらに好ましい。
 一実施形態において、式(II)におけるJは、単結合、エステル結合、又はアミノ基から水素原子をさらに1つ除いた構造を有する連結基(-NR-)であることが好ましい。ここで、上記連結基(-NR-)において、Rはフェニル基であることがより好ましい。
 一実施形態において、式(II)におけるR1は、炭素数1~22の直鎖、環状若しくは分岐のアルキル基であり、炭素数は、より好ましくは2~16、さらに好ましくは3~12であり、特に好ましくは4~8である。
 電荷輸送性ポリマーの耐熱性を向上させるために、分子中に含まれる環構造の割合を増加させることが好ましい。このような観点から、一実施形態において、上式(II)におけるR1は、炭素数3~30の環状のアルキル基(シクロアルキル基)であることが好ましい。炭素数は、5~20であることがより好ましく、6~15であることがさらに好ましい。シクロアルキル基は、飽和であっても、不飽和であってもよいが、飽和であることがより好ましい。また、単環、又は多環のいずれの構造を有してよいが、多環構造を有することがより好ましい。R1の具体例として、アダマンチル基が挙げられる。
 他の実施形態において、上式(II)におけるR1は、炭素数6~30のアリール基であることが好ましく、フェニル基又はナフチル基であることがより好ましく、フェニル基であることがさらに好ましい。
 特に限定するものではないが、一実施形態において、構造単位T2は、上式(II)中、Jがエステル結合であり、R1がシクロアルキル基である構造を有することがより好ましい。
 一実施形態において、電荷輸送性ポリマーの硬化性及び耐熱性の双方を高める観点から、全構造単位Tを基準として、式(I)で表される構造を有する構造単位T1の割合は、50モル%以上が好ましく、75モル%以上がより好ましく、85モル%以上がさらに好ましい。上記構造単位T1の割合は、100モル%とすることもできる。
 一実施形態において、電荷輸送性ポリマーの耐熱性をさらに高める観点から、構造単位T1に加えて、構造単位T2を使用することが好ましい。この場合、構造単位T2の割合は、全構造単位T(T1+T2)を基準として、75モル%以下が好ましく、50モル%以下がより好ましく、25%以下がさらに好ましい。一方、構造単位T1の割合は、25モル%以上が好ましく、50モル%がより好ましく、75モル%以上がさらに好ましい。構造単位T1及びT2の割合を上記範囲内に調整することによって、硬化性を低下させることなく、耐熱性をさらに向上することが可能となる。
 重合性官能基は、溶解度の変化に寄与する観点からは、電荷輸送性ポリマー中に多く含まれる方が好ましい。一方、電荷輸送性を妨げない観点からは、電荷輸送性ポリマー中に含まれる量が少ない方が好ましい。重合性官能基の含有量は、これらを考慮し、適宜設定できる。
 例えば、電荷輸送性ポリマー1分子あたりの重合性官能基の数は、十分な溶解度の変化を得る観点から、2個以上が好ましく、3個以上がより好ましい。また、重合性官能基数は電荷輸送性を保つ観点から、1,000個以下が好ましく、500個以下がより好ましい。ここで、重合性官能基の数は、式(I)で表される構造部位に含まれる重合性官能基Zと、その他の重合性官能基との合計を意味する。
 電荷輸送性ポリマー1分子あたりの重合性官能基の数は、電荷輸送性ポリマーを合成するために使用した、各構造単位に対応するモノマーの仕込み量の合計に対する、重合性官能基を有するモノマーの仕込み量の割合、電荷輸送性ポリマーの重量平均分子量等を用い、平均値として求めることができる。
 また、重合性官能基の数は、電荷輸送性ポリマーのH NMR(核磁気共鳴)スペクトルにおける重合性官能基に由来するシグナルの積分値と全スペクトルの積分値との比、電荷輸送性ポリマーの重量平均分子量等を利用し、平均値として算出できる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。
 (数平均分子量)
 電荷輸送性ポリマーの数平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上がさらに好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下がさらに好ましい。
 (重量平均分子量)
 電荷輸送性ポリマーの重量平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。重量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上がさらに好ましい。優れた耐熱性が容易に得られる観点から、重量平均分子量は40,000より大きいことが好ましく、41,000以上がより好ましい。また、重量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下がさらに好ましい。
 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて下記の条件で測定することができる。
送液ポンプ    :L-6050 (株)日立ハイテクノロジーズ
UV-Vis検出器:L-3000 (株)日立ハイテクノロジーズ
カラム      :Gelpack(登録商標) GL-A160S/GL-A150S 日立化成(株)
溶離液      :THF(HPLC用、安定剤を含まない) 和光純薬工業(株)
流速       :1mL/min
カラム温度    :室温
分子量標準物質  :標準ポリスチレン
 (構造単位の割合)
 電荷輸送性ポリマーに含まれる構造単位Lの割合は、十分な電荷輸送性を得る観点から、全構造単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましい。また、構造単位Lの割合は、構造単位T及び必要に応じて導入される構造単位Bを考慮すると、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下がさらに好ましい。
 電荷輸送性ポリマーに含まれる構造単位Tの割合は、有機エレクトロニクス素子の特性向上の観点、又は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点から、全構造単位を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上がさらに好ましい。また、構造単位Tの割合は、十分な電荷輸送性を得る観点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。一実施形態において、構造単位Tの割合は、式(I)で表される構造部位を有する構造単位T1の割合を意味する。他の実施形態において、構造単位Tの割合は、上記構造単位T1と、これ以外の構造単位T2との合計量を意味する。
 電荷輸送性ポリマーが構造単位Bを含む場合、構造単位Bの割合は、有機エレクトロニクス素子の耐久性向上の観点から、全構造単位を基準として、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましい。また、構造単位Bの割合は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点、又は、十分な電荷輸送性を得る観点から、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下がさらに好ましい。
 電荷輸送性ポリマーにおける重合性官能基の割合は、電荷輸送性ポリマーを効率よく硬化させるという観点から、全構造単位を基準として0.1モル%以上が好ましく、1モル%以上がより好ましく、3モル%以上がさらに好ましい。また、重合性官能基の割合は、良好な電荷輸送性を得るという観点から、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下がさらに好ましい。なお、ここでの「重合性官能基の割合」とは、全構造単位に対する、重合性官能基を有する構造単位の割合をいう。電荷輸送性ポリマーが、式(I)の構造部位に含まれる重合性官能基Z以外の重合性官能基Z’をさらに有する場合、全構造単位に対する、重合性置換基Z及びZ’を有する構造単位の合計量の割合を意味する。
 電荷輸送性、耐久性、生産性等のバランスを考慮すると、構造単位L及び構造単位Tの割合(モル比)は、L:T=100:1~70が好ましく、100:3~50がより好ましく、100:5~30がさらに好ましい。また、電荷輸送性ポリマーが構造単位Bを含む場合、構造単位L、構造単位T、及び構造単位Bの割合(モル比)は、L:T:B=100:10~200:10~100が好ましく、100:20~180:20~90がより好ましく、100:40~160:30~80がさらに好ましい。
 構造単位の割合は、電荷輸送性ポリマーを合成するために使用した、各構造単位に対応するモノマーの仕込み量を用いて求めることができる。また、構造単位の割合は、電荷輸送性ポリマーのH NMRスペクトルにおける各構造単位に由来するスペクトルの積分値を利用し、平均値として算出することができる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。
 電荷輸送性ポリマーが正孔輸送性材料であるとき、高い正孔注入性及び正孔輸送性を得る観点から、芳香族アミン構造を有する単位及び/又はカルバゾール構造を有する単位を主要な構造単位として有する化合物であることが好ましい。この観点から、高分子化合物中の全構造単位数(但し、末端の構造単位を除く。)に対する芳香族アミン構造を有する単位及び/又はカルバゾール構造を有する単位の全数の割合は、40%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましい。芳香族アミン構造を有する単位及び/又はカルバゾール構造を有する単位の全数の割合を100%とすることも可能である。
 (製造方法)
 電荷輸送性ポリマーは、種々の合成方法により製造でき、特に限定されない。例えば、鈴木カップリング、根岸カップリング、園頭カップリング、スティルカップリング、ブッフバルト・ハートウィッグカップリング等の公知のカップリング反応を用いることができる。鈴木カップリングは、芳香族ボロン酸誘導体と芳香族ハロゲン化物の間で、Pd触媒を用いたクロスカップリング反応を起こさせるものである。鈴木カップリングによれば、所望とする芳香環同士を結合させることにより、電荷輸送性ポリマーを簡便に製造できる。
 カップリング反応では、触媒として、例えば、Pd(0)化合物、Pd(II)化合物、Ni化合物等が用いられる。また、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム(II)等を前駆体とし、ホスフィン配位子と混合することにより発生させた触媒種を用いることもできる。電荷輸送性ポリマーの合成方法については、例えば、国際公開第WO2010/140553号の記載を参照できる。
 [ドーパント]
 有機エレクトロニクス材料は、ドーパントをさらに含有してもよい。ドーパントは、有機エレクトロニクス材料に添加することでドーピング効果を発現させ、電荷の輸送性を向上させ得る化合物であればよく、特に制限はない。ドーピングには、p型ドーピングとn型ドーピングがあり、p型ドーピングではドーパントとして電子受容体として働く物質が用いられ、n型ドーピングではドーパントとして電子供与体として働く物質が用いられる。正孔輸送性の向上にはp型ドーピング、電子輸送性の向上にはn型ドーピングを行うことが好ましい。有機エレクトロニクス材料に用いられるドーパントは、p型ドーピング又はn型ドーピングのいずれの効果を発現させるドーパントであってもよい。また、1種のドーパントを単独で添加しても、複数種のドーパントを混合して添加してもよい。
 p型ドーピングに用いられるドーパントは、電子受容性の化合物であり、例えば、ルイス酸、プロトン酸、遷移金属化合物、イオン化合物、ハロゲン化合物、π共役系化合物等が挙げられる。具体的には、ルイス酸としては、FeCl、PF、AsF、SbF、BF、BCl、BBr等;プロトン酸としては、HF、HCl、HBr、HNO、HSO、HClO等の無機酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、1-ブタンスルホン酸、ビニルフェニルスルホン酸、カンファスルホン酸等の有機酸;遷移金属化合物としては、FeOCl、TiCl、ZrCl、HfCl、NbF、AlCl、NbCl、TaCl、MoF;イオン化合物としては、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリス(トリフルオロメタンスルホニル)メチドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロアンチモン酸イオン、AsF (ヘキサフルオロ砒酸イオン)、BF (テトラフルオロホウ酸イオン)、PF (ヘキサフルオロリン酸イオン)等のパーフルオロアニオンを有する塩、アニオンとして上記プロトン酸の共役塩基を有する塩など;ハロゲン化合物としては、Cl、Br、I、ICl、ICl、IBr、IF等;π共役系化合物としては、TCNE(テトラシアノエチレン)、TCNQ(テトラシアノキノジメタン)等が挙げられる。また、特開2000-36390号公報、特開2005-75948号公報、特開2003-213002号公報等に記載の電子受容性化合物を用いることも可能である。
 好ましくは、ルイス酸、イオン化合物、π共役系化合物等であり、より好ましくはイオン化合物である。イオン化合物のなかでも、オニウム塩が特に好ましい。オニウム塩とは、ヨードニウム及びアンモニウム等のオニウムイオンを含むカチオン部と、対するアニオン部とからなる化合物を意味する。
 n型ドーピングに用いられるドーパントは、電子供与性の化合物であり、例えば、Li、Cs等のアルカリ金属;Mg、Ca等のアルカリ土類金属;LiF、CsCO等のアルカリ金属及び/又はアルカリ土類金属の塩;金属錯体;電子供与性有機化合物などが挙げられる。
 有機層の溶解度の変化を容易にするために、ドーパントとして、重合性官能基に対する重合開始剤として作用し得る化合物を用いることが好ましい。ドーパントとしての機能と重合開始剤としての機能とを兼ねる物質として、例えば、上記イオン化合物が挙げられる。
 [他の任意成分]
 有機エレクトロニクス材料は、電荷輸送性低分子化合物、及び他の電荷輸送性ポリマー等をさらに含有してもよい。
 [含有量]
 電荷輸送性化合物の含有量は、良好な電荷輸送性を得る観点から、有機エレクトロニクス材料の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。100質量%とすることも可能である。
 ドーパントを含有する場合、その含有量は、有機エレクトロニクス材料の電荷輸送性を向上させる観点から、有機エレクトロニクス材料の全質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましい。また、成膜性を良好に保つ観点から、有機エレクトロニクス材料の全質量に対して、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 [重合開始剤]
 本実施形態の有機エレクトロニクス材料は、好ましくは、重合開始剤を含有する。重合開始剤として、公知のラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤等を使用できる。インク組成物を簡便に調製できる観点から、ドーパントとしての機能と重合開始剤としての機能とを兼ねる物質を用いることが好ましい。例えば、ドーパントとしての機能も備えたカチオン重合開始剤として、先に説明したオニウム塩を好適に使用することができる。例えば、パーフルオロアニオンと、ヨードニウムイオン又はアンモニウムイオン等のカチオンとの塩が挙げられる。オニウム塩の具体例として、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 <インク組成物>
 有機エレクトロニクス材料は、上記実施形態の有機エレクトロニクス材料に、該材料を溶解又は分散し得る溶媒をさらに含有するインク組成物であってよい。このようなインク組成物を構成して用いることによって、塗布法といった簡便な方法によって有機層を容易に形成できる。
 [溶媒]
 溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、芳香族エーテル等である。
 [添加剤]
 インク組成物は、さらに、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。
 [含有量]
 インク組成物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、0.1質量%以上となる量が好ましく、0.2質量%以上となる量がより好ましく、0.5質量%以上となる量がさらに好ましい。また、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、20質量%以下となる量が好ましく、15質量%以下となる量がより好ましく、10質量%以下となる量がさらに好ましい。
 <有機層>
 本発明の実施形態である有機層は、上記実施形態の有機エレクトロニクス材料を用いて形成された層である。上記実施形態の有機エレクトロニクス材料は、インク組成物として用いてもよい。インク組成物を用いることによって、塗布法により有機層を良好に形成できる。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。塗布法によって有機層を形成する場合、塗布後に得られた有機層(塗布層)を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去してもよい。
 光照射、加熱処理等により電荷輸送性化合物の重合反応を進行させ、有機層の溶解度を変化させてもよい。溶解度を変化させた有機層を積層することで、有機エレクトロニクス素子の多層化を容易に図ることが可能となる。有機層の形成方法については、例えば、国際公開第WO2010/140553号の記載を参照できる。本発明によれば、上記加熱処理を200℃超の温度で実施することができ(高温ベーク処理ともいう)、熱処理後の有機層の熱劣化を抑制することが可能となる。
 乾燥後又は硬化後の有機層の厚さは、電荷輸送の効率を向上させる観点から、好ましくは0.1nm以上であり、より好ましくは1nm以上であり、さらに好ましくは3nm以上である。また、有機層の厚さは、電気抵抗を小さくする観点から、好ましくは300nm以下であり、より好ましくは200nm以下であり、さらに好ましくは100nm以下である。
 <有機エレクトロニクス素子>
 本発明の実施形態である有機エレクトロニクス素子は、少なくとも上記実施形態の有機層を有する。有機エレクトロニクス素子として、例えば、有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極の間に有機層が配置された構造を有する。
 [有機EL素子]
 本発明の実施形態である有機EL素子は、少なくとも上記実施形態の有機層を有する。有機EL素子は、通常、発光層、陽極、陰極、及び基板を備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の他の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。有機EL素子は、好ましくは、有機層を発光層又は他の機能層として有し、より好ましくは機能層として有し、さらに好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。
 図1は、本発明の実施形態である有機EL素子の一例を示す断面模式図である。図1の有機EL素子は、多層構造の素子であり、基板8、陽極2、上記実施形態の有機層からなる正孔注入層3及び正孔輸送層6、発光層1、電子輸送層7、電子注入層5、並びに陰極4をこの順に有している。以下、各層について説明する。
 図1において、例えば、正孔注入層3及び正孔輸送層6が、上記の有機エレクトロニクス材料を用いて形成された有機層である。しかし、本発明の実施形態の有機ELはこのような構造に限らず、他の有機層が上記有機エレクトロニクス材料を用いて形成された有機層であってもよい。
 [発光層]
 発光層に用いる材料として、低分子化合物、ポリマー、デンドリマー等の発光材料を使用できる。ポリマーは、溶媒への溶解性が高く、塗布法に適しているため好ましい。発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料(TADF)等が挙げられる。
 蛍光材料として、ペリレン、クマリン、ルブレン、キナクドリン、スチルベン、色素レーザー用色素、アルミニウム錯体、これらの誘導体等の低分子化合物;ポリフルオレン、ポリフェニレン、ポリフェニレンビニレン、ポリビニルカルバゾール、フルオレンーベンゾチアジアゾール共重合体、フルオレン-トリフェニルアミン共重合体、これらの誘導体等のポリマー;これらの混合物等が挙げられる。
 燐光材料として、Ir、Pt等の金属を含む金属錯体などを使用できる。Ir錯体としては、例えば、青色発光を行うFIr(pic)(イリジウム(III)ビス[(4,6-ジフルオロフェニル)-ピリジネート-N,C]ピコリネート)、緑色発光を行うIr(ppy)(ファク トリス(2-フェニルピリジン)イリジウム)、赤色発光を行う(btp)Ir(acac)(ビス〔2-(2’-ベンゾ[4,5-α]チエニル)ピリジナート-N,C〕イリジウム(アセチル-アセトネート))、Ir(piq)(トリス(1-フェニルイソキノリン)イリジウム)等が挙げられる。Pt錯体としては、例えば、赤色発光を行うPtOEP(2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィンプラチナ)等が挙げられる。
 発光層が燐光材料を含む場合、燐光材料の他に、さらにホスト材料を含むことが好ましい。ホスト材料としては、低分子化合物、ポリマー、又はデンドリマーを使用できる。低分子化合物としては、例えば、CBP(4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル)、mCP(1,3-ビス(9-カルバゾリル)ベンゼン)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、これらの誘導体等が、ポリマーとしては、上記実施形態の有機エレクトロニクス材料、ポリビニルカルバゾール、ポリフェニレン、ポリフルオレン、これらの誘導体等が挙げられる。
 熱活性化遅延蛍光材料としては、例えば、Adv. Mater., 21, 4802-4906 (2009);Appl. Phys. Lett., 98, 083302 (2011);Chem. Comm., 48, 9580 (2012);Appl. Phys. Lett., 101, 093306 (2012);J. Am. Chem. Soc., 134, 14706 (2012);Chem. Comm., 48, 11392 (2012);Nature, 492, 234 (2012);Adv. Mater., 25, 3319 (2013);J. Phys. Chem. A, 117, 5607 (2013);Phys. Chem. Chem. Phys., 15, 15850 (2013);Chem. Comm., 49, 10385 (2013);Chem. Lett., 43, 319 (2014)等に記載の化合物が挙げられる。
 [正孔輸送層、正孔注入層]
 図1では、正孔注入層3及び正孔輸送層6が、上記の有機エレクトロニクス材料を用いて形成された有機層であるが、実施形態の有機EL素子はこのような構造に限らず、他の有機層が上記の有機エレクトロニクス材料を用いて形成された有機層であってもよい。上記の有機エレクトロニクス材料を用いて形成された正孔輸送層及び正孔注入層の少なくとも一方として使用することが好ましく、少なくとも正孔輸送層として使用することがさらに好ましい。例えば、有機EL素子が、上記の有機エレクトロニクス材料を用いて形成された有機層を正孔輸送層として有し、さらに正孔注入層を有する場合、正孔注入層には公知の材料を使用できる。また、例えば、有機EL素子が、上記の有機エレクトロニクス材料を用いて形成された有機層を正孔注入層として有し、さらに正孔輸送層を有する場合、正孔輸送層には公知の材料を使用できる。
 正孔注入層及び正孔輸送層に用いることができる材料として、例えば、芳香族アミン系化合物(例えば、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)等の芳香族ジアミン)、フタロシアニン系化合物、チオフェン系化合物(例えば、チオフェン系導電性ポリマー(例えば、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)(PEDOT:PSS)等)などが挙げられる。
 [電子輸送層、電子注入層]
 電子輸送層及び電子注入層に用いる材料としては、例えば、フェナントロリン誘導体、ビピリジン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレン、ペリレンなどの縮合環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体(例えば、2,2’,2”-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(TPBi))、キノキサリン誘導体、アルミニウム錯体(例えば、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム(BAlq))等が挙げられる。また、上記実施形態の有機エレクトロニクス材料も使用できる。
 [陰極]
 陰極材料としては、例えば、Li、Ca、Mg、Al、In、Cs、Ba、Mg/Ag、LiF、CsF等の金属又は金属合金が用いられる。
 [陽極]
 陽極材料としては、例えば、金属(例えば、Au)又は導電性を有する他の材料が用いられる。他の材料として、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)、導電性高分子(例えば、ポリチオフェン-ポリスチレンスルホン酸混合物(PEDOT:PSS))が挙げられる。
 [基板]
 基板として、ガラス、プラスチック等を使用できる。基板は、透明であることが好ましい。また、フレキシブル性を有する基板(フレキシブル基板)が好ましい。基板として、例えば、石英ガラス、光透過性の樹脂フィルム等が好ましく用いられる。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等からなるフィルムが挙げられる。
 樹脂フィルムを用いる場合、水蒸気、酸素等の透過を抑制するために、樹脂フィルムを酸化珪素、窒化珪素等の無機物でコーティングして用いてもよい。
 [発光色]
 有機EL素子の発光色は特に限定されない。白色の有機EL素子は、家庭用照明、車内照明、時計又は液晶のバックライト等の各種照明器具に用いることができるため好ましい。
 白色の有機EL素子を形成する方法としては、複数の発光材料を用いて複数の発光色を同時に発光させて混色させる方法を用いることができる。複数の発光色の組み合わせとしては、特に限定されないが、青色、緑色及び赤色の3つの発光極大波長を含有する組み合わせ、青色と黄色、黄緑色と橙色等の2つの発光極大波長を含有する組み合わせなどが挙げられる。発光色の制御は、発光材料の種類と量の調整により行うことができる。
 <表示素子、照明装置、表示装置>
 本発明の実施形態である表示素子は、上記実施形態の有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
 また、本発明の実施形態である照明装置は、本発明の実施形態の有機EL素子を備えている。さらに、本発明の実施形態である表示装置は、照明装置と、表示手段として液晶素子とを備えている。例えば、表示装置は、バックライトとして本発明の実施形態である照明装置を用い、表示手段として公知の液晶素子を用いた表示装置、すなわち液晶表示装置とできる。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <1-1>電荷輸送性ポリマーの調製
 (Pd触媒の調製)
 窒素雰囲気下のグローブボックス中で、室温下、サンプル管にトリス(ジベンジリデンアセトン)ジパラジウム(73.2mg、80μmol)を秤取り、アニソール(15mL)を加え、30分間撹拌した。同様に、サンプル管にトリス(t-ブチル)ホスフィン(129.6mg、640μmol)を秤取り、アニソール(5mL)を加え、5分間撹拌した。これらの溶液を混合し室温で30分間撹拌し触媒とした。すべての溶媒は30分以上、窒素バブルにより脱気した後、使用した。
 (電荷輸送性ポリマー1)
 三口丸底フラスコに、下記モノマーL1(5.0mmol)、下記モノマーB1(2.0mmol)、下記モノマーT1a(4.0mmol)、及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。30分撹拌した後、10%テトラエチルアンモニウム水酸化物水溶液(20mL)を加えた。すべての溶媒は30分以上、窒素バブルにより脱気した後、使用した。この混合物を2時間、加熱還流した。ここまでの全ての操作は窒素気流下で行った。
Figure JPOXMLDOC01-appb-C000012
 反応終了後、有機層を水洗し、有機層をメタノール-水(9:1)に注いだ。生じた沈殿を吸引ろ過により回収し、メタノール-水(9:1)で洗浄した。得られた沈殿をトルエンに溶解し、メタノールから再沈殿した。得られた沈殿を吸引ろ過により回収し、トルエンに溶解し、金属吸着剤(Strem Chemicals社製「Triphenylphosphine, polymer-bound on styrene-divinylbenzene copolymer」、沈殿物100mgに対して200mg)を加えて、一晩撹拌した。
 撹拌終了後、金属吸着剤と不溶物をろ過して取り除き、ろ液をロータリーエバポレーターで濃縮した。濃縮液をトルエンに溶解した後、メタノール-アセトン(8:3)から再沈殿した。生じた沈殿を吸引ろ過により回収し、メタノール-アセトン(8:3)で洗浄した。得られた沈殿を真空乾燥し、電荷輸送性ポリマー1を得た。
 得られた電荷輸送性ポリマー1の数平均分子量は13,600であり、重量平均分子量は72,800であった。電荷輸送性ポリマー1は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、及び構造単位T1(モノマーT1aに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、及び36.3%であった。
 数平均分子量及び重量平均分子量は、溶離液にテトラヒドロフラン(THF)を用いたGPC(ポリスチレン換算)により測定した。測定条件は以下のとおりである。
 送液ポンプ    :L-6050 (株)日立ハイテクノロジーズ
 UV-Vis検出器:L-3000 (株)日立ハイテクノロジーズ
 カラム      :Gelpack(登録商標) GL-A160S/GL-A150S 日立化成(株)
 溶離液      :THF(HPLC用、安定剤を含まない) 和光純薬工業(株)
 流速       :1mL/min
 カラム温度    :室温
 分子量標準物質  :標準ポリスチレン
 (電荷輸送性ポリマー2)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、下記モノマーT1b(4.0mmol)、及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー2を調製した。
 得られた電荷輸送性ポリマー2の数平均分子量は24,700であり、重量平均分子量は49,100であった。電荷輸送性ポリマー2は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、及び、構造単位T1(モノマーT1bに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、及び36.3%であった。
Figure JPOXMLDOC01-appb-C000013
(電荷輸送性ポリマー3)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、下記モノマーT1c(4.0mmol)、及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー3を調製した。
 得られた電荷輸送性ポリマー3の数平均分子量は15,100であり、重量平均分子量は58,200であった。電荷輸送性ポリマー3は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、及び、構造単位T1(モノマーT1cに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、及び36.3%であった。
Figure JPOXMLDOC01-appb-C000014
(電荷輸送性ポリマー4)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(1.0mmol)、下記モノマーT2a(3.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー4を調製した。
 得られた電荷輸送性ポリマー4の数平均分子量は15,700であり、重量平均分子量は56,400であった。電荷輸送性ポリマー4は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2aに由来)を有し、それぞれの構造単位の割合は、45.5%、18.2%、9.1%、及び27.2%であった。
Figure JPOXMLDOC01-appb-C000015
(電荷輸送性ポリマー5)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(1.2mmol)、上記モノマーT2a(2.8mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー5を調製した。
 得られた電荷輸送性ポリマー5の数平均分子量は12,800であり、重量平均分子量は41,800であった。電荷輸送性ポリマー5は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2aに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、10.9%、及び25.4%であった。
 (電荷輸送性ポリマー6)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(1.6mmol)、上記モノマーT2a(2.4mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー6を調製した。
 得られた電荷輸送性ポリマー6の数平均分子量は12,600であり、重量平均分子量は41,000であった。電荷輸送性ポリマー6は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2aに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、14.5%、及び21.8%であった。
 (電荷輸送性ポリマー7)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(2.0mmol)、上記モノマーT2a(2.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー7を調製した。
 得られた電荷輸送性ポリマー7の数平均分子量は13,500であり、重量平均分子量は42,100であった。電荷輸送性ポリマー7は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2aに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、18.15%、及び18.15%であった。
 (電荷輸送性ポリマー8)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(2.0mmol)、下記モノマーT2b(2.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー8を調製した。
 得られた電荷輸送性ポリマー8の数平均分子量は13,000であり、重量平均分子量は45,100であった。電荷輸送性ポリマー8は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2bに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、18.15%、及び18.15%であった。
Figure JPOXMLDOC01-appb-C000016
(電荷輸送性ポリマー9)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(1.0mmol)、上記モノマーT2b(3.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー9を調製した。
 得られた電荷輸送性ポリマー9の数平均分子量は12,300であり、重量平均分子量は55,800であった。電荷輸送性ポリマー9は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2bに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、9.1%、及び27.2%であった。
 (電荷輸送性ポリマー10)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(2.0mmol)、下記モノマーT2c(2.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー10を調製した。
 得られた電荷輸送性ポリマー10の数平均分子量は15,700であり、重量平均分子量は45,100であった。電荷輸送性ポリマー10は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2cに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、18.15%、及び18.15%であった。
Figure JPOXMLDOC01-appb-C000017
(電荷輸送性ポリマー11)
 三口丸底フラスコに、上記モノマーL1(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(1.0mmol)、上記モノマーT2c(3.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー11を調製した。
 得られた電荷輸送性ポリマー11の数平均分子量は16,400であり、重量平均分子量は46,900であった。電荷輸送性ポリマー11は、構造単位L(モノマーL1に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)、及び構造単位T2(モノマーT2cに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、9.1%、及び27.2%であった。
 (電荷輸送性ポリマー12)
 三口丸底フラスコに、下記モノマーL2(5.0mmol)、上記モノマーB1(2.0mmol)、上記モノマーT1c(1.0mmol)、上記モノマーT2a(3.0mmol)及びアニソール(20mL)を加え、さらに、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の調製と同様にして、電荷輸送性ポリマー12を調製した。
 得られた電荷輸送性ポリマー12の数平均分子量は18,900であり、重量平均分子量は49,100であった。電荷輸送性ポリマー12は、構造単位L(モノマーL2に由来)、構造単位B(モノマーB1に由来)、構造単位T1(モノマーT1cに由来)及び構造単位T2(モノマーT2aに由来)を有し、それぞれの構造単位の割合は、順に、45.5%、18.2%、9.1%、及び27.2%であった。
Figure JPOXMLDOC01-appb-C000018
 電荷輸送性ポリマー1~12の調製に使用したモノマーを以下の表1にまとめる。表中、(*)を付したモノマーは、式(I)で表される構造を有する。
Figure JPOXMLDOC01-appb-T000019
<1-2>電荷輸送性ポリマーの評価
 各電荷輸送性ポリマー1~12の300℃加熱時の熱重量減少を表2に示す。ここで、熱重量減少(質量%)は、熱重量-示査熱(TG-DTA)分析装置(島津製作所株式会社製の「DTG-60/60H」を用いて、電荷輸送性ポリマー10mgを、空気中、5℃/分の昇温条件で300℃まで加熱した際に測定した値である。測定値が少ないほど、耐熱性に優れていることを意味する。
Figure JPOXMLDOC01-appb-T000020
 表に示した結果から、式(I)で表される特定の構造部位を有する電荷輸送性ポリマー3~12は、上記特定の構造部位を持たない電荷輸送性ポリマー1及び2と比較して、300℃加熱時の熱重量減少が明らかに少なく、優れた耐熱性を有することが分かる。したがって、式(I)で表される特定の構造部位を有する電荷輸送性ポリマーを使用することにより、優れた耐熱性を有する有機エレクトロニクス材料を提供することが可能となる。なお、上記電荷輸送性ポリマー3~12の中でも、ポリマー3に対してポリマー4~9及び12の耐熱性がより優れていることから、分子中に含まれる環構造の割合を高めることで耐熱性のさらなる向上が可能となることが分かる。
 <2-1>有機ホールオンリーデバイス(HOD)の作製
 (実施例1)
 大気下で、先に調製した電荷輸送性ポリマー3(10.0mg)、下記重合開始剤1(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で200℃、30分間加熱して硬化させ、正孔注入層(100nm)を形成した。
Figure JPOXMLDOC01-appb-C000021
 上記で得たガラス基板を、真空蒸着機中に移し、正孔注入層上にα-NPD(20nm)、Al(100nm)の順に蒸着法で成膜し、封止処理を行って有機HOD1を作製した。
 有機HOD1の作製と同様の手法で、ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートし、ホットプレート上で200℃、30分間加熱した。さらに、窒素雰囲気下で230℃、30分間にわたって追加加熱して正孔注入層を形成したことを除き、以後、有機HOD1の作製と同様にして、有機HOD2を作製した。
 (実施例2)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー4に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例3)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において電荷輸送性ポリマー3を電荷輸送性ポリマー5に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例4)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー6に変えた以外は実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例5)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー7に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例6)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー8に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例7)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー9に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例8)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー10に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例9)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー11に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (実施例10)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー12に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 (比較例1)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー1に変えた以外は、実施例1と同様にして、各々の有機HODを作製した。
 (比較例2)
 実施例1の有機HOD1及び2における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー2に変えた以外は、実施例1と同様にして、それぞれの有機HODを作製した。
 <2-2>有機HOD(正孔注入層)の評価
 実施例1~10、比較例1及び2で作製したそれぞれの有機HODに電圧を印加した。その結果、いずれも電流が流れることが分かり、正孔注入性の機能を持つことが確認された。また、それぞれの有機HODについて、駆動電圧を測定した。測定結果を表3に示す。
 <2-3>インク組成物の硬化性の評価
 以下の方法に従い有機薄膜の残膜率を測定することにより、正孔注入層を形成するために使用したインク組成物の硬化性について評価した。測定結果を表3に示す。
 (残膜率の測定方法)
 実施例1~10、比較例1及び2で使用した各々の電荷輸送性ポリマー(10.0mg)をトルエン(1.991μL)に溶解し、ポリマー溶液を得た。また、先に示した重合開始剤1(0.309mg)をトルエン(309μL)に溶解し、重合開始剤溶液を得た。得られたポリマー溶液と重合開始剤溶液とを混合し、インク組成物を調製した。
 インク組成物を、室温(25℃)において、回転数3,000min-1で石英ガラス板上にスピンコートし、有機薄膜を形成した。次いで、有機薄膜を有する石英ガラス板を、ホットプレート上で、200℃、30分にわたって加熱し、有機薄膜を硬化させた。その後、石英ガラス板をピンセットで掴んで、トルエン(25℃)を満たした200mLビーカーに浸漬し、石英ガラス板を、石英ガラス板の厚み方向に10秒間に10往復振動させた。
 浸漬前後の有機薄膜のUV-visスペクトルにおける吸収極大(λmax)の吸光度(Abs)の比から、以下の式により有機薄膜の残膜率を求めた。残膜率が高いほど、インク組成物の硬化性が良好であることを意味する。
  残膜率(%)=浸漬後の有機薄膜のAbs/浸漬前の有機薄膜のAbs×100
 吸光度の測定には、分光光度計(株式会社日立製作所製のU-3310)を用い、有機薄膜について300~500nmの波長範囲での極大吸収波長における吸光度を測定した。
Figure JPOXMLDOC01-appb-T000022
 駆動電圧1:有機HOD1(200℃で30分加熱)について、電流密度300mA/cm時で測定した値である。
 駆動電圧2:有機HOD2(200℃で30分加熱し、さらに230℃で30分加熱)について、電流密度300mA/cm時で測定した値である。
 駆動電圧の上昇値:駆動電圧2(V)-駆動電圧1(V)の値である。
 表に示したとおり、実施例1~10の有機HODは、比較例1及び2よりも、駆動電圧の上昇値が小さい結果となった。すなわち、正孔注入層の構成材料の観点からすれば、熱重量減少が少ない(優れた耐熱性を有する)電荷輸送性ポリマーを含む有機エレクトロニクス材料を使用することによって、高温加熱後の駆動電圧の上昇が抑制されることが分かる。このことから、本発明の実施形態である有機エレクトロニクス材料を使用することによって、有機層の熱劣化が抑制されることが分かる。また、本発明の実施形態である有機エレクトロニクス材料(実施例1~10)は、いずれも硬化性に優れ、湿式プロセスに適していることが分かる。
 <3-1>有機EL素子の作製
 先に調製した電荷輸送性ポリマーを用いて形成した正孔注入層を含む有機EL素子を作製し、その性能を評価した。
 (実施例11)
 大気雰囲気下で、電荷輸送性ポリマー3(10.0mg)、上記重合開始剤1(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートし、次いで、ホットプレート上で200℃、10分間加熱して硬化させた。さらに、窒素雰囲気下で230℃、30分間加熱して、正孔注入層(30nm)を形成した。
 上記正孔注入層を有するガラス基板を、真空蒸着機中に移し、正孔注入層上にα-NPD(40nm)、CBP:Ir(ppy)(94:6、30nm)、BAlq(10nm)、TPBi(30nm)、LiF(0.8nm)、及びAl(100nm)をこの順に蒸着法で成膜した。その後、封止処理を行って有機EL素子を作製した。
 (実施例12)
 実施例11の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー4に変えた以外は、実施例11と同様にして、有機EL素子を作製した。
 (実施例13)
 実施例11の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー12に変えた以外は、実施例11と同様にして、有機EL素子を作製した。
 <3-2>有機EL素子の評価
 実施例11~13で得た有機EL素子に電圧を印加したところ、いずれも緑色発光が確認された。それぞれの素子について、発光輝度5000cd/m時の駆動電圧および発光効率、初期輝度5000cd/mにおける発光寿命(輝度半減時間)を測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000023
 実施例11~13の有機EL素子は、高温ベーク処理を適用して得た正孔注入層を有する。いずれも、駆動電圧、発光効率、及び発光寿命において、優れた結果が得られた。すなわち、正孔注入層材料として耐熱性に優れる電荷輸送性ポリマーを使用することによって、熱劣化が抑制され、正孔注入性の特性を維持できることが分かる。
 以上のように、実施例によって本発明の実施形態の効果を示した。しかし、本発明によれば、実施例で用いた電荷輸送性ポリマーに限らず、本発明の範囲を逸脱しない限り、その他の電荷輸送性化合物を用いて、同様の効果を得ることができる。また、本発明の有機エレクトロニクス材料を使用することで、実施例に示した有機EL素子に限定されず、その他の有機エレクトロニクス素子においても、有機層の熱劣化を抑制することが可能となることが分かる。
1 発光層
2 陽極
3 正孔注入層
4 陰極
5 電子注入層
6 正孔輸送層
7 電子輸送層
8 基板

Claims (24)

  1.  下式(I)で表される構造部位を有し、かつ重量平均分子量が40,000より大きい電荷輸送性化合物を含有する、有機エレクトロニクス材料。
        -Ar-X-Y-Z   (I)
    [式中、Arは炭素数2~30のアリーレン基又はヘテロアリーレン基を表し、Xは下式(x1)~(x10)からなる群から選択される少なくとも1種の連結基を表し、Yは炭素数1~10の脂肪族炭化水素基を表し、Zは置換又は非置換の重合性官能基を表す。
    Figure JPOXMLDOC01-appb-I000001
     式中、Rは、それぞれ独立に、水素原子、炭素数1~22の直鎖、環状若しくは分岐のアルキル基、又は、炭素数2~30のアリール基若しくはヘテロアリール基を表す。]
  2.  前記重合性官能基が、オキセタン基、エポキシ基、ビニル基、アクリロイル基、及びメタリロイル基からなる群から選択される少なくとも1種を含む、請求項1に記載の有機エレクトロニクス材料。
  3.  前記式(I)で表される構造部位が、電荷輸送性化合物の末端に位置する、請求項1又は2に記載の有機エレクトロニクス材料。
  4.  前記電荷輸送性化合物の300℃加熱時の熱重量減少が5%以下である、請求項1~3のいずれか1項に記載の有機エレクトロニクス材料。
  5.  前記電荷輸送性化合物が正孔注入層材料である、請求項1~4のいずれか1項に記載の有機エレクトロニクス材料。
  6.  前記電荷輸送性化合物が、電荷輸送性を有する2価の構造単位を含有する、請求項1~5のいずれか1項に記載の有機エレクトロニクス材料。
  7.  前記電荷輸送性化合物が、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、フェノキサジン構造、及びフルオレン構造からなる群から選択される少なくとも1種の構造を含む、請求項1~6のいずれか1項に記載の有機エレクトロニクス材料。
  8.  前記電荷輸送性化合物が、3方向以上に分岐した構造を有する、請求項1~7のいずれか1項に記載の有機エレクトロニクス材料。
  9.  前記電荷輸送性化合物が、電荷輸送性ポリマーである、請求項1~8のいずれか1項に記載の有機エレクトロニクス材料。
  10.  さらに重合開始剤を含む、請求項1~9のいずれか1項に記載の有機エレクトロニクス材料。
  11.  前記重合開始剤がカチオン重合開始剤を含む、請求項10に記載の有機エレクトロニクス材料。
  12.  前記カチオン重合開始剤がオニウム塩を含む、請求項11に記載の有機エレクトロニクス材料。
  13.  さらに溶媒を含む、請求項1~12のいずれか1項に記載の有機エレクトロニクス材料。
  14.  前記溶媒が、非極性溶媒である、請求項13に記載の有機エレクトロニクス材料。
  15.  請求項1~14のいずれか1項に記載の有機エレクトロニクス材料により形成された有機層。
  16.  請求項15に記載の有機層を含む、有機エレクトロニクス素子。
  17.  請求項15に記載の有機層を含む、有機エレクトロルミネセンス素子。
  18.  燐光材料を含む発光層を有する、請求項17に記載の有機エレクトロルミネセンス素子。
  19.  熱活性化遅延蛍光材料を含む発光層を有する、請求項17に記載の有機エレクトロルミネセンス素子。
  20.  フレキシブル基板をさらに有する、請求項17~19のいずれか1項に記載の有機エレクトロルミネセンス素子。
  21.  樹脂フィルム基板をさらに有する、請求項17~19のいずれか1項に記載の有機エレクトロルミネセンス素子。
  22.  請求項17~21のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、表示素子。
  23. 請求項17~21のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、照明装置。
  24.  請求項23に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。
PCT/JP2017/038138 2016-11-07 2017-10-23 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 WO2018084009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17867662.3A EP3537490A4 (en) 2016-11-07 2017-10-23 ORGANIC ELECTRONIC MATERIAL, ORGANIC LAYER, ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP2018548631A JPWO2018084009A1 (ja) 2016-11-07 2017-10-23 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
US16/347,991 US11398604B2 (en) 2016-11-07 2017-10-23 Organic electronic material, organic layer, organic electronic element, organic electroluminescent element, display element, illumination device, and display device
KR1020197012468A KR102498458B1 (ko) 2016-11-07 2017-10-23 유기 일렉트로닉스 재료, 유기층, 유기 일렉트로닉스 소자, 유기 일렉트로루미네센스 소자, 표시 소자, 조명 장치, 및 표시 장치
CN201780068366.4A CN109937490B (zh) 2016-11-07 2017-10-23 有机电子材料、有机层、有机电子元件及它们的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082991 WO2018083801A1 (ja) 2016-11-07 2016-11-07 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
JPPCT/JP2016/082991 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018084009A1 true WO2018084009A1 (ja) 2018-05-11

Family

ID=62075782

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/082991 WO2018083801A1 (ja) 2016-04-28 2016-11-07 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
PCT/JP2017/038138 WO2018084009A1 (ja) 2016-11-07 2017-10-23 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082991 WO2018083801A1 (ja) 2016-04-28 2016-11-07 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置

Country Status (7)

Country Link
US (1) US11398604B2 (ja)
EP (1) EP3537490A4 (ja)
JP (1) JPWO2018084009A1 (ja)
KR (1) KR102498458B1 (ja)
CN (1) CN109937490B (ja)
TW (1) TWI816645B (ja)
WO (2) WO2018083801A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083801A1 (ja) 2016-11-07 2018-05-11 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
EP3581623A4 (en) * 2017-02-08 2020-11-18 Hitachi Chemical Company, Ltd. LOAD TRANSPORT MATERIAL AND ITS USE
JPWO2018159694A1 (ja) 2017-03-02 2020-01-09 日立化成株式会社 有機エレクトロニクス材料及びその利用
WO2019097714A1 (ja) * 2017-11-20 2019-05-23 日立化成株式会社 有機薄膜の製造方法、有機薄膜及びその利用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036390A (ja) 1998-05-13 2000-02-02 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003213002A (ja) 2001-11-19 2003-07-30 Mitsubishi Chemicals Corp 芳香族ジアミン含有高分子化合物およびそれを用いる有機電界発光素子
JP2005075948A (ja) 2003-09-01 2005-03-24 Mitsubishi Chemicals Corp 高分子化合物、正孔注入・輸送材料、有機電界発光素子材料および有機電界発光素子
JP2006279007A (ja) 2005-03-02 2006-10-12 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007514298A (ja) * 2003-10-30 2007-05-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング オキセタン基を含有する可塑剤を用いた有機半導体層の改善された架橋方法
JP2007302886A (ja) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd 有機エレクトロニクス用材料及びこれを用いた有機エレクトロニクス素子、有機エレクトロルミネセンス素子
WO2008108162A1 (ja) * 2007-03-05 2008-09-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2010140553A1 (ja) 2009-06-01 2010-12-09 日立化成工業株式会社 有機エレクトロニクス材料およびそれを含むインク組成物、ならびにそれらを用いて形成された有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置および表示装置
WO2013002053A1 (ja) * 2011-06-27 2013-01-03 新日鉄住金化学株式会社 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
JP2013124271A (ja) * 2011-12-14 2013-06-24 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP2013214565A (ja) * 2012-03-30 2013-10-17 Toppan Printing Co Ltd 芳香族ジヨードニウム塩、電荷輸送膜用組成物、電荷輸送膜用インク、およびそれらを用いた電荷輸送膜の製造方法
JP2016167570A (ja) * 2015-03-10 2016-09-15 日立化成株式会社 有機発光素子

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998487B2 (en) * 2001-04-27 2006-02-14 Lg Chem, Ltd. Double-spiro organic compounds and organic electroluminescent devices using the same
WO2007133633A2 (en) 2006-05-09 2007-11-22 University Of Washington Crosslinkable hole-transporting materials for organic light-emitting devices
KR101256301B1 (ko) * 2006-07-19 2013-04-18 히타치가세이가부시끼가이샤 유기 일렉트로닉스용 재료, 유기 일렉트로닉스 소자 및 유기 일렉트로루미네센스 소자
JP5262014B2 (ja) 2006-08-07 2013-08-14 三菱化学株式会社 架橋基を有する有機化合物、有機電界発光素子用組成物および有機電界発光素子
CN104091899B (zh) * 2006-11-30 2017-01-11 株式会社半导体能源研究所 发光装置
JP5298524B2 (ja) 2006-12-27 2013-09-25 三菱化学株式会社 架橋基を有する有機化合物、有機電界発光素子材料、有機電界発光素子用組成物および有機電界発光素子
JP5125480B2 (ja) * 2007-01-15 2013-01-23 三菱化学株式会社 正孔輸送材料、該正孔輸送材料を重合させてなる高分子化合物、有機電界発光素子用組成物および有機電界発光素子
JP5366118B2 (ja) 2008-05-19 2013-12-11 日本放送協会 有機el素子および有機elディスプレイ並びに有機el素子用の正孔輸送性高分子化合物
JP5491796B2 (ja) 2008-08-11 2014-05-14 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5343832B2 (ja) 2008-12-04 2013-11-13 三菱化学株式会社 アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5793878B2 (ja) 2010-02-10 2015-10-14 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP5750916B2 (ja) 2011-01-31 2015-07-22 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
TW201638086A (zh) 2011-03-25 2016-11-01 出光興產股份有限公司 有機電致發光元件
JP2013036023A (ja) * 2011-07-13 2013-02-21 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP5874242B2 (ja) 2011-08-26 2016-03-02 東洋インキScホールディングス株式会社 有機エレクトロルミネッセンス素子用材料およびその用途
JP6015181B2 (ja) * 2012-07-13 2016-10-26 日立化成株式会社 硬化性重合体並びにこれを用いた樹脂及び有機el素子
JP2014169418A (ja) 2013-03-05 2014-09-18 Toppan Printing Co Ltd 電荷輸送膜用インク、電荷輸送膜用インクに使用可能な芳香族オリゴヨードニウム塩および電荷輸送膜用インクを用いた電荷輸送膜の製造方法
JP6252829B2 (ja) 2013-07-12 2017-12-27 凸版印刷株式会社 電荷輸送ポリマー、ならびにそれを用いた電荷輸送ポリマー組成物、発光性電荷輸送膜および有機el素子
CN103474580A (zh) * 2013-09-09 2013-12-25 京东方科技集团股份有限公司 柔性有机电致发光器件的封装结构、方法、柔性显示装置
JP6551238B2 (ja) 2014-02-14 2019-07-31 日立化成株式会社 ポリマー又はオリゴマー、正孔輸送材料組成物、及び、これらを用いた有機エレクトロニクス素子
JP6331462B2 (ja) * 2014-02-25 2018-05-30 日立化成株式会社 有機エレクトロニクス素子の製造方法
WO2016076375A1 (ja) 2014-11-11 2016-05-19 日立化成株式会社 有機エレクトロルミネセンス素子及びその製造方法
US9954174B2 (en) 2015-05-06 2018-04-24 E I Du Pont De Nemours And Company Hole transport materials
KR20180066115A (ko) 2015-11-05 2018-06-18 이 아이 듀폰 디 네모아 앤드 캄파니 가교성 정공 수송 물질
WO2018083801A1 (ja) 2016-11-07 2018-05-11 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036390A (ja) 1998-05-13 2000-02-02 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003213002A (ja) 2001-11-19 2003-07-30 Mitsubishi Chemicals Corp 芳香族ジアミン含有高分子化合物およびそれを用いる有機電界発光素子
JP2005075948A (ja) 2003-09-01 2005-03-24 Mitsubishi Chemicals Corp 高分子化合物、正孔注入・輸送材料、有機電界発光素子材料および有機電界発光素子
JP2007514298A (ja) * 2003-10-30 2007-05-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング オキセタン基を含有する可塑剤を用いた有機半導体層の改善された架橋方法
JP2006279007A (ja) 2005-03-02 2006-10-12 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007302886A (ja) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd 有機エレクトロニクス用材料及びこれを用いた有機エレクトロニクス素子、有機エレクトロルミネセンス素子
WO2008108162A1 (ja) * 2007-03-05 2008-09-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2010140553A1 (ja) 2009-06-01 2010-12-09 日立化成工業株式会社 有機エレクトロニクス材料およびそれを含むインク組成物、ならびにそれらを用いて形成された有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置および表示装置
WO2013002053A1 (ja) * 2011-06-27 2013-01-03 新日鉄住金化学株式会社 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
JP2013124271A (ja) * 2011-12-14 2013-06-24 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP2013214565A (ja) * 2012-03-30 2013-10-17 Toppan Printing Co Ltd 芳香族ジヨードニウム塩、電荷輸送膜用組成物、電荷輸送膜用インク、およびそれらを用いた電荷輸送膜の製造方法
JP2016167570A (ja) * 2015-03-10 2016-09-15 日立化成株式会社 有機発光素子

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 21, 2009, pages 4802 - 4906
ADV. MATER., vol. 25, 2013, pages 3319
APPL. PHYS. LETT., vol. 101, 2012, pages 093306
APPL. PHYS. LETT., vol. 98, 2011, pages 083302
CHEM. COMM., vol. 48, 2012, pages 11392
CHEM. COMM., vol. 49, 2013, pages 10385
CHEM. LETT., vol. 43, 2014, pages 319
J. AM. CHEM. SOC., vol. 134, 2012, pages 14706
J. PHYS. CHEM. A, vol. 117, 2013, pages 5607
KENGO HIROSEDAISUKE KUMAKINOBUAKI KOIKEAKIRA KURIYAMASEIICHIRO IKEHATASHIZUO TOKITO, 53RD MEETING OF THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, 2006
NATURE, vol. 492, 2012, pages 234
PHYS. CHEM. CHEM. PHYS., vol. 15, 2013, pages 15850
See also references of EP3537490A4

Also Published As

Publication number Publication date
TW201823423A (zh) 2018-07-01
CN109937490A (zh) 2019-06-25
JPWO2018084009A1 (ja) 2019-09-26
US20190288217A1 (en) 2019-09-19
WO2018083801A1 (ja) 2018-05-11
KR102498458B1 (ko) 2023-02-09
KR20190082209A (ko) 2019-07-09
TWI816645B (zh) 2023-10-01
EP3537490A1 (en) 2019-09-11
US11398604B2 (en) 2022-07-26
EP3537490A4 (en) 2020-08-05
CN109937490B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2018021133A1 (ja) 有機エレクトロニクス材料及びその利用
WO2018084009A1 (ja) 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2017188023A1 (ja) 電荷輸送性材料及びその利用
JP2017069324A (ja) 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示素子
JP2017123438A (ja) 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子
JP6954284B2 (ja) 有機エレクトロニクス材料
WO2018020571A1 (ja) 有機エレクトロニクス材料
WO2017179661A1 (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
JP7409088B2 (ja) 有機薄膜の製造方法、有機薄膜及びその利用
JP7103424B2 (ja) 有機エレクトロニクス材料及びその利用
JP2017069385A (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2018159694A1 (ja) 有機エレクトロニクス材料及びその利用
JP2017050338A (ja) 有機エレクトロニクス材料及び有機エレクトロニクス素子
JP6775731B2 (ja) 電荷輸送性材料及びその利用
JP6972589B2 (ja) 有機エレクトロニクス材料、及び該材料を用いた有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
JP2017066289A (ja) 電荷輸送性材料、該材料を用いたインキ組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
JP6816540B2 (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
JP2017048271A (ja) 有機エレクトロニクス材料及び有機エレクトロニクス素子
JP2017059724A (ja) 有機エレクトロニクス材料及び該材料を含むインク組成物、並びに有機エレクトロニクス素子及び有機エレクトロルミネセンス素子
JP6657663B2 (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、表示装置及び照明装置
WO2019175976A1 (ja) 有機エレクトロニクス材料及び有機エレクトロニクス素子
WO2018143471A1 (ja) 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
JP2019131670A (ja) 有機エレクトロニクス材料
JP2017191908A (ja) 有機エレクトロニクス材料及び有機エレクトロルミネセンス素子
JP2017123362A (ja) 有機エレクトロニクス材料及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548631

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197012468

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867662

Country of ref document: EP

Effective date: 20190607