WO2018079484A1 - オリゴシランの製造方法及びオリゴシランの製造装置 - Google Patents

オリゴシランの製造方法及びオリゴシランの製造装置 Download PDF

Info

Publication number
WO2018079484A1
WO2018079484A1 PCT/JP2017/038181 JP2017038181W WO2018079484A1 WO 2018079484 A1 WO2018079484 A1 WO 2018079484A1 JP 2017038181 W JP2017038181 W JP 2017038181W WO 2018079484 A1 WO2018079484 A1 WO 2018079484A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligosilane
fluid
producing
gas
adsorbent
Prior art date
Application number
PCT/JP2017/038181
Other languages
English (en)
French (fr)
Inventor
清志 埜村
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US16/345,014 priority Critical patent/US20190276321A1/en
Priority to CN201780066110.XA priority patent/CN109923067A/zh
Priority to JP2018547650A priority patent/JP6938528B2/ja
Priority to KR1020197011975A priority patent/KR20190052711A/ko
Publication of WO2018079484A1 publication Critical patent/WO2018079484A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • C01B33/046Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/106Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/263Chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to an oligosilane production method and an oligosilane production apparatus.
  • Oligosilanes such as hexahydrodisilane (Si 2 H 6 , hereinafter abbreviated as “disilane”) and octahydrotrisilane (Si 3 H 8 , hereafter abbreviated as “trisilane”) are tetrahydro It has a higher reactivity than silane (SiH 4 , hereinafter sometimes abbreviated as “monosilane”), and is a very useful compound as a precursor for forming amorphous silicon or a silicon film.
  • Conventional methods for producing oligosilane include acid decomposition of magnesium silicide (see Non-Patent Document 1), reduction method of hexachlorodisilane (see Non-Patent Document 2), discharge method of tetrahydrosilane (see Patent Document 1), silane The thermal decomposition method (see Patent Documents 2 and 3) and the dehydrogenative condensation method of silane using a catalyst (see Patent Documents 4 to 10) have been reported.
  • the oligosilane production method using the dehydrocondensation method of tetrahydrosilane (SiH 4 ) is an industrially superior method that can produce oligosilane at a relatively low cost in that it uses inexpensive and readily available raw materials.
  • polysilane is also generated in addition to the target oligosilane.
  • the reaction is usually carried out to a conversion rate of about 10-15%, at most about 30%, and the resulting mixture of raw material and product is purified.
  • This purification requires very large energy.
  • An object of this invention is to provide the manufacturing method of the oligosilane which can manufacture the target oligosilane more efficiently. Moreover, it aims at providing the manufacturing apparatus which manufactures oligosilane more efficiently.
  • the present inventors processed a reaction product mixture fluid containing oligosilane obtained by dehydrogenative condensation of hydrosilane under specific conditions using a membrane separator.
  • oligosilanes can be efficiently concentrated by contacting the adsorbent under specific conditions, and as a result, it can be produced more efficiently, and the present invention has been completed.
  • the present invention is as follows. ⁇ 1> The following step (A) and / or (B) is applied to the first step of dehydrocondensing hydrosilane to produce oligosilane, and the reaction product mixture fluid obtained through the first step.
  • a second step of separating the reaction product mixture fluid into a raw material-rich fluid and a product-rich fluid The molar concentration of oligosilane having 2 to 5 silicon atoms relative to all silane compounds in the raw material-rich fluid is lower than the molar concentration of oligosilane having 2 to 5 silicon atoms relative to all silane compounds in the reaction product mixture fluid, The molar concentration of oligosilane having 2 to 5 silicon atoms relative to all silane compounds in the product-rich fluid is higher than the molar concentration of oligosilane having 2 to 5 silicon atoms relative to all silane compounds in the reaction product mixture fluid.
  • the product-rich fluid is obtained as the fluid that was not.
  • the membrane material of the membrane separator is zeolite, porous silica, alumina, or zirconia.
  • the pressure of the reaction product mixture fluid supplied to the membrane separator is 0.1 MPa or more and 10 MPa or less.
  • the temperature of the reaction product mixture fluid supplied to the membrane separator is ⁇ 10 ° C. or higher and lower than 300 ° C.
  • (B) contacting the reaction product mixture fluid with an adsorbent under conditions satisfying the following (b-1) to (b-3) to obtain the raw material-rich fluid as a fluid not adsorbed on the adsorbent: After adsorbing to the adsorbent, the product-rich fluid is obtained as a desorbed fluid.
  • the adsorbent material is zeolite, alumina gel, silica gel or activated carbon.
  • the pressure of the reaction product mixture fluid brought into contact with the adsorbent is 0.1 MPa or more and 20 MPa or less.
  • the temperature of the reaction product mixture fluid brought into contact with the adsorbent is ⁇ 50 ° C. or higher and 200 ° C. or lower.
  • ⁇ 2> The method for producing an oligosilane according to ⁇ 1>, wherein the hydrosilane in the first step is tetrahydrosilane (SiH 4 ), and the generated oligosilane includes hexahydrodisilane (Si 2 H 6 ).
  • a method for producing an oligosilane represented by the following formula (P-1) In the first step, an oligosilane represented by the following formula (R-1) together with tetrahydrosilane (SiH 4 ) is used as a raw material hydrosilane, and from the oligosilane represented by the following formula (R-1), the following formula (P The method for producing an oligosilane according to ⁇ 1>, which is a step of producing an oligosilane represented by -1).
  • n represents an integer of 2 to 5
  • n represents an integer of 2 to 5
  • the oligosilane represented by the formula (R-1) is octahydrotrisilane (Si 3 H 8 ), and the oligosilane represented by the formula (P-1) is hexahydrodisilane (Si 2
  • a method for producing an oligosilane represented by the following formula (P-2) In the first step, an oligosilane represented by the following formula (R-2) together with tetrahydrosilane (SiH 4 ) is used as a raw hydrosilane, and from the oligosilane represented by the following formula (R-2), the following formula (P The method for producing an oligosilane according to ⁇ 1>, which is a step of producing an oligosilane represented by -2).
  • m represents an integer of 3 to 5.
  • m represents an integer of 3 to 5
  • the oligosilane represented by the formula (R-2) is hexahydrodisilane (Si 2 H 6 ), and the oligosilane represented by the formula (P-2) is octahydrotrisilane (Si 3
  • ⁇ 7> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 6>, wherein the membrane used in (A) has a pore diameter of 0.1 nm to 100 ⁇ m.
  • ⁇ 8> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 6>, wherein the adsorbent used in (B) has a BET specific surface area of 10 m 2 / g or more and 1000 m 2 / g or less.
  • ⁇ 9> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 8>, wherein the first step is a step performed in the presence of hydrogen gas.
  • ⁇ 10> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 9>, wherein the first step is a step performed in the presence of a catalyst containing a transition element.
  • the transition elements contained in the catalyst are Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, Group 7 transition elements, Group 8 transition elements, Group 9 transition elements, ⁇ 10>
  • the method for producing an oligosilane according to ⁇ 10> which is at least one selected from the group consisting of a group 10 transition element and a group 11 transition element.
  • ⁇ 12> The method for producing an oligosilane according to ⁇ 10> or ⁇ 11>, wherein the catalyst is a heterogeneous catalyst including a support.
  • ⁇ 13> The method for producing an oligosilane according to ⁇ 12>, wherein the carrier is at least one selected from the group consisting of silica, alumina, and zeolite.
  • the carrier is at least one selected from the group consisting of silica, alumina, and zeolite.
  • ⁇ 14> The method for producing an oligosilane according to ⁇ 13>, wherein the zeolite has pores having a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less.
  • ⁇ 15> The method for producing an oligosilane according to any one of ⁇ 1> to ⁇ 14>, which is a one-pass method in which the first step is performed only once.
  • ⁇ 16> The method for producing an oligosilane according to ⁇ 1> or ⁇ 2>, which is a recycling method in which at least a part of unreacted tetrahydrosilane (SiH 4 ) is re-supplied (reused) as a raw material in the first step. . ⁇ 17>
  • ⁇ 18> A recycling method in which the oligosilane represented by the formula (R-1) or the oligosilane represented by the formula (R-2) is re-supplied (reused) as a raw material in the first step.
  • a reactor for performing the first step of dehydrocondensing hydrosilane to produce oligosilane;
  • a gas-liquid separator for performing a second step of separating the reaction product mixture fluid obtained through the first step into a raw material-rich fluid and a product-rich fluid;
  • a purification device for distilling the gas-liquid separated liquid,
  • An oligosilane production apparatus that satisfies the following conditions (AA) and / or (BB).
  • the gas-liquid separation part has a membrane separator, supplies the reaction product mixture fluid to the membrane separator, obtains the raw material-rich fluid as a fluid that permeates the membrane, and does not permeate the membrane
  • a gas-liquid separator for obtaining the product-rich fluid as a fresh fluid (Aa-1)
  • the membrane material of the membrane separator is zeolite, porous silica, alumina, or zirconia, (Aa-2) a pressure adjusting unit that adjusts the pressure of the reaction product mixture fluid supplied to the membrane separator to 0.1 MPa or more and 10 MPa or less, (Aa-3) including a temperature adjusting unit for adjusting the temperature of the reaction product mixture fluid supplied to the membrane separator to ⁇ 10 ° C.
  • the gas-liquid separation unit has an adsorbent, the reaction product mixture fluid is brought into contact with the adsorbent, and the raw material-rich fluid is obtained as a fluid that is not adsorbed on the adsorbent, and the adsorbent
  • the adsorbent material is zeolite, alumina gel, silica gel or activated carbon, (Bb-2) a pressure adjusting unit that adjusts the pressure of the reaction product mixture fluid brought into contact with the adsorbent to 0.1 MPa or more and 20 MPa or less, (Bb-3) including a temperature adjusting unit for adjusting the temperature of the reaction product mixture fluid to be brought into contact with the adsorbent to -50 ° C or higher and 200 ° C or lower.
  • oligosilane can be produced more efficiently.
  • the apparatus which manufactures oligosilane more efficiently can be provided.
  • the oligosilane production method according to one embodiment of the present invention is a first step (hereinafter referred to as “first”) in which hydrosilane is dehydrogenatively condensed to produce oligosilane.
  • first a first step in which hydrosilane is dehydrogenatively condensed to produce oligosilane.
  • the reaction product mixture fluid obtained through the first step may be subjected to the following treatments (A) and / or (B), and the reaction product mixture fluid may be treated with a high feedstock.
  • Second step Including a second step (hereinafter sometimes abbreviated as “second step”) that separates the contained fluid and the product-rich fluid, and the number of silicon atoms in the raw material-rich fluid is 2 or more and 5 or more.
  • the molar concentration of the following oligosilane is lower than the molar concentration of oligosilane having 2 to 5 silicon atoms relative to all silane compounds in the reaction product mixture fluid, and Molar concentration of atoms 2 to 5 inclusive oligosilanes may be higher than the molar concentration of silicon atoms 2 to 5 inclusive oligosilanes to total silane compounds of the reaction product mixture in the fluid.
  • the concentration of the silane compound in the gas is measured by a gas chromatograph mass spectrometer.
  • A In the case of using a separation membrane The reaction product mixture fluid is supplied to a membrane separator under the conditions satisfying the following (a-1) to (a-3), and the above-mentioned raw material-rich fluid is obtained as a fluid that permeates the membrane. Thus, the product-rich fluid is obtained as a fluid that has not permeated the membrane.
  • the membrane material of the membrane separator is any one selected from zeolite, porous silica, alumina, and zirconia.
  • A-2) The pressure of the reaction product mixture fluid supplied to the membrane separator is 0.1 MPa or more and 10 MPa or less.
  • the temperature of the reaction product mixture fluid supplied to the membrane separator is ⁇ 10 ° C. or higher and lower than 300 ° C.
  • the separation is performed by pressurizing the supply gas side and setting the permeate gas side to a lower pressure than the separation membrane.
  • the vapor permeation method that separates each component and the difference in affinity with the membrane through a homogeneous membrane without pores are used.
  • the former is a membrane having pores such as zeolite and porous silica, and the latter is known as a polymer separation membrane.
  • a vapor permeation method for separating the reaction product mixture fluid of the present invention In order to increase the permeation area of the separation membrane, the separation membrane is usually used as a plurality of cylindrical shapes.
  • a high product content fluid adsorbed on the adsorbent is desorbed by depressurization or heating to obtain a high product content fluid.
  • the adsorbent material is zeolite, porous silica, alumina or zirconia.
  • the pressure of the mixture fluid brought into contact with the adsorbent is 0.1 MPa or more and 20 MPa or less.
  • the temperature of the mixture fluid brought into contact with the adsorbent is ⁇ 50 ° C. or higher and 200 ° C. or lower.
  • in-pore condensation capillary condensation
  • the adsorbent with micro and mesopores with a wide specific surface area is packed in the adsorption tower, and the high-product-content fluid to be separated is contacted under pressure to preferentially adsorb components with low vapor pressure. Thereafter, the adsorbed component is desorbed and recovered by decompression, heating, or the like.
  • the treatment itself can be performed batchwise or continuously, but the continuous method in this case means that a plurality of adsorption towers are prepared and the treatment is performed continuously by performing a switching process. To do.
  • the present inventors supply a mixture fluid containing oligosilane obtained by dehydrocondensation of hydrosilane to a membrane separator under the above-mentioned conditions, or contact oligosorbent with the adsorbent under the above-mentioned conditions. They found that they can be manufactured more efficiently. That is, the inventors have found that the oligosilane in the reaction product mixture can be efficiently purified by concentrating, and the oligosilane can be produced more efficiently. It was also found that unreacted tetrahydrosilane and the like can be easily reused, and that oligosilane can be produced more efficiently as a whole.
  • hydrosilane is a silane in which all the bonds of silicon atoms are bonded to hydrogen atoms (Si—H bonds) or bonded to silicon atoms (Si—Si bonds).
  • a compound (which may have one or more silicon atoms), “monosilane” is tetrahydrosilane, “disilane” is hexahydrodisilane, “trisilane” is octahydrotrisilane, “oligosilane” is ( Mono) A silane oligomer in which 2 to 5 silanes are condensed, and “total silane compound” is a raw material containing tetrahydrosilane, hexahydrodisilane, octahydrotrisilane, oligosilane, and all silane compounds contained in the product.
  • hydrogen molecules (H 2) is By condensation of hydrosilane each other to release silicon - it is intended to mean a silicon (Si-Si) bond to form a reaction.
  • reaction formula (2) when tetrahydrosilane is used as a raw material, it is represented by the following reaction formula (2) on the formula.
  • the specific embodiment of the entire “oligosilane production method” until the oligosilane is isolated is not particularly limited, but the following (i) , (Ii) ((ii) can be classified as (ii-1) and (ii-2)).
  • the first step is a step that includes dehydrocondensing hydrosilane to produce oligosilane.
  • Hydrosilane is a compound in which all the bonds of silicon atoms are bonded to hydrogen atoms (Si—H bonds) or bonded to silicon atoms (Si—Si bonds). Examples include silane (SiH 4 ), hexahydrodisilane (Si 2 H 6 ), and octahydrotrisilane (Si 3 H 8 ). What is necessary is just to select the hydrosilane which is a raw material according to the oligosilane to manufacture.
  • oligosilane is an oligomer of silane in which a plurality (2 to 5) of (mono) silane is condensed, and the number of silicon atoms of oligosilane is preferably 2 to 4, more preferably 2 to 3, More preferably, it is 2.
  • the oligosilane include hexahydrodisilane (Si 2 H 6 ), octahydrotrisilane (Si 3 H 8 ), decahydrotetrasilane (Si 4 H 10 ), and the like.
  • a silane compound having (n + 1) silicon atoms is the main product.
  • the production reaction of oligosilane from hydrosilane is apparently a dehydrogenation reaction.
  • silylene and hydrogen from disilane (tetrahydrosilane) and disilane (hexahydrodisilane) are used as raw materials.
  • disilane hexahydrodisilane
  • monosilane tetrahydrosilane
  • the produced silylene reacts with silanes and grows (monosilane (tetrahydrosilane) as a raw material). It is considered that when disilane (hexahydrodisilane) is reacted to produce disilane (hexahydrodisilane) as a raw material, silylene and disilane (hexahydrodisilane) react to produce trisilane (octahydrotrisilane).
  • the reaction starts from decomposition into monosilane (tetrahydrosilane) and silylene, so that the reaction product must always contain monosilane (tetrahydrosilane). Become.
  • monosilane (tetrahydrosilane) having 1 silicon atom is used as a raw material.
  • hexahydrodisilane Si 2 H 6
  • oligosilane having a silicon atom number other than 1 may be used as a raw material in combination with tetrahydrosilane.
  • step 1-1 or step 1-2 is preferable.
  • Step 1-1 Using an oligosilane represented by the following formula (R-1) as a raw material, an oligosilane represented by the following formula (P-1) is converted from an oligosilane represented by the following formula (R-1) Including generating.
  • R-1 and P-1 n represents an integer of 2 to 5
  • silylene (: SiH 2 ) produced by this reaction formula becomes hexahydrodisilane when reacted with tetrahydrosilane (see formula (7)).
  • Step 1-2 Using an oligosilane represented by the following formula (R-2) as a raw material, an oligosilane represented by the following formula (P-2) is converted from an oligosilane represented by the following formula (R-2) Including generating.
  • m represents an integer of 3 to 5
  • Silylene (: SiH 2 ) is produced by decomposition of tetrahydrosilane with hydrogen (see formula (9)).
  • an oligosilane represented by the following formula (P-1) is used as a production method.
  • n represents an integer of 2 to 5
  • an oligosilane represented by the following formula (P-2) is used as a production method.
  • m represents an integer of 3 to 5.
  • trisilane is known to decompose into silylene (: SiH 2 ) and disilane by thermal decomposition as represented by the following formula (6), but silylene reacts with monosilane in the presence of excess monosilane. Can be converted to disilane (see formula (7)). That is, it is possible to convert one molecule of trisilane to monosilane as a raw material to convert it into two molecules of disilane, and as a result, it is possible to improve the selectivity of disilane in the reaction.
  • the trisilane produced as a by-product is recovered and supplied as a raw material together with monosilane, thereby improving the selectivity of disilane and reusing trisilane. It becomes an efficient method.
  • generates disilane from tetrahydrosilane is performed,
  • generated during reaction is collect
  • Disilane is also known to decompose into silylene (: SiH 2 ) and monosilane (see formula (8)).
  • the step 1-1 is characterized by using an oligosilane represented by the formula (R-1) as a raw material.
  • an oligosilane represented by the formula (R-1) As a raw material, when disilane (Si 2 H 6 ) is used as a target oligosilane, tetrahydrosilane (SiH 4 ) Octahydrotrisilane (Si 3 H 8 ) is used as the oligosilane represented by the formula (R-1).
  • the amount of the oligosilane represented by the formula (R-1) in the step 1-1 is preferably 0.001 times or more, and 0.005 times or more in terms of mole relative to the amount of tetrahydrosilane used. More preferably, it is 0.01 times or more, more preferably 0.5 times or less, more preferably 0.3 times or less, and 0.2 times or less. Is more preferable.
  • the amount of the oligosilane represented by the formula (R-1) is 0.001 times or more, there is an effect of increasing the selectivity of the target oligosilane, 0.5 times the amount of tetrahydrosilane used.
  • Step 1-2 is characterized by using an oligosilane represented by the formula (R-2) as a raw material.
  • an oligosilane represented by the formula (R-2) as a raw material.
  • Si 3 H 8 octahydrotrisilane
  • Si 2 H 6 tetrahydro Hexahydrodisilane
  • SiH 4 silane
  • the amount of oligosilane represented by the formula (R-2) in Step 1-2 is preferably 0.1 times or more in terms of moles relative to the amount of tetrahydrosilane (SiH 4 ) used, and 0 It is more preferably 15 times or more, more preferably 0.2 times or more, preferably 2 times or less, more preferably 1.5 times or less, and 1 time or less. Is more preferable.
  • the amount of the oligosilane represented by the formula (R-2) is 0.1 times or more than the amount of tetrahydrosilane (SiH 4 )
  • the reaction efficiency between the generated silylene and the oligosilane is increased. It can be increased and has the effect of increasing the number of silicon atoms.
  • the by-production of oligosilane having a larger number of silicon atoms than the target oligosilane due to the reaction between silylene and oligosilane generated from oligosilane and monosilane can be suppressed to a low level that does not cause a problem.
  • the reaction temperature in the first step depends on the operating pressure and the reaction time, but preferably 300 ° C or more and 550 ° C or less in the case of no catalyst. More preferably, it is 400 degreeC or more and 500 degrees C or less.
  • a catalyst depends on the operating pressure, but is preferably 50 ° C or higher, more preferably 100 ° C or higher, preferably 400 ° C or lower, more preferably 350 ° C or lower, and further preferably 300 ° C or lower. When it is within the above range, oligosilane can be produced more efficiently.
  • the conversion rate of monosilane and oligosilanes used as raw materials is the reaction time (retention time of the raw material in the reactor when no catalyst is used, contact time of the raw material catalyst when using a catalyst) Is adjusted to 30% or less, more preferably 20% or less. Although it is possible to make the conversion rate higher than 30%, if the conversion rate becomes high, polysilane with a large molecular weight will be produced sequentially, and if the conversion rate is made too high, solid polysilane may be produced. is there.
  • the reaction time is 1 second to 1 hour, more preferably 5 seconds to 30 minutes, and still more preferably 10 seconds to 10 minutes, although it depends on the reaction temperature and whether or not a catalyst is used.
  • the first step (including the cases of the 1-1 and 1-2 steps) is performed in the presence of a catalyst containing a transition element (hereinafter sometimes abbreviated as “transition element-containing catalyst”).
  • transition element-containing catalyst a catalyst containing a transition element
  • Specific types of transition elements are not particularly limited, but include Group 3 transition elements, Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, Group 7 transition elements, Group 8 transition elements, Examples include Group 9 transition elements, Group 10 transition elements, and Group 11 transition elements.
  • Examples of Group 3 transition elements in the transition element-containing catalyst include scandium (Sc), yttrium (Y), lanthanoid (La), and samarium (Sm).
  • Group 4 transition elements include titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • Examples of Group 5 transition elements include vanadium (V), niobium (Nb), and tantalum (Ta).
  • Examples of Group 6 transition elements include chromium (Cr), molybdenum (Mo), and tungsten (W).
  • Group 7 transition elements include manganese (Mn), technetium (Tc), and rhenium (Re).
  • Group 8 transition elements include iron (Fe), ruthenium (Ru), and osmium (Os).
  • Examples of the Group 9 transition element include cobalt (Co), rhodium (Rh), and iridium (Ir).
  • Examples of the Group 10 transition element include nickel (Ni), palladium (Pd), and platinum (Pt).
  • Examples of the Group 11 transition element include copper (Cu), silver (Ag), and gold (Au).
  • Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, Group 7 transition elements, Group 8 transition elements, Group 9 transition elements, Group 10 transition elements, Group 11 transition elements are preferred, tungsten (W), vanadium (V), molybdenum (Mo), cobalt (Co), nickel (Ni), palladium (Pd), platinum (Pt) are more preferred, tungsten (W), More preferred is molybdenum (Mo).
  • the transition element-containing catalyst may be a heterogeneous catalyst or a homogeneous catalyst as long as it contains a transition element, but is preferably a heterogeneous catalyst, and a heterogeneous system including a support.
  • a catalyst containing a transition element on the surface and / or inside of the support is particularly preferred.
  • the state and composition of the transition element in the transition element-containing catalyst are not particularly limited.
  • a heterogeneous catalyst the state of a metal (including a simple metal, an alloy, or a part of the surface is oxidized), metal
  • the state of an oxide single metal oxide, composite metal oxide
  • the catalyst when the catalyst is a heterogeneous catalyst including a carrier, the catalyst is supported on the surface of the carrier (outer surface and / or inside the pores) in the form of metal or metal oxide, or the inside of the carrier by ion exchange or complexation.
  • the catalyst include those in which a transition element is introduced into (support skeleton).
  • an organometallic complex having a transition element as a central metal can be mentioned.
  • Metals include scandium, yttrium, lanthanoid, samarium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron , Ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, and alloys thereof.
  • metal oxides include scandium oxide, yttrium oxide, lanthanoid oxide, samarium oxide, titanium oxide, zirconium oxide, hafnium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and technetium oxide. , Rhenium oxide, iron oxide, ruthenium oxide, osmium oxide, cobalt oxide, rhodium oxide, iridium oxide, nickel oxide, palladium oxide, platinum oxide, copper oxide, silver oxide, and composite oxides thereof.
  • the specific type of carrier when the catalyst in the transition element-containing catalyst is a heterogeneous catalyst including a carrier is not particularly limited, but silica, alumina, titania, zirconia, silica-alumina, zeolite, activated carbon, aluminum phosphate, etc. And any one of silica, alumina, titania, zirconia, zeolite, and activated carbon is preferable.
  • silica, alumina, and zeolite are preferable in terms of thermal stability when a transition element is supported, zeolite is more preferable in terms of disilane selectivity, and pores having a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less.
  • zeolite having pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less is particularly preferable.
  • the pore space of zeolite is considered to work as a reaction field for dehydrogenative condensation, and the pore size of “minor axis 0.41 nm or more and major axis 0.74 nm or less” suppresses excessive polymerization, and oligosilane It is considered suitable for improving the selectivity.
  • zeolite having pores with a minor axis of 0.41 nm or more and a major axis of 0.74 nm or less actually means only zeolites having “minor pores of 0.41 nm or more and major axis of 0.74 nm or less”. It is not intended to include zeolites that satisfy the above-mentioned conditions in which the “minor axis” and “major axis” of the pores calculated theoretically from the crystal structure respectively.
  • ⁇ short diameter '' and ⁇ long diameter '' of the pore ⁇ ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch.
  • the minor axis of the zeolite is preferably 0.43 nm or more, more preferably 0.45 nm or more, and further preferably 0.47 nm or more.
  • the major axis of the zeolite is preferably 0.69 nm or less, more preferably 0.65 nm or less, and still more preferably 0.60 nm or less. If the pore diameter of the zeolite is constant due to the circular cross-sectional structure of the pores, the pore diameter is considered to be “0.41 nm to 0.74 nm”. In the case of a zeolite having plural kinds of pore diameters, the pore diameter of at least one kind of pores may be “0.41 nm or more and 0.74 nm or less”.
  • zeolites are the structural codes compiled in the database of the International Zeolite Association, AFR, AFY, ATO, BEA, BOG, BPH, CAN, CON, DFO, EON, EZT, FAU , FER, GON, IMF, ISV, ITH, IWR, IWV, IWW, LTA, LTL, MEI, MEL, MFI, MOR, MWW, OBW, MOZ, MSE, MTT, MTW, NES, OFF, OSI, PON, SFF Zeolite corresponding to SFG, STI, STF, TER, TON, TUN, USI and VET is preferred.
  • Structural code is ATO, BEA, BOG, CAN, IMF, ITH, IWR, IWW, MEL, MFI, OBW, MSE, MTW, NES, OSI, PON, SFF, SFG, STF, STI, TER, TON, Zeolite corresponding to TUN and VET is more preferable. Zeolite whose structural code corresponds to BEA, MFI, or TON is particularly preferred.
  • Zeolite whose structural code corresponds to MFI includes: * ZSM-5, [As-Si-O] -MFI, [Fe-Si-O] -MFI, [Ga-Si-O] -MFI, AMS- 1B, AZ-1, Bor-C, Boralite C, Encilite, FZ-1, LZ-105, Monoclinic H-ZSM-5, Mutanite, NU-4, NU-5, Siliconelite, TS-1, TSZ, TSZ- III, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B, ZMQ-TB, organic-free ZSM-5, etc.
  • zeolite (* is a polymorphic mixed crystal having three types of structures) It represents.)
  • zeolite whose structural code corresponds to TON include Theta-1, ISI-1, KZ-2, NU-10, ZSM-22 and the like. Particularly preferred zeolites are ZSM-5, beta, ZSM-22.
  • the silica / alumina ratio (mole / mole ratio) is preferably 5 to 10000, more preferably 10 to 2000, and particularly preferably 20 to 1000.
  • the transition element content (total content) in the catalyst is relative to the total mass of the entire catalyst (in the case of a catalyst including a support, the mass of the support is also included).
  • it is 0.01 mass% or more, More preferably, it is 0.1 mass% or more, More preferably, it is 0.5 mass% or more, Preferably it is 50 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 10 It is below mass%.
  • a good reaction conversion rate can be secured, and side reactions due to excessive use can be suppressed, so that oligosilane can be produced more efficiently.
  • the catalyst is preferably in the form of a molded body in which the powder is formed into a spherical shape, a cylindrical shape (pellet shape), a ring shape, a honeycomb shape, or the like.
  • binders such as an alumina and a clay compound, in order to shape
  • the alumina content when alumina is used as the binder (alumina Is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, preferably 50 parts by mass or less, more preferably 40 parts by mass. Part or less, more preferably 30 parts by weight or less.
  • alumina is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, preferably 50 parts by mass or less, more preferably 40 parts by mass. Part or less, more preferably 30 parts by weight or less.
  • the method of supporting the transition element on the carrier include an impregnation method using a precursor in a solution state, an ion exchange method, a method of volatilizing the precursor by sublimation or the like, and depositing it on the carrier.
  • the impregnation method is a method in which the carrier is brought into contact with a solution in which the transition element compound is dissolved, and the transition element compound is adsorbed on the surface of the carrier.
  • the solvent pure water is usually used, but an organic solvent such as methanol, ethanol, acetic acid or dimethylformamide can also be used as long as it can dissolve the transition element compound.
  • the ion exchange method is a method in which a carrier having an acid point such as zeolite is brought into contact with a solution in which ions of the transition element are dissolved, and the ion of the transition element is introduced into the acid point of the carrier.
  • the vapor deposition method is a method in which the transition element itself or the transition element oxide is heated and volatilized by sublimation or the like and vapor deposited on the carrier. After the impregnation method, ion exchange method, vapor deposition method, etc., treatment such as drying, firing in a reducing atmosphere or oxidizing atmosphere can be performed to prepare a catalyst in a desired metal or metal oxide state.
  • the precursor of the transition element-containing catalyst in the case of molybdenum, ammonium heptamolybdate, silicomolybdic acid, phosphomolybdic acid, molybdenum chloride, molybdenum oxide and the like can be mentioned.
  • examples include ammonium paratungstate, phosphotungstic acid, silicotungstic acid, and tungsten chloride.
  • vanadium, vanadium oxysulfate, vanadium chloride, ammonium metavanadate and the like can be mentioned.
  • cobalt examples include cobalt nitrate and cobalt chloride.
  • nickel, nickel nitrate, nickel chloride and the like can be mentioned.
  • examples include palladium nitrate and palladium chloride.
  • examples include palladium nitrate and palladium chloride.
  • platinum diammine dinitroplatinum (II) nitric acid solution, tetraammineplatinum (II) chloride and the like can be mentioned.
  • the transition element-containing catalyst When the transition element-containing catalyst is a heterogeneous catalyst, it may be abbreviated as at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table (hereinafter referred to as “typical elements”). .) Is preferably contained.
  • the state and composition of the typical element in the catalyst are not particularly limited, and examples thereof include a metal oxide (single metal oxide, composite metal oxide) and an ion state.
  • the transition element-containing catalyst is a heterogeneous catalyst including a support
  • the catalyst is supported in the form of a metal oxide or metal salt on the surface of the support (outer surface and / or inside the pores), ion exchange or composite
  • a typical element is introduced into the inside (support skeleton).
  • group 1 typical elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • Group 2 typical elements include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). Among these, it is preferable to contain sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), calcium (Ca), strontium (Sr), and barium (Ba).
  • the transition element-containing catalyst is a heterogeneous catalyst including a support
  • examples of the method for blending the typical element into the catalyst include an impregnation method and an ion exchange method.
  • the impregnation method is a method in which a carrier is brought into contact with a solution in which a compound containing a typical element is dissolved, and the typical element is adsorbed on the surface of the carrier.
  • a solvent pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can be used as long as they can dissolve a compound containing a typical element.
  • the ion exchange method is a method in which a carrier having an acid point such as zeolite is brought into contact with a solution in which a compound capable of dissociating into ions when the typical element is dissolved, and ions of the typical element are introduced into the acid point of the carrier. is there.
  • the solution containing lithium (Li) include lithium nitrate (LiNO 3 ) aqueous solution, lithium chloride (LiCl) aqueous solution, lithium sulfate (Li 2 SO 4 ) aqueous solution, lithium acetate (LiOCOCH 3 ) acetic acid solution, lithium acetate Ethanol solution and the like.
  • Examples of the solution containing potassium (K) include potassium nitrate (KNO 3 ) aqueous solution, potassium chloride (KCl) aqueous solution, potassium sulfate (K 2 SO 4 ) aqueous solution, potassium acetate (KOCOCH 3 ) acetic acid solution, potassium acetate An ethanol solution etc. are mentioned.
  • Examples of the solution containing rubidium (Rb) include a rubidium chloride (RbCl) aqueous solution and a rubidium nitrate (RbNO 3 ) aqueous solution.
  • Examples of the solution containing cesium (Cs) include a cesium chloride (CsCl) aqueous solution, a cesium nitrate (CsNO 3 ) aqueous solution, a cesium sulfate (Cs 2 SO 4 ) aqueous solution, and the like.
  • Examples of the solution for containing francium (Fr) include a francium chloride (FrCl) aqueous solution.
  • Examples of the solution containing calcium (Ca) include a calcium chloride (CaCl 2 ) aqueous solution and a calcium nitrate (Ca (NO 3 ) 2 ) aqueous solution.
  • Examples of the solution in the case of containing strontium (Sr) include a strontium nitrate (Sr (NO 3 ) 2 ) aqueous solution.
  • Examples of the solution containing barium (Ba) include a barium chloride (BaCl 2 ) aqueous solution and a barium nitrate (Ba (NO 3 ) 2 ) aqueous solution.
  • the total content of typical elements in the catalyst is preferably 0.01 mass. % Or more, more preferably 0.05% by weight or more, further preferably 0.1% by weight or more, particularly preferably 0.5% by weight or more, more particularly preferably 1.0% by weight or more, most preferably 2.1% or more. It is at least 10 mass%, preferably at most 10 mass%, more preferably at most 5 mass%, still more preferably at most 4 mass%. When it is within the above range, oligosilane can be produced more efficiently.
  • the reactor, operation procedure, reaction conditions, etc. used in the first step are not particularly limited, and can be appropriately selected according to the purpose.
  • the reactor is a tank type reactor as shown in FIG. 3A, and in the case of a continuous type, a tank type reactor (fluidized bed) as shown in FIG.
  • a tubular reactor fixed bed as shown in 3 (c) is mentioned.
  • the air in the reactor is removed using a vacuum pump or the like, then tetrahydrosilane or the like is introduced and sealed, and the reactor is heated to the reaction temperature for reaction.
  • the method of starting is mentioned.
  • installing the dried catalyst in a reactor is mentioned.
  • tetrahydrosilane or the like is circulated, and the reaction is started by raising the temperature in the reactor to the reaction temperature. .
  • the catalyst may be a fixed bed type as shown in FIG. 3 (c) or a fluidized bed type as shown in FIG. 3 (b), and an operation procedure based on each method is appropriately adopted. can do.
  • a compound other than hydrosilane or the like may be charged or distributed.
  • compounds other than hydrosilane include gases such as hydrogen gas, helium gas, nitrogen gas, and argon gas, and it is particularly preferable to perform in the presence of hydrogen gas. Since tetrahydrosilane has high reactivity, it is preferable to add an inert gas such as argon gas in a batch-type or continuous one-pass system. When the tetrahydrosilane recovered in the second step is used as it is in the reactor in the continuous recycling system, it is desirable not to include other gases because they accumulate and concentrate.
  • the reaction pressure of the first step (including the cases of the 1-1 step and 1-2 step) varies depending on the reaction temperature, and the partial pressure of each component charged into the reactor is condensed at the reaction temperature. It is necessary to keep it within the range.
  • the absolute pressure is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, further preferably 0.2 MPa or more, preferably 10 MPa or less, more Preferably it is 5 MPa or less, More preferably, it is 3 MPa or less.
  • the partial pressure of tetrahydrosilane is preferably 0.0001 MPa or more, more preferably 0.0005 MPa or more, further preferably 0.001 MPa or more, preferably 10 MPa or less, more preferably 5 MPa or less, and further preferably 1 MPa or less. It is. When it is within the above range, oligosilane can be produced more efficiently.
  • the absolute pressure is preferably 0.1 MPa or more, more preferably 0.125 MPa or more, further preferably 0.15 MPa or more, preferably 5 MPa or less, more preferably 4 MPa. Hereinafter, it is more preferably 2 MPa or less.
  • the disilane partial pressure is preferably 0.00005 MPa or more, more preferably 0.0001 MPa or more, further preferably 0.0002 MPa or more, preferably 3 MPa or less, more preferably 1 MPa or less, and further preferably 0.8 MPa. It is as follows. When it is within the above range, oligosilane can be produced more efficiently.
  • the raw hydrosilane is preferably 5% by volume or more and 100% by volume or less, more preferably 10% by volume or more and 90% by volume or less, and still more preferably, with respect to the total volume of the fluid containing the raw material hydrosilane charged into the reactor. Is 20% by volume or more and 80% by volume or less.
  • the partial pressure of the hydrogen gas when the first step (including the cases of the 1-1 step and 1-2 step) is performed in the presence of hydrogen gas is preferably relative to the partial pressure of hydrosilane and oligosilane. Is a ratio in the range of 0.05 to 5 times, more preferably 0.1 to 4 times, still more preferably 0.02 to 2 times (hydrogen gas pressure / (hydrosilane and oligosilane) pressure).
  • a hydrogen separation membrane (fourth step described later) is obtained from the reaction product mixture fluid obtained through the first step (including the cases of the first step 1-1 and the first step 1-2) and cooled as necessary. Can be used to separate hydrogen gas.
  • reaction product mixture fluid obtained through the first step (hereinafter sometimes abbreviated as “mixture fluid”).
  • the molar concentration of the oligosilane having 2 to 5 silicon atoms relative to the total silane compound is lower than the molar concentration of the oligosilane having 2 to 5 silicon atoms relative to the total silane compound in the reaction product mixture fluid, that is, tetrahydro than the mixture fluid.
  • the reaction product mixture contains a high concentration raw material fluid such as silane (hereinafter sometimes abbreviated as “high raw material fluid”) and a molar concentration of oligosilane having 2 to 5 silicon atoms with respect to all silane compounds. Higher than the molar concentration of oligosilane having 2 to 5 silicon atoms with respect to all silane compounds in the fluid, that is, the target oligo than the mixture fluid
  • High concentration product of run high-containing fluid is a process that comprises separating the (hereinafter sometimes abbreviated as "product high content fluid”.).
  • product high content fluid The process of (A) and the process of (B) will be described in detail below, taking as an example the case of producing disilane from monosilane.
  • the mixture fluid is supplied to the membrane separator under the conditions satisfying the above-mentioned (a-1) to (a-3) to obtain a high raw material-containing fluid as the fluid that has permeated the membrane.
  • This is a process for obtaining a product-rich fluid as a fluid that has not permeated.
  • Tetrahydrosilane which has a relatively small molecule, permeates the membrane preferentially over oligosilane, and therefore can be separated into a feed-rich fluid and a product-rich fluid by feeding the mixture fluid to a membrane separator. It is.
  • the material of the membrane of the membrane separator which is the condition (a-1), may be selected from those capable of separating the target oligosilane from silanes having relatively small molecules used as raw materials.
  • the pore diameter measured by a gas adsorption method or a mercury intrusion method is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less. Those having a regular pore size of 2 nm or less, such as zeolite, are more preferable.
  • the lower limit of the pore diameter is usually 0.1 nm or more.
  • Such materials include inorganic membranes such as zeolite, porous silica, alumina, and zirconia, and organic membranes such as polyimide and fluorine-based copolymer membranes.
  • inorganic membranes such as zeolite, porous silica, alumina, and zirconia
  • organic membranes such as polyimide and fluorine-based copolymer membranes.
  • zeolite and porous silica are preferable in terms of selectivity during permeation, and zeolite is more preferable.
  • the porous material which has a pore diameter outside the said range can be included.
  • the film thickness generally, the thicker the film, the better the separation performance, but the permeation speed tends to be slow.
  • the pressure of the mixture fluid supplied to the membrane separator which is the condition of (a-2) varies depending on the temperature, but is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 0.2 MPa or more. Yes, preferably 10 MPa or less, more preferably 5 MPa or less, and even more preferably 1 MPa or less.
  • the temperature of the mixture fluid supplied to the membrane separator under the condition (a-3) is preferably ⁇ 10 ° C. or higher, more preferably 10 ° C. or higher, further preferably 30 ° C. or higher, preferably lower than 300 ° C.
  • oligosilane can be purified more efficiently. It is also possible to apply a non-porous film such as a polyimide film or a fluorinated copolymer film.
  • the mixture fluid is brought into contact with the adsorbent under the conditions satisfying the above-mentioned (b-1) to (b-3), and the raw material-rich fluid is separated as a fluid that has not been adsorbed on the adsorbent. It is. Moreover, after adsorb
  • the adsorbent which is the condition of (b-1) is preferably an adsorbent capable of adsorbing a higher molecular weight in the pores. Basically, a larger surface area is advantageous because it has a higher adsorption capacity.
  • the surface area is preferably 10 m 2 / g or more and 1000 m 2 / g or less, more preferably 20 m 2 / g or more and 800 m 2 / g or less, and further preferably 30 m 2 / g or more and 600 m 2 / g or less as the BET specific surface area. .
  • the BET specific surface area is determined by measuring according to JIS Z 8830: 2013 (ISO 9277: 2010). In Examples described later, nitrogen gas was used as a measurement (adsorption) gas, and a multipoint method was used for analysis of adsorption data. Further, the smaller the pore diameter, the easier it is to condense in the pores, and the pore diameter measured by gas adsorption method or mercury intrusion method is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less. . Further, the lower limit of the pore diameter is 0.1 nm or more, preferably 0.2 nm or more, and more preferably 0.3 nm or more.
  • zeolite naturally zeolite, synthetic zeolite (also referred to as molecular sieve)
  • alumina gel silica gel
  • activated carbon activated carbon and the like
  • a zeolite having a pore molecular sieve
  • the adsorbent can be used as it is in the form of powder, but it is preferable to use a molded product formed into a spherical shape, a cylindrical shape (pellet shape), a ring shape, a honeycomb shape, or the like in terms of handling.
  • an adsorbent having a specific surface area and a pore diameter other than the above ranges can be included as long as the effects of the present invention are not impaired.
  • the pressure of the mixture fluid to be brought into contact with the adsorbent which is the condition (b-2) is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, further preferably 0.2 MPa or more, preferably 20 MPa or less. More preferably, it is 10 MPa or less, More preferably, it is 5 MPa or less.
  • the temperature of the mixture fluid to be brought into contact with the adsorbent which is the condition (b-3) is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 30 ° C.
  • oligosilane can be purified more efficiently.
  • heating or depressurization can be mentioned.
  • the heating temperature at that time is usually 50 ° C. or higher and 300 ° C. or lower, preferably 80 ° C. or higher and 200 ° C. or lower.
  • the pressure is reduced at 5% to 95% of the adsorbed pressure. It is preferable to carry out at a pressure of 10% to 90%.
  • the treatment of (B) can be performed using an adsorption tower, and a multi-column type adsorption tower may be used.
  • the separation membrane used in (A) and (B), the material of the adsorbent, and the like can be used.
  • the second step can be easily carried out at low cost, and the target oligosilane can be produced more efficiently and inexpensively.
  • the separation membrane used in (A) and (B) and the adsorbent material have adhering moisture, it reacts with silanes, so it is essential to dry well in advance.
  • separation membranes and adsorbents have functional groups such as silanol that react with silanes on the surface, so treatment with tetrahydrosilane in advance to inactivate the surface against silanes There is a need.
  • hydrogen gas can be separated from the raw material-rich fluid obtained in the second step using a hydrogen separation membrane (described in the fourth step described later).
  • the production method of the present invention is a case where the product-rich fluid obtained through the second step is separated into a liquid (liquid phase) and a gas (gas phase) (hereinafter referred to as “third step”). Can be included).
  • the product-rich fluid will eventually isolate oligosilane through a purification process, etc., which will be described later, while the raw material components separated in the purification process contain some oligosilane in some cases in the case of the recycling method. In the state, after passing through the third step and the fourth step described later, etc., it is used again for the first step in a gaseous state.
  • the product-rich fluid obtained through the second step may be directly separated into a liquid (liquid phase) and a gas (gas phase).
  • a cooling step for cooling is performed to separate the liquid and the gas.
  • the cooling temperature in the cooling step prior to the third step may be selected according to the target oligosilane. In the case of normal pressure, when disilane is produced, it is usually from ⁇ 100 ° C. to 50 ° C., preferably from ⁇ 50 ° C. to 30 ° C. When producing trisilane, the temperature is usually from -50 ° C to 95 ° C, preferably from -30 ° C to 80 ° C. Further, pressurization may be performed at a higher operating temperature.
  • the third step may be performed using a normal evaporation device, a gravity separation device, a surface tension separation device, or a centrifugal device, and heated to recover the raw material more efficiently. You can also In the case of the recycling method, it is preferable that tetrahydrosilane dissolved in a liquid phase (liquid containing a product-rich fluid) is recovered in a gaseous state and reused together with the material-rich fluid.
  • the heating temperature is usually 50 ° C. or higher and 300 ° C. or lower, preferably 80 ° C. or higher and 200 ° C. or lower.
  • the production method of the present invention uses a hydrogen separation membrane from a mixture in which the gas (gas phase) obtained through the third step is joined to the raw material-rich fluid obtained in the second step. It may further include a fourth step (hereinafter, may be abbreviated as “fourth step”) including separation of the gas.
  • the hydrogen gas produced as a by-product due to the reaction accumulates, so that the hydrogen gas can be removed as appropriate by including the fourth step.
  • the hydrogen separation membrane is a semipermeable membrane that selectively transmits hydrogen gas.
  • the semipermeable membrane includes, for example, a dense layer that selectively transmits hydrogen gas and a porous base material that supports the dense layer.
  • Examples of the shape of the semipermeable membrane include a flat membrane, a spiral membrane, and a hollow fiber membrane. Among these, a hollow fiber membrane is more preferable.
  • Materials used for the dense layer include polyimide, polysiloxane, polysilazane, polyester, polycarbonate, cellulose polymer, polysulfone, polyalkylene glycol, polyethylene, polybutadiene, polystyrene, polyacrylonitrile, polyvinyl halide, polyvinylidene halide and these polymers. Examples thereof include block copolymers having a plurality of types of repeating units that can be polymerized in the same polymerization system.
  • the temperature is preferably 0 ° C. or higher and 300 ° C. or lower, more preferably 30 ° C. or higher and 250 ° C. or lower, and further preferably 50 ° C. or higher and 200 ° C. or lower.
  • the absolute pressure is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, further preferably 0.2 MPa or more, preferably 10 MPa or less, more preferably 5 MPa or less, more preferably 3 MPa or less. Note that pressurization is required to separate the hydrogen gas and to recycle the hydrosilane that is the reaction raw material, so it is necessary to heat the product or accompanying oligosilanes at this stage so as not to condense. desirable.
  • the production method of the present invention comprises a purification step (hereinafter referred to as a “purification step”) comprising isolating oligosilane from a liquid obtained by cooling the product-rich fluid obtained in the second step or a liquid obtained through the third step. May be abbreviated as “.”).
  • a purification step comprising isolating oligosilane from a liquid obtained by cooling the product-rich fluid obtained in the second step or a liquid obtained through the third step. May be abbreviated as “.”).
  • oligosilanes are separated and isolated, but also tetrahydrosilane (SiH 4 ), oligosilanes having more than 5 silicon atoms, etc. may be isolated depending on the purpose. .
  • purification process is not specifically limited, The method of isolating oligosilane by distillation is mentioned.
  • the manufacturing method of the present invention includes the first step, the second step, the third step, the fourth step, the purification step, the heating step for adjusting the temperature and pressure for the next step, the cooling step, It may include a pressurizing step, a depressurizing step, a filtering step for separating solids, and the like.
  • the recovered tetrahydrosilane (SiH 4 ) or the like is charged into the reactor, so that a compressor or the like is used, or tetrahydrosilane (SiH 4 ), formula (R-1) or formula (R A step of adding a raw material such as oligosilane represented by -2).
  • the specific aspect in case the manufacturing method of this invention is a batch type includes the aspect containing a 1st process, a 2nd process, and a refinement
  • the first step may be performed using a batch reactor, and the second step, the purification step, and the like may be performed using a batch-type dedicated device and a dedicated instrument, respectively.
  • Specific embodiments in the case where the production method of the present invention is a continuous one-pass method include an embodiment including a first step, a second step, and a purification step.
  • using an apparatus as represented by FIG. 1 is mentioned.
  • Another embodiment of the present invention provides an oligosilane production apparatus as shown in FIG.
  • FIG. 1 the configuration of the apparatus of FIG. 1 will be described in detail.
  • the source gas is pressurized to a predetermined pressure, preheated, and introduced into the reactor 101 set at a predetermined temperature.
  • the reaction product mixture fluid reacted here is sent to the next separation means (separation unit) 102.
  • it can be sent to the separation means 102 through a filter for separating the solid oligosilane in case of an abnormality.
  • the reaction gas temperature is lowered with a heat exchanger or the like. It is better to leave it.
  • Purification is performed separately in the still 103.
  • the distiller 103 is illustrated for purifying a high product content fluid (liquid).
  • the distiller 103 can be used (used properly) for purifying a high content material fluid (gas).
  • it can also be set as the structure which provides separately the distiller for product high content fluid (liquid) refinement
  • the purification process in the distiller 103 can be performed by batch operation after accumulating the liquid to some extent, or can be performed continuously. Since monosilane, disilane, trisilane, tetrasilane, and pentasilane have different boiling points, it is desirable to fractionate the necessary silanes by increasing their purity by precision distillation.
  • a specific aspect in the case where the production method of the present invention is a continuous recycling method includes the first step, the second step, the third step, the fourth step, and the purification step, and was obtained through the fourth step.
  • purification process with respect to the liquid containing the oligosilane obtained through the 3rd process using gas for the 1st process is mentioned.
  • FIG. Another embodiment of the present invention provides an oligosilane production apparatus as shown in FIG.
  • the configuration of the apparatus of FIG. 2 will be described in detail.
  • the pressure is increased and pre-heated as necessary, and then introduced into the reactor 201 set at a predetermined temperature.
  • a filter is installed for separation from the solid oligosilane in order to cope with an abnormal situation as in the one-pass method, or the heat exchanger 206
  • the reaction product mixture fluid that has been precooled as necessary is sent to a separation means (separation unit) 202 that separates the generated oligosilanes.
  • a raw material high-content fluid such as tetrahydrosilane having a large amount of low molecular weight raw material is recycled as it is or in a heated state.
  • the product-rich fluid separated by the separation means 202 is cooled by a cooling means (cooling unit) 207, and the liquid containing the target oligosilane and the gas containing the raw material gas dissolved in the product-rich fluid
  • the mixture is separated and separated by gas-liquid separation means (gas-liquid separation unit) 203.
  • the target oligosilane is isolated from the liquid containing the separated oligosilane by the distiller 205.
  • the gas containing the separated raw material gas is joined with the high raw material content fluid obtained in the second step, the raw material hydrosilane necessary for recycling into the reactor 201 is added, and the pressure is increased to the reaction pressure by the compressor 208. Is done. Further, after the hydrogen gas produced as a by-product during the reaction is separated by the hydrogen gas separation means (hydrogen gas separation unit) 204 (fourth step), the hydrogen gas is converted into the reactor as necessary so that a predetermined blending ratio is obtained. 201.
  • FIG. 2 shows a case where hydrogen gas is introduced. This series of operations is continued for a predetermined reaction time.
  • the production apparatus of the present invention provides an apparatus for producing oligosilane more efficiently (hereinafter sometimes abbreviated as “production apparatus of the present invention”).
  • the production apparatus of the present invention is suitably used in the oligosilane production method which is one embodiment of the present invention.
  • the production apparatus of the present invention includes a reactor for performing a first step of dehydrocondensing hydrosilane to produce oligosilane, a reaction product mixture fluid obtained through the first step, a raw material-rich fluid and a product
  • a gas-liquid separation unit for performing the second step of separating the high-fluid content fluid, and a purifier for distilling the gas-liquid separated liquid, and satisfying the following conditions (AA) and / or (BB) It is characterized by that.
  • the gas-liquid separation part has a membrane separator, supplies the reaction product mixture fluid to the membrane separator, obtains the raw material-rich fluid as a fluid that permeates the membrane, and does not permeate the membrane
  • a gas-liquid separator for obtaining the product-rich fluid as a fresh fluid (Aa-1)
  • the membrane material of the membrane separator is zeolite, porous silica, alumina, or zirconia, (Aa-2) a pressure adjusting unit that adjusts the pressure of the reaction product mixture fluid supplied to the membrane separator to 0.1 MPa or more and 10 MPa or less, (Aa-3) including a temperature adjusting unit for adjusting the temperature of the reaction product mixture fluid supplied to the membrane separator to ⁇ 10 ° C.
  • the gas-liquid separation unit has an adsorbent, the reaction product mixture fluid is brought into contact with the adsorbent, and the raw material-rich fluid is obtained as a fluid that is not adsorbed on the adsorbent, and the adsorbent
  • the adsorbent material is zeolite, alumina gel, silica gel or activated carbon
  • Bb-2 a pressure adjusting unit that adjusts the pressure of the reaction product mixture fluid brought into contact with the adsorbent to 0.1 MPa or more and 20 MPa or less
  • Bb-3) including a temperature adjusting unit for adjusting the temperature of the reaction product mixture fluid to be brought into contact with the adsorbent to -50 ° C or higher and 200 ° C or lower.
  • the oligosilane, hydrosilane, the first step, the second step, the reaction product mixture fluid, the raw material high content fluid, the high product content fluid, the membrane separator, the adsorbent, etc. are the contents described in the production method of the present invention. Applies.
  • the conditions (a-1) to (a-3) correspond to (aa-1) to (aa-3), respectively.
  • the conditions (b-1) to (b-3) are respectively This corresponds to (bb-1) to (bb-3).
  • One embodiment of the manufacturing apparatus of the present invention is a continuous one-pass type represented by FIG. 1, and one embodiment is a continuous recycling type represented by FIG.
  • examples of the purification apparatus for distilling the gas-liquid separated liquid include a distiller.
  • the distiller is not particularly limited as long as the oligosilane can be separated by distillation, and a known distiller can be used.
  • the distiller may be a multistage type or a distillation column filled with a filler, and may include a precision distillation apparatus.
  • the temperature adjusting unit is not particularly limited as long as the temperature can be adjusted within the above range, and examples thereof include a heat exchanger, an electric heating device, and a heating medium heating device.
  • the pressure adjusting unit is not particularly limited as long as the pressure can be adjusted within the above range, and is, for example, a compressor (gas booster), specifically, a reciprocating compressor (reciprocating compressor), a swash plate compressor, Examples thereof include a diaphragm compressor, a twin screw compressor, a single screw compressor, a scroll compressor, a rotary compressor, a rotary piston compressor, and a slide vane compressor.
  • the production apparatus of the present invention preferably further includes a hydrogen separation unit that selectively separates hydrogen contained in the gas-liquid separated gas.
  • the hydrogen separation unit include a hydrogen separation membrane.
  • the hydrogen separation membrane for example, a ceramic hydrogen separation membrane, a polyimide hydrogen separation membrane, or a palladium membrane is used.
  • the hydrogen separation unit may be supplied with the raw material-rich fluid obtained in the second step by connecting from the gas-liquid separation unit, or the product-rich fluid may be liquid (liquid phase) and gas (gas phase).
  • the gas obtained in the third step may be supplied by being connected to the gas-liquid separation unit in the third step, or both may be mixed and supplied.
  • zeolite was fixed to a fixed bed in the reaction tube of the reaction apparatus (conceptual diagram) shown in FIG. 4, and a reaction gas containing tetrahydrosilane diluted with helium gas or the like was circulated.
  • the generated gas was analyzed with a TCD (Thermal Conductivity Detector) using a gas chromatograph GC-17A manufactured by Shimadzu Corporation.
  • Qualitative analysis of disilane and the like was performed with MASS (mass spectrometer).
  • the pores of the zeolite used as the catalyst are as follows. ⁇ H-ZSM-5: ⁇ 100> Minor axis 0.51 nm, Major axis 0.55 nm ⁇ 010> Minor axis 0.53 nm, Major axis 0.56 nm
  • the numerical values of the short diameter and long diameter of the pore are ⁇ http://www.jaz-online.org/introduction/qanda.html '' and ⁇ ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher, LB McCusker and DH Olson , Sixth Revised Edition 2007, published on behalf of the Structure Commission of the International Zeolite Association ”.
  • ZSM-5 pellet shape carrying Mo 1% by mass.
  • 100 g of distilled water and 2.38 g of Ba (NO 3 ) 2 (corresponding to 2.4 mass% supported in terms of Ba) were added to 50 g of Mo 1 mass% supported ZSM-5 (silica / alumina ratio 23) prepared above. Mix for 1 hour at room temperature. Then, after drying at 110 ° C. for 4 hours in the air atmosphere, firing at 700 ° C. for 2 hours in the air atmosphere, MoSM-supported ZSM-5 containing 2.4% by mass of Ba (silica / alumina) A ratio 23) was obtained.
  • adsorption tower was filled with 50 g of pellet-shaped molecular sieve 5A (manufactured by Union Showa Co., Ltd.) having a diameter of 3.2 mm ⁇ , and heat-treated at 200 ° C. for 2 hours while reducing the pressure. Then, after cooling to room temperature and returning to normal pressure with helium gas, monosilane (tetrahydrosilane) gas was circulated at 2 ml / min for 2 hours at normal pressure, left in a monosilane gas atmosphere for 8 hours, and then adsorbed under reduced pressure. The monosilane gas was driven out and returned to normal pressure with helium gas. By this treatment, functional groups that react with silanes such as silanol groups on the surface of the molecular sieve 5A were inactivated.
  • Example 1 1.0 g of the catalyst prepared in the preparation example was placed in a reaction tube, air in the reaction tube was removed using a vacuum pump, and then replaced with helium gas. Helium gas was circulated at a rate of 5 mL / min, the tubular furnace was set at 200 ° C., the temperature of the reaction tube was raised, and then circulated for 1 hour. Thereafter, the adsorption tower is bypassed, and a mixed gas of argon and tetrahydrosilane (Ar: 20%, SiH 4 : 80% (molar ratio)) at a reaction pressure of 0.3 MPa (absolute pressure) (gauge pressure: 0.2 MPa).
  • reaction product mixture fluid the reaction gas (reaction product mixture fluid) that could not be adsorbed by the adsorption tower after the helium gas was stopped.
  • the analysis value of 5 to 7 hours is the analysis value of the reaction gas (raw material-containing fluid) that could not be adsorbed by the adsorption tower (the molar concentration of disilane in all silanes on average) 0.50 mol%), and each shows the molar concentration.
  • “Monosilane / total silane” in the table is obtained by dividing the molar concentration of monosilane by the sum of the molar concentrations of silanes that could be detected.
  • the reaction gas component adsorbed on the adsorption tower was desorbed by heating to 100 ° C. at normal pressure, and the desorbed gas was trapped at the liquid nitrogen temperature. The components of the desorbed gas (trapped gas) were analyzed.
  • oligosilane having 3 to 5 silicon atoms were detected.
  • the molar concentration of oligosilane (disilane + oligosilane having 3 to 5 silicon atoms) occupied was 10.6 mol%. Higher order silanes having 6 or more silicon atoms could not be detected.
  • Example 2 was performed in the same manner as Example 1 except that the cooling temperature in the adsorption tower 12 shown in FIG. The results are shown in Table 2.
  • the reaction gas that could be trapped was 0.102 g of tetrahydromonosilane, 0.043 g of hexahydrodisilane, and 0.004 g of oligosilane having 3 to 5 silicon atoms, and oligosilane (disilane +
  • the molar concentration of the oligosilane having 3 to 5 silicon atoms was 18.7%.
  • higher order silanes having 6 or more silicon atoms could not be detected.
  • Example 3 In Example 3, the adsorbent was changed from molecular sieve 5A (manufactured by Union Showa Co., Ltd.) to silica gel CARiACT Q-10 (manufactured by Fuji Silysia Chemical Co., Ltd., a spherical shape with a specific surface area of 304 m 2 / g (catalog value)). Except for this, the same procedure as in Example 1 was performed. The results are shown in Table 3.
  • molecular sieve 5A manufactured by Union Showa Co., Ltd.
  • silica gel CARiACT Q-10 manufactured by Fuji Silysia Chemical Co., Ltd., a spherical shape with a specific surface area of 304 m 2 / g (catalog value)
  • the reaction gas that could be trapped was 0.217 g of tetrahydromonosilane, 0.052 g of hexahydrodisilane, and 0.005 g of oligosilane having 3 to 5 silicon atoms, and oligosilane (disilane +
  • the molar concentration of the oligosilane having 3 to 5 silicon atoms was 11.6%.
  • higher order silanes having 6 or more silicon atoms could not be detected.
  • Comparative Example 1 was operated in the same manner as in Example 1 except that the adsorbent was not placed in the adsorption tower indicated by 12 in FIG. The results are shown in Table 4.
  • Comparative Example 2 Comparative Example 2 was performed in the same manner as in Example 1 except that the adsorbent of Example 1 was changed to 3 mm ⁇ glass beads (soda glass, BZ-3 manufactured by ASONE Corporation). The results are shown in Table 5.
  • the component adsorbed in the adsorption tower has a higher concentration of target disilane than in the reaction gas (reaction product mixture fluid). It can be seen that the energy required for cooling is less than the total condensation of the reaction gas (reaction product mixture fluid), and the cost for purification can be greatly reduced.
  • the adsorption tower is used, that is, when the second step is performed, the monosilane concentration in the unadsorbed gas (raw material high content fluid) of the reaction gas (reaction product mixture fluid) is 98 mol% or more, It can be seen that the unadsorbed reaction gas can be recycled as it is.
  • the production method of the present invention can reduce the energy required for the purification of oligosilane and can reduce the cost. Moreover, since the raw material in the raw material-rich fluid can be made high in concentration, it can be reused as it is, and the total energy required for the production of oligosilane can be further reduced and the cost can be reduced.
  • Oligosilane produced by the production method of the present invention can be expected to be used as a production gas for silicon for semiconductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Silicon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Catalysts (AREA)

Abstract

目的とするオリゴシランをより効率良く製造することができるオリゴシランの製造方法を提供する。ヒドロシランを脱水素縮合させて得られるオリゴシランを含む反応生成混合物流体を、特定の条件で膜分離器に供給したり、特定の条件で吸着材に接触させたりする。

Description

オリゴシランの製造方法及びオリゴシランの製造装置
 本発明は、オリゴシランの製造方法及びオリゴシランの製造装置に関する。
 ヘキサヒドロジシラン(Si,以下、「ジシラン」と略す場合がある。)やオクタヒドロトリシラン(Si,以下、「トリシラン」と略す場合がある。)等のオリゴシランは、テトラヒドロシラン(SiH,以下、「モノシラン」と略す場合がある。)に比べて反応性が高く、アモルファスシリコンやシリコン膜を形成するための前駆体等として非常に有用な化合物である。
 従来、オリゴシランを製造する方法としては、マグネシウムシリサイドの酸分解法(非特許文献1参照)、ヘキサクロロジシランの還元法(非特許文献2参照)、テトラヒドロシランの放電法(特許文献1参照)、シランの熱分解法(特許文献2、3参照)、並びに触媒を用いたシランの脱水素縮合法(特許文献4~10参照)等が報告されている。
米国特許第5478453号明細書 特許第4855462号公報 特開平11-260729号公報 特開平03-183613号公報 特開平01-198631号公報 特開平02-184513号公報 特開平05-032785号公報 特表2013-506541号公報 国際公開第2015/060189号 国際公開第2015/090996号
Hydrogen Compounds of Silicon. I. The Preparation of Mono- and Disilane, WARREN C. JOHNSON and SAMPSON ISENBERG, J. Am. Chem. Soc., 1935, 57, 1349. The Preparation and Some Properties of Hydrides of Elements of the Fourth Group of the Periodic System and of their Organic Derivatives, A. E. FINHOLT,A. C. BOND,J R., K. E. WILZBACH and H. I. SCHLESINGER, J. Am. Chem. Soc., 1947, 69, 2692.
 テトラヒドロシラン(SiH)の脱水素縮合法を利用したオリゴシランの製造方法は、安価で入手しやすい原料を用いるという点において、比較的低コストでオリゴシランを製造することができる工業的に優れた方法であるが、改善の余地を残すものである。
 例えば、テトラヒドロシランの転化率を上げようとすると、目的とするオリゴシラン以外にポリシランも生成されてしまう。ポリシランの生成を抑制するためには、転化率を、通常10~15%程度、高くても30%程度となるように反応を行い、これにより得られた原料と生成物の混合物を精製して、目的とするオリゴシランを得る。この精製には、非常に大きなエネルギーを要する。
 本発明は、目的とするオリゴシランをより効率良く製造することができるオリゴシランの製造方法を提供することを目的とする。また、オリゴシランをより効率良く製造する製造装置を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、ヒドロシランを脱水素縮合させて得られるオリゴシランを含む反応生成混合物流体を、膜分離器を用い特定の条件で処理することや、特定の条件で吸着材に接触させることにより、オリゴシラン類を効率良く濃縮でき、結果としてより効率良く製造することができることを見出し、本発明を完成させるに至った。また、未反応原料を直接循環使用する連続式の製造方法で実施する場合には、未反応のテトラヒドロシラン等を再利用し易くなり、全体としてオリゴシランをさらに効率良く製造することができることを見出した。
 即ち、本発明は以下の通りである。
<1> ヒドロシランを脱水素縮合させてオリゴシランを生成させる第1工程、及び
 前記第1工程を経て得られた反応生成混合物流体に対して下記(A)及び/又は(B)の処理を行って、前記反応生成混合物流体を原料高含有流体と生成物高含有流体とに分離する第2工程を含み、
 前記原料高含有流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より低く、
 前記生成物高含有流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より高いことを特徴とするオリゴシランの製造方法。
(A)前記反応生成混合物流体を下記(a-1)~(a-3)を満たす条件で膜分離器に供給し、膜を透過した流体として前記原料高含有流体を得て、膜を透過しなかった流体として前記生成物高含有流体を得る。
 (a-1)前記膜分離器の膜の材質が、ゼオライト、多孔質シリカ、アルミナ、又はジルコニアである。
 (a-2)前記膜分離器に供給される前記反応生成混合物流体の圧力が、0.1MPa以上10MPa以下である。
 (a-3)前記膜分離器に供給される前記反応生成混合物流体の温度が、-10℃以上300℃未満である。
(B)前記反応生成混合物流体を下記(b-1)~(b-3)を満たす条件で吸着材に接触させ、前記吸着材に吸着しなかった流体として前記原料高含有流体を得て、前記吸着材に吸着した後、脱着した流体として前記生成物高含有流体を得る。
 (b-1)前記吸着材の材質が、ゼオライト、アルミナゲル、シリカゲル又は活性炭である。
 (b-2)前記吸着材に接触させる前記反応生成混合物流体の圧力が、0.1MPa以上20MPa以下である。
 (b-3)前記吸着材に接触させる前記反応生成混合物流体の温度が、-50℃以上200℃以下である。
<2> 前記第1工程におけるヒドロシランが、テトラヒドロシラン(SiH)であり、生成するオリゴシランがヘキサヒドロジシラン(Si)を含む、<1>に記載のオリゴシランの製造方法。
<3> 下記式(P-1)で表されるオリゴシランを製造する方法であり、
 前記第1工程が、テトラヒドロシラン(SiH)とともに下記式(R-1)で表されるオリゴシランを原料のヒドロシランとして用いて、下記式(R-1)で表されるオリゴシランから下記式(P-1)で表されるオリゴシランを生成させる工程である、<1>に記載のオリゴシランの製造方法。
Figure JPOXMLDOC01-appb-C000005
(式(P-1)中、nは2~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(式(R-1)及び(P-1)中、nは2~5の整数を表す。)
<4> 前記式(R-1)で表されるオリゴシランが、オクタヒドロトリシラン(Si)であり、前記式(P-1)で表されるオリゴシランが、ヘキサヒドロジシラン(Si)である、<3>に記載のオリゴシランの製造方法。
<5> 下記式(P-2)で表されるオリゴシランを製造する方法であり、
 前記第1工程が、テトラヒドロシラン(SiH)とともに下記式(R-2)で表されるオリゴシランを原料のヒドロシランとして用いて、下記式(R-2)で表されるオリゴシランから下記式(P-2)で表されるオリゴシランを生成させる工程である、<1>に記載のオリゴシランの製造方法。
Figure JPOXMLDOC01-appb-C000007
(式(P-2)中、mは3~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(式(R-2)及び(P-2)中、mは3~5の整数を表す。)
<6> 前記式(R-2)で表されるオリゴシランが、ヘキサヒドロジシラン(Si)であり、前記式(P-2)で表されるオリゴシランが、オクタヒドロトリシラン(Si)である、<5>に記載のオリゴシランの製造方法。
<7> 前記(A)において用いる膜の細孔径が0.1nm以上100μm以下である、<1>~<6>の何れかに記載のオリゴシランの製造方法。
<8> 前記(B)において用いる吸着材のBET比表面積が10m/g以上1000m/g以下である、<1>~<6>の何れかに記載のオリゴシランの製造方法。
<9> 前記第1工程が、水素ガスの存在下で行われる工程である、<1>~<8>の何れかに記載のオリゴシランの製造方法。
<10> 前記第1工程が、遷移元素を含有する触媒の存在下で行われる工程である、<1>~<9>の何れかに記載のオリゴシランの製造方法。
<11> 前記触媒に含有される遷移元素が、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群から選択される少なくとも1種である、<10>に記載のオリゴシランの製造方法。
<12> 前記触媒が、担体を含む不均一系触媒である、<10>又は<11>に記載のオリゴシランの製造方法。
<13> 前記担体が、シリカ、アルミナ、及びゼオライトからなる群より選択される少なくとも1種である、<12>に記載のオリゴシランの製造方法。
<14> 前記ゼオライトが、短径が0.41nm以上、長径が0.74nm以下の細孔を有する、<13>に記載のオリゴシランの製造方法。
<15> 前記第1工程を1回のみ行うワンパス方式である、<1>~<14>の何れかに記載のオリゴシランの製造方法。
<16> 前記第1工程において未反応のテトラヒドロシラン(SiH)の少なくとも一部を原料として再供給(再利用)するリサイクル方式である、<1>または<2>に記載のオリゴシランの製造方法。
<17> 前記第1工程において未反応のテトラヒドロシラン(SiH)の少なくとも一部を原料として再供給(再利用)するリサイクル方式である、<3>~<14>の何れかに記載のオリゴシランの製造方法。
<18> 前記第1工程においてさらに式(R-1)で表されるオリゴシラン又は式(R-2)で表されるオリゴシランの少なくとも一部を原料として再供給(再利用)するリサイクル方式である、<17>に記載のオリゴシランの製造方法。
<19> 前記第2工程を経て得られた原料高含有流体から水素分離膜を用いて水素ガスを分離する工程をさらに含む、<17>又は<18>に記載のオリゴシランの製造方法。
<20> ヒドロシランを脱水素縮合させてオリゴシランを生成させる第1工程を行うための反応器と、
 前記第1工程を経て得られた反応生成混合物流体を原料高含有流体と生成物高含有流体とに分離する第2工程を行うための気液分離部と、
 気液分離された液体を蒸留する精製装置と、を含み、
 下記(AA)及び/又は(BB)の条件を満たす、オリゴシランの製造装置。
(AA)前記気液分離部が膜分離器を有し、前記反応生成混合物流体を該膜分離器に供給し、膜を透過した流体として前記原料高含有流体を得て、膜を透過しなかった流体として前記生成物高含有流体を得るための気液分離部であり、
 (aa-1)前記膜分離器の膜の材質が、ゼオライト、多孔質シリカ、アルミナ、又はジルコニアであり、
 (aa-2)前記膜分離器に供給される前記反応生成混合物流体の圧力を、0.1MPa以上10MPa以下に調整する圧力調整部、を含み、
 (aa-3)前記膜分離器に供給される前記反応生成混合物流体の温度を、-10℃以上300℃未満に調整する温度調整部、を含む。
(BB)前記気液分離部が吸着剤を有し、前記反応生成混合物流体を該吸着材に接触させ、前記吸着材に吸着しなかった流体として前記原料高含有流体を得て、前記吸着材に吸着した後、脱着した流体として前記生成物高含有流体を得るための気液分離部であり、
 (bb-1)前記吸着材の材質が、ゼオライト、アルミナゲル、シリカゲル又は活性炭であり、
 (bb-2)前記吸着材に接触させる前記反応生成混合物流体の圧力を、0.1MPa以上20MPa以下に調整する圧力調整部、を含み、
 (bb-3)前記吸着材に接触させる前記反応生成混合物流体の温度を、-50℃以上200℃以下に調整する温度調整部を含む。
<21> 気液分離された気体中に含まれる水素を選択分離する水素分離部をさらに含む、<20>に記載のオリゴシランの製造装置。
 本発明の一態様によれば、オリゴシランをより効率良く製造することができる。また、本発明の他の一態様によれば、オリゴシランをより効率良く製造する装置を提供できる。
本発明の一態様であるオリゴシランの製造方法に使用することができる連続式反応装置の概念図である(連続式のワンパス方式)。 本発明の一態様であるオリゴシランの製造方法に使用することができる他の連続式反応装置の概念図である(連続式のリサイクル方式)。 本発明のオリゴシランの製造方法に使用することができる反応器の概念図である。((a):は回分式槽型反応器、(b):連続式槽型反応器(流動床)、(c):連続式管型反応器(固定床))。 実施例に使用した反応装置の概念図である。
 本発明のオリゴシランの製造方法及び製造装置の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができ、また、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。
<オリゴシランの製造方法>
 本発明の一態様であるオリゴシランの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、ヒドロシランを脱水素縮合させてオリゴシランを生成させる第1工程(以下、「第1工程」と略す場合がある。)、及び第1工程を経て得られた反応生成混合物流体に対して下記(A)及び/又は(B)の処理を行って、前記反応生成混合物流体を原料高含有流体と生成物高含有流体とに分離する第2工程(以下、「第2工程」と略す場合がある。)を含み、前記原料高含有流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より低く、前記生成物高含有流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より高いことを特徴とする。なお、本明細書において、ガス中のシラン化合物の濃度はガスクロマトグラフ質量分析計により測定する。
(A)分離膜を用いる場合
 前記反応生成混合物流体を下記(a-1)~(a-3)を満たす条件で膜分離器に供給し、膜を透過した流体として前記原料高含有流体を得て、膜を透過しなかった流体として前記生成物高含有流体を得る。
 (a-1)前記膜分離器の膜の材質が、ゼオライト、多孔質シリカ、アルミナ、ジルコニアから選択されるいずれかである。
 (a-2)前記膜分離器に供給される前記反応生成混合物流体の圧力が、0.1MPa以上10MPa以下である。
 (a-3)前記膜分離器に供給される前記反応生成混合物流体の温度が、-10℃以上300℃未満である。
 なお、膜分離は、分離膜に対して、供給ガス側を加圧し透過ガス側をそれよりも低い圧力にすることにより、分離を行う。この際、膜の孔径と分子の大きさの違いによる透過速度の違いを利用し、各成分を分離する蒸気透過法と、孔のない均質膜を介して、膜との親和性の違いを利用して供給ガス又は液中の成分を透過させて蒸発させることにより、透過蒸気として濃縮液を得る浸透気化法等がある。前者はゼオライトや多孔質シリカ等の孔を有する膜であり、後者は高分子分離膜等が知られているが、本発明の反応生成混合物流体の分離には蒸気透過法を用いることが好ましい。
 なお、分離膜の透過面積を稼ぐために、通常、分離膜を複数の円筒状として用いる。
(B)吸着材を用いる場合
 前記混合物流体を下記(b-1)~(b-3)を満たす条件で吸着材に接触させ、前記吸着材に吸着しなかった流体として原料高含有流体を得る一方、前記吸着材に吸着した生成物高含有物を、減圧または加温により脱着させて生成物高含有流体を得る。
 (b-1)前記吸着材の材質が、ゼオライト、多孔質シリカ、アルミナまたはジルコニアである。
 (b-2)前記吸着材に接触させる前記混合物流体の圧力が、0.1MPa以上20MPa以下である。
 (b-3)前記吸着材に接触させる前記混合物流体の温度が、-50℃以上200℃以下である。
 吸着材を用いて分離する場合には、細孔において、細孔外における通常の状態よりも低圧で凝縮が始まる細孔内凝縮(毛管凝縮)を利用する。広い比表面積を有するミクロ、メソ孔を持つ吸着材を吸着塔に充填し、分離しようとする生成物高含有流体を加圧下で接触させることにより、蒸気圧の低い成分を優先的に吸着させた後、減圧、加温等により吸着させた成分を脱離させて回収する。
 処理自体は回分式で行うことも連続式で行うこともできるが、この場合の連続式とは、複数の吸着塔を用意して、切り替え処理を行うことにより連続的に処理を行うことを意味する。
 本発明者らは、ヒドロシランを脱水素縮合させて得られるオリゴシランを含む混合物流体を、前述の条件で膜分離器に供給したり、前述の条件で吸着材に接触させたりすることで、オリゴシランをより効率良く製造することができることを見出したのである。すなわち、反応生成物混合物中のオリゴシランを濃縮することで効率良く精製でき、オリゴシランをより効率良く製造することができることを見出したのである。また、未反応のテトラヒドロシラン等を再利用し易くなって、全体としてオリゴシランをさらに効率良く製造することができることを見出したのである。
 なお、本明細書において、「ヒドロシラン」は、ケイ素原子の結合手が全て、水素原子と結合(Si-H結合)している、又は、ケイ素原子と結合(Si-Si結合)しているシラン化合物(ケイ素原子数は1でも複数であってもよい)を、「モノシラン」はテトラヒドロシランを、「ジシラン」はヘキサヒドロジシランを、「トリシラン」はオクタヒドロトリシランを、「オリゴシラン」は、(モノ)シランが2~5個縮合したシランのオリゴマーを意味し、「全シラン化合物」はテトラヒドロシラン、ヘキサヒドロジシラン、オクタヒドロトリシラン、オリゴシランを含む原料、生成物中に含まれる全てのシラン化合物を意味し、ヒドロシランの「脱水素縮合」は、式の上では下記反応式(1)で表されるように、水素分子(H)が脱離するヒドロシラン同士の縮合によって、ケイ素-ケイ素(Si-Si)結合が形成する反応を意味するものである。具体的には例えば、水素分子(H)が脱離するテトラヒドロシラン同士、オリゴシラン同士、又はテトラヒドロシランとオリゴシランの縮合によって、ケイ素-ケイ素(Si-Si)結合が形成する反応が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 例えば、テトラヒドロシランを原料とすると、式の上では下記反応式(2)で表される。
Figure JPOXMLDOC01-appb-C000010
 本発明の製造方法は、第1工程及び第2工程を含むものであれば、オリゴシランを単離するまでの「オリゴシランの製造方法」全体の具体的態様は、特に限定されないが、下記(i)、(ii)のように分類することができる((ii)は(ii-1)と(ii-2)に分類することができる。)。
(i)回分式・・・第1工程におけるヒドロシランの反応器への投入、反応、反応混合物流体の回収、第2工程の実施をそれぞれ独立して行う方式
(ii)連続式・・・第1工程におけるヒドロシランの反応器への投入、反応、反応混合物流体の回収、第2工程の実施を連続的に行う方式
 (ii-1)ワンパス方式・・・第2工程で回収したヒドロシラン等を再使用することを(ii-2)のように連続的に行わず、別工程として行う方式
 (ii-2)リサイクル方式・・・第2工程で回収したヒドロシランや反応に用いることのできるオリゴシラン類等の全部または一部を、残りの反応ガスを単離せずにガス状でそのまま反応器に再度投入して、第1工程を連続的に行う方式
 以下、「第1工程」、「第2工程」等について、詳細に説明する。
(第1工程)
 第1工程は、ヒドロシランを脱水素縮合させてオリゴシランを生成することを含む工程である。
 ヒドロシランは、ケイ素原子の結合手が全て、水素原子と結合(Si-H結合)している、又は、ケイ素原子と結合(Si-Si結合)している化合物であり、具体的には、テトラヒドロシラン(SiH)、ヘキサヒドロジシラン(Si)、オクタヒドロトリシラン(Si)が挙げられる。製造したいオリゴシランに応じて原料であるヒドロシランを選択すればよい。
 前述したように「オリゴシラン」は、(モノ)シランが複数個(2~5個)縮合したシランのオリゴマーであり、オリゴシランのケイ素原子数は、好ましくは2~4、より好ましくは2~3、さらに好ましくは2である。
 オリゴシランとしては、ヘキサヒドロジシラン(Si)、オクタヒドロトリシラン(Si)、デカヒドロテトラシラン(Si10)等が挙げられる。
 第1工程では、原料としてケイ素原子数がn個のシラン化合物を投入して反応させると、ケイ素原子数が(n+1)個のシラン化合物が主たる生成物となる。ヒドロシランからオリゴシランの生成反応は、見かけは脱水素反応であるが、モノシラン(テトラヒドロシラン)を原料とする場合はモノシラン(テトラヒドロシラン)からシリレンと水素、ジシラン(ヘキサヒドロジシラン)を原料とする場合はジシラン(ヘキサヒドロジシラン)からシリレンとモノシラン(テトラヒドロシラン)、というように、生成したシリレンがシラン類と反応して生長(モノシラン(テトラヒドロシラン)を原料とする場合はシリレンとモノシラン(テトラヒドロシラン)が反応しジシラン(ヘキサヒドロジシラン)を生成、ジシラン(ヘキサヒドロジシラン)を原料とする場合はシリレンとジシラン(ヘキサヒドロジシラン)が反応しトリシラン(オクタヒドロトリシラン)を生成)するためと考えられる。なお、上記したように、ジシラン(ヘキサヒドロジシラン)を用いた系ではモノシラン(テトラヒドロシラン)とシリレンへの分解から反応が開始するので、反応生成物にはモノシラン(テトラヒドロシラン)を必ず含むことになる。以下、原料としてケイ素原子数が1のモノシラン(テトラヒドロシラン)を用いる場合を例として、詳細に説明する。
 原料としてケイ素原子数が1のテトラヒドロシラン(SiH)を用いると、下記式のようにヘキサヒドロジシラン(Si)を生成させることができる。
Figure JPOXMLDOC01-appb-C000011
 この場合、原料としてケイ素原子数が1ではないオリゴシランをテトラヒドロシランと併用してもよい。併用する場合、具体的には下記第1-1工程又は第1-2工程であることが好ましい。
 第1-1工程:下記式(R-1)で表されるオリゴシランを原料として用いて、下記式(R-1)で表されるオリゴシランから下記式(P-1)で表されるオリゴシランを生成させることを含む。
Figure JPOXMLDOC01-appb-C000012
(式(R-1)及び(P-1)中、nは2~5の整数を表す。)
 なお、この反応式で生成するシリレン(:SiH)はテトラヒドロシランと反応すればヘキサヒドロジシランになる(式(7)参照)。
 第1-2工程:下記式(R-2)で表されるオリゴシランを原料として用いて、下記式(R-2)で表されるオリゴシランから下記式(P-2)で表されるオリゴシランを生成させることを含む。
Figure JPOXMLDOC01-appb-C000013
(式(R-2)及び(P-2)中、mは3~5の整数を表す。)
 上記シリレン(:SiH)はテトラヒドロシランが分解して水素とともに生じるものである(式(9)参照)。
 なお、第1工程として第1-1工程を含む場合、下記式(P-1)で表されるオリゴシランを製造目的とする方法となる。
Figure JPOXMLDOC01-appb-C000014
(式(P-1)中、nは2~5の整数を表す。)
 一方、第1工程として第1-2工程を含む場合、下記式(P-2)で表されるオリゴシランを製造目的とする方法となる。
Figure JPOXMLDOC01-appb-C000015
(式(P-2)中、mは3~5の整数を表す。)
 第1工程が、モノシランからジシランの生成工程に加え、第1-1工程又は第1-2工程を含むと、目的とするジシランの選択率が向上して、ジシランをより効率良く製造することができる。
 例えばトリシランは、下記式(6)で表されるように熱分解によってシリレン(:SiH)とジシランに分解することが知られているが、過剰のモノシラン存在下では、シリレンはモノシランと反応してジシランに変換することができる(式(7)参照)。つまり、トリシラン1分子から原料のモノシランも加えて、2分子のジシランに変換させることが可能になり、結果的に反応におけるジシランの選択率を向上させることが可能になる。
Figure JPOXMLDOC01-appb-C000016
 また、例えば連続式でジシランを製造する場合、副生したトリシランを回収して、モノシランとともに原料として供給することによって、ジシランの選択率を向上させるとともに、トリシランを再利用することになるため、非常に効率の良い方法になる。
 また、テトラヒドロシランからジシランを生成する反応を行い、反応中に生成するジシランを回収して、モノシランとともに原料として利用し、トリシランを製造することもできる。ジシランもシリレン(:SiH)とモノシランに分解することが知られている(式(8)参照)が、ジシランの存在量が多ければ、モノシランから生じるシリレン(式(9)参照)、ジシランから生じるシリレン(式(8)参照)、とジシランが反応してトリシランが生成する(式(10)参照)ことにより、相対的にトリシランの選択率を高めることができる。
Figure JPOXMLDOC01-appb-C000017
 以下、「第1-1工程」、「第1-2工程」等について、詳細に説明する。
 第1-1工程は、式(R-1)で表されるオリゴシランを原料として用いることを特徴とするが、例えば、ジシラン(Si)を目的のオリゴシランとする場合、テトラヒドロシラン(SiH)とともに式(R-1)で表されるオリゴシランとして、オクタヒドロトリシラン(Si)を用いる。
 第1-1工程における式(R-1)で表されるオリゴシランの使用量は、テトラヒドロシランの使用量に対して、モル換算で0.001倍以上であることが好ましく、0.005倍以上であることがより好ましく、0.01倍以上であることがさらに好ましく、0.5倍以下であることが好ましく、0.3倍以下であることがより好ましく、0.2倍以下であることがさらに好ましい。式(R-1)で表されるオリゴシランの使用量が、0.001倍以上であれば、目的とするオリゴシランの選択率を高める効果があり、テトラヒドロシランの使用量に対して0.5倍以下であれば、オリゴシランおよびモノシランから発生するシリレンとオリゴシランの反応による、目的とするオリゴシランよりケイ素原子数の大きいオリゴシランの副生は問題にならない低いレベルに抑えることができる。
 第1-2工程は、式(R-2)で表されるオリゴシランを原料として用いることを特徴とするが、例えば、オクタヒドロトリシラン(Si)を目的のオリゴシランとする場合、テトラヒドロシラン(SiH)とともに式(R-2)で表されるオリゴシランとして、ヘキサヒドロジシラン(Si)を用いる。
 第1-2工程における式(R-2)で表されるオリゴシランの使用量は、テトラヒドロシラン(SiH)の使用量に対して、モル換算で0.1倍以上であることが好ましく、0.15倍以上であることがより好ましく、0.2倍以上であることがさらに好ましく、2倍以下であることが好ましく、1.5倍以下であることがより好ましく、1倍以下であることがさらに好ましい。ここで、式(R-2)で表されるオリゴシランの使用量が、テトラヒドロシラン(SiH)の使用量に対して0.1倍以上であると、発生するシリレンとオリゴシランとの反応効率を高めることが出来、ケイ素原子数を増やす効果がある。また2倍以下であれば、オリゴシランおよびモノシランから発生するシリレンとオリゴシランの反応による、目的とするオリゴシランよりケイ素原子数の大きいオリゴシランの副生は問題にならない低いレベルに抑えることができる。
 第1工程(第1-1工程及び第1-2工程の場合も含む。)の反応温度は、操作圧力、反応時間にもよるが、無触媒の場合には好ましくは300℃以上550℃以下、より好ましくは400℃以上500℃以下である。触媒を用いる場合には操作圧力にもよるが、好ましくは50℃以上、より好ましくは100℃以上であり、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。また、いずれの場合も原料に用いたモノシラン、オリゴシラン類の転化率は、反応時間(無触媒の場合は原料の反応器内での滞留時間、触媒を用いる場合は原料の触媒との接触時間)を調整して30%以下、より好ましくは20%以下に抑えることが好ましい。転化率を30%より高くすることも可能ではあるが、転化率が高くなると逐次的に分子量の大きなポリシランが生成することになり、あまりに転化率を高くすると、固体状のポリシランが生成することがある。反応時間としては、反応温度や触媒の使用の有無にもよるが、1秒から1時間、より好ましくは5秒から30分、更に好ましくは10秒から10分である。
 第1工程(第1-1工程及び第1-2工程の場合も含む。)は、遷移元素を含有する触媒(以下、「遷移元素含有触媒」と略す場合がある。)の存在下で行われることがオリゴシランの製造効率の点で好ましい。遷移元素の具体的種類は、特に限定されないが、第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、第11族遷移元素が挙げられる。
 遷移元素含有触媒における第3族遷移元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタノイド(La)、サマリウム(Sm)等が挙げられる。
 第4族遷移元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)が挙げられる。
 第5族遷移元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)が挙げられる。
 第6族遷移元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)が挙げられる。
 第7族遷移元素としては、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)が挙げられる。
 第8族遷移元素としては、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)が挙げられる。
 第9族遷移元素としては、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)が挙げられる。
 第10族遷移元素としては、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)が挙げられる。
 第11族遷移元素としては、銅(Cu)、銀(Ag)、金(Au)が挙げられる。
 これらの遷移元素の中でも、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、第11族遷移元素が好ましく、タングステン(W)、バナジウム(V)、モリブデン(Mo)、コバルト(Co)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)がより好ましく、タングステン(W)、モリブデン(Mo)がさらに好ましい。
 遷移元素含有触媒は、遷移元素を含有するものであれば、不均一系触媒であっても均一系触媒であってもよいが、不均一系触媒であることが好ましく、担体を含む不均一系触媒で、担体の表面及び/又は内部に遷移元素を含有する触媒が特に好ましい。
 なお、遷移元素含有触媒における遷移元素の状態や組成も特に限定されないが、例えば不均一系触媒の場合、金属(単体金属、合金、一部表面が酸化されているものも含む)の状態、金属酸化物(単一の金属酸化物、複合金属酸化物)の状態が挙げられる。また、触媒が担体を含む不均一系触媒の場合、担体の表面(外表面及び/又は細孔内)に金属や金属酸化物の状態で担持されているもの、イオン交換や複合化で担体内部(担体骨格)に遷移元素が導入されたものが挙げられる。
 一方、均一系触媒の場合、遷移元素を中心金属とする有機金属錯体が挙げられる。
 金属(表面が一部酸化されている場合も有り得る)としては、スカンジウム、イットリウム、ランタノイド、サマリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、及びこれらの合金等が挙げられる。
 金属酸化物としては、酸化スカンジウム、酸化イットリウム、酸化ランタノイド、酸化サマリウム、酸化チタン、酸化ジルコニム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化テクネチウム、酸化レニウム、酸化鉄、酸化ルテニウム、酸化オスミウム、酸化コバルト、酸化ロジウム、酸化イリジウム、酸化ニッケル、酸化パラジウム、酸化白金、酸化銅、酸化銀および、これらの複合酸化物等が挙げられる。
 遷移元素含有触媒における触媒が担体を含む不均一系触媒の場合の担体の具体的種類は、特に限定されないが、シリカ、アルミナ、チタニア、ジルコニア、シリカ-アルミナ、ゼオライト、活性炭、リン酸アルミニウム等が挙げられ、シリカ、アルミナ、チタニア、ジルコニア、ゼオライト、活性炭のいずれかであることが好ましい。これらの中でもシリカ、アルミナ、ゼオライトが遷移元素を担持した場合の熱安定性の点で好ましく、ゼオライトがジシラン選択率の点でより好ましく、短径0.41nm以上、長径0.74nm以下の細孔を有するゼオライトがさらに好ましく、短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライトが特に好ましい。ゼオライトの細孔空間は、脱水素縮合の反応場として働くものと考えられ、「短径0.41nm以上、長径0.74nm以下」という細孔サイズが、過度な重合を抑制して、オリゴシランの選択率を向上させるために好適であると考えられる。
 なお、「短径0.41nm以上、長径0.74nm以下の細孔を有するゼオライト」は、実際に「短径0.41nm以上、長径0.74nm以下の細孔」を有するゼオライトのみを意味するものではなく、結晶構造から理論的に計算された細孔の「短径」と「長径」がそれぞれ前述の条件を満たすゼオライトも含まれるものとする。ちなみに細孔の「短径」と「長径」については、「ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher, L.B.McCusker and D.H. Olson, Sixth Revised Edition 2007,published on behalf of the structure Commission of the international Zeolite Association」を参考にすることができる。
 ゼオライトの短径は、好ましくは0.43nm以上、より好ましくは0.45nm以上、さらに好ましくは0.47nm以上である。
 ゼオライトの長径は、好ましくは0.69nm以下、より好ましくは0.65nm以下、さらに好ましくは0.60nm以下である。
 なお、細孔の断面構造が円形であること等によってゼオライトの細孔径が一定である場合には、細孔径が「0.41nm以上0.74nm以下」であるものと考える。
 複数種類の細孔径を有するゼオライトの場合は、少なくとも1種類の細孔の細孔径が「0.41nm以上0.74nm以下」であればよい。
 具体的なゼオライトとしては、国際ゼオライト学会(International Zeolite Association)でデータベース化されている構造コ-ドで、AFR、AFY、ATO、BEA、BOG、BPH、CAN、CON、DFO、EON、EZT、FAU、FER、GON、IMF、ISV、ITH、IWR、IWV、IWW、LTA、LTL、MEI、MEL、MFI、MOR、MWW、OBW、MOZ、MSE、MTT、MTW、NES、OFF、OSI、PON、SFF、SFG、STI、STF、TER、TON、TUN、USI、VETに該当するゼオライトが好ましい。
 構造コ-ドが、ATO、BEA、BOG、CAN、IMF、ITH、IWR、IWW、MEL、MFI、OBW、MSE、MTW、NES、OSI、PON、SFF、SFG、STF、STI、TER、TON、TUN、VETに該当するゼオライトがより好ましい。
 構造コ-ドが、BEA、MFI、TON、に該当するゼオライトが特に好ましい。
 構造コ-ドがBEAに該当するゼオライトとしては、*Beta(ベータ)、[B-Si-O]-*BEA、[Ga-Si-O]-*BEA、[Ti-Si-O]-*BEA、Al-rich beta、CIT-6、Tschernichite、pure silica beta等を挙げられる(*は3種類の構造の類似した多型の混晶であることを表す。)。
 構造コ-ドがMFIに該当するゼオライトとしては、*ZSM-5、[As-Si-O]-MFI、[Fe-Si-O]-MFI、[Ga-Si-O]-MFI、AMS-1B、AZ-1、Bor-C、Boralite C、Encilite、FZ-1、LZ-105、Monoclinic H-ZSM-5、Mutinaite、NU-4、NU-5、Silicalite、TS-1、TSZ、TSZ-III、TZ-01、USC-4、USI-108、ZBH、ZKQ-1B、ZMQ-TB、organic-free ZSM-5等が挙げられる(*は3種類の構造の類似した多型の混晶であることを表す。)。
 構造コ-ドがTONに該当するゼオライトとしては、Theta-1、ISI-1、KZ-2、NU-10、ZSM-22等が挙げられる。
 特に好ましいゼオライトは、ZSM-5、ベータ、ZSM-22である。
 シリカ/アルミナ比(モル/モル比)としては、5~10000が好ましく、10~2000がより好ましく、20~1000が特に好ましい。
 遷移元素含有触媒が不均一系触媒の場合、触媒における遷移元素の含有量(総含有量)は、触媒全体の総質量(担体を含む触媒の場合は担体の質量も含む。)に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。上記範囲内であると、良好な反応転化率を確保でき、過剰使用による副反応も抑えることができるので、より効率良くオリゴシランを製造することができる。
 遷移元素含有触媒が担体を含む不均一系触媒の場合、触媒は粉体を球状、円柱状(ペレット状)、リング状、ハニカム状等に成形した成形体の形態であることが好ましい。なお、粉体を成形するためにアルミナや粘土化合物等のバインダーを使用してもよい。バインダーの使用量があまりに少ないと成形体の強度を保つことができないし、バインダーの使用量があまりに多いと触媒活性への悪影響を与えるので、バインダーとしてアルミナを使用する場合のアルミナの含有量(アルミナを含まない担体100質量部に対して)は、好ましくは2質量部以上、より好ましくは5質部以上、さらに好ましくは10質量部以上であり、好ましくは50質量部以下、より好ましくは40質量部以下、さらに好ましくは30質量部以下である。上記範囲内であると、担体強度を保ちながら触媒活性への悪影響を抑えることができる。
 担体に前記遷移元素を担持させる方法としては、溶液状態の前駆体を用いた含浸法、イオン交換法、前駆体を昇華等により揮発させて担体に蒸着させる方法等が挙げられる。なお、含浸法は、遷移元素化合物が溶解した溶液に担体を接触させて、遷移元素化合物を担体表面に吸着させる方法である。溶媒については通常は純水が用いられるが、遷移元素化合物を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、イオン交換法は、遷移元素のイオンが溶解した溶液にゼオライト等酸点を持った担体を接触させて、担体の酸点に遷移元素のイオンを導入する方法である。この場合も溶媒は純水が通常は用いられるが、遷移元素を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。蒸着方法は遷移元素そのものまたは遷移元素酸化物を加熱して、昇華等により揮発させて担体に蒸着させる方法である。なお、含浸法、イオン交換法、蒸着法等の後に、乾燥、還元雰囲気または酸化雰囲気での焼成等の処理を行い、触媒として所望の金属または金属酸化物の状態に調製することができる。
 遷移元素含有触媒の前駆体としては、モリブデンの場合には七モリブデン酸アンモニウム、ケイモリブデン酸、リンモリブデン酸、塩化モリブデン、酸化モリブデン等が挙げられる。タングステンの場合には、パラタングステン酸アンモニウム、リンタングステン酸、ケイタングステン酸、塩化タングステン等が挙げられる。バナジウムの場合にはオキシ硫酸バナジウム、塩化バナジウム、メタバナジン酸アンモニウム等が挙げられる。コバルトの場合には硝酸コバルト、塩化コバルト等が挙げられる。ニッケルの場合には硝酸ニッケル、塩化ニッケル等が挙げられる。パラジウムの場合には硝酸パラジウム、塩化パラジウム等が挙げられる。白金の場合にはジアンミンジニトロ白金(II)硝酸溶液、テトラアンミン白金(II)クロライド等が挙げられる。
 遷移元素含有触媒が不均一系触媒の場合、周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素(以下、「典型元素」と略す場合がある。)を含有することが好ましい。なお、触媒における典型元素の状態や組成は特に限定されないが、金属酸化物(単一の金属酸化物、複合金属酸化物)やイオンの状態が挙げられる。また、遷移元素含有触媒が担体を含む不均一系触媒の場合、担体の表面(外表面及び/又は細孔内)に金属酸化物、金属塩の状態で担持されているもの、イオン交換や複合化で内部(担体骨格)に典型元素が導入されたものが挙げられる。このような典型元素を含有することによって、初期のシランの転化率を抑えて過剰な消費を抑制するとともに、初期のジシランの選択率を高くすることができる。また、初期のシランの転化率を抑えることで、触媒寿命をより長くすることもできるものと言える。
 第1族典型元素としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)が挙げられる。
 第2族典型元素としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられる。
 この中でも、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)を含有することが好ましい。
 遷移元素含有触媒が担体を含む不均一系触媒の場合、触媒への典型元素の配合方法としては、含浸法、イオン交換法等が挙げられる。なお、含浸法は、典型元素を含む化合物が溶解した溶液に担体を接触させて、典型元素を担体表面に吸着させる方法である。溶媒については通常は純水が用いられるが、典型元素を含む化合物を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、イオン交換法は、典型元素が溶解時にイオンに解離できる化合物が溶解した溶液にゼオライト等の酸点を持った担体を接触させて、担体の酸点に典型元素のイオンを導入する方法である。この場合も溶媒は純水が通常は用いられるが、典型元素イオンを溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、含浸法、イオン交換法の後に、乾燥、焼成等の処理を行ってもよい。
 リチウム(Li)を含有させる場合の溶液としては、硝酸リチウム(LiNO)水溶液、塩化リチウム(LiCl)水溶液、硫酸リチウム(LiSO)水溶液、酢酸リチウム(LiOCOCH)の酢酸溶液、酢酸リチウムのエタノール溶液等が挙げられる。
 ナトリウム(Na)を含有させる場合の溶液としては、塩化ナトリウム(NaCl)水溶液、硫酸ナトリウム(NaSO)水溶液、硝酸ナトリウム(NaNO)水溶液等が挙げられる。
 カリウム(K)を含有させる場合の溶液としては、硝酸カリウム(KNO)水溶液、塩化カリウム(KCl)水溶液、硫酸カリウム(KSO)水溶液、酢酸カリウム(KOCOCH)の酢酸溶液、酢酸カリウムのエタノール溶液等が挙げられる。
 ルビジウム(Rb)を含有させる場合の溶液としては、塩化ルビジウム(RbCl)水溶液、硝酸ルビジウム(RbNO)水溶液等が挙げられる。
 セシウム(Cs)を含有させる場合の溶液としては、塩化セシウム(CsCl)水溶液、硝酸セシウム(CsNO)水溶液、硫酸セシウム(CsSO)水溶液等が挙げられる。
 フランシウム(Fr)を含有させる場合の溶液としては、塩化フランシウム(FrCl)水溶液等が挙げられる。
 カルシウム(Ca)を含有させる場合の溶液としては、塩化カルシウム(CaCl)水溶液、硝酸カルシウム(Ca(NO)水溶液等が挙げられる。
 ストロンチウム(Sr)を含有させる場合の溶液としては、硝酸ストロンチウム(Sr(NO)水溶液等が挙げられる。
 バリウム(Ba)を含有させる場合の溶液としては、塩化バリウム(BaCl)水溶液、硝酸バリウム(Ba(NO)水溶液等が挙げられる。
 遷移元素含有触媒が担体を含む不均一系触媒の場合、触媒における典型元素の総含有量(遷移元素及び典型元素等を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、より特に好ましくは1.0質量%以上、最も好ましくは2.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 第1工程(第1-1工程及び第1-2工程の場合も含む。)に使用する反応器、操作手順、反応条件等は特に限定されず、目的に応じて適宜選択することができる。以下、反応器、操作手順等について具体例を挙げて説明するが、これらの内容に限定されるものではない。
 反応器は、回分式の場合、図3(a)に示されるような槽型反応器を、連続式の場合、図3(b)に示されるような槽型反応器(流動床)や図3(c)に示されるような管型反応器(固定床)を使用することが挙げられる。
 操作手順は、例えば回分式の場合、反応器内の空気を減圧ポンプ等を利用して除去した後、テトラヒドロシラン等を投入して密閉し、反応器内を反応温度まで昇温して反応を開始する方法が挙げられる。また、触媒を用いる場合、反応器内の空気を除去する前に、乾燥させた触媒を反応器内に設置することが挙げられる。
 一方、連続式の場合、反応器内の空気を減圧ポンプ等を利用して除去した後、テトラヒドロシラン等を流通させ、反応器内を反応温度まで昇温して反応を開始する方法が挙げられる。また、触媒を用いる場合、反応器内の空気を除去する前に、乾燥させた触媒を反応器内に設置することが挙げられる。触媒は図3(c)に示されるような固定床式であっても、図3(b)に示されるような流動床式であってもよく、それぞれの方式に基づいた操作手順を適宜採用することができる。
 反応器には、ヒドロシラン等以外の化合物を投入又は流通させてもよい。ヒドロシラン等以外の化合物としては、水素ガス、ヘリウムガス、窒素ガス、アルゴンガス等のガスが挙げられるが、特に水素ガスの存在下で行われることが好ましい。テトラヒドロシランは反応性が高いため、回分式、連続式のワンパス方式においては、アルゴンガス等の不活性ガスを入れることが好ましい。連続式のリサイクル方式において、第2工程で回収したテトラヒドロシラン等をそのまま反応器に投入して使用する場合、その他のガスは蓄積され濃縮されるため、含まないほうが望ましい。
 第1工程(第1-1工程及び第1-2工程の場合も含む。)の反応圧力は、反応温度により好ましい範囲は変動し、反応器に投入する各成分の分圧は反応温度で凝縮しない範囲内とする必要がある。目的とするオリゴシランがジシランの場合、反応温度にも依るが、絶対圧力で好ましくは0.1MPa以上、より好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは3MPa以下である。なお、テトラヒドロシランの分圧は、好ましくは0.0001MPa以上、より好ましくは0.0005MPa以上、さらに好ましくは0.001MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは1MPa以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 目的とするオリゴシランがトリシランの場合の反応圧力は、絶対圧力で好ましくは0.1MPa以上、より好ましくは0.125MPa以上、さらに好ましくは0.15MPa以上であり、好ましくは5MPa以下、より好ましくは4MPa以下、さらに好ましくは2MPa以下である。この場合、ジシラン分圧は、好ましくは0.00005MPa以上、より好ましくは0.0001MPa以上、さらに好ましくは0.0002MPa以上であり、好ましくは3MPa以下、より好ましくは1MPa以下、さらに好ましくは0.8MPa以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 回分式の場合、反応器に投入する原料ヒドロシランを含む流体全体積に対し、原料のヒドロシランは、好ましくは5体積%以上100体積%以下、より好ましくは10体積%以上90体積%以下、更に好ましくは20体積%以上80%体積%以下である。ジシランはテトラヒドロシランより凝縮しやすいので、凝縮しないように温度と圧力を調整して行うことが好ましい。
 第1工程(第1-1工程及び第1-2工程の場合も含む。)が水素ガスの存在下で行われる場合の水素ガスの分圧は、ヒドロシランおよびオリゴシランの分圧に対して、好ましくは0.05~5倍、より好ましくは0.1~4倍、さらに好ましくは0.02~2倍(水素ガス圧/(ヒドロシランおよびオリゴシラン)圧)の範囲の比である。
 なお、第1工程(第1-1工程及び第1-2工程の場合も含む。)を経て得られた、必要に応じて冷却された反応生成混合物流体から水素分離膜(後述の第4工程で説明)を用いて水素ガスを分離することができる。
(第2工程)
 第2工程は、第1工程を経て得られた反応生成混合物流体(以下、「混合物流体」と略す場合がある。)に対して前述の(A)及び/又は(B)の処理を行って、全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より低い、すなわち、混合物流体よりもテトラヒドロシラン等の原料濃度が高い原料高含有流体(以下、「原料高含有流体」と略す場合がある。)と、全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より高い、すなわち、混合物流体よりも目的とするオリゴシランの濃度が高い生成物高含有流体(以下、「生成物高含有流体」と略す場合がある。)とに分離することを含む工程である。(A)の処理及び(B)の処理について、モノシランからジシランを製造する場合を例に挙げて、以下詳細に説明する。
 (A)の処理は、混合物流体を前述の(a-1)~(a-3)を満たす条件で膜分離器に供給し、膜を透過した流体として原料高含有流体を得て、膜を透過しなかった流体として生成物高含有流体を得る処理である。分子が比較的小さいテトラヒドロシランは、オリゴシランよりも優先的に膜を透過するため、混合物流体を膜分離器に供給することによって、原料高含有流体と生成物高含有流体とに分離することができるのである。
 (a-1)の条件である膜分離器の膜の材質としては、原料として使用する比較的分子の小さいシラン類と目的とするオリゴシランを分離できるものを選択すればよい。
 多孔質材料の場合には、ガス吸着法または水銀圧入法で測定した細孔径が好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下である。ゼオライトのような2nm以下の規則的細孔径を持つものがさらに好ましい。細孔径の下限は通常、0.1nm以上である。
 このようなものとして、具体的には、例えば無機膜であるゼオライト、多孔質シリカ、アルミナ、ジルコニア、が挙げられ、有機膜であるポリイミド、フッ素系共重合体膜が挙げられ、これらの中には装置メーカーより膜分離に効率のいい形状にモジュール化したものが市販されている。これらの中でも、ゼオライト、多孔質シリカが透過時の選択性の点で好ましく、ゼオライトがより好ましい。なお、本発明の効果を奏する限り、上記範囲外の細孔径を有する多孔質材料を含むことができる。
 なお、膜厚については、一般的に、厚いほど分離性能は良くなるが、透過速度が遅くなる傾向にあるので表面積も加味して最適な膜厚を選択すればよい。
 (a-2)の条件である膜分離器に供給される混合物流体の圧力は温度によっても異なるが、好ましくは0.1MPa以上、より好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは1MPa以下である。
 (a-3)の条件である膜分離器に供給される混合物流体の温度は、好ましくは-10℃以上、より好ましくは10℃以上、さらに好ましくは30℃以上であり、好ましくは300℃未満、より好ましくは280℃以下、さらに好ましくは250℃以下である。
 上記範囲内であると、オリゴシランをより効率良く精製することができる。
 なお、非多孔質膜であるポリイミド膜やフッ素系共重合体膜等を適用することも可能である。
 (B)の処理は、混合物流体を前述の(b-1)~(b-3)を満たす条件で吸着材に接触させ、吸着材に吸着しなかった流体として原料高含有流体を分離する処理である。また、吸着材に吸着した後、その吸着材から脱着させることにより生成物高含有流体を得る処理である。分子量が比較的大きいオリゴシランは、テトラヒドロシランよりも蒸気圧が低いので選択的に吸着材に吸着しやすいため、混合物流体を吸着材に接触させることによって、原料高含有流体と生成物高含有流体とに分離することができるのである。
 (b-1)の条件である吸着材としては細孔内でより高分子量のものを多く吸着できるものが望ましく、基本的には表面積の広いほうが吸着能力が高く有利である。表面積としてはBET比表面積として、好ましくは10m/g以上1000m/g以下、より好ましくは20m/g以上800m/g以下、さらに好ましくは30m/g以上600m/g以下である。BET比表面積はJIS Z 8830:2013(ISO 9277:2010)に準じて測定することで求められる。後述の実施例では、測定(吸着)ガスとして窒素ガスを用い、吸着データの解析には多点法を用いた。また、細孔径も小さいほうが細孔内で凝縮しやすくなるので好ましく、ガス吸着法または水銀圧入法で測定した細孔径で、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下である。また、細孔径の下限としては0.1nm以上、好ましくは0.2nm以上、更に好ましくは0.3nm以上である。このようなものとしては、ゼオライト(天然ゼオライト、合成ゼオライト(モレキュラーシーブとも呼ばれている))、アルミナゲル、シリカゲル、活性炭等が挙げられ、これらの一種または複数種を用いることができる。より好ましいものしては細孔を有するゼオライト(モレキュラーシーブ)が挙げられる。吸着材は、粉体のままでも用いることはできるが、取扱いの点で球状、円柱状(ペレット状)、リング状、ハニカム状等に成形した成形体の形態のものを用いるほうが好ましい。また、本発明の効果を阻害しない範囲で、上記範囲以外の比表面積、細孔径を有する吸着材を含むことができる。
 (b-2)の条件である吸着材に接触させる前記混合物流体の圧力は、好ましくは0.1MPa以上、より好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であり、好ましくは20MPa以下、より好ましくは10MPa以下、さらに好ましくは5MPa以下である。
 (b-3)の条件である吸着材に接触させる混合物流体の温度は、好ましくは-50℃以上、より好ましくは-30℃以上、さらに好ましくは0℃以上、特に好ましくは30℃以上であり、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。
 上記範囲内であると、オリゴシランをより効率良く精製することができる。
 吸着させた分子を脱着させる方法としては、加熱または減圧することが挙げられる。その際の加熱温度としては、通常50℃以上300℃以下、好ましくは80℃以上200℃以下であり、減圧する条件としては吸着させた圧力に対して、5%から95%の圧力で実施することが好ましく、10%から90%の圧力で実施することがより好ましい。
 (B)の処理は、吸着塔を利用して行うことが挙げられ、多塔式の吸着塔を利用するものであってもよい。
 また、(A)、(B)で用いる分離膜、吸着材の材料等は公知のものを用いることができる。市販されているものを入手して用いることで、第2工程を安価で容易に行うことができ、より効率的に、安価に、目的とするオリゴシランを製造できる。
 なお、(A)、(B)で用いる分離膜、吸着材の材料に付着水分があると、シラン類と反応するので事前によく乾燥を行うことは必須である。また、分離膜、吸着材によっては表面にシラン類と反応するシラノールのような官能基を有するものもあるので、事前にテトラヒドロシランにより処理を行い、表面をシラン類に対して不活性化しておく必要がある。
 また、第2工程で得られた原料高含有流体から水素分離膜(後述の第4工程で説明)を用いて水素ガスを分離することができる。
(第3工程)
 本発明の製造方法は、第2工程を経て得られた生成物高含有流体を液体(液相)と気体(気相)とに分離する第3工程(以下、「第3工程」と略す場合がある。)を含むことができる。
 生成物高含有流体は、後述する精製工程等を経て最終的にオリゴシランを単離することになる一方、精製工程で分離された原料成分はリサイクル方式の場合、場合によっては一部オリゴシランを含んだ状態で第3工程および後述する第4工程等を経て気体状で再度第1工程に利用することになる。
 なお、第3工程は、第2工程を経て得られた生成物高含有流体をそのまま液体(液相)と気体(気相)とに分離する場合もあるが、通常は生成物高含有流体を第3工程に供する前に、冷却する冷却工程を行い、液体と気体とを分離させる。
 第3工程の前の冷却工程の冷却温度は、目的とするオリゴシランによって選択すればよく、常圧の場合、ジシランを製造する場合は通常-100℃以上50℃以下、好ましくは-50℃以上30℃以下であり、トリシランを製造する場合は通常-50℃以上95℃以下、好ましくは-30℃以上80℃以下である。また加圧にして、操作温度をより高い温度で行ってもよい。
 第3工程は、通常の蒸発装置、重力分離方式の装置、表面張力分離方式の装置、又は遠心分離方式の装置を利用して行うことが挙げられ、原料をより効率的に回収するために加熱することもできる。
 リサイクル方式の場合、液相(生成物高含有流体を含む液体)に溶解したテトラヒドロシランは気体状で回収し、原料高含有流体と併せて再利用することが好ましい。
 加熱温度は、通常50℃以上300℃以下、好ましくは80℃以上200℃以下である。
(第4工程)
 リサイクル方式の場合、本発明の製造方法は、第2工程で得られた原料高含有流体に第3工程を経て得られた気体(気相)を合流させた混合物から水素分離膜を用いて水素ガスを分離することを含む第4工程(以下、「第4工程」と略す場合がある。)をさらに含むことができる。
 リサイクル方式の場合、反応によって副生する水素ガスが蓄積していくため、第4工程を含むことによって、水素ガスを適宜除去することができる。
 水素分離膜は、水素ガスを選択的に透過させる半透膜である。半透膜は、例えば水素ガスを選択的に透過させる緻密層と、緻密層を支持する多孔質性の基材とを含む。半透膜の形状としては、平膜、スパイラル膜、中空糸膜が挙げられるが、このうち、中空糸膜がより好ましい。緻密層に用いられる材料としては、ポリイミド、ポリシロキサン、ポリシラザン、ポリエステル、ポリカーボネート、セルロースポリマー、ポリスルホン、ポリアルキレングリコール、ポリエチレン、ポリブタジエン、ポリスチレン、ポリアクリロニトリル、ポリビニルハライド、ポリビニリデンハライドおよびこれらのポリマーのうち同一の重合方式で重合しうる複数種の繰り返し単位を有するブロックコポリマーが挙げられる。
 これらの高分子材料を用いたもの以外に、炭素材料、水素透過性のあるパラジウム等の公知の材料を用いたものを使用することもできる。
 第4工程の条件は、温度は好ましくは0℃以上300℃以下であり、より好ましくは30℃以上250℃以下であり、さらに好ましくは50℃以上200℃以下である。圧力は、第4工程の操作温度にも依るが、絶対圧力で好ましくは0.1MPa以上、より好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは3MPa以下である。
 なお、水素ガスを分離するためと反応原料となるヒドロシランをリサイクルするために、加圧が必要になるので、この段階で生成物または同伴されるオリゴシラン類が凝縮しないように加熱しておくことが望ましい。
(精製工程)
 本発明の製造方法は、第2工程で得られた生成物高含有流体を冷却した液体や第3工程を経て得られた液体からオリゴシランを単離することを含む精製工程(以下、「精製工程」と略す場合がある。)を含むことができる。なお、精製工程は、オリゴシランをそれぞれ分離して単離するのみならず、テトラヒドロシラン(SiH)、ケイ素原子数が5より多いオリゴシラン等をそれぞれ目的に応じて単離するものであってもよい。
 精製工程におけるオリゴシランを単離する方法は、特に限定されないが、蒸留によってオリゴシランを単離する方法が挙げられる。
 本発明の製造方法は、前述した第1工程、第2工程、第3工程、第4工程、精製工程のほか、次の工程のために温度や圧力を調節するための加熱工程、冷却工程、加圧工程、減圧工程、また固形物を分離するための濾過工程等を含むものであってもよい。リサイクル方式の場合には、回収したテトラヒドロシラン(SiH)等を反応器に投入するため、コンプレッサー等を利用したり、追加でテトラヒドロシラン(SiH)、式(R-1)又は式(R-2)で表されるオリゴシラン等の原料を追加する工程を有することができる。
 本発明の製造方法が回分式である場合の具体的態様は、第1工程、第2工程、及び精製工程を含む態様が挙げられる。なお、第1工程は、回分式の反応器を、第2工程、精製工程等は、それぞれ回分式の専用装置、専用器具を利用して行うことが挙げられる。
 本発明の製造方法が連続式のワンパス方式である場合の具体的態様は、第1工程、第2工程、及び精製工程を含む態様が挙げられる。なお、かかる態様では、図1で表されるような装置を利用することが挙げられる。また、本発明の他の一態様は、図1で表されるようなオリゴシランの製造装置を提供する。以下、図1の装置の構成を詳細に説明する。
 まず、原料ガスを所定の圧力まで昇圧、予熱して、所定の温度に設定された反応器101に導入する。ここで反応させた反応生成混合物流体を次の分離手段(分離部)102に送る。この際に異常時に備えて固体状オリゴシランを分離するためのフィルターを通して分離手段102に送ることもできるし、この場合、より効率的に凝縮するために、熱交換器等で反応ガス温度を下げておいた方がよい。
 反応生成混合物流体を分離した後、目的物と副生物からなる高沸成分の多い生成物高含有流体(液体)と、テトラヒドロシランのような低分子量の原料が多い原料高含有流体(気体)をそれぞれ別々にして蒸留器103で精製を行う。図1では生成物高含有流体(液体)精製用として蒸留器103が図示されているが、原料高含有流体(気体)精製用として蒸留器103を併用(使い分け)することもできる。また、生成物高含有流体(液体)精製用の蒸留器と、原料高含有流体(気体)精製用の蒸留器と、を別々に設ける構成とすることもできる。なお、原料高含有流体(気体)を蒸留器で精製する際は予め冷却して液化させる。
 分離手段(分離部)として吸着材を用いる場合吸着材への吸着物を脱離(脱着)させる際には通常は加熱してガス状で回収する。この場合や、分離手段(分離部)として分離膜により分離された流体、特に生成物高含有流体がガス状の場合放冷により凝縮し一部液化していることもあるが、蒸留塔に送る前に更に一旦冷却して大半の分離された流体を凝縮させる必要がある。
 蒸留器103での精製処理は、上記液体をある程度蓄積した後、回分操作で行うこともできるし、連続的に処理を行ってもよい。モノシラン、ジシラン、トリシラン、テトラシラン、ペンタシランは沸点差があるので、必要なシラン類については精密蒸留によりそれぞれの純度を高めて分留することが望ましい。
 本発明の製造方法が連続式のリサイクル方式である場合の具体的態様は、第1工程、第2工程、第3工程、第4工程、及び精製工程を含み、第4工程を経て得られた気体を第1工程に用い、さらに第3工程を経て得られたオリゴシランを含む液体に対して精製工程を行う態様が挙げられる。なお、かかる態様では、図2で表されるような装置を利用することが挙げられる。また、本発明の他の一態様は、図2で表されるようなオリゴシランの製造装置を提供する。以下、図2の装置の構成を詳細に説明する。
 まず、リサイクルガスと新たに投入する原料ガスを所定の混合比となるように混合した後に、必要に応じて昇圧、予備加熱を行った後に所定の温度に設定した反応器201に導入する。反応器から出てきた生成物を含む反応ガス(反応生成混合物流体)については、ワンパス法と同様に異常時対応のために固体オリゴシランとの分離のためにフィルターを設置したり、熱交換器206により反応ガス(反応生成混合物流体)から予備冷却もかねて熱エネルギーを回収したりすることができる。必要に応じて予備冷却を行った反応生成混合物流体を、生成したオリゴシラン類を分離する分離手段(分離部)202に送る。また、リサイクルを行う場合にはテトラヒドロシランのような低分子量の原料が多い原料高含有流体は、そのままもしくは加熱してガス状でリサイクルする。分離手段202により分離された生成物高含有流体は冷却手段(冷却部)207により冷却し、目的とするオリゴシランを含む液体と生成物高含有流体中に溶解していた原料ガスを含む気体との混合物とし、両者を気液分離手段(気液分離部)203により分離する。分離されたオリゴシランを含む液体からは、蒸留器205により目的とするオリゴシランが単離される。また、分離された原料ガスを含む気体は、第2工程で得られた原料高含有流体と合流され、反応器201にリサイクル投入するために必要な原料ヒドロシランの追加、コンプレッサー208により反応圧力まで昇圧される。また、反応中に副生した水素ガスは水素ガス分離手段(水素ガス分離部)204により分離された(第4工程)後、所定の配合比となるように必要に応じて水素ガスが反応器201に投入される。図2は水素ガスを投入する場合を図示している。この一連の操作が所定の反応時間継続される。
 本発明の他の一態様は、オリゴシランをより効率良く製造する装置(以下、「本発明の製造装置」と略す場合がある。)を提供する。
 本発明の製造装置は、本発明の一態様であるオリゴシランの製造方法に好適に用いられる。
 本発明の製造装置は、ヒドロシランを脱水素縮合させてオリゴシランを生成させる第1工程を行うための反応器と、前記第1工程を経て得られた反応生成混合物流体を原料高含有流体と生成物高含有流体とに分離する第2工程を行うための気液分離部と、気液分離された液体を蒸留する精製装置と、を含み、下記(AA)及び/又は(BB)の条件を満たすことを特徴とする。
(AA)前記気液分離部が膜分離器を有し、前記反応生成混合物流体を該膜分離器に供給し、膜を透過した流体として前記原料高含有流体を得て、膜を透過しなかった流体として前記生成物高含有流体を得るための気液分離部であり、
 (aa-1)前記膜分離器の膜の材質が、ゼオライト、多孔質シリカ、アルミナ、又はジルコニアであり、
 (aa-2)前記膜分離器に供給される前記反応生成混合物流体の圧力を、0.1MPa以上10MPa以下に調整する圧力調整部、を含み、
 (aa-3)前記膜分離器に供給される前記反応生成混合物流体の温度を、-10℃以上300℃未満に調整する温度調整部、を含む。
(BB)前記気液分離部が吸着剤を有し、前記反応生成混合物流体を該吸着材に接触させ、前記吸着材に吸着しなかった流体として前記原料高含有流体を得て、前記吸着材に吸着した後、脱着した流体として前記生成物高含有流体を得るための気液分離部であり、
 (bb-1)前記吸着材の材質が、ゼオライト、アルミナゲル、シリカゲル又は活性炭であり、
 (bb-2)前記吸着材に接触させる前記反応生成混合物流体の圧力を、0.1MPa以上20MPa以下に調整する圧力調整部、を含み、
 (bb-3)前記吸着材に接触させる前記反応生成混合物流体の温度を、-50℃以上200℃以下に調整する温度調整部を含む。
 本態様において、オリゴシラン、ヒドロシラン、第1工程、第2工程、反応生成混合物流体、原料高含有流体、生成物高含有流体、膜分離器、吸着材等は、本発明の製造方法で説明した内容が適用される。なお、条件(a-1)~(a-3)は、それぞれ(aa-1)~(aa-3)に対応しており、条件、(b-1)~(b-3)は、それぞれ(bb-1)~(bb-3)に対応している。
 本発明の製造装置のある一実施形態は、図1で表される連続式のワンパス方式のタイプであり、ある一実施形態は図2で表される連続式のリサイクル方式のタイプである。
 本発明の製造装置において、気液分離された液体を蒸留する精製装置は、例えば蒸留器が挙げられる。蒸留器はオリゴシランを蒸留分離出来れば特に限定されず、公知の蒸留器を用いることができる。また、蒸留器は多段式や充填剤を充填した蒸留塔としてもよく、精密蒸留装置を含んでもよい。温度調整部としては、上記範囲に温度を調整出来るものであれば特に限定されず、例えば熱交換器、電気式加熱装置、熱媒式加熱装置等が挙げられる。圧力調整部としては、上記範囲に圧力を調整出来るものであれば特に限定されず、例えばコンプレッサー(ガス昇圧装置)であり、具体的には往復圧縮機(レシプロ圧縮機)、斜板式圧縮機、ダイアフラム式圧縮機、ツインスクリュー圧縮機、シングルスクリュー圧縮機、スクロール圧縮機、ロータリー圧縮機、ロータリーピストン型圧縮機、スライドベーン型圧縮機などが挙げられる。
 本発明の製造装置は、気液分離された気体中に含まれる水素を選択分離する水素分離部をさらに含むことも好ましい。水素分離部としては、例えば、水素分離膜が挙げられる。水素分離膜としては、例えば、セラミック製水素分離膜、ポリイミド製水素分離膜、パラジウム膜が用いられる。水素分離部には、前記気液分離部から接続して第2工程で得られた原料高含有流体を供給してもよいし、生成物高含有流体を液体(液相)と気体(気相)とに分離する第3工程の気液分離部に接続して第3工程で得られた気体を供給してもよいし、両者を混合して供給してもよい。
 以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、実施例は、図4に示される反応装置(概念図)の反応管内の固定床にゼオライトを固定して、ヘリウムガス等で希釈したテトラヒドロシランを含む反応ガスを流通させることにより行った。生成したガスは、株式会社島津製作所社製ガスクロマトグラフGC-17Aを用いて、TCD(Thermal Conductivity Detector)検出器で分析を行った。ジシラン等の定性分析は、MASS(質量分析計)で行った。
 触媒として使用したゼオライトの細孔は、以下の通りである。
 ・H-ZSM-5:
  <100>短径0.51nm、長径0.55nm
  <010>短径0.53nm、長径0.56nm
 なお、細孔の短径、長径の数値は、「http://www.jaz-online.org/introduction/qanda.html」、及び「ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher,L.B. McCusker and D.H. Olson, Sixth Revised Edition 2007,published on behalf of the Structure Commission of the International Zeolite Association」に記載されているものである。
<触媒調製例:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 3mm径のペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、バインダーとしてのアルミナ18~22質量%含有(SDS記載値))200gに、蒸留水200g、(NHMo24・4HO 3.70g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、400℃で2時間、更に900℃で2時間大気雰囲気下で焼成して、Mo1質量%担持ZSM-5(ペレット状)を得た。
 上記で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比23) 50gに蒸留水100g、Ba(NO 2.38g(Ba換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、700℃で2時間大気雰囲気下で焼成して、Baが2.4質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比23)を得た。
<吸着塔の予備処理例>
 吸着塔に3.2mmφのペレット状のモレキュラーシーブ5A(ユニオン昭和株式会社製)50gを充填し、減圧しながら200℃で2時間加熱処理を行った。その後、室温まで冷却後、ヘリウムガスで常圧に戻した後、モノシラン(テトラヒドロシラン)ガスを2ml/分で2時間常圧で流通させ、モノシランガス雰囲気で8時間放置後、減圧して吸着しているモノシランガスを追い出し、ヘリウムガスにより常圧に戻した。この処理により、モレキュラーシーブ5A表面上のシラノール基等のシラン類と反応する官能基を不活性化した。
<実施例1>
 調製例で調製した触媒1.0gを反応管に設置し、減圧ポンプを使って反応管内の空気を除去した後、ヘリウムガスで置換した。ヘリウムガスを5mL/分の速度で流通させ、管状炉を200℃に設定して反応管を昇温後、1時間流通させた。その後、吸着塔をバイパスさせて、反応圧力0.3MPa(絶対圧力)(ゲージ圧力:0.2MPa)でアルゴンとテトラヒドロシランの混合ガス(Ar:20%、SiH:80%(モル比))2mL/分と水素ガス2mL/分とヘリウムガス1mL/分をガスミキサーで混合して流通させた。5分後にアルゴンとシランの混合ガスを3mL/分に、水素ガスを1mL/分に変更し、ヘリウムガスは止めた。なお流量はマスフローコントローラーで制御し、数値は0℃、1気圧に換算した体積であり、滞留時間は21秒である。この状態で4時間反応させたのち、氷冷した吸着塔に0.3MPa(絶対圧力)(ゲージ圧力:0.2MPa)を保ったまま反応ガスを流すようにした。7時間後に吸着塔をまたバイパスさせて反応ガスを直接系外に流出させるようにし、8時間で反応を終了した。
 表1にヘリウムガス停止時から吸着塔で吸着できなかった反応ガス(反応生成混合物流体)の分析値を示した。なお、1時間から4時間までと8時間後の分析値は吸着塔をバイパスさせているので、反応ガス(反応生成物混合流体)そのものの分析値(ジシランの全シラン中のモル濃度は平均して4.67モル%)であり、5時間から7時間の分析値は吸着塔で吸着できなかった反応ガス(原料高含有流体)の分析値(ジシランの全シラン中のモル濃度は平均して0.50モル%)であり、それぞれモル濃度で示している。
 なお、表中の「モノシラン/全シラン」とは、モノシランのモル濃度を検出できたシラン類のモル濃度の総和で除したものである。
 また、反応終了後、吸着塔に吸着した反応ガス成分は、常圧で100℃に加熱して脱着させるとともに、脱離ガスを液体窒素温度でトラップした。脱離ガス(トラップされたガス)の成分を分析したところ、テトラヒドロモノシラン0.248g、ヘキサヒドロジシラン0.054g、ケイ素原子数が3~5のオリゴシラン0.005gであり、検出できたシラン類に占めるオリゴシラン(ジシラン+ケイ素原子数3~5のオリゴシラン)のモル濃度は10.6モル%であった。ケイ素原子数が6以上の高次シランは検出できなかった。
Figure JPOXMLDOC01-appb-T000018
<実施例2>
 実施例2は、図4に示す吸着塔12での冷却温度を50℃にした以外は実施例1と同様に行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000019
 また、同様にトラップ出来た反応ガスは、テトラヒドロモノシラン0.102g、ヘキサヒドロジシラン0.043g、ケイ素原子数が3~5のオリゴシラン0.004gであり、検出できたシラン類に占めるオリゴシラン(ジシラン+ケイ素原子数3~5のオリゴシラン)のモル濃度は18.7%であった。実施例1同様ケイ素原子数が6以上の高次シランは検出できなかった。
<実施例3>
 実施例3は、吸着材をモレキュラーシーブ5A(ユニオン昭和株式会社製)からシリカゲルCARiACT Q-10(富士シリシア化学株式会社製 約3mmφの球状で比表面積304m/g(カタログ値))に変えた以外は実施例1と同様に行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000020
 また、同様にトラップ出来た反応ガスは、テトラヒドロモノシラン0.217g、ヘキサヒドロジシラン0.052g、ケイ素原子数が3~5のオリゴシラン0.005gであり、検出できたシラン類に占めるオリゴシラン(ジシラン+ケイ素原子数3~5のオリゴシラン)のモル濃度は11.6%であった。実施例1同様ケイ素原子数が6以上の高次シランは検出できなかった。
<比較例1>
 比較例1は、図4中、12で示す吸着塔に吸着材を入れなかった以外は、実施例1と同様に操作を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000021
 比較例1では、吸着塔に吸着材を入れなかった、すなわち第2工程を経ていないので、反応終了後、吸着塔にトラップ出来た反応ガスは無かった。
<比較例2>
 比較例2は、実施例1の吸着材を3mmφのガラスビーズ(ソーダガラス、アズワン株式会社製 BZ-3)に変更した以外は実施例1と同様に行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000022
 比較例2では、吸着塔に比表面積の小さいガラスビーズを入れたが、トラップ出来た反応ガスは、量が少なく測定誤差も大きいと思われるが、テトラヒドロモノシラン0.005g、ヘキサヒドロジシラン0.0001g、ケイ素原子数が3~5のオリゴシランは検出限界以下であり、効率よく分離できなかった。
 これらの結果により、吸着塔に吸着された成分(生成物高含有流体)は目的物であるジシラン濃度が反応ガス(反応生成混合物流体)中よりも濃縮されていることから、蒸留精製工程前の冷却に要するエネルギーが反応ガス(反応生成混合物流体)を全凝縮するよりも少なくて済み、精製にかかわるコストを大幅に低減できることがわかる。また、吸着塔を用いている場合、すなわち第2工程を経た場合には、反応ガス(反応生成混合物流体)の未吸着ガス(原料高含有流体)中のモノシラン濃度は98モル%以上であり、未吸着反応ガスをそのままリサイクル出来ることがわかる。このように、本発明の製造方法は、オリゴシランの精製に要するエネルギーを低減出来、コストを削減できる。また、原料高含有流体中の原料を高濃度にできることから、そのまま再使用することができ、オリゴシランの製造に要するトータルのエネルギーをさらに低減でき、コストを削減できる。
 本発明の製造方法によって製造されたオリゴシランは、半導体用シリコンの製造ガスとして利用されることが期待できる。
   1           テトラヒドロシランガスボンベ
               (Ar20モル%入り)
   2           水素ガスボンベ
   3           ヘリウムボンベ
   4           緊急遮断弁(ガス検連動遮断弁)
   5           減圧弁
   6           マスフローコントローラー
   7           圧力計
   8           ガスミキサー
   9           反応管
  10           フィルター
  11           ロータリーポンプ
  12           吸着塔
  13           二次圧調整弁
  14           除害装置
  101、201      反応器
  102、202      分離手段(分離部)
  103、205      蒸留器
  203          気液分離手段(気液分離部)
  204          水素分離手段(水素分離部)
  206          熱交換器
  207          冷却手段(冷却部)
  208          コンプレッサー

Claims (21)

  1.  ヒドロシランを脱水素縮合させてオリゴシランを生成させる第1工程、及び
     前記第1工程を経て得られた反応生成混合物流体に対して下記(A)及び/又は(B)の処理を行って、前記反応生成混合物流体を原料高含有流体と生成物高含有流体とに分離する第2工程を含み、
     前記原料高含有流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より低く、
     前記生成物高含有流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度が前記反応生成混合物流体中の全シラン化合物に対するケイ素原子数2以上5以下のオリゴシランのモル濃度より高いことを特徴とするオリゴシランの製造方法。
    (A)前記反応生成混合物流体を下記(a-1)~(a-3)を満たす条件で膜分離器に供給し、膜を透過した流体として前記原料高含有流体を得て、膜を透過しなかった流体として前記生成物高含有流体を得る。
     (a-1)前記膜分離器の膜の材質が、ゼオライト、多孔質シリカ、アルミナ、又はジルコニアである。
     (a-2)前記膜分離器に供給される前記反応生成混合物流体の圧力が、0.1MPa以上10MPa以下である。
     (a-3)前記膜分離器に供給される前記反応生成混合物流体の温度が、-10℃以上300℃未満である。
    (B)前記反応生成混合物流体を下記(b-1)~(b-3)を満たす条件で吸着材に接触させ、前記吸着材に吸着しなかった流体として前記原料高含有流体を得て、前記吸着材に吸着した後、脱着した流体として前記生成物高含有流体を得る。
     (b-1)前記吸着材の材質が、ゼオライト、アルミナゲル、シリカゲル又は活性炭である。
     (b-2)前記吸着材に接触させる前記反応生成混合物流体の圧力が、0.1MPa以上20MPa以下である。
     (b-3)前記吸着材に接触させる前記反応生成混合物流体の温度が、-50℃以上200℃以下である。
  2.  前記第1工程におけるヒドロシランが、テトラヒドロシラン(SiH)であり、生成するオリゴシランがヘキサヒドロジシラン(Si)を含む、請求項1に記載のオリゴシランの製造方法。
  3.  下記式(P-1)で表されるオリゴシランを製造する方法であり、
     前記第1工程が、テトラヒドロシラン(SiH)とともに下記式(R-1)で表されるオリゴシランを原料のヒドロシランとして用いて、下記式(R-1)で表されるオリゴシランから下記式(P-1)で表されるオリゴシランを生成させる工程である、請求項1に記載のオリゴシランの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(P-1)中、nは2~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(R-1)及び(P-1)中、nは2~5の整数を表す。)
  4.  前記式(R-1)で表されるオリゴシランが、オクタヒドロトリシラン(Si)であり、前記式(P-1)で表されるオリゴシランが、ヘキサヒドロジシラン(Si)である、請求項3に記載のオリゴシランの製造方法。
  5.  下記式(P-2)で表されるオリゴシランを製造する方法であり、
     前記第1工程が、テトラヒドロシラン(SiH)とともに下記式(R-2)で表されるオリゴシランを原料のヒドロシランとして用いて、下記式(R-2)で表されるオリゴシランから下記式(P-2)で表されるオリゴシランを生成させる工程である、請求項1に記載のオリゴシランの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(P-2)中、mは3~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(R-2)及び(P-2)中、mは3~5の整数を表す。)
  6.  前記式(R-2)で表されるオリゴシランが、ヘキサヒドロジシラン(Si)であり、前記式(P-2)で表されるオリゴシランが、オクタヒドロトリシラン(Si)である、請求項5に記載のオリゴシランの製造方法。
  7.  前記(A)において用いる膜の細孔径が0.1nm以上100μm以下である、請求項1~6の何れかに1項に記載のオリゴシランの製造方法。
  8.  前記(B)において用いる吸着材のBET比表面積が10m/g以上1000m/g以下である、請求項1~6の何れかに1項に記載のオリゴシランの製造方法。
  9.  前記第1工程が、水素ガスの存在下で行われる工程である、請求項1~8の何れかに1項に記載のオリゴシランの製造方法。
  10.  前記第1工程が、遷移元素を含有する触媒の存在下で行われる工程である、請求項1~9の何れか1項に記載のオリゴシランの製造方法。
  11.  前記触媒に含有される遷移元素が、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素、第8族遷移元素、第9族遷移元素、第10族遷移元素、及び第11族遷移元素からなる群から選択される少なくとも1種である、請求項10に記載のオリゴシランの製造方法。
  12.  前記触媒が、担体を含む不均一系触媒である、請求項10又は11に記載のオリゴシランの製造方法。
  13.  前記担体が、シリカ、アルミナ、及びゼオライトからなる群より選択される少なくとも1種である、請求項12に記載のオリゴシランの製造方法。
  14.  前記ゼオライトが、短径が0.41nm以上、長径が0.74nm以下の細孔を有する、請求項13に記載のオリゴシランの製造方法。
  15.  前記第1工程を1回のみ行うワンパス方式である、請求項1~14の何れか1項に記載のオリゴシランの製造方法。
  16.  前記第1工程において未反応のテトラヒドロシラン(SiH)の少なくとも一部を原料として再供給(再利用)するリサイクル方式である、請求項1又は2に記載のオリゴシランの製造方法。
  17.  前記第1工程において未反応のテトラヒドロシラン(SiH)の少なくとも一部を原料として再供給(再利用)するリサイクル方式である、請求項3~14の何れか1項に記載のオリゴシランの製造方法。
  18.  前記第1工程においてさらに式(R-1)で表されるオリゴシラン又は式(R-2)で表されるオリゴシランの少なくとも一部を原料として再供給(再利用)するリサイクル方式である、請求項17に記載のオリゴシランの製造方法。
  19.  前記第2工程を経て得られた原料高含有流体から水素分離膜を用いて水素ガスを分離する工程をさらに含む、請求項17又は18に記載のオリゴシランの製造方法。
  20.  ヒドロシランを脱水素縮合させてオリゴシランを生成させる第1工程を行うための反応器と、
     前記第1工程を経て得られた反応生成混合物流体を原料高含有流体と生成物高含有流体とに分離する第2工程を行うための気液分離部と、
     気液分離された液体を蒸留する精製装置と、を含み、
     下記(AA)及び/又は(BB)の条件を満たす、オリゴシランの製造装置。
    (AA)前記気液分離部が膜分離器を有し、前記反応生成混合物流体を該膜分離器に供給し、膜を透過した流体として前記原料高含有流体を得て、膜を透過しなかった流体として前記生成物高含有流体を得るための気液分離部であり、
     (aa-1)前記膜分離器の膜の材質が、ゼオライト、多孔質シリカ、アルミナ、又はジルコニアであり、
     (aa-2)前記膜分離器に供給される前記反応生成混合物流体の圧力を、0.1MPa以上10MPa以下に調整する圧力調整部、を含み、
     (aa-3)前記膜分離器に供給される前記反応生成混合物流体の温度を、-10℃以上300℃未満に調整する温度調整部、を含む。
    (BB)前記気液分離部が吸着剤を有し、前記反応生成混合物流体を該吸着材に接触させ、前記吸着材に吸着しなかった流体として前記原料高含有流体を得て、前記吸着材に吸着した後、脱着した流体として前記生成物高含有流体を得るための気液分離部であり、
     (bb-1)前記吸着材の材質が、ゼオライト、アルミナゲル、シリカゲル又は活性炭であり、
     (bb-2)前記吸着材に接触させる前記反応生成混合物流体の圧力を、0.1MPa以上20MPa以下に調整する圧力調整部、を含み、
     (bb-3)前記吸着材に接触させる前記反応生成混合物流体の温度を、-50℃以上200℃以下に調整する温度調整部を含む。
  21.  気液分離された気体中に含まれる水素を選択分離する水素分離部をさらに含む、請求項20に記載のオリゴシランの製造装置。 
PCT/JP2017/038181 2016-10-27 2017-10-23 オリゴシランの製造方法及びオリゴシランの製造装置 WO2018079484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/345,014 US20190276321A1 (en) 2016-10-27 2017-10-23 Method for producing oligosilane and apparatus for producing oligosilane
CN201780066110.XA CN109923067A (zh) 2016-10-27 2017-10-23 低聚硅烷的制造方法和低聚硅烷的制造装置
JP2018547650A JP6938528B2 (ja) 2016-10-27 2017-10-23 オリゴシランの製造方法及びオリゴシランの製造装置
KR1020197011975A KR20190052711A (ko) 2016-10-27 2017-10-23 올리고실란의 제조 방법 및 올리고실란의 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016210810 2016-10-27
JP2016-210810 2016-10-27

Publications (1)

Publication Number Publication Date
WO2018079484A1 true WO2018079484A1 (ja) 2018-05-03

Family

ID=62023486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038181 WO2018079484A1 (ja) 2016-10-27 2017-10-23 オリゴシランの製造方法及びオリゴシランの製造装置

Country Status (6)

Country Link
US (1) US20190276321A1 (ja)
JP (1) JP6938528B2 (ja)
KR (1) KR20190052711A (ja)
CN (1) CN109923067A (ja)
TW (1) TW201821142A (ja)
WO (1) WO2018079484A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401166B2 (en) 2018-10-11 2022-08-02 L'Air Liaquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing isomer enriched higher silanes
US10752507B2 (en) * 2018-10-11 2020-08-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing liquid polysilanes and isomer enriched higher silanes
CN115403048B (zh) * 2022-10-13 2023-11-07 中船(邯郸)派瑞特种气体股份有限公司 一种乙硅烷的纯化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260729A (ja) * 1998-01-08 1999-09-24 Showa Denko Kk 高次シランの製造法
JP2012507455A (ja) * 2008-11-03 2012-03-29 エボニック デグサ ゲーエムベーハー 低分子量のヒドリドシランの精製法
JP2013520389A (ja) * 2010-02-26 2013-06-06 エボニック デグサ ゲーエムベーハー ヒドリドシランをオリゴマー化する方法、該方法により製造可能なオリゴマー及びその使用
JP2014529560A (ja) * 2011-07-29 2014-11-13 コヴィオ インコーポレイテッド N−ヘテロ環状カルベン類、n−ヘテロ環状カルベン配位子を有する金属錯体類、及びランタノイド化合物を用いてシラン及びシクロシランをポリマー化する方法、及び、これにより形成されるインク組成物、並びに半導体フィルムを形成する方法
WO2015060189A1 (ja) * 2013-10-21 2015-04-30 三井化学株式会社 高級シランの製造触媒および高級シランの製造方法
WO2016027743A1 (ja) * 2014-08-20 2016-02-25 国立研究開発法人産業技術総合研究所 オリゴシランの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855462A (ja) 1971-11-13 1973-08-03
JP2574012B2 (ja) 1987-10-09 1997-01-22 三井石油化学工業株式会社 ポリシラン化合物の製造方法
JPH02184513A (ja) 1989-01-11 1990-07-19 Tonen Sekiyukagaku Kk ジシランおよびトリシランの製造方法
JPH03183613A (ja) 1989-12-08 1991-08-09 Showa Denko Kk ジシランの製造法
JPH0717753B2 (ja) 1990-09-14 1995-03-01 工業技術院長 ポリシラン類の製造方法
FR2702467B1 (fr) 1993-03-11 1995-04-28 Air Liquide Procédé de préparation du disilane à partir du monosilane par décharge électrique et piégeage cryogénique et nouveau réacteur pour sa mise en Óoeuvre.
CN101104690A (zh) * 2006-07-14 2008-01-16 戈尔德施米特股份公司 聚有机硅氧烷的制备及含有聚有机硅氧烷的催化体系
EP2135844A1 (de) * 2008-06-17 2009-12-23 Evonik Degussa GmbH Verfahren zur Herstellung höherer Hydridosilane
DE102009048087A1 (de) 2009-10-02 2011-04-07 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Hydridosilane
KR102225041B1 (ko) * 2012-04-17 2021-03-11 모멘티브 퍼포먼스 머티리얼즈 인크. 하이드로실릴화 반응을 위한 고 활성 촉매 및 그 제조방법
US9371339B2 (en) * 2013-05-06 2016-06-21 Momentive Performance Materials Inc. Saturated and unsaturated silahydrocarbons via iron and cobalt pyridine diimine catalyzed olefin silylation
JP2015060189A (ja) 2013-09-20 2015-03-30 カシオ計算機株式会社 楽譜表示装置、楽譜表示方法及びプログラム
JP2015090996A (ja) 2013-11-05 2015-05-11 キヤノン株式会社 情報処理装置、及びその制御方法、プログラム、記録媒体、情報機器、情報処理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260729A (ja) * 1998-01-08 1999-09-24 Showa Denko Kk 高次シランの製造法
JP2012507455A (ja) * 2008-11-03 2012-03-29 エボニック デグサ ゲーエムベーハー 低分子量のヒドリドシランの精製法
JP2013520389A (ja) * 2010-02-26 2013-06-06 エボニック デグサ ゲーエムベーハー ヒドリドシランをオリゴマー化する方法、該方法により製造可能なオリゴマー及びその使用
JP2014529560A (ja) * 2011-07-29 2014-11-13 コヴィオ インコーポレイテッド N−ヘテロ環状カルベン類、n−ヘテロ環状カルベン配位子を有する金属錯体類、及びランタノイド化合物を用いてシラン及びシクロシランをポリマー化する方法、及び、これにより形成されるインク組成物、並びに半導体フィルムを形成する方法
WO2015060189A1 (ja) * 2013-10-21 2015-04-30 三井化学株式会社 高級シランの製造触媒および高級シランの製造方法
WO2016027743A1 (ja) * 2014-08-20 2016-02-25 国立研究開発法人産業技術総合研究所 オリゴシランの製造方法

Also Published As

Publication number Publication date
TW201821142A (zh) 2018-06-16
JPWO2018079484A1 (ja) 2019-09-19
US20190276321A1 (en) 2019-09-12
KR20190052711A (ko) 2019-05-16
CN109923067A (zh) 2019-06-21
JP6938528B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
TWI636956B (zh) 寡聚矽烷之製造方法
US20220288529A1 (en) Ammonia separation method and zeolite
US20220096992A1 (en) Method for the adsorptive separation of ethylene and ethane using ultramicroporous metal-organic framework
WO2018079484A1 (ja) オリゴシランの製造方法及びオリゴシランの製造装置
WO2009115805A1 (en) Process for converting methane into ethane in a membrane reactor
CN109803921B (zh) 低聚硅烷的制造方法
CN109890782A (zh) 生产丁二烯的单阶段方法
TWI549909B (zh) Production method of oligosilane
Guo et al. Catalytic conversion of CO 2 into propylene carbonate in a continuous fixed bed reactor by immobilized ionic liquids
KR100525209B1 (ko) 나노 세공을 갖는 금속 함유 vsb-5 분자체 조성물과이의 제조방법
KR101577362B1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
US11571653B2 (en) Ethylene separations using small pore zeolite SSZ-45
JP2006315991A (ja) エステルの製造方法
WO2018048175A1 (ko) 1, 3-사이클로헥산디메탄올의 제조 방법
CN112138724A (zh) 加氢烷基化催化剂及其方法
KR102569568B1 (ko) AlPO계 분자체를 포함하는 탄화수소 포집용 포집촉매, 이를 이용한 에텐/에탄 또는 프로펜/프로판 분리방법, 및 이를 포함하는 탄화수소 분리장치
JP7250277B2 (ja) イソブチレンの製造方法
CN114181056B (zh) 一种笼芳烃及其制备方法和应用
JP4425216B2 (ja) クメンの製造方法
WO2022270400A1 (ja) シクロペンタジエンの製造方法
WO2022102600A1 (ja) シクロヘキシルベンゼンの製造方法及びこれを用いたシクロヘキシルベンゼン組成物
KR101786910B1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
JP5345203B2 (ja) アルキル化芳香族化合物の製造方法およびフェノールの製造方法
CN117358295A (zh) 一种用于生产环己基苯的催化剂及其制备方法和应用
CN116803966A (zh) 一种钛硅分子筛催化制备邻二醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197011975

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864695

Country of ref document: EP

Kind code of ref document: A1