WO2018061530A1 - Fe-Ni系合金薄板の製造方法及びFe-Ni系合金薄板 - Google Patents

Fe-Ni系合金薄板の製造方法及びFe-Ni系合金薄板 Download PDF

Info

Publication number
WO2018061530A1
WO2018061530A1 PCT/JP2017/029964 JP2017029964W WO2018061530A1 WO 2018061530 A1 WO2018061530 A1 WO 2018061530A1 JP 2017029964 W JP2017029964 W JP 2017029964W WO 2018061530 A1 WO2018061530 A1 WO 2018061530A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin plate
cold rolling
less
alloy thin
rolling
Prior art date
Application number
PCT/JP2017/029964
Other languages
English (en)
French (fr)
Inventor
章博 大森
信隆 安田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61759402&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018061530(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN202410310690.4A priority Critical patent/CN118308655A/zh
Priority to EP17855488.7A priority patent/EP3521459B1/en
Priority to JP2018541990A priority patent/JP6781960B2/ja
Priority to CN201780060482.1A priority patent/CN109804093A/zh
Priority to KR1020197008509A priority patent/KR102244229B1/ko
Priority to EP23217804.6A priority patent/EP4328331A3/en
Publication of WO2018061530A1 publication Critical patent/WO2018061530A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Definitions

  • the present invention relates to an Fe—Ni-based alloy thin plate used for, for example, a lead frame or a metal mask, and a method for manufacturing the same.
  • Patent Document 1 in order to improve etching accuracy, cold rolling and annealing are each performed at least once on a hot-rolled sheet, and the cold pressure ratio of cold rolling before the final recrystallization annealing is 90% or more, A method for producing an Fe—Ni-based thin sheet is disclosed, characterized in that the final recrystallization annealing is carried out at an annealing temperature of 850 ° C. or more and a final cold pressure ratio of 30% or less.
  • Patent Document 2 in order to obtain good etching properties and high strength, a cold rolling rate of 85% or more and annealing at 700 ° C. or more are performed at least once, and then a rolling rate that does not exceed the cold rolling rate.
  • a method of manufacturing a shadow mask material is disclosed in which cold rolling and annealing at a temperature not exceeding 850 ° C. are performed in this order.
  • Patent Document 1 and Patent Document 2 are useful inventions that have an effect of improving etching performance.
  • Patent Document 1 and Patent Document 2 describe the suppression of variations in thin plate characteristics after cutting. It is not listed and there is room for consideration.
  • an object of the present invention is to provide a Fe—Ni-based alloy that has a thin form of Fe—Ni-based alloy sheet with a thickness of 0.25 mm or less and has good shape workability with little anisotropy in the mechanical properties of the rolled surface. It is to provide an alloy sheet and a manufacturing method thereof.
  • Ni + Co 35.0 to 43.0% (Co: 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, and the balance Is made of Fe and impurities, using a hot rolled material with a thickness of 2 mm or more as a cold rolling material, for the cold rolling material, First cold rolling with a reduction rate of 85% or more, After the first cold rolling, recrystallization annealing is performed at a temperature of 800 ° C.
  • Another aspect of the present invention is: Ni + Co: 35.0 to 43.0% by mass% (where Co is 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, the balance being Fe and impurities,
  • the difference between 0.2% proof stress in each of the three directions of the width direction, the length direction, and the 45 ° direction of the Fe—Ni alloy thin plate is It is within 5% of the average value of 0.2% proof stress in three directions, and each elongation value in the three directions is 0.90 to 1.10 times the average elongation value in the three directions.
  • Fe-Ni alloy thin plate In the Fe—Ni alloy thin plate having a thickness of 0.25 mm or less, the difference between 0.2% proof stress in each of the three directions of the width direction, the length direction, and the 45 ° direction of the Fe—Ni alloy thin plate is It is within 5% of the average value of 0.2% proof stress in three directions, and each elongation value in the three directions is 0.90 to 1.10 times the average elongation
  • Ni + Co 35.0-43.0% (Co is 0-6.0%), Si: 0.5% or less, Mn: 1.0% or less, the balance is Fe and A hot rolled material having a composition comprising impurities is prepared.
  • the Fe—Ni alloy having the composition specified in the present invention has a composition necessary for obtaining a desired thermal expansion coefficient. [Ni + Co: 35.0 to 43.0% (Co is 0 to 6.0%)] As described above, Ni and Co are elements necessary for obtaining a desired thermal expansion coefficient. If the Ni + Co content is less than 35.0%, the austenite structure tends to be unstable.
  • Ni + Co content is 35.0%. To 43.0%. Co does not necessarily need to be added, but Co has the effect of increasing the strength of the Fe—Ni-based alloy. In the range, a part of Ni can be replaced by Co.
  • Si and Mn are usually contained in trace amounts in the Fe—Ni alloy for the purpose of deoxidation, but if excessively contained, segregation is likely to occur, so Si is 0.5% or less, and Mn is 1.0%. % Or less.
  • the minimum of Si and Mn is not specifically limited, Since it adds as a deoxidation element as mentioned above, 0.05% of Si and 0.05% of Mn remain not a little.
  • the balance is Fe and impurities
  • the elements other than the above elements may be substantially Fe, but impurities inevitably contained in production are included. Impurity elements that need to be particularly restricted include C.
  • the upper limit is preferably set to 0.05%.
  • a free-cutting element such as S may be contained at 0.020% or less.
  • An element such as B that improves hot workability may be contained in an amount of 0.0050% or less.
  • the hot rolled material used in the present invention has a thickness of 2 mm or more. If the thickness of the hot-rolled material is less than 2 mm, cold rolling with a reduction rate of 85% or more specified in the present invention may not be performed. Further, if the thickness of the hot rolled material is to be less than 2 mm, special rolling equipment may be required. Therefore, in this invention, the thickness of a hot-rolled material shall be 2 mm or more. It is possible to increase the rolling reduction by increasing the thickness of the hot rolled material, but on the other hand, the number of passes during the cold rolling process is increased or the shape of the Fe-Ni alloy during rolling is increased. Since adjustment may be difficult, it is realistic to set the upper limit of the thickness to 5 mm.
  • This hot-rolled material has an oxide layer formed on the surface, and the thickness of the hot-rolled material is a thickness including the oxidized layer.
  • Cold rolling material In this invention, it is set as the raw material for cold rolling using the above-mentioned hot rolling material. Since an oxide layer is formed on the hot-rolled material, the oxide layer is removed, for example, mechanically or chemically. Further, the edge may be arranged so that a defect such as a crack does not occur from the edge of the cold rolled material during the cold rolling. Such processing is performed to obtain a material for cold rolling.
  • the rolling reduction in the 1st cold rolling which is the cold rolling before recrystallization annealing shall be 85% or more.
  • the rolling reduction before recrystallization annealing the crystal plane orientation of the alloy thin plate obtained after final rolling described later can be easily aligned in one direction, and the anisotropy of mechanical properties can be suppressed.
  • the number of cold rolling and annealing processes can be reduced, it is possible to manufacture at a lower cost. If the rolling reduction is less than 85%, the mechanical properties deteriorate. Moreover, the number of cold rolling and annealing processes in which the rolling reduction is too low increases, and the cost increases.
  • a preferable rolling reduction is 87% or more, and more preferably 90% or more.
  • the upper limit of the rolling reduction is not particularly defined, but if the rolling reduction exceeds 99%, there is a possibility of increasing the cost due to excessive rolling time, so it is realistic to set the upper limit to 99%.
  • recrystallization annealing is performed at a temperature of 800 ° C. or higher. This step removes and softens the strain of the thin plate that has been work-hardened under high pressure, and makes it easier to obtain the desired plate thickness and mechanical properties by subsequent final cold rolling. There exists a possibility that material may not fully soften
  • the upper limit of the annealing temperature is not particularly limited, but if it is too high, desired characteristics may not be obtained, and can be set to 1100 ° C.
  • the present invention is characterized in that the heating and holding time for annealing the thin plate is adjusted to 0.1 to 1.2 minutes.
  • the heating and holding time for annealing the thin plate is adjusted to 0.1 to 1.2 minutes.
  • the recrystallization annealing can be performed by continuously passing the first cold-rolled material through a heating furnace set to a desired temperature.
  • the first cold-rolled material can be drawn out from a state wound in a roll shape, passed through a heating furnace, and wound in a roll shape.
  • an Fe—Ni-based alloy sheet with suppressed mechanical property anisotropy can be obtained by subjecting the material after recrystallization annealing described above to final cold rolling with a rolling reduction of 40% or less. Is possible. When rolling exceeding 40% is applied, excessive strain is added to increase the anisotropy of mechanical properties, which is not preferable.
  • the lower limit of the rolling reduction is not particularly limited, but if the rolling reduction is too low, adjustment to a desired plate thickness becomes difficult, so it can be set to 15% or more.
  • the rolling forward tension in the final cold rolling is 200 to 500 MPa
  • the rolling backward tension is 100 to 200 MPa
  • the rolling speed is 250 m / min or less.
  • a more preferable lower limit of the rolling forward tension is 250 MPa
  • a more preferable upper limit of the rolling forward tension is 400 MPa.
  • a more preferable lower limit of the rolling rear tension is 120 MPa, and a more preferable upper limit of the rolling rear tension is 180 MPa.
  • the lower limit of the rolling speed is not particularly limited, but is preferably about 100 m / min in consideration of workability.
  • in final cold rolling in order to obtain a desired characteristic, suppressing a wrinkle on the surface of a thin plate, it is preferable to roll by 1 pass.
  • the thickness of the steel strip after final cold rolling is 0.25 mm or less. This is because, for example, when the Fe—Ni alloy thin plate of the present invention is used for a lead frame, it is easy to cope with the increase in the number of pins. Because there is.
  • the upper limit of the preferred thickness is 0.15 mm. A more preferable upper limit is 0.1 mm, and a further preferable upper limit is 0.08 mm. Although the lower limit is not particularly limited, it can be set to 0.02 mm because the shape tends to easily change if the material is too thin.
  • the Fe—Ni alloy thin plate of the present invention is particularly preferably wide (for example, a plate width of 500 to 1200 mm).
  • the Fe—Ni-based alloy thin plate of the present invention has a width direction (a first direction on the surface of the thin plate and a direction corresponding to a direction perpendicular to the rolling direction), a length direction (a second direction on the surface of the thin plate).
  • the difference between the 0.2% yield strengths in the three directions is 5% or less of the average value of the 0.2% yield strengths in the three directions, and the elongation values in the three directions are the averages in the three directions. It is characterized by being 0.90 to 1.10 times the elongation value.
  • the 0.2% proof stress is a parameter that affects workability such as plastic deformation, and the elongation value is a parameter that affects the product shape after processing.
  • the thin plate of the present invention has good characteristics with little variation in strength and shape depending on the cutting direction, for example, variation in cutting conditions when cutting an alloy thin plate from various directions. Can be suppressed and good workability can be obtained.
  • the difference between the 0.2% proof stress in each of the three directions exceeds 5% of the average value in the three directions, the anisotropy becomes strong and the difference in shape depending on the cutting direction becomes large. The possibility that a thin plate that does not satisfy the characteristics is increased is increased.
  • the difference between the 0.2% yield strengths in the three directions is set to 3% or less of the average value of the 0.2% yield strengths in the three directions.
  • the difference between the 0.2% proof stresses and the difference between the elongation differences is most preferably 0% (characteristics are the same in each direction), but it is difficult to set these differences to 0%.
  • the lower limit of the difference between each 0.2% proof stress can be set to 0.1%.
  • the anisotropy of an alloy thin plate can be further suppressed by making the average value of 0.2% yield strength in three directions of the thin plate of this invention into 580 Mpa or less, it is preferable.
  • the average elongation value of the present invention is preferably 2% or less in order to suppress the product shape after cutting.
  • the Fe—Ni alloy thin plate of the present invention preferably has a (200) plane integration degree of 90% or more. Due to the above characteristics, the Fe—Ni alloy thin sheet of the present invention tends to further suppress the anisotropy of mechanical properties. In addition to the above, when a lead frame or the like is processed by, for example, press processing, it can be manufactured regardless of the direction. More preferably, the (200) plane integration degree is 95% or more.
  • the (200) plane integration degree in the present embodiment is, for example, (111), (200), (220), (311) on the rolled surface of the Fe—Ni alloy thin plate using an X-ray diffraction (XRD) method.
  • Vacuum-melting, soaking treatment, hot pressing and hot rolling were performed to prepare a hot rolled material having a thickness of 3.0 mm.
  • Table 1 shows the chemical composition of the hot-rolled material. Thickness is obtained by removing the oxide layer on the surface of the hot-rolled material by chemical polishing and mechanical polishing of the hot-rolled material described above, and removing cracks at the time of hot rolling at both ends in the width direction of the material by trimming.
  • a material for cold rolling of .55 mm was prepared.
  • variety of the raw material for cold rolling is 860 mm.
  • the material for cold rolling described above was divided into an example of the present invention and a comparative example, and the steps shown in Table 2 were performed to obtain Fe—Ni-based alloy thin plates.
  • the first cold rolling, recrystallization annealing, and final cold rolling are used.
  • Comparative Example 1 intermediate rolling (1), recrystallization annealing, intermediate rolling (2), recrystallization annealing, and final cold rolling. It was.
  • Comparative Example 2 the steps of the present invention were the same as those of the present invention, but the rolling reduction during final cold rolling was set larger than that of the present invention.
  • the present invention, the first cold rolling of Comparative Example 2 and the intermediate rolling (1) and (2) of Comparative Example 1 were performed at the rolling reduction shown in Table 2 and the number of passes, respectively, using the cold rolling material described above. Was 10 passes.
  • recrystallization annealing was performed at a temperature of 900 ° C.
  • test pieces were sampled from the Fe-Ni alloy thin plate that had been subjected to the final cold rolling described above, and were used for each test.
  • the test results are summarized in Table 3. 0.2% proof stress and elongation were carried out according to the method defined in JIS-Z2241.
  • the test piece is a JIS No. 13 B test piece.
  • the inventive example and the comparative example 1 the (200) plane integration degree on the surface of the thin plate was measured using an X-ray diffractometer.
  • This (200 plane) integration degree is obtained by measuring X-ray diffraction integrated intensities I (111), I (200), I (220), I (311), and I (200) / ⁇ I (111) + I ( 200) + I (220) + I (311) ⁇ .
  • the (200) plane integration degree of the inventive example was 98%
  • the (200) plane integration degree of Comparative Example 1 was 68%.
  • the Fe—NI alloy thin sheet of the example of the present invention had a very high (200) plane integration degree.
  • the difference between the 0.2% proof stresses in the width direction, the length direction, and the 45 ° direction is 7 MPa at the maximum, and the average value is about 1.3 MPa. % Value.
  • the elongation value in the three directions is also about 0.92 to 1 times the average value, and it was confirmed that the alloy thin plate of the present invention has good characteristics with very little anisotropy.
  • the Fe—Ni alloy thin plate of Comparative Example 1 has a maximum difference of 0.2 MPa between 0.2% proof stresses in the width direction, the length direction, and the 45 ° direction, which is about 8.8% of the average value. Value.
  • the elongation value in the three directions was also about 0.89 to 1.13 times the average value, and it was confirmed that the anisotropy of mechanical properties was larger than that of the alloy thin plate of the example of the present invention.
  • the difference between the 0.2% proof stresses in the width direction, the length direction, and the 45 ° direction is 22 MPa at maximum, and the average value is about 3.8%. It was within the specified range.
  • the elongation values in the three directions were about 0.67 to 1.33 times the average value, and it was confirmed that the anisotropy of the elongation characteristics was higher than that of the alloy thin plate of the present invention.
  • the Fe—Ni alloy thin plate of Comparative Example 3 also had a 0.2% proof stress value within the specified range, but it was confirmed that the elongation values in three directions varied greatly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

広幅化となっても等方的な機械特性を具備することが可能なFe-Ni系合金薄板とその製造方法を提供する。 質量%でNi+Co:35.0~43.0%(但し、Coは0~6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなり、厚さが2mm以上の熱間圧延材を用いて冷間圧延用素材とし、前記冷間圧延用素材に対して、圧下率85%以上の第1冷間圧延を行い、前記第1冷間圧延の後、温度800℃以上、保持時間0.1~1.2分の条件で再結晶焼鈍を行い、前記再結晶焼鈍の後、圧下率40%以下の最終冷間圧延を行い、厚さが0.25mm以下のFe-Ni系合金薄板とし、最終冷間圧延後には熱処理を行わないことを特徴とするFe-Ni系合金薄板の製造方法及びFe―Ni系合金薄板。

Description

Fe-Ni系合金薄板の製造方法及びFe-Ni系合金薄板
 本発明は、例えば、リードフレームやメタルマスク等に使用されるFe-Ni系合金薄板及びその製造方法に関するものである。
 リードフレームやメタルマスク等に使用されるFe-Ni系合金薄板は、性能向上のために従来より様々な検討がなされている。例えば特許文献1には、エッチング精度を向上させるために、熱延板に冷間圧延および焼鈍をそれぞれ1回以上行い、最終再結晶焼鈍の前の冷間圧延の冷圧率を90%以上、最終再結晶焼鈍の焼鈍温度を850℃以上、最終冷圧率を30%以下として製造することを特徴とするFe-Ni系薄板の製造方法が開示されている。また特許文献2には、良好なエッチング性と高い強度を得るために、85%以上の冷間圧延率と700℃以上の焼鈍を少なくとも一回行い、その後前記冷間圧延率を超えない圧延率の冷間圧延と850℃を超えない温度の焼鈍をこの順に行うことを特徴とする、シャドウマスク材料の製造方法が開示されている。
特開2003-253398号公報 特開平06-279946号公報
 上記のようなFe-Ni系合金薄板は使用用途により、所望のサイズに裁断されて使用される。しかし製品のさらなる高精度化要求により、メタルマスク等においても寸法公差はますます厳しくなり、裁断後の寸法公差を外れる製品が増加する可能性がある。前述の特許文献1や特許文献2の発明はエッチング性能を向上させる効果を有する有用な発明であるが、切断後の薄板特性のばらつきを抑制することに関しては、特許文献1や特許文献2には記載されておらず、検討の余地が残されている。
 そこで本発明の目的は、厚さが0.25mm以下の薄いFe-Ni系合金薄板において、圧延表面の機械特性の異方性が少なく良好な形状加工性を備えることが可能なFe-Ni系合金薄板とその製造方法を提供することである。
 本発明の一態様は、質量%でNi+Co:35.0~43.0%(但し、Coは0~6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなり、厚さが2mm以上の熱間圧延材を用いて冷間圧延用素材とし、前記冷間圧延用素材に対して、
圧下率85%以上の第1冷間圧延を行い、
前記第1冷間圧延の後、温度800℃以上、保持時間0.1~1.2分の条件で再結晶焼鈍を行い、
前記再結晶焼鈍の後、圧下率40%以下の最終冷間圧延を行い、厚さが0.25mm以下のFe-Ni系合金薄板とし、最終冷間圧延後には熱処理を行わないことを特徴とするFe-Ni系合金薄板の製造方法である。
 本発明の別の一態様は、
質量%でNi+Co:35.0~43.0%(但し、Coは0~6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなり、厚さが0.25mm以下のFe-Ni系合金薄板において、前記Fe-Ni系合金薄板の幅方向、長さ方向および45°方向の三方向における各0.2%耐力同士の差が、前記三方向の0.2%耐力の平均値の5%以内であり、前記三方向における各伸び値が、前記三方向の平均伸び値の0.90~1.10倍であることを特徴とする、Fe-Ni系合金薄板である。
 本発明によれば、厚さが0.25mm以下の薄いFe-Ni系合金薄板において、切断方向による機械特性の変動が少ないため、良好な加工性を発揮することができる。
 以下に本発明の実施形態について説明する。まず、本発明のFe-Ni系合金薄板の製造方法について説明する。
 <熱間圧延材組成>
 本発明では、質量%でNi+Co:35.0~43.0%(但し、Coは0~6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなる組成を有する熱間圧延材を準備する。本発明で規定する組成を有するFe-Ni系合金は、所望の熱膨張係数を得るために必要な組成を有するものである。
 [Ni+Co:35.0~43.0%(但し、Coは0~6.0%)]
 Ni及びCoは前述のように、所望の熱膨張係数を得るために必要な元素である。Ni+Co含有量が35.0%未満ではオーステナイト組織が不安定となりやすく、一方43.0%を越えると熱膨張係数が上昇し、低熱膨張特性を満足しないことから、Ni+Coの含有量は35.0~43.0%とする。なお、Coは必ずしも添加の必要はないが、CoにはFe-Ni系合金を高強度とする作用があるため、特に厳しいハンドリング性を求められるような、薄い板厚では6.0%までの範囲で、Niの一部をCoで置換することができる。
 [Si:0.5%以下、Mn:1.0%以下]
 Si、Mnは通常Fe-Ni系合金では、脱酸を目的に微量含有されているが、過剰に含有すれば偏析を起こし易くなるため、Siは0.5%以下とし、Mnは1.0%以下とする。なお、SiとMnの下限は特に限定しないが、前述のように脱酸元素として添加されることから、Siは0.05%、Mnは0.05%は少なからず残留する。
 [残部はFe及び不純物]
 上記の元素以外は実質的にFeであれば良いが、製造上不可避的に含有する不純物は含まれる。特に制限の必要な不純物元素にはCがあり、例えば、エッチングを行う用途に使用するのであれば、その上限を0.05%とすると良い。
 また、プレス打抜き性を向上させる場合はS等の快削性元素を0.020%以下で含有させても良い。熱間加工性を向上させるようなB等の元素を0.0050%以下で含有させても良い。
 <熱間圧延材厚さ:2mm以上>
 本発明で用いる熱間圧延材は、その厚さを2mm以上とする。熱間圧延材の厚さが2mm未満となると、本発明で規定する圧下率85%以上の冷間圧延が行えないおそれがある。また、熱間圧延材の厚さを2mm未満にしようとすると、特殊な圧延設備が必要になる場合がある。そのため、本発明では熱間圧延材の厚さを2mm以上とする。
 なお、熱間圧延材の厚さを厚くすると圧下率を高くすることが可能であるが、一方で、冷間圧延工程中のパス回数が増えたり、圧延中のFe-Ni系合金の形状の調整が困難になる場合があるため、厚さを上限を5mmとするのが現実的である。
 この熱間圧延材は、表面に酸化層が形成されており、熱間圧延材の厚さとは、その酸化層を含めた厚さである。
 <冷間圧延用素材>
 本発明では、前述の熱間圧延材を用いて冷間圧延用素材とする。熱間圧延材には酸化層が形成されていることから、その酸化層を、例えば、機械的、或いは化学的に除去する。また、冷間圧延中の冷間圧延材のエッジから割れ等の不良が発生しないように、エッジを整えておいてもよい。このような加工を行って冷間圧延用素材とする。
 次に、冷間圧延工程について、詳しく説明する。
 <第1冷間圧延>
 本発明では、再結晶焼鈍前の冷間圧延である第1冷間圧延における圧下率を85%以上とする。このように再結晶焼鈍前の圧下率を高くすることにより、後述する最終圧延後に得られる合金薄板の結晶面方位を1方向に揃えやすく、機械特性の異方性を抑制することができる。また、冷間圧延や焼鈍工程の回数を減らすことができるため、より低コストでの製造も可能となる。圧下率が85%未満であると、機械特性が劣化する。また圧下率が低すぎる冷間圧延や焼鈍工程の回数が増え、コストが増大する。好ましい圧下率は87%以上であり、更に好ましくは90%以上である。なお、圧下率の上限は特に定めないが、圧下率が99%を超えると、過大な圧延時間によるコストの増大を招く可能性があるため、上限は99%とするのが現実的である。
 <再結晶焼鈍>
 本発明は前述した第1冷間圧延の後に、800℃以上の温度で再結晶焼鈍を行う。この工程により、強圧下により加工硬化した薄板の歪みを除去し軟化させ、後の最終冷間圧延により所望の板厚と機械特性を得やすくなる。焼鈍温度が800℃未満であると材料が十分に軟化しないおそれがある。また焼鈍温度の上限は特に限定しないが、高すぎると所望の特性が得られない可能性があるため、1100℃と設定することができる。
 さらに本発明は、薄板の焼鈍の加熱保持時間を0.1~1.2分に調整していることも特徴である。このように上述した温度範囲内で加熱保持時間を比較的短時間にすることで、生産効率を落とさず、所望の耐力及び伸びの等方的な特性を得ることができる。焼鈍時間が0.1分未満だと歪みが十分除去されない場合がある。1.2分を超えると、合金薄板の機械特性の変動や、焼鈍時間の増大によりコストが増大する可能性がある。焼鈍時間の下限は0.2分であることが好ましい。また焼鈍時間の上限は、さらなる低コスト化を狙って、0.9分であることが好ましく、0.6分とすることがさらに好ましい。
 尚、この再結晶焼鈍は、所望の温度に設定された加熱炉に第1冷間圧延材を連続的に通して行うことができる。例えば、第1冷間圧延材がロール状に巻かれた状態から引き出し、加熱炉を通り、ロール状に巻き取る方法で行うことができる。
 <最終冷間圧延>
 本発明の製造方法では、前述した再結晶焼鈍後の材料に圧下率40%以下の最終冷間圧延を施すことで、機械特性の異方性を抑制したFe-Ni系合金薄板を得ることが可能である。40%を超える圧延を施した際、過度の歪みが加わることで機械特性の異方性が大きくなる傾向にあるため、好ましくない。圧下率の下限は特に限定しないが、圧下率が低すぎると所望の板厚への調整が困難になるあるため、15%以上と設定することができる。このとき、さらに上述した機械特性を得やすくするために、最終冷間圧延での圧延前方張力を200~500MPa、圧延後方張力を100~200MPa、圧延速度を250m/分以下とすることが好ましい。より好ましい圧延前方張力の下限は250MPaであり、より好ましい圧延前方張力の上限は400MPaである。またより好ましい圧延後方張力の下限は120MPaであり、より好ましい圧延後方張力の上限は180MPaである。なお圧延速度の下限については特に限定しないが、作業性を考慮すると100m/分程度とすることが好ましい。また本実施形態の製造方法については、最終冷間圧延においては、薄板表面の疵を抑制しつつ所望の特性を得るために、1パスで圧延することが好ましい。
 最終冷間圧延後の鋼帯における厚さは0.25mm以下とする。これは、本発明のFe-Ni系合金薄板を例えば、リードフレームに用いた場合では多ピン化に対応しやすく、例えばメタルマスクに用いた場合は、エッチング加工による高精細化に対応が可能であるためである。好ましい厚さの上限は0.15mmである。より好ましい上限は0.1mm、さらに好ましい上限は0.08mmである。なお下限は特に限定しないが、材料が薄すぎると形状変化が生じやすくなる傾向にあるため、0.02mmと設定することができる。本発明のFe-Ni系合金薄板は、広幅(例えば、板幅が500~1200mm)であることが特に好ましい。
 <歪取り焼鈍省略>
 本発明では、上述した最終冷間圧延後には、熱処理を行わない。この熱処理とは、例えば、再結晶温度以下で行う歪取り焼鈍である。熱処理を省略することによって、残留歪みの開放による薄板形状の変化や機械特性の変動を抑制することができる。本発明では上述した製法により歪みを除去しなくても機械特性では異方性のない製品となる為、省略可能である。なお、熱処理の省略は、省エネ効果を高め、経済的である。
 続いて、上述した本発明の製造方法によって得ることが出来る、本発明のFe-Ni系合金薄板について説明する。
 <0.2%耐力、伸び値>
 本発明のFe-Ni系合金薄板は、幅方向(薄板の表面の第1の方向であり、圧延方向に対し直交する方向に相当する方向)、長さ方向(薄板の表面の第2の方向であり、幅方向に直交する方向であり、圧延方向に相当する方向)、45°方向(薄板の表面の第3の方向であり、幅方向および長さ方向に対し45°の関係を有する方向)の三方向における各0.2%耐力同士の差が、前記三方向の0.2%耐力の平均値の5%以下であり、かつ前記三方向における各伸び値が、前記三方向の平均伸び値の0.90~1.10倍であることを特徴とする。0.2%耐力は塑性変形等の加工性に影響するパラメータであり、伸び値は加工後の製品形状に影響するパラメータである。上記の範囲内に調整することで、本発明の薄板は、切断方向による強度や形状のばらつきが少ない良好な特性を有し、例えば様々な方向から合金薄板を裁断する際の、裁断条件のばらつきを抑制し、良好な作業性を得ることが可能である。三方向における各0.2%耐力同士の差が、三方向の平均値の5%を超える場合、異方性が強くなるため切断方向による形状の差異が大きくなるため、切断方向によっては所望の特性を満たさない薄板が発生する可能性が高まる。好ましくは、上記三方向における各0.2%耐力同士の差を、三方向の0.2%耐力の平均値の3%以下と設定する。この各0.2%耐力同士の差および各伸び差同士の差は0%(各方向で特性が同一)であることが最も好ましいが、これらの差を0%とすることは困難であるため、例えば各0.2%耐力同士の差の下限は0.1%と設定することができる。また本発明の薄板の三方向における0.2%耐力の平均値を580MPa以下とすることで、合金薄板の異方性をさらに抑制できるため、好ましい。さらに本発明の平均伸び値を2%以下とすることが、裁断後の製品形状を抑制する上で好ましい。
 <結晶方位>
 本発明のFe-Ni系合金薄板は、(200)面集積度が90%以上であることが好ましい。上記の特徴により本発明のFe-Ni系合金薄板は、さらに機械特性の異方性を抑制できる傾向にある。また上記以外にも、例えばプレス加工によってリードフレームなどを加工する場合、方向を問わず作製することが可能となる。より好ましくは、(200)面集積度が95%以上である。なお本実施形態での(200)面集積度は、例えば、X線回折(XRD)法を用いてFe-Ni系合金薄板の圧延面における(111)、(200)、(220)、(311)のX線回折積分強度I(111)、I(200)、I(220)、I(311)を測定し、I(200)/{I(111)+I(200)+I(220)+I(311)}の式を用いることで求めることができる。
 真空溶解、均熱化熱処理、熱間プレス及び熱間圧延を行って厚さ3.0mmの熱間圧延材を準備した。熱間圧延材の化学組成を表1に示す。
 前述の熱間圧延材を化学研摩、機械研磨にて熱間圧延材表面の酸化層を除去し、トリム加工で素材幅方向の両端部にある熱間圧延時の亀裂を除去して厚さ1.55mmの冷間圧延用素材を準備した。なお、冷間圧延用素材の幅は860mmである。
 次に、前述の冷間圧延用素材を、本発明例、比較例に分け、表2に示す工程を実施してFe-Ni系合金薄板とした。本発明例では、第1冷間圧延、再結晶焼鈍、最終冷間圧延とし、比較例1では、中間圧延(1)、再結晶焼鈍、中間圧延(2)、再結晶焼鈍、最終冷間圧延とした。比較例2では本発明例と工程は同じであるが、最終冷間圧延時の圧下率を本発明よりも大きく設定した。
 本発明例、比較例2の第1冷間圧延および比較例1の中間圧延(1)(2)は、前述した冷間圧延用素材を用いて、表2に示す圧下率で、それぞれパス数を10パスとした。その後、本発明例および比較例ともに、温度900℃、保持時間0.36分で再結晶焼鈍を行った。そして、圧延前方張力320MPa、圧延後方張力140MPa、圧延速度200m/分の条件で最終冷間圧延を行った。尚、比較例1では、2回の再結晶焼鈍を行った。また、比較例3は最終冷間圧延までは本発明例と工程は同じであるが、最終冷間圧延後に温度600℃で歪取り焼鈍を行った。本発明例、比較例1、比較例2には、最終冷間圧延後の歪取り焼鈍は行わなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 前述の最終冷間圧延を終えたFe-Ni系合金薄板から、各種試験片を採取し、それぞれの試験に供した。試験の結果を表3に纏めて示す。0.2%耐力及び伸びは、JIS-Z2241に規定された方法に従って行った。試験片はJIS13号B試験片である。また、本発明例と比較例1に関しては、薄板表面の(200)面集積度をX線回折装置を用いて測定した。この(200面)集積度は、X線回折積分強度I(111)、I(200)、I(220)、I(311)を測定し、I(200)/{I(111)+I(200)+I(220)+I(311)}の式を用いて導出した。その結果、本発明例の(200)面集積度は98%であり、比較例1の(200)面集積度は68%であった。これにより本発明例のFe-NI系合金薄板は、非常に高い(200)面集積度を有することが確認できた。
Figure JPOXMLDOC01-appb-T000003
 上記のように、本発明のFe-Ni系合金薄板では、幅方向、長さ方向、45°方向の各0.2%耐力同士の差が最大で7MPaであり、平均値の約1.3%の値であった。三方向の伸び値も平均値の約0.92~1倍であり、本発明の合金薄板が非常に異方性が少ない良好な特性を有していることが確認できた。対して比較例1のFe-Ni系合金薄板は、幅方向、長さ方向、45°方向の各0.2%耐力同士の差が最大で52MPaであり、平均値の約8.8%の値であった。三方向の伸び値も、平均値の約0.89~1.13倍であり、本発明例の合金薄板よりも機械特性の異方性が大きいこと確認できた。比較例2のFe-Ni系合金薄板は、幅方向・長さ方向・45°方向の各0.2%耐力同士の差が最大で22MPaであり、平均値の約3.8%の値と規定範囲内であった。しかし三方向の伸び値が、平均値の約0.67~1.33倍の値であり、本発明例の合金薄板よりも伸び特性の異方性が高いことが確認できた。比較例3のFe-Ni系合金薄板も、0.2%耐力の値は規定範囲内であったが、三方向の伸び値が大きくばらついていることが確認できた。

 

Claims (2)

  1.  質量%でNi+Co:35.0~43.0%(但し、Coは0~6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなり、厚さが2mm以上の熱間圧延材を用いて冷間圧延用素材とし、前記冷間圧延用素材に対して、
    圧下率85%以上の第1冷間圧延を行い、
    前記第1冷間圧延の後、温度800℃以上、保持時間0.1~1.2分の条件で再結晶焼鈍を行い、
    前記再結晶焼鈍の後、圧下率40%以下の最終冷間圧延を行い、厚さが0.25mm以下のFe-Ni系合金薄板とし、最終冷間圧延後には熱処理を行わないことを特徴とするFe-Ni系合金薄板の製造方法。
  2.  質量%でNi+Co:35.0~43.0%(但し、Coは0~6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなり、厚さが0.25mm以下のFe-Ni系合金薄板において、前記Fe-Ni系合金薄板の幅方向、長さ方向および45°方向の三方向における各0.2%耐力同士の差が、前記三方向の0.2%耐力の平均値の5%以内であり、前記三方向における各伸び値が、前記三方向の平均伸び値の0.90~1.10倍であることを特徴とする、Fe-Ni系合金薄板。

     
PCT/JP2017/029964 2016-09-29 2017-08-22 Fe-Ni系合金薄板の製造方法及びFe-Ni系合金薄板 WO2018061530A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202410310690.4A CN118308655A (zh) 2016-09-29 2017-08-22 Fe-Ni系合金薄板的制造方法和Fe-Ni系合金薄板
EP17855488.7A EP3521459B1 (en) 2016-09-29 2017-08-22 METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE
JP2018541990A JP6781960B2 (ja) 2016-09-29 2017-08-22 Fe−Ni系合金薄板の製造方法及びFe−Ni系合金薄板
CN201780060482.1A CN109804093A (zh) 2016-09-29 2017-08-22 Fe-Ni系合金薄板的制造方法和Fe-Ni系合金薄板
KR1020197008509A KR102244229B1 (ko) 2016-09-29 2017-08-22 Fe-Ni계 합금 박판의 제조 방법 및 Fe-Ni계 합금 박판
EP23217804.6A EP4328331A3 (en) 2016-09-29 2017-08-22 Fe-ni-based alloy thin plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-190743 2016-09-29
JP2016190743 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061530A1 true WO2018061530A1 (ja) 2018-04-05

Family

ID=61759402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029964 WO2018061530A1 (ja) 2016-09-29 2017-08-22 Fe-Ni系合金薄板の製造方法及びFe-Ni系合金薄板

Country Status (5)

Country Link
EP (2) EP3521459B1 (ja)
JP (1) JP6781960B2 (ja)
KR (1) KR102244229B1 (ja)
CN (2) CN109804093A (ja)
WO (1) WO2018061530A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045564A (ja) * 2018-09-13 2020-03-26 日立金属株式会社 Fe−Ni系合金薄板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322993A (zh) * 2020-11-19 2021-02-05 苏州钿汇金属材料有限公司 一种超薄铁镍合金材料及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021331A (ja) * 1983-07-14 1985-02-02 Nippon Steel Corp Fe−Ni系低熱膨張合金板の製造方法
JPH0565598A (ja) * 1991-09-09 1993-03-19 Toshiba Corp シヤドウマスク用原板およびその製造方法
JPH09157799A (ja) * 1995-10-05 1997-06-17 Hitachi Metals Ltd エッチング性に優れたFe−Ni系シャドウマスク素材ならびに成形性に優れたFe−Ni系シャドウマスク材、およびシャドウマスクの製造方法
JPH09268348A (ja) * 1996-04-03 1997-10-14 Hitachi Metals Ltd 電子部品用Fe−Ni系合金薄板およびその製造方法
JP2001262231A (ja) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd エッチング穿孔性に優れたFe−Ni系合金シャドウマスク用素材の製造方法
JP2003253398A (ja) * 2002-02-28 2003-09-10 Jfe Steel Kk エッチング速度とエッチング精度に優れた低熱膨張合金薄板およびその製造方法
JP2008519161A (ja) * 2004-11-05 2008-06-05 アンフイ・アロイ 集積回路リードフレームグリッド製造用の鉄ニッケル合金ストリップ
JP2014101543A (ja) * 2012-11-20 2014-06-05 Jx Nippon Mining & Metals Corp メタルマスク材料及びメタルマスク

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224636A (ja) * 1986-03-26 1987-10-02 Nippon Steel Corp 打抜き性およびメツキ性に優れたFe−Ni系合金板の製造方法
JPH07116558B2 (ja) * 1990-02-15 1995-12-13 日本鋼管株式会社 シャドウマスク用Fe―Ni合金薄板およびその製造方法
JPH0762217B2 (ja) * 1990-07-17 1995-07-05 日本鋼管株式会社 シャドウマスク用Fe―Ni合金薄板およびその製造方法
JP2853069B2 (ja) * 1991-12-26 1999-02-03 日本鋼管株式会社 Fe−Ni系シャドウマスク用薄板およびその製造方法
US5620535A (en) * 1992-01-24 1997-04-15 Nkk Corporation Alloy sheet for shadow mask
JP2842022B2 (ja) * 1992-02-13 1998-12-24 日本鋼管株式会社 Fe−Ni系シャドウマスク用薄板およびその製造方法
JPH06279946A (ja) 1992-04-27 1994-10-04 Hitachi Metals Ltd エッチング性に優れるシャドウマスク材料、その中間材料、その製造方法、シャドウマスクの製造方法および陰極線管
JP2003247048A (ja) * 2002-02-25 2003-09-05 Jfe Steel Kk エッチング速度とエッチング精度に優れた低熱膨張合金薄板およびその製造方法
JP2004285370A (ja) * 2003-03-19 2004-10-14 Hitachi Metals Ltd 電界放出型ディスプレイ用部材
JP2015193871A (ja) * 2014-03-31 2015-11-05 日立金属株式会社 Fe−Ni系合金薄板及びその製造方法
JP6598007B2 (ja) * 2015-09-30 2019-10-30 日立金属株式会社 Fe−Ni系合金薄板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021331A (ja) * 1983-07-14 1985-02-02 Nippon Steel Corp Fe−Ni系低熱膨張合金板の製造方法
JPH0565598A (ja) * 1991-09-09 1993-03-19 Toshiba Corp シヤドウマスク用原板およびその製造方法
JPH09157799A (ja) * 1995-10-05 1997-06-17 Hitachi Metals Ltd エッチング性に優れたFe−Ni系シャドウマスク素材ならびに成形性に優れたFe−Ni系シャドウマスク材、およびシャドウマスクの製造方法
JPH09268348A (ja) * 1996-04-03 1997-10-14 Hitachi Metals Ltd 電子部品用Fe−Ni系合金薄板およびその製造方法
JP2001262231A (ja) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd エッチング穿孔性に優れたFe−Ni系合金シャドウマスク用素材の製造方法
JP2003253398A (ja) * 2002-02-28 2003-09-10 Jfe Steel Kk エッチング速度とエッチング精度に優れた低熱膨張合金薄板およびその製造方法
JP2008519161A (ja) * 2004-11-05 2008-06-05 アンフイ・アロイ 集積回路リードフレームグリッド製造用の鉄ニッケル合金ストリップ
JP2014101543A (ja) * 2012-11-20 2014-06-05 Jx Nippon Mining & Metals Corp メタルマスク材料及びメタルマスク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521459A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045564A (ja) * 2018-09-13 2020-03-26 日立金属株式会社 Fe−Ni系合金薄板
JP7524526B2 (ja) 2018-09-13 2024-07-30 株式会社プロテリアル Fe-Ni系合金薄板

Also Published As

Publication number Publication date
KR20190042659A (ko) 2019-04-24
KR102244229B1 (ko) 2021-04-26
JP6781960B2 (ja) 2020-11-11
EP3521459A1 (en) 2019-08-07
EP3521459B1 (en) 2024-02-14
EP3521459A4 (en) 2020-03-25
EP4328331A3 (en) 2024-05-22
CN118308655A (zh) 2024-07-09
JPWO2018061530A1 (ja) 2019-06-24
CN109804093A (zh) 2019-05-24
EP4328331A2 (en) 2024-02-28
KR102244229B9 (ko) 2023-03-03

Similar Documents

Publication Publication Date Title
JP6598007B2 (ja) Fe−Ni系合金薄板の製造方法
JP4761586B1 (ja) 高強度チタン銅板及びその製造方法
JP5871443B1 (ja) 銅合金板材およびその製造方法
JP4439003B2 (ja) 強度と曲げ加工性に優れたチタン銅合金及びその製造方法
JP2021014639A (ja) Fe−Ni系合金薄板の製造方法
JP7156279B2 (ja) メタルマスク用薄板の製造方法及びメタルマスク用薄板
KR101822740B1 (ko) 구리 합금판 및 그것을 구비하는 프레스 성형품
JP2015193871A (ja) Fe−Ni系合金薄板及びその製造方法
JP6781960B2 (ja) Fe−Ni系合金薄板の製造方法及びFe−Ni系合金薄板
JP6975391B2 (ja) Fe−Ni系合金薄板の製造方法およびFe−Ni系合金薄板
JP7294336B2 (ja) Fe-Ni系合金薄板
JP2003286527A (ja) 低収縮率の銅又は銅合金とその製造方法
JP2016180130A (ja) Cu−Ni−Si系銅合金板材およびその製造方法並びにリードフレーム
JP4550148B1 (ja) 銅合金及びその製造方法
JP4831969B2 (ja) 黄銅材料の製造法および黄銅材料
JP5170866B2 (ja) 電気・電子部品用銅合金材およびその製造方法
JP2011195881A (ja) 強度、導電率及び曲げ加工性に優れたチタン銅及びその製造方法
WO2013121620A1 (ja) コルソン合金及びその製造方法
CN103691741A (zh) Fe-Al系合金带钢的制造方法
JP7556997B2 (ja) 銅合金板
JP7524526B2 (ja) Fe-Ni系合金薄板
JP6879971B2 (ja) 銅合金材料、電子部品、電子機器及び銅合金材料の製造方法
WO2023243710A1 (ja) Fe-Ni系合金薄板の製造方法およびFe-Ni系合金薄板
JPH04268055A (ja) リードフレーム用銅合金の製造方法
JP5237867B2 (ja) リードフレーム用Fe−Ni系合金材料およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541990

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008509

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855488

Country of ref document: EP

Effective date: 20190429