WO2018053957A1 - 扫描驱动电路及显示装置 - Google Patents

扫描驱动电路及显示装置 Download PDF

Info

Publication number
WO2018053957A1
WO2018053957A1 PCT/CN2016/111055 CN2016111055W WO2018053957A1 WO 2018053957 A1 WO2018053957 A1 WO 2018053957A1 CN 2016111055 W CN2016111055 W CN 2016111055W WO 2018053957 A1 WO2018053957 A1 WO 2018053957A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
signal
scan
output end
output
Prior art date
Application number
PCT/CN2016/111055
Other languages
English (en)
French (fr)
Inventor
李文英
陈书志
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to KR1020197011371A priority Critical patent/KR102134172B1/ko
Priority to JP2019516242A priority patent/JP6692002B2/ja
Priority to EP16916696.4A priority patent/EP3518225A4/en
Priority to US15/325,962 priority patent/US10068544B2/en
Publication of WO2018053957A1 publication Critical patent/WO2018053957A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • G09G2320/0214Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display with crosstalk due to leakage current of pixel switch in active matrix panels

Definitions

  • the present invention relates to the field of display driving, and in particular to a scan driving circuit and a display device.
  • GOA Gate Driver On Array
  • the existing scan driving circuit includes a plurality of GOA units, and each GOA unit corresponds to driving a first-level scan line.
  • each GOA unit includes a pull-up control module, a drive module, a pull-down module, and a pull-down maintenance module.
  • the existing pull-up control module generally consists of a single switch tube.
  • the threshold voltage of the switch tube will move to a negative value, which causes the switch tube of the pull-up control module to be prone to leakage.
  • the change of the input signal easily affects the output signal of the driving module, thereby affecting the reliability of the scan driving circuit.
  • An object of the present invention is to provide a scan driving circuit and a display device with light leakage and high reliability, so as to solve the problem that the existing scan driving circuit is prone to leakage, thereby affecting the reliability of the scanning driving circuit. .
  • An embodiment of the present invention provides a scan driving circuit for driving a cascaded scan line, which includes:
  • a pull-up control module configured to receive a scan signal of the upper stage, and generate a scan level signal of the corresponding scan line according to the scan signal of the upper stage;
  • a driving module configured to pull up a scan signal of a corresponding level of the scan line according to the scan level signal and a clock signal of the current stage
  • a pull-down module configured to pull down a scan level signal of the corresponding scan line according to a scan signal of a lower stage
  • a pull-down maintaining module for maintaining a low level of a corresponding scan level signal of the scan line
  • Constant voltage low level source for providing low level pulldown
  • the pull-up control module includes a first switch tube, a second switch tube, and a third switch tube, wherein an input end of the first switch tube inputs a scan signal of the upper stage, and a control end input of the first switch tube
  • the scan signal of the upper stage, the output end of the first switch tube is connected to the input end of the second switch tube, and the control end of the second switch tube inputs the scan signal of the upper stage, the second
  • the output end of the switch tube outputs the scan level signal;
  • the input end of the third switch tube is connected to a constant voltage high level source, and the output end of the third switch tube and the input end of the second switch tube Connected, the control end of the third switch tube is connected to the output end of the second switch tube.
  • the scan signal of the upper stage is the scan signal of the upper four stages
  • the scan signal of the lower stage is the scan signal of the lower five stages.
  • the driving module includes a fourth switching tube and a fifth switching tube;
  • the control end of the fourth switch tube is connected to the output of the pull-up control module, the input end of the fourth switch tube inputs a clock signal of the current stage, and the output end of the fourth switch tube outputs the same level a control signal of the fifth switch tube is connected to an output of the pull-up control module, and an input end of the fifth switch tube inputs a clock signal of the current stage, and the fifth switch tube The output outputs the scan signal of this stage.
  • the scan driving circuit further includes a bootstrap capacitor for generating a high level of the scan signal of the current stage of the scan line;
  • One end of the bootstrap capacitor is connected to an output of the pull-up control module, and the other end of the bootstrap capacitor is connected to an output end of the fifth switch.
  • the pull-down module includes a sixth switch tube and a seventh switch tube;
  • a control signal of the sixth switch tube inputs a scan signal of the lower stage, an input end of the sixth switch tube is connected to the constant voltage low level source, and an output end of the sixth switch tube and the first The output ends of the two switch tubes are connected;
  • a control signal of the seventh switch tube inputs a scan signal of the lower stage, an input end of the seventh switch tube is connected to the constant voltage low level source, and an output end of the seventh switch tube and the drive The module output is connected.
  • the pull-down maintaining module includes an eighth switch tube, a ninth switch tube, a tenth switch tube, an eleventh switch tube, a twelfth switch tube, and a thirteenth switch tube, a fourteenth switch tube, a fifteenth switch tube, a sixteenth switch tube, a seventeenth switch tube, an eighteenth switch tube, and a nineteenth switch tube;
  • the control end of the eighth switch tube is connected to the first reference point, the input end of the eighth switch tube is connected to the constant voltage low level source, and the output end of the eighth switch tube is connected to the first The output ends of the two switch tubes are connected;
  • a control end of the ninth switch tube is connected to the first reference point, an input end of the ninth switch tube is connected to the constant voltage low level source, and an output end of the ninth switch tube is The output of the drive module is connected;
  • a control end of the tenth switch tube is connected to an output end of the twelfth switch tube, an input end of the tenth switch tube inputs a first low frequency potential signal, and an output end of the tenth switch tube is First reference point connection;
  • a control end of the eleventh switch tube is connected to an output end of the second switch tube, and an input end of the eleventh switch tube is connected to the constant voltage low level source, the eleventh switch tube The output end is connected to the first reference point;
  • the control end of the twelfth switch tube inputs the first low frequency potential signal, and the input end of the twelfth switch tube inputs the first low frequency potential signal;
  • a control end of the thirteenth switch tube is connected to an output end of the second switch tube, and an input end of the thirteenth switch tube is connected to the constant voltage low level source, the thirteenth switch tube The output end is connected to the control end of the tenth switch tube;
  • the control end of the fourteenth switch tube is connected to the second reference point, the input end of the fourteenth switch tube is connected to the constant voltage low level source, and the output end of the fourteenth switch tube is Connecting the output end of the second switch tube;
  • a control end of the fifteenth switch tube is connected to the second reference point, an input end of the fifteenth switch tube is connected to the constant voltage low level source, and an output end of the fifteenth switch tube Connected to the output of the drive module;
  • a control end of the sixteenth switch tube is connected to an output end of the eighteenth switch tube, and an input end of the sixteenth switch tube inputs a second low frequency potential signal, and an output end of the sixteenth switch tube Connected to the second reference point;
  • a control end of the seventeenth switch tube is connected to an output end of the second switch tube, and an input end of the seventeenth switch tube is connected to the constant voltage low level source, the seventeenth switch tube The output is connected to the second reference point;
  • the control end of the eighteenth switch tube inputs the second low frequency potential signal, and the input end of the eighteenth switch tube inputs the second low frequency potential signal;
  • a control end of the nineteenth switch tube is connected to an output end of the second switch tube, and an input end of the nineteenth switch tube is connected to the constant voltage low level source, the nineteenth switch tube The output end is connected to the control end of the sixteenth switch tube.
  • the first low frequency potential signal and the second low frequency potential signal are inverted signals.
  • the embodiment of the present invention further provides a scan driving circuit for driving a cascaded scan line, which includes:
  • a pull-up control module configured to receive a scan signal of the upper stage, and generate a scan level signal of the corresponding scan line according to the scan signal of the upper stage;
  • a driving module configured to pull up a scan signal of a corresponding level of the scan line according to the scan level signal and a clock signal of the current stage
  • a pull-down module configured to pull down a scan level signal of the corresponding scan line according to a scan signal of a lower stage
  • a pull-down maintaining module for maintaining a low level of a corresponding scan level signal of the scan line
  • Constant voltage low level source for providing low level pulldown
  • the pull-up control module includes a first switch tube, a second switch tube, and a third switch tube, wherein an input end of the first switch tube inputs a scan signal of the upper stage, and a control end input of the first switch tube
  • the scan signal of the upper stage, the output end of the first switch tube is connected to the input end of the second switch tube, and the control end of the second switch tube inputs the scan signal of the upper stage, the second
  • the output end of the switch tube outputs the scan level signal
  • the input end of the third switch tube is connected to the output end of the drive module, and the output end of the third switch tube is connected to the input end of the second switch tube
  • the control end of the third switch tube is connected to the output end of the second switch tube.
  • the scan signal of the upper stage is the scan signal of the upper four stages
  • the scan signal of the lower stage is the scan signal of the lower five stages.
  • the driving module includes a fourth switching tube and a fifth switching tube;
  • the control end of the fourth switch tube is connected to the output of the pull-up control module, the input end of the fourth switch tube inputs a clock signal of the current stage, and the output end of the fourth switch tube outputs the same level a control signal of the fifth switch tube is connected to an output of the pull-up control module, and an input end of the fifth switch tube inputs a clock signal of the current stage, and the fifth switch tube The output outputs the scan signal of this stage.
  • the scan driving circuit further includes a bootstrap capacitor for generating a high level of the scan signal of the current stage of the scan line;
  • One end of the bootstrap capacitor is connected to an output of the pull-up control module, and the other end of the bootstrap capacitor is connected to an output end of the fifth switch.
  • the pull-down module includes a sixth switch tube and a seventh switch tube;
  • a control signal of the sixth switch tube inputs a scan signal of the lower stage, an input end of the sixth switch tube is connected to the constant voltage low level source, and an output end of the sixth switch tube and the first The output ends of the two switch tubes are connected;
  • a control signal of the seventh switch tube inputs a scan signal of the lower stage, an input end of the seventh switch tube is connected to the constant voltage low level source, and an output end of the seventh switch tube and the drive The module output is connected.
  • the pull-down maintaining module includes an eighth switch tube, a ninth switch tube, a tenth switch tube, an eleventh switch tube, a twelfth switch tube, and a thirteenth switch tube, a fourteenth switch tube, a fifteenth switch tube, a sixteenth switch tube, a seventeenth switch tube, an eighteenth switch tube, and a nineteenth switch tube;
  • the control end of the eighth switch tube is connected to the first reference point, the input end of the eighth switch tube is connected to the constant voltage low level source, and the output end of the eighth switch tube is connected to the first The output ends of the two switch tubes are connected;
  • a control end of the ninth switch tube is connected to the first reference point, an input end of the ninth switch tube is connected to the constant voltage low level source, and an output end of the ninth switch tube is The output of the drive module is connected;
  • a control end of the tenth switch tube is connected to an output end of the twelfth switch tube, an input end of the tenth switch tube inputs a first low frequency potential signal, and an output end of the tenth switch tube is First reference point connection;
  • a control end of the eleventh switch tube is connected to an output end of the second switch tube, and an input end of the eleventh switch tube is connected to the constant voltage low level source, the eleventh switch tube The output end is connected to the first reference point;
  • the control end of the twelfth switch tube inputs the first low frequency potential signal, and the input end of the twelfth switch tube inputs the first low frequency potential signal;
  • a control end of the thirteenth switch tube is connected to an output end of the second switch tube, and an input end of the thirteenth switch tube is connected to the constant voltage low level source, the thirteenth switch tube The output end is connected to the control end of the tenth switch tube;
  • the control end of the fourteenth switch tube is connected to the second reference point, the input end of the fourteenth switch tube is connected to the constant voltage low level source, and the output end of the fourteenth switch tube is Connecting the output end of the second switch tube;
  • a control end of the fifteenth switch tube is connected to the second reference point, an input end of the fifteenth switch tube is connected to the constant voltage low level source, and an output end of the fifteenth switch tube Connected to the output of the drive module;
  • a control end of the sixteenth switch tube is connected to an output end of the eighteenth switch tube, and an input end of the sixteenth switch tube inputs a second low frequency potential signal, and an output end of the sixteenth switch tube Connected to the second reference point;
  • a control end of the seventeenth switch tube is connected to an output end of the second switch tube, and an input end of the seventeenth switch tube is connected to the constant voltage low level source, the seventeenth switch tube The output is connected to the second reference point;
  • the control end of the eighteenth switch tube inputs the second low frequency potential signal, and the input end of the eighteenth switch tube inputs the second low frequency potential signal;
  • a control end of the nineteenth switch tube is connected to an output end of the second switch tube, and an input end of the nineteenth switch tube is connected to the constant voltage low level source, the nineteenth switch tube The output end is connected to the control end of the sixteenth switch tube.
  • the first low frequency potential signal and the second low frequency potential signal are inverted signals.
  • An embodiment of the present invention further provides a display device including a scan driving circuit for driving a cascaded scan line, the scan drive circuit comprising:
  • a pull-up control module configured to receive a scan signal of the upper stage, and generate a scan level signal of the corresponding scan line according to the scan signal of the upper stage;
  • a driving module configured to pull up a scan signal of a corresponding level of the scan line according to the scan level signal and a clock signal of the current stage
  • a pull-down module configured to pull down a scan level signal of the corresponding scan line according to a scan signal of a lower stage
  • a pull-down maintaining module for maintaining a low level of a corresponding scan level signal of the scan line
  • Constant voltage low level source for providing low level pulldown
  • the pull-up control module includes a first switch tube, a second switch tube, and a third switch tube, wherein an input end of the first switch tube inputs a scan signal of the upper stage, and a control end input of the first switch tube
  • the scan signal of the upper stage, the output end of the first switch tube is connected to the input end of the second switch tube, and the control end of the second switch tube inputs the scan signal of the upper stage, the second
  • the output end of the switch tube outputs the scan level signal;
  • the input end of the third switch tube is connected to a constant voltage high level source, and the output end of the third switch tube and the input end of the second switch tube Connected, the control end of the third switch tube is connected to the output end of the second switch tube.
  • the scan signal of the upper stage is a scan signal of the upper four stages
  • the scan signal of the lower stage is a scan signal of the next five stages.
  • the driving module includes a fourth switching tube and a fifth switching tube;
  • the control end of the fourth switch tube is connected to the output of the pull-up control module, the input end of the fourth switch tube inputs a clock signal of the current stage, and the output end of the fourth switch tube outputs the same level a control signal of the fifth switch tube is connected to an output of the pull-up control module, and an input end of the fifth switch tube inputs a clock signal of the current stage, and the fifth switch tube The output outputs the scan signal of this stage.
  • the scan driving circuit further includes a bootstrap capacitor for generating a high level of a scan signal of the current stage of the scan line;
  • One end of the bootstrap capacitor is connected to an output of the pull-up control module, and the other end of the bootstrap capacitor is connected to an output end of the fifth switch.
  • the pull-down module includes a sixth switch tube and a seventh switch tube;
  • a control signal of the sixth switch tube inputs a scan signal of the lower stage, an input end of the sixth switch tube is connected to the constant voltage low level source, and an output end of the sixth switch tube and the first The output ends of the two switch tubes are connected;
  • a control signal of the seventh switch tube inputs a scan signal of the lower stage, an input end of the seventh switch tube is connected to the constant voltage low level source, and an output end of the seventh switch tube and the drive The module output is connected.
  • the pull-down maintenance module includes an eighth switch tube, a ninth switch tube, a tenth switch tube, an eleventh switch tube, a twelfth switch tube, a thirteenth switch tube, and a third a fourteen switch tube, a fifteenth switch tube, a sixteenth switch tube, a seventeenth switch tube, an eighteenth switch tube, and a nineteenth switch tube;
  • the control end of the eighth switch tube is connected to the first reference point, the input end of the eighth switch tube is connected to the constant voltage low level source, and the output end of the eighth switch tube is connected to the first The output ends of the two switch tubes are connected;
  • a control end of the ninth switch tube is connected to the first reference point, an input end of the ninth switch tube is connected to the constant voltage low level source, and an output end of the ninth switch tube is The output of the drive module is connected;
  • a control end of the tenth switch tube is connected to an output end of the twelfth switch tube, an input end of the tenth switch tube inputs a first low frequency potential signal, and an output end of the tenth switch tube is First reference point connection;
  • a control end of the eleventh switch tube is connected to an output end of the second switch tube, and an input end of the eleventh switch tube is connected to the constant voltage low level source, the eleventh switch tube The output end is connected to the first reference point;
  • the control end of the twelfth switch tube inputs the first low frequency potential signal, and the input end of the twelfth switch tube inputs the first low frequency potential signal;
  • a control end of the thirteenth switch tube is connected to an output end of the second switch tube, and an input end of the thirteenth switch tube is connected to the constant voltage low level source, the thirteenth switch tube The output end is connected to the control end of the tenth switch tube;
  • the control end of the fourteenth switch tube is connected to the second reference point, the input end of the fourteenth switch tube is connected to the constant voltage low level source, and the output end of the fourteenth switch tube is Connecting the output end of the second switch tube;
  • a control end of the fifteenth switch tube is connected to the second reference point, an input end of the fifteenth switch tube is connected to the constant voltage low level source, and an output end of the fifteenth switch tube Connected to the output of the drive module;
  • a control end of the sixteenth switch tube is connected to an output end of the eighteenth switch tube, and an input end of the sixteenth switch tube inputs a second low frequency potential signal, and an output end of the sixteenth switch tube Connected to the second reference point;
  • a control end of the seventeenth switch tube is connected to an output end of the second switch tube, and an input end of the seventeenth switch tube is connected to the constant voltage low level source, the seventeenth switch tube The output is connected to the second reference point;
  • the control end of the eighteenth switch tube inputs the second low frequency potential signal, and the input end of the eighteenth switch tube inputs the second low frequency potential signal;
  • a control end of the nineteenth switch tube is connected to an output end of the second switch tube, and an input end of the nineteenth switch tube is connected to the constant voltage low level source, the nineteenth switch tube The output end is connected to the control end of the sixteenth switch tube.
  • the scan driving circuit and the display device of the present invention can prevent the occurrence of leakage phenomenon by setting a pull-up control module having a plurality of switching tubes, and improve the scanning driving circuit. Reliability; solves the technical problem that the existing scan driving circuit is prone to leakage, thereby affecting the reliability of the scanning driving circuit.
  • FIG. 1 is a schematic structural view of a first preferred embodiment of a scan driving circuit of the present invention
  • FIG. 2 is a signal waveform diagram of a first preferred embodiment of the scan driving circuit of the present invention
  • FIG. 3 is a schematic structural view of a second preferred embodiment of the scan driving circuit of the present invention.
  • FIG. 1 is a schematic structural view of a first preferred embodiment of a scan driving circuit of the present invention
  • FIG. 2 is a signal waveform diagram of a first preferred embodiment of the scan driving circuit of the present invention.
  • the scan driving circuit of the preferred embodiment is used for driving the cascaded scan lines.
  • the scan driving circuit 10 of the preferred embodiment includes a pull-up control module 11, a driving module 12, a pull-down module 13, a pull-down maintaining module 14, and a constant The low level source VSS and the bootstrap capacitor Cb are pressed.
  • the pull-up control module 11 is configured to receive the scan signal of the upper stage, and generate a scan level signal Q(n) of the corresponding scan line according to the scan signal of the upper stage; the driving module 12 is configured to use the scan level signal Q(n) and the present The level clock signal CK(n) pulls up the scan signal G(n) of the corresponding scan line of the corresponding scan line; the pull-down module 13 is configured to pull down the scan level signal Q of the corresponding scan line according to the scan signal of the lower stage ( n); the pull-down maintaining module 14 is used to maintain the low level of the scan level signal Q(n) of the corresponding scan line; the constant voltage low level source VSS is used to provide the pull-down low level; the bootstrap capacitor Cb is used to generate The high level of the scanning signal G(n) of the current stage of the scanning line.
  • the pull-up control module 11 includes a first switch tube T1, a second switch tube T2, and a third switch tube T3.
  • the input end of the first switch tube T1 inputs the scan signal G(n-4) of the upper four stages, and the control end of the first switch tube T1 inputs the scan signal G(n-4) of the upper four stages, and the first switch tube T1
  • the output end is connected to the input end of the second switch tube T2, the scan signal G(n-4) of the fourth stage on the input end of the control end of the second switch tube T2, and the scan level signal Q of the output end of the second switch tube T2.
  • the input end of the third switch tube T3 is connected to the constant voltage high level source VGH
  • the output end of the third switch tube T3 is connected to the input end of the second switch tube T2
  • the control end of the third switch tube T3 is The output end of the second switching transistor T2 is connected.
  • the driving module 12 includes a fourth switching tube T4 and a fifth switching tube T5.
  • the control end of the fourth switch tube T4 is connected to the output of the pull-up control module 11, the input end of the fourth switch tube T4 is input to the clock signal CK(n) of the current stage, and the output end of the fourth switch tube T4 is outputting the stage of the current stage.
  • the control signal of the fifth switch tube T5 is connected to the output of the pull-up control module 11, and the input end of the fifth switch tube T5 is input with the clock signal CK(n) of the current stage, and the fifth switch tube T5
  • the output terminal outputs the scanning signal G(n) of this stage.
  • One end of the bootstrap capacitor Cb is connected to the output of the pull-up control module 11, and the other end of the bootstrap capacitor Cb is connected to the output end of the fifth switch transistor T5.
  • the pull-down module 13 includes a sixth switch tube T6 and a seventh switch tube T7.
  • the control end of the sixth switch tube T6 inputs the scan signal G(n+5) of the lower five stages, the input end of the sixth switch tube T6 is connected to the constant voltage low level source VSS, and the output end of the sixth switch tube T6 and the The output end of the second switch tube T2 is connected; the control end of the seventh switch tube T7 inputs the scan signal G(n+5) of the lower five stages, and the input end of the seventh switch tube T7 is connected with the constant voltage low level source VSS, The output end of the seven switch tube T7 is connected to the output end of the drive module 12.
  • the pull-down maintenance module 14 includes an eighth switch tube T8, a ninth switch tube T9, a tenth switch tube T10, an eleventh switch tube T11, a twelfth switch tube T12, a thirteenth switch tube T13, and a fourteenth switch tube T14.
  • the control end of the eighth switch tube T8 is connected to the first reference point P(n), the input end of the eighth switch tube T8 is connected to the constant voltage low level source VSS, and the output end of the eighth switch tube T8 is connected to the second switch tube The output of T2 is connected.
  • the control end of the ninth switch T9 is connected to the first reference point P(n), the input end of the ninth switch T9 is connected to the constant voltage low level source VSS, and the output end of the ninth switch T9 and the output of the drive module 12 End connection.
  • the control end of the tenth switch tube T10 is connected to the output end of the twelfth switch tube T12, the input end of the tenth switch tube T10 is input with the first low frequency potential signal LC1, and the output end of the tenth switch tube T10 is connected with the first reference point P (n) Connection.
  • the control end of the eleventh switch tube T11 is connected to the output end of the second switch tube T2, the input end of the eleventh switch tube T11 is connected to the constant voltage low level source VSS, and the output end of the eleventh switch tube T11 is A reference point P(n) is connected.
  • the control terminal of the twelfth switch tube T12 inputs the first low frequency potential signal LC1, and the input end of the twelfth switch tube T12 inputs the first low frequency potential signal LC1.
  • the control end of the thirteenth switch tube T13 is connected to the output end of the second switch tube T2, the input end of the thirteenth switch tube T13 is connected to the constant voltage low level source VSS, and the output end of the thirteenth switch tube T13 is The control terminal of the ten switch tube T10 is connected.
  • the control end of the fourteenth switch tube T14 is connected to the second reference point K(n), the input end of the fourteenth switch tube T14 is connected to the constant voltage low level source VSS, and the output end of the fourteenth switch tube T14 is The output ends of the two switching tubes T2 are connected.
  • the control end of the fifteenth switch tube T15 is connected to the second reference point K(n), the input end of the fifteenth switch tube T15 is connected to the constant voltage low level source VSS, and the output end of the fifteenth switch tube T15 is driven.
  • the output of module 12 is connected.
  • the control end of the sixteenth switch tube T16 is connected to the output end of the eighteenth switch tube T18, the input end of the sixteenth switch tube T16 is input with the second low frequency potential signal LC2, and the output end of the sixteenth switch tube T16 is connected with the second Reference point K(n) is connected.
  • the control end of the seventeenth switch tube T17 is connected to the output end of the second switch tube T2
  • the input end of the seventeenth switch tube T16 is connected to the constant voltage low level source VSS
  • the output end of the seventeenth switch tube T16 is The second reference point K(n) is connected.
  • the control end of the eighteenth switch tube T18 inputs the second low frequency potential signal LC2, and the input end of the eighteenth switch tube T18 inputs the second low frequency potential signal LC2.
  • the control end of the nineteenth switch tube T19 is connected to the output end of the second switch tube T2, the input end of the nineteenth switch tube T19 is connected to the constant voltage low level source VSS, and the output end of the nineteenth switch tube T19 is The control terminal of the sixteen switch tube T16 is connected.
  • the first low frequency potential signal LC1 and the second low frequency potential signal LC2 are inverted signals.
  • the scan driving circuit 10 of the preferred embodiment when the scan signals G(n-4) of the upper four stages are at a high level, the first switch tube T1 and the second switch tube T2 are guided.
  • the scan signal G(n-4) of the upper four stages charges the bootstrap capacitor Cb through the first switch tube T1 and the second switch tube T2, so that the scan level signal Q(n) rises to a higher level. .
  • the scan signal G(n-4) of the upper four stages is turned to a low level, the first switch tube T1 and the second switch tube T2 are turned off, and the scan level signal Q(n) is maintained higher by the bootstrap capacitor Cb.
  • the level of the third switch tube T3 is turned on by the high level of the scan level signal Q(n), and the constant voltage high level source VGH is connected to the second switch tube T2 through the third switch tube T3.
  • the input end is such that the voltage difference between the input end and the output end of the second switching tube T2 becomes small, avoiding the voltage change of the scanning signal G(n-4) of the upper four stages, resulting in the second switching tube T2
  • the occurrence of a leakage phenomenon improves the reliability of the scan driving circuit 10.
  • the clock signal CK(n) of the current stage is turned to a high level, and the clock signal CK(n) continues to charge the bootstrap capacitor Cb through the fifth switch tube T5, so that the scan level signal Q(n) reaches a higher level.
  • the scanning signal G(N) of this stage also goes high.
  • the fourth switch tube T4 and the fifth switch tube T5 are turned on, the output end of the fifth switch tube T5 outputs the scan signal G(n) of the current stage, and the output end of the fourth switch tube T4 outputs the cascade signal of the current stage. ST(n).
  • the eleventh switch tube T11, the thirteenth switch tube T13, the seventeenth switch tube T17 and the nineteenth switch tube T19 are turned on under the action of the high level of the scan level signal Q(n), first The reference point P(n) and the second reference point K(n) are kept at a low level under the control of the constant voltage low level source VSS, so that the eighth switch tube T8, the ninth switch tube T9, and the fourteenth switch tube T14 And the fifteenth switch tube T15 is kept in an off state, thereby ensuring a high level of the scan control signal Q(n).
  • the sixth switch tube T6 and the seventh switch tube T7 are turned on, and the scan control signal Q(n) is pulled low by the constant voltage low level source VSS.
  • the eleventh switch tube T11, the thirteenth switch tube T13, the seventeenth switch tube T17, and the nineteenth switch tube T19 are turned off.
  • the pull-down maintaining module 14 maintains the low level of the scan control signal Q(n) at the action of the first low frequency potential signal LC1 and the second low frequency potential signal LC2.
  • the twelfth switch tube T12 and the tenth switch tube T10 are turned on, and the first reference point P(n) passes the tenth switch.
  • the tube T1 is pulled to a high level, so that the eighth switch tube T8 and the ninth switch tube T9 are turned on, and the scan control signal Q(n) is connected to the constant voltage low level source VSS through the eighth switch tube T8, thereby maintaining the scan control signal.
  • the low level of Q(n), the scanning signal G(n) of the current stage is connected to the constant voltage low level source VSS through the ninth switching tube T9, thereby maintaining the scanning signal of the current stage.
  • the sixteenth switch tube T16 and the eighteenth switch tube T18 are turned on, and the reference point K(n) passes through the sixteenth switch.
  • the tube T16 is pulled to a high level, so that the fourteenth switch tube T14 and the fifteenth switch tube T15 are turned on, and the scan control signal Q(n) is connected to the constant voltage low level source VSS through the fifteenth switch tube T15, thereby maintaining Scanning the low level of the control signal Q(n), the scanning signal G(n) of the current stage is connected to the constant voltage low level source VSS through the fourteenth switching tube T14, thereby maintaining the scanning signal G(n) of the current stage. Low level.
  • the pull-up control module 11 of the scan driving circuit 10 of the preferred embodiment can scan the signal G in the upper four stages by the setting of the first switching transistor T1, the second switching transistor T2, and the third switching transistor T3.
  • (n-4) is converted to a low level, it is preferable to maintain the high level state of the scan level signal Q(N) to avoid the occurrence of a leakage phenomenon.
  • the scan signal G(n) and the scan level signal Q(n) of the present stage are the scan signals and the scan level signals in the scan driving circuit 10 in the preferred embodiment, wherein the level is The scan signal G(n)' and the scan level signal Q(N)' are scan signals and scan level signals in the conventional scan drive circuit. It can be seen from the figure that the waveforms of the scanning signal G(n) and the scanning level signal Q(n) of the present stage are better improved by the pull-up control module 11.
  • the scan driving circuit of the preferred embodiment can prevent the occurrence of leakage phenomenon and improve the reliability of the scan driving circuit by providing a pull-up control module having a plurality of switching tubes.
  • FIG. 3 is a schematic structural diagram of a second preferred embodiment of the scan driving circuit of the present invention.
  • the input end of the third switching transistor T3' of the pull-up control module of the scan driving circuit of the preferred embodiment is connected to the output end of the driving module, that is, the third switching transistor T3' is input Level of scanning signal G(n). This also achieves the goal of stabilizing the high level state of the scan level signal Q(N) without the need to set an additional constant voltage high level source VGH.
  • the specific operational principle of the scan driving circuit of the preferred embodiment is the same as or similar to that of the first preferred embodiment of the scan driving circuit described above. For details, refer to the related description in the first preferred embodiment of the scan driving circuit.
  • the present invention also provides a display device including a scan driving circuit for driving a cascade of scan lines.
  • the scan driving circuit includes a pull-up control module, a driving module, a pull-down module, a pull-down maintaining module, a constant voltage low level source, and a bootstrap capacitor.
  • the pull-up control module is configured to receive the scan signal of the upper stage, and generate a scan level signal of the corresponding scan line according to the scan signal of the upper stage; the driving module is configured to pull up the corresponding scan according to the scan level signal and the clock signal of the current stage.
  • the scan signal of the current level of the line; the pull-down module is configured to pull down the scan level signal of the corresponding scan line according to the scan signal of the lower stage; the pull-down maintenance module is used to maintain the low level of the scan level signal of the corresponding scan line;
  • the constant voltage low level source is used to provide a pull-down low level; the bootstrap capacitor is used to generate a high level of the scan signal of the current stage of the scan line.
  • the pull-up control module includes a first switch tube, a second switch tube, and a third switch tube.
  • the input end of the first switch tube inputs the scan signal of the upper stage
  • the control end of the first switch tube inputs the scan signal of the upper stage
  • the output end of the first switch tube is connected with the input end of the second switch tube, and the control end of the second switch tube
  • the scan signal of the upper stage of the input end, the output end of the second switch tube outputs a scan level signal
  • the input end of the third switch tube is connected to the constant voltage high level source or to the output end of the drive module, and the third switch tube
  • the output end is connected to the input end of the second switch tube, and the control end of the third switch tube is connected to the output end of the second switch tube.
  • the scan signal of the upper stage is the scan signal of the upper four stages
  • the scan signal of the lower stage is the scan signal of the lower five stages.
  • the driving module includes a fourth switching tube and a fifth switching tube; the control end of the fourth switching tube is connected to the output of the pull-up control module, the input end of the fourth switching tube inputs the clock signal of the current level, and the fourth switching tube The output end outputs the cascade signal of the current stage; the control end of the fifth switch tube is connected with the output of the pull-up control module, the input end of the fifth switch tube inputs the clock signal of the current stage, and the output end of the fifth switch tube outputs the output Level of scanning signal.
  • the scan driving circuit further comprises a bootstrap capacitor for generating a high level of the scan signal of the current level of the scan line; one end of the bootstrap capacitor is connected to the output of the pull-up control module, and the other end of the bootstrap capacitor is The output end of the fifth switch tube is connected.
  • the pull-down module includes a sixth switch tube and a seventh switch tube; the control end of the sixth switch tube inputs a scan signal of the lower stage, and the input end of the sixth switch tube is connected to the constant voltage low level source, and the sixth switch tube is The output end is connected to the output end of the second switch tube; the control end of the seventh switch tube inputs the scan signal of the lower stage, the input end of the seventh switch tube is connected with the constant voltage low level source, and the output end and the drive of the seventh switch tube The module output is connected.
  • the pull-down maintenance module comprises an eighth switch tube, a ninth switch tube, a tenth switch tube, an eleventh switch tube, a twelfth switch tube, a thirteenth switch tube, a fourteenth switch tube, and a fifteenth switch a tube, a sixteenth switch tube, a seventeenth switch tube, an eighteenth switch tube, and a nineteenth switch tube; wherein the control end of the eighth switch tube is connected to the first reference point, and the input end of the eighth switch tube is constant Pressing the low level source connection, the output end of the eighth switch tube is connected with the output end of the second switch tube; the control end of the ninth switch tube is connected with the first reference point, and the input end of the ninth switch tube is low voltage with constant voltage The source connection is connected, the output end of the ninth switch tube is connected to the output end of the drive module; the control end of the tenth switch tube is connected to the output end of the twelfth switch tube, and the input end of the tenth switch tube inputs the first low frequency
  • the first low frequency potential signal and the second low frequency potential signal are inverted signals.
  • the scan driving circuit and the display device of the present invention can prevent the occurrence of leakage phenomenon and improve the reliability of the scan driving circuit by providing a pull-up control module having a plurality of switching tubes, and solve the problem of the existing scanning driving circuit. A technical problem that causes a leakage phenomenon, thereby affecting the reliability of the scan driving circuit.

Abstract

一种扫描驱动电路(10),用于对级联的扫描线进行驱动操作,其包括:上拉控制模块(11)、驱动模块(12)、下拉模块(13)、下拉维持模块(14)以及恒压低电平源(VSS);其中上拉控制模块(11)包括第一开关管(T1)、第二开关管(T2)以及第三开关管(T3)。

Description

扫描驱动电路及显示装置 技术领域
本发明涉及显示驱动领域,特别是涉及一种扫描驱动电路及显示装置。
背景技术
Gate Driver On Array,简称GOA,即在现有薄膜晶体管液晶显示器的阵列基板上制作扫描驱动电路,实现对扫描线逐行扫描的驱动方式。
现有扫描驱动电路包括多个GOA单元,每个GOA单元对应驱动一级扫描线。具体的,每个GOA单元包括上拉控制模块、驱动模块、下拉模块以及下拉维持模块。
现有的上拉控制模块一般由单个开关管构成,由于扫描驱动电路在高温状态下工作时,开关管的阈值电压会往负值移动,这样导致上拉控制模块的开关管容易发生漏电,从而导致当上拉控制模块的输入信号发生变化时,该输入信号的变化极易对驱动模块的输出信号造成影响,从而影响该扫描驱动电路的可靠性。
故,有必要提供一种扫描驱动电路及显示装置,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种漏电现象较轻且可靠性较高的扫描驱动电路及显示装置,以解决现有的扫描驱动电路的容易发生漏电现象,从而影响扫描驱动电路的可靠性的技术问题。
技术解决方案
本发明实施例提供一种扫描驱动电路,用于对级联的扫描线进行驱动操作,其包括:
上拉控制模块,用于接收上级的扫描信号,并根据所述上级的扫描信号生成相应的所述扫描线的扫描电平信号;
驱动模块,用于根据所述扫描电平信号以及本级的时钟信号,拉升相应的所述扫描线的本级的扫描信号;
下拉模块,用于根据下级的扫描信号,拉低相应的所述扫描线的扫描电平信号;
下拉维持模块,用于维持相应的所述扫描线的扫描电平信号的低电平;以及
恒压低电平源,用于提供下拉低电平;
其中所述上拉控制模块包括第一开关管、第二开关管以及第三开关管,所述第一开关管的输入端输入所述上级的扫描信号,所述第一开关管的控制端输入所述上级的扫描信号,所述第一开关管的输出端与所述第二开关管的输入端连接,所述第二开关管的控制端输入端所述上级的扫描信号,所述第二开关管的输出端输出所述扫描电平信号;所述第三开关管的输入端与恒压高电平源连接,所述第三开关管的输出端与所述第二开关管的输入端连接,所述第三开关管的控制端与所述第二开关管的输出端连接。
在本发明所述的扫描驱动电路中,所述上级的扫描信号为上四级的扫描信号,所述下级的扫描信号为下五级的扫描信号。
在本发明所述的扫描驱动电路中,所述驱动模块包括第四开关管以及第五开关管;
所述第四开关管的控制端与所述上拉控制模块的输出连接,所述第四开关管的输入端输入所述本级的时钟信号,所述第四开关管的输出端输出本级的级联信号;所述第五开关管的控制端与所述上拉控制模块的输出连接,所述第五开关管的输入端输入所述本级的时钟信号,所述第五开关管的输出端输出本级的扫描信号。
在本发明所述的扫描驱动电路中,所述扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;
所述自举电容一端与所述上拉控制模块的输出连接,所述自举电容的另一端与所述第五开关管的输出端连接。
在本发明所述的扫描驱动电路中,所述下拉模块包括第六开关管以及第七开关管;
所述第六开关管的控制端输入所述下级的扫描信号,所述第六开关管的输入端与所述恒压低电平源连接,所述第六开关管的输出端与所述第二开关管的输出端连接;
所述第七开关管的控制端输入所述下级的扫描信号,所述第七开关管的输入端与所述恒压低电平源连接,所述第七开关管的输出端与所述驱动模块输出端连接。
在本发明所述的扫描驱动电路中,所述下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;
其中所述第八开关管的控制端与第一参考点连接,所述第八开关管的输入端与所述恒压低电平源连接,所述第八开关管的输出端与所述第二开关管的输出端连接;
所述第九开关管的控制端与所述第一参考点连接,所述第九开关管的输入端与所述恒压低电平源连接,所述第九开关管的输出端与所述驱动模块输出端连接;
所述第十开关管的控制端与所述第十二开关管的输出端连接,所述第十开关管的输入端输入第一低频电位信号,所述第十开关管的输出端与所述第一参考点连接;
所述第十一开关管的控制端与所述第二开关管的输出端连接,所述第十一开关管的输入端与所述恒压低电平源连接,所述第十一开关管的输出端与所述第一参考点连接;
所述第十二开关管的控制端输入所述第一低频电位信号,所述第十二开关管的输入端输入所述第一低频电位信号;
所述第十三开关管的控制端与所述第二开关管的输出端连接,所述第十三开关管的输入端与所述恒压低电平源连接,所述第十三开关管的输出端与所述第十开关管的控制端连接;
所述第十四开关管的控制端与第二参考点连接,所述第十四开关管的输入端与所述恒压低电平源连接,所述第十四开关管的输出端与所述第二开关管的输出端连接;
所述第十五开关管的控制端与所述第二参考点连接,所述第十五开关管的输入端与所述恒压低电平源连接,所述第十五开关管的输出端与所述驱动模块输出端连接;
所述第十六开关管的控制端与所述第十八开关管的输出端连接,所述第十六开关管的输入端输入第二低频电位信号,所述第十六开关管的输出端与所述第二参考点连接;
所述第十七开关管的控制端与所述第二开关管的输出端连接,所述第十七开关管的输入端与所述恒压低电平源连接,所述第十七开关管的输出端与所述第二参考点连接;
所述第十八开关管的控制端输入所述第二低频电位信号,所述第十八开关管的输入端输入所述第二低频电位信号;
所述第十九开关管的控制端与所述第二开关管的输出端连接,所述第十九开关管的输入端与所述恒压低电平源连接,所述第十九开关管的输出端与所述第十六开关管的控制端连接。
在本发明所述的扫描驱动电路中,所述第一低频电位信号和所述第二低频电位信号为反相信号。
本发明实施例还提供一种扫描驱动电路,用于对级联的扫描线进行驱动操作,其包括:
上拉控制模块,用于接收上级的扫描信号,并根据所述上级的扫描信号生成相应的所述扫描线的扫描电平信号;
驱动模块,用于根据所述扫描电平信号以及本级的时钟信号,拉升相应的所述扫描线的本级的扫描信号;
下拉模块,用于根据下级的扫描信号,拉低相应的所述扫描线的扫描电平信号;
下拉维持模块,用于维持相应的所述扫描线的扫描电平信号的低电平;以及
恒压低电平源,用于提供下拉低电平;
其中所述上拉控制模块包括第一开关管、第二开关管以及第三开关管,所述第一开关管的输入端输入所述上级的扫描信号,所述第一开关管的控制端输入所述上级的扫描信号,所述第一开关管的输出端与所述第二开关管的输入端连接,所述第二开关管的控制端输入端所述上级的扫描信号,所述第二开关管的输出端输出所述扫描电平信号;所述第三开关管的输入端与驱动模块的输出端连接,所述第三开关管的输出端与所述第二开关管的输入端连接,所述第三开关管的控制端与所述第二开关管的输出端连接。
在本发明所述的扫描驱动电路中,所述上级的扫描信号为上四级的扫描信号,所述下级的扫描信号为下五级的扫描信号。
在本发明所述的扫描驱动电路中,所述驱动模块包括第四开关管以及第五开关管;
所述第四开关管的控制端与所述上拉控制模块的输出连接,所述第四开关管的输入端输入所述本级的时钟信号,所述第四开关管的输出端输出本级的级联信号;所述第五开关管的控制端与所述上拉控制模块的输出连接,所述第五开关管的输入端输入所述本级的时钟信号,所述第五开关管的输出端输出本级的扫描信号。
在本发明所述的扫描驱动电路中,所述扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;
所述自举电容一端与所述上拉控制模块的输出连接,所述自举电容的另一端与所述第五开关管的输出端连接。
在本发明所述的扫描驱动电路中,所述下拉模块包括第六开关管以及第七开关管;
所述第六开关管的控制端输入所述下级的扫描信号,所述第六开关管的输入端与所述恒压低电平源连接,所述第六开关管的输出端与所述第二开关管的输出端连接;
所述第七开关管的控制端输入所述下级的扫描信号,所述第七开关管的输入端与所述恒压低电平源连接,所述第七开关管的输出端与所述驱动模块输出端连接。
在本发明所述的扫描驱动电路中,所述下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;
其中所述第八开关管的控制端与第一参考点连接,所述第八开关管的输入端与所述恒压低电平源连接,所述第八开关管的输出端与所述第二开关管的输出端连接;
所述第九开关管的控制端与所述第一参考点连接,所述第九开关管的输入端与所述恒压低电平源连接,所述第九开关管的输出端与所述驱动模块输出端连接;
所述第十开关管的控制端与所述第十二开关管的输出端连接,所述第十开关管的输入端输入第一低频电位信号,所述第十开关管的输出端与所述第一参考点连接;
所述第十一开关管的控制端与所述第二开关管的输出端连接,所述第十一开关管的输入端与所述恒压低电平源连接,所述第十一开关管的输出端与所述第一参考点连接;
所述第十二开关管的控制端输入所述第一低频电位信号,所述第十二开关管的输入端输入所述第一低频电位信号;
所述第十三开关管的控制端与所述第二开关管的输出端连接,所述第十三开关管的输入端与所述恒压低电平源连接,所述第十三开关管的输出端与所述第十开关管的控制端连接;
所述第十四开关管的控制端与第二参考点连接,所述第十四开关管的输入端与所述恒压低电平源连接,所述第十四开关管的输出端与所述第二开关管的输出端连接;
所述第十五开关管的控制端与所述第二参考点连接,所述第十五开关管的输入端与所述恒压低电平源连接,所述第十五开关管的输出端与所述驱动模块输出端连接;
所述第十六开关管的控制端与所述第十八开关管的输出端连接,所述第十六开关管的输入端输入第二低频电位信号,所述第十六开关管的输出端与所述第二参考点连接;
所述第十七开关管的控制端与所述第二开关管的输出端连接,所述第十七开关管的输入端与所述恒压低电平源连接,所述第十七开关管的输出端与所述第二参考点连接;
所述第十八开关管的控制端输入所述第二低频电位信号,所述第十八开关管的输入端输入所述第二低频电位信号;
所述第十九开关管的控制端与所述第二开关管的输出端连接,所述第十九开关管的输入端与所述恒压低电平源连接,所述第十九开关管的输出端与所述第十六开关管的控制端连接。
在本发明所述的扫描驱动电路中,所述第一低频电位信号和所述第二低频电位信号为反相信号。
本发明实施例还提供一种显示装置,其包括用于对级联的扫描线进行驱动操作的扫描驱动电路,所述扫描驱动电路包括:
上拉控制模块,用于接收上级的扫描信号,并根据所述上级的扫描信号生成相应的所述扫描线的扫描电平信号;
驱动模块,用于根据所述扫描电平信号以及本级的时钟信号,拉升相应的所述扫描线的本级的扫描信号;
下拉模块,用于根据下级的扫描信号,拉低相应的所述扫描线的扫描电平信号;
下拉维持模块,用于维持相应的所述扫描线的扫描电平信号的低电平;以及
恒压低电平源,用于提供下拉低电平;
其中所述上拉控制模块包括第一开关管、第二开关管以及第三开关管,所述第一开关管的输入端输入所述上级的扫描信号,所述第一开关管的控制端输入所述上级的扫描信号,所述第一开关管的输出端与所述第二开关管的输入端连接,所述第二开关管的控制端输入端所述上级的扫描信号,所述第二开关管的输出端输出所述扫描电平信号;所述第三开关管的输入端与恒压高电平源连接,所述第三开关管的输出端与所述第二开关管的输入端连接,所述第三开关管的控制端与所述第二开关管的输出端连接。
在本发明所述的显示装置中,所述上级的扫描信号为上四级的扫描信号,所述下级的扫描信号为下五级的扫描信号。
在本发明所述的显示装置中,所述驱动模块包括第四开关管以及第五开关管;
所述第四开关管的控制端与所述上拉控制模块的输出连接,所述第四开关管的输入端输入所述本级的时钟信号,所述第四开关管的输出端输出本级的级联信号;所述第五开关管的控制端与所述上拉控制模块的输出连接,所述第五开关管的输入端输入所述本级的时钟信号,所述第五开关管的输出端输出本级的扫描信号。
在本发明所述的显示装置中,所述扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;
所述自举电容一端与所述上拉控制模块的输出连接,所述自举电容的另一端与所述第五开关管的输出端连接。
在本发明所述的显示装置中,所述下拉模块包括第六开关管以及第七开关管;
所述第六开关管的控制端输入所述下级的扫描信号,所述第六开关管的输入端与所述恒压低电平源连接,所述第六开关管的输出端与所述第二开关管的输出端连接;
所述第七开关管的控制端输入所述下级的扫描信号,所述第七开关管的输入端与所述恒压低电平源连接,所述第七开关管的输出端与所述驱动模块输出端连接。
在本发明所述的显示装置中,所述下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;
其中所述第八开关管的控制端与第一参考点连接,所述第八开关管的输入端与所述恒压低电平源连接,所述第八开关管的输出端与所述第二开关管的输出端连接;
所述第九开关管的控制端与所述第一参考点连接,所述第九开关管的输入端与所述恒压低电平源连接,所述第九开关管的输出端与所述驱动模块输出端连接;
所述第十开关管的控制端与所述第十二开关管的输出端连接,所述第十开关管的输入端输入第一低频电位信号,所述第十开关管的输出端与所述第一参考点连接;
所述第十一开关管的控制端与所述第二开关管的输出端连接,所述第十一开关管的输入端与所述恒压低电平源连接,所述第十一开关管的输出端与所述第一参考点连接;
所述第十二开关管的控制端输入所述第一低频电位信号,所述第十二开关管的输入端输入所述第一低频电位信号;
所述第十三开关管的控制端与所述第二开关管的输出端连接,所述第十三开关管的输入端与所述恒压低电平源连接,所述第十三开关管的输出端与所述第十开关管的控制端连接;
所述第十四开关管的控制端与第二参考点连接,所述第十四开关管的输入端与所述恒压低电平源连接,所述第十四开关管的输出端与所述第二开关管的输出端连接;
所述第十五开关管的控制端与所述第二参考点连接,所述第十五开关管的输入端与所述恒压低电平源连接,所述第十五开关管的输出端与所述驱动模块输出端连接;
所述第十六开关管的控制端与所述第十八开关管的输出端连接,所述第十六开关管的输入端输入第二低频电位信号,所述第十六开关管的输出端与所述第二参考点连接;
所述第十七开关管的控制端与所述第二开关管的输出端连接,所述第十七开关管的输入端与所述恒压低电平源连接,所述第十七开关管的输出端与所述第二参考点连接;
所述第十八开关管的控制端输入所述第二低频电位信号,所述第十八开关管的输入端输入所述第二低频电位信号;
所述第十九开关管的控制端与所述第二开关管的输出端连接,所述第十九开关管的输入端与所述恒压低电平源连接,所述第十九开关管的输出端与所述第十六开关管的控制端连接。
有益效果
相较于现有的扫描驱动电路及显示装置,本发明的扫描驱动电路及显示装置通过设置具有多个开关管的上拉控制模块,可以很好的避免漏电现象的产生,提高扫描驱动电路的可靠性;解决了现有的扫描驱动电路的容易发生漏电现象,从而影响扫描驱动电路的可靠性的技术问题。
附图说明
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
图1为本发明的扫描驱动电路的第一优选实施例的结构示意图;
图2为本发明的扫描驱动电路的第一优选实施例的信号波形图;
图3为本发明的扫描驱动电路的第二优选实施例的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参照图1和图2,图1为本发明的扫描驱动电路的第一优选实施例的结构示意图;图2为本发明的扫描驱动电路的第一优选实施例的信号波形图。本优选实施例的扫描驱动电路用于对级联的扫描线进行驱动操作,本优选实施例的扫描驱动电路10包括上拉控制模块11、驱动模块12、下拉模块13、下拉维持模块14、恒压低电平源VSS以及自举电容Cb。
上拉控制模块11用于接收上级的扫描信号,并根据上级的扫描信号生成相应的扫描线的扫描电平信号Q(n);驱动模块12用于根据扫描电平信号Q(n)以及本级的时钟信号CK(n),拉升相应的扫描线的本级的扫描信号G(n);下拉模块13用于根据下级的扫描信号,拉低相应的扫描线的扫描电平信号Q(n);下拉维持模块14用于维持相应的扫描线的扫描电平信号Q(n)的低电平;恒压低电平源VSS用于提供下拉低电平;自举电容Cb用于生成扫描线的本级的扫描信号G(n)的高电平。
其中上拉控制模块11包括第一开关管T1、第二开关管T2以及第三开关管T3。第一开关管T1的输入端输入上四级的扫描信号G(n-4),第一开关管T1的控制端输入上四级的扫描信号G(n-4),第一开关管T1的输出端与第二开关管T2的输入端连接,第二开关管T2的控制端输入端上四级的扫描信号G(n-4),第二开关管T2的输出端输出扫描电平信号Q(n);第三开关管T3的输入端与恒压高电平源VGH连接,第三开关管T3的输出端与第二开关管T2的输入端连接,第三开关管T3的控制端与第二开关管T2的输出端连接。
驱动模块12包括第四开关管T4以及第五开关管T5。第四开关管T4的控制端与上拉控制模块11的输出连接,第四开关管T4的输入端输入本级的时钟信号CK(n),第四开关管T4的输出端输出本级的级联信号ST(n);第五开关管T5的控制端与上拉控制模块11的输出连接,第五开关管T5的输入端输入本级的时钟信号CK(n),第五开关管T5的输出端输出本级的扫描信号G(n)。
自举电容Cb一端与上拉控制模块11的输出连接,自举电容Cb的另一端与第五开关管T5的输出端连接。
下拉模块13包括第六开关管T6以及第七开关管T7。第六开关管T6的控制端输入下五级的扫描信号G(n+5),第六开关管T6的输入端与恒压低电平源VSS连接,第六开关管T6的输出端与第二开关管T2的输出端连接;第七开关管T7的控制端输入下五级的扫描信号G(n+5),第七开关管T7的输入端与恒压低电平源VSS连接,第七开关管T7的输出端与驱动模块12的输出端连接。
下拉维持模块14包括第八开关管T8、第九开关管T9、第十开关管T10、第十一开关管T11、第十二开关管T12、第十三开关管T13、第十四开关管T14、第十五开关管T15、第十六开关管T16、第十七开关管T17、第十八开关管T18以及第十九开关管T19。
第八开关管T8的控制端与第一参考点P(n)连接,第八开关管T8的输入端与恒压低电平源VSS连接,第八开关管T8的输出端与第二开关管T2的输出端连接。
第九开关管T9的控制端与第一参考点P(n)连接,第九开关管T9的输入端与恒压低电平源VSS连接,第九开关管T9的输出端与驱动模块12输出端连接。
第十开关管T10的控制端与第十二开关管T12的输出端连接,第十开关管T10的输入端输入第一低频电位信号LC1,第十开关管T10的输出端与第一参考点P(n)连接。
第十一开关管T11的控制端与第二开关管T2的输出端连接,第十一开关管T11的输入端与恒压低电平源VSS连接,第十一开关管T11的输出端与第一参考点P(n)连接。
第十二开关管T12的控制端输入第一低频电位信号LC1,第十二开关管T12的输入端输入第一低频电位信号LC1。
第十三开关管T13的控制端与第二开关管T2的输出端连接,第十三开关管T13的输入端与恒压低电平源VSS连接,第十三开关管T13的输出端与第十开关管T10的控制端连接。
第十四开关管T14的控制端与第二参考点K(n)连接,第十四开关管T14的输入端与恒压低电平源VSS连接,第十四开关管T14的输出端与第二开关管T2的输出端连接。
第十五开关管T15的控制端与第二参考点K(n)连接,第十五开关管T15的输入端与恒压低电平源VSS连接,第十五开关管T15的输出端与驱动模块12的输出端连接。
第十六开关管T16的控制端与第十八开关管T18的输出端连接,第十六开关管T16的输入端输入第二低频电位信号LC2,第十六开关管T16的输出端与第二参考点K(n)连接。
第十七开关管T17的控制端与第二开关管T2的输出端连接,第十七开关管T16的输入端与恒压低电平源VSS连接,第十七开关管T16的输出端与第二参考点K(n)连接。
第十八开关管T18的控制端输入第二低频电位信号LC2,第十八开关管T18的输入端输入第二低频电位信号LC2。
第十九开关管T19的控制端与第二开关管T2的输出端连接,第十九开关管T19的输入端与恒压低电平源VSS连接,第十九开关管T19的输出端与第十六开关管T16的控制端连接。
其中第一低频电位信号LC1与第二低频电位信号LC2为反相信号。
请参照图1和图2,本优选实施例的扫描驱动电路10使用时,当上四级的扫描信号G(n-4)为高电平时,第一开关管T1和第二开关管T2导通,上四级的扫描信号G(n-4)通过第一开关管T1和第二开关管T2给自举电容Cb充电,使得扫描电平信号Q(n)上升到一较高的电平。随后上四级的扫描信号G(n-4)转为低电平,第一开关管T1和第二开关管T2断开,扫描电平信号Q(n)通过自举电容Cb维持一较高的电平,同时第三开关管T3在扫描电平信号Q(n)的高电平的作用下导通,恒压高电平源VGH通过第三开关管T3连接到第二开关管T2的输入端,从而使得第二开关管T2的输入端和输出端之间的压差变小,避免了由于上四级的扫描信号G(n-4)的电压变化,导致第二开关管T2的漏电现象的产生,从而提高了扫描驱动电路10的可靠性。
随后本级的时钟信号CK(n)转为高电平,时钟信号CK(n)通过第五开关管T5继续给自举电容Cb充电,使得扫描电平信号Q(n)达到一更高的电平,本级的扫描信号G(N)也转为高电平。
这时第四开关管T4和第五开关管T5导通,第五开关管T5的输出端输出本级的扫描信号G(n),第四开关管T4的输出端输出本级的级联信号ST(n)。
同时由于第十一开关管T11、第十三开关管T13、第十七开关管T17和第十九开关管T19在扫描电平信号Q(n)的高电平的作用下导通,第一参考点P(n)和第二参考点K(n)在恒压低电平源VSS的控制下保持低电平,从而第八开关管T8、第九开关管T9、第十四开关管T14以及第十五开关管T15保持断开状态,从而保证了扫描控制信号Q(n)的高电平。
当下五级的扫描信号G(n+5)转为高电平时,第六开关管T6和第七开关管T7导通,扫描控制信号Q(n)被恒压低电平源VSS拉至低电平,此时第十一开关管T11、第十三开关管T13、第十七开关管T17以及第十九开关管T19断开。下拉维持模块14在第一低频电位信号LC1和第二低频电位信号LC2的作用维持扫描控制信号Q(n)的低电平。
当第一低频电位信号LC1为高电平,第二低频电位信号LC2为低电平时,第十二开关管T12以及第十开关管T10导通,第一参考点P(n)通过第十开关管T1拉至高电平,这样第八开关管T8和第九开关管T9导通,扫描控制信号Q(n)通过第八开关管T8与恒压低电平源VSS连接,从而保持扫描控制信号Q(n)的低电平,本级的扫描信号G(n)通过第九开关管T9与恒压低电平源VSS连接,从而保持本级的扫描信号 G(n)的低电平。
当第一低频电位信号LC1为低电平,第二低频电位信号LC2为高电平时,第十六开关管T16以及第十八开关管T18导通,参考点K(n)通过第十六开关管T16拉至高电平,这样第十四开关管T14和第十五开关管T15导通,扫描控制信号Q(n)通过第十五开关管T15与恒压低电平源VSS连接,从而保持扫描控制信号Q(n)的低电平,本级的扫描信号G(n)通过第十四开关管T14与恒压低电平源VSS连接,从而保持本级的扫描信号G(n)的低电平。
综上所述,本优选实施例的扫描驱动电路10的上拉控制模块11通过第一开关管T1、第二开关管T2以及第三开关管T3的设置,可以在上四级的扫描信号G(n-4)转换为低电平时,较好的保持扫描电平信号Q(N)的高电平状态,避免的漏电现象的产生。
具体请参照图2,其中的本级的扫描信号G(n)和扫描电平信号Q(n)为本优选实施例中的扫描驱动电路10中的扫描信号以及扫描电平信号,其中本级的扫描信号G(n)’和扫描电平信号Q(N)’为现有的扫描驱动电路中的扫描信号以及扫描电平信号。从图中可见本级的扫描信号G(n)和扫描电平信号Q(n)的波形在上拉控制模块11的作用下得到的较好的改善。
本优选实施例的扫描驱动电路通过设置具有多个开关管的上拉控制模块,可以很好的避免漏电现象的产生,提高扫描驱动电路的可靠性。
请参照图3,图3为本发明的扫描驱动电路的第二优选实施例的结构示意图。在第一优选实施例的基础上,本优选实施例的扫描驱动电路的上拉控制模块的第三开关管T3’的输入端与驱动模块的输出端连接,即第三开关管T3’输入本级的扫描信号G(n)。这样同样可以达到稳定扫描电平信号Q(N)的高电平状态的目的,同时还不需要设置额外的恒压高电平源VGH。
本优选实施例的扫描驱动电路的具体工作原理与上述的扫描驱动电路的第一优选实施例中的描述相同或相似,具体请参见扫描驱动电路的第一优选实施例中的相关描述。
本发明还提供一种显示装置,该显示装置包括用于对级联的扫描线进行驱动操作的扫描驱动电路。
该扫描驱动电路包括上拉控制模块、驱动模块、下拉模块、下拉维持模块、恒压低电平源以及自举电容。
上拉控制模块用于接收上级的扫描信号,并根据上级的扫描信号生成相应的扫描线的扫描电平信号;驱动模块用于根据扫描电平信号以及本级的时钟信号,拉升相应的扫描线的本级的扫描信号;下拉模块用于根据下级的扫描信号,拉低相应的扫描线的扫描电平信号;下拉维持模块用于维持相应的扫描线的扫描电平信号的低电平;恒压低电平源用于提供下拉低电平;自举电容用于生成扫描线的本级的扫描信号的高电平。
其中上拉控制模块包括第一开关管、第二开关管以及第三开关管。第一开关管的输入端输入上级的扫描信号,第一开关管的控制端输入上级的扫描信号,第一开关管的输出端与第二开关管的输入端连接,第二开关管的控制端输入端上级的扫描信号,第二开关管的输出端输出扫描电平信号;第三开关管的输入端与恒压高电平源连接、或与驱动模块的输出端连接,第三开关管的输出端与第二开关管的输入端连接,第三开关管的控制端与第二开关管的输出端连接。
优选的,上级的扫描信号为上四级的扫描信号,下级的扫描信号为下五级的扫描信号。
优选的,驱动模块包括第四开关管以及第五开关管;第四开关管的控制端与上拉控制模块的输出连接,第四开关管的输入端输入本级的时钟信号,第四开关管的输出端输出本级的级联信号;第五开关管的控制端与上拉控制模块的输出连接,第五开关管的输入端输入本级的时钟信号,第五开关管的输出端输出本级的扫描信号。
优选的,扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;自举电容一端与上拉控制模块的输出连接,自举电容的另一端与第五开关管的输出端连接。
优选的,下拉模块包括第六开关管以及第七开关管;第六开关管的控制端输入下级的扫描信号,第六开关管的输入端与恒压低电平源连接,第六开关管的输出端与第二开关管的输出端连接;第七开关管的控制端输入下级的扫描信号,第七开关管的输入端与恒压低电平源连接,第七开关管的输出端与驱动模块输出端连接。
优选的,下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;其中第八开关管的控制端与第一参考点连接,第八开关管的输入端与恒压低电平源连接,第八开关管的输出端与第二开关管的输出端连接;第九开关管的控制端与第一参考点连接,第九开关管的输入端与恒压低电平源连接,第九开关管的输出端与驱动模块输出端连接;第十开关管的控制端与第十二开关管的输出端连接,第十开关管的输入端输入第一低频电位信号,第十开关管的输出端与第一参考点连接;第十一开关管的控制端与第二开关管的输出端连接,第十一开关管的输入端与恒压低电平源连接,第十一开关管的输出端与第一参考点连接;第十二开关管的控制端输入第一低频电位信号,第十二开关管的输入端输入第一低频电位信号;第十三开关管的控制端与第二开关管的输出端连接,第十三开关管的输入端与恒压低电平源连接,第十三开关管的输出端与第十开关管的控制端连接;第十四开关管的控制端与第二参考点连接,第十四开关管的输入端与恒压低电平源连接,第十四开关管的输出端与第二开关管的输出端连接;第十五开关管的控制端与第二参考点连接,第十五开关管的输入端与恒压低电平源连接,第十五开关管的输出端与驱动模块输出端连接;第十六开关管的控制端与第十八开关管的输出端连接,第十六开关管的输入端输入第二低频电位信号,第十六开关管的输出端与第二参考点连接;第十七开关管的控制端与第二开关管的输出端连接,第十七开关管的输入端与恒压低电平源连接,第十七开关管的输出端与第二参考点连接;第十八开关管的控制端输入第二低频电位信号,第十八开关管的输入端输入第二低频电位信号;第十九开关管的控制端与第二开关管的输出端连接,第十九开关管的输入端与恒压低电平源连接,第十九开关管的输出端与第十六开关管的控制端连接。
优选的,第一低频电位信号和第二低频电位信号为反相信号。
本发明的显示装置的具体工作原理与上述的扫描驱动电路的优选实施例中的描述相同或相似,具体请参见扫描驱动电路的优选实施例中的相关描述。
本发明的扫描驱动电路及显示装置通过设置具有多个开关管的上拉控制模块,可以很好的避免漏电现象的产生,提高扫描驱动电路的可靠性;解决了现有的扫描驱动电路的容易发生漏电现象,从而影响扫描驱动电路的可靠性的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种扫描驱动电路,用于对级联的扫描线进行驱动操作,其包括:
    上拉控制模块,用于接收上级的扫描信号,并根据所述上级的扫描信号生成相应的所述扫描线的扫描电平信号;
    驱动模块,用于根据所述扫描电平信号以及本级的时钟信号,拉升相应的所述扫描线的本级的扫描信号;
    下拉模块,用于根据下级的扫描信号,拉低相应的所述扫描线的扫描电平信号;
    下拉维持模块,用于维持相应的所述扫描线的扫描电平信号的低电平;以及
    恒压低电平源,用于提供下拉低电平;
    其中所述上拉控制模块包括第一开关管、第二开关管以及第三开关管,所述第一开关管的输入端输入所述上级的扫描信号,所述第一开关管的控制端输入所述上级的扫描信号,所述第一开关管的输出端与所述第二开关管的输入端连接,所述第二开关管的控制端输入端所述上级的扫描信号,所述第二开关管的输出端输出所述扫描电平信号;所述第三开关管的输入端与恒压高电平源连接,所述第三开关管的输出端与所述第二开关管的输入端连接,所述第三开关管的控制端与所述第二开关管的输出端连接。
  2. 根据权利要求1所述的扫描驱动电路,其中所述上级的扫描信号为上四级的扫描信号,所述下级的扫描信号为下五级的扫描信号。
  3. 根据权利要求1所述的扫描驱动电路,其中所述驱动模块包括第四开关管以及第五开关管;
    所述第四开关管的控制端与所述上拉控制模块的输出连接,所述第四开关管的输入端输入所述本级的时钟信号,所述第四开关管的输出端输出本级的级联信号;所述第五开关管的控制端与所述上拉控制模块的输出连接,所述第五开关管的输入端输入所述本级的时钟信号,所述第五开关管的输出端输出本级的扫描信号。
  4. 根据权利要求3所述的扫描驱动电路,其中所述扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;
    所述自举电容一端与所述上拉控制模块的输出连接,所述自举电容的另一端与所述第五开关管的输出端连接。
  5. 根据权利要求1所述的扫描驱动电路,其中所述下拉模块包括第六开关管以及第七开关管;
    所述第六开关管的控制端输入所述下级的扫描信号,所述第六开关管的输入端与所述恒压低电平源连接,所述第六开关管的输出端与所述第二开关管的输出端连接;
    所述第七开关管的控制端输入所述下级的扫描信号,所述第七开关管的输入端与所述恒压低电平源连接,所述第七开关管的输出端与所述驱动模块输出端连接。
  6. 根据权利要求1所述的扫描驱动电路,其中所述下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;
    其中所述第八开关管的控制端与第一参考点连接,所述第八开关管的输入端与所述恒压低电平源连接,所述第八开关管的输出端与所述第二开关管的输出端连接;
    所述第九开关管的控制端与所述第一参考点连接,所述第九开关管的输入端与所述恒压低电平源连接,所述第九开关管的输出端与所述驱动模块输出端连接;
    所述第十开关管的控制端与所述第十二开关管的输出端连接,所述第十开关管的输入端输入第一低频电位信号,所述第十开关管的输出端与所述第一参考点连接;
    所述第十一开关管的控制端与所述第二开关管的输出端连接,所述第十一开关管的输入端与所述恒压低电平源连接,所述第十一开关管的输出端与所述第一参考点连接;
    所述第十二开关管的控制端输入所述第一低频电位信号,所述第十二开关管的输入端输入所述第一低频电位信号;
    所述第十三开关管的控制端与所述第二开关管的输出端连接,所述第十三开关管的输入端与所述恒压低电平源连接,所述第十三开关管的输出端与所述第十开关管的控制端连接;
    所述第十四开关管的控制端与第二参考点连接,所述第十四开关管的输入端与所述恒压低电平源连接,所述第十四开关管的输出端与所述第二开关管的输出端连接;
    所述第十五开关管的控制端与所述第二参考点连接,所述第十五开关管的输入端与所述恒压低电平源连接,所述第十五开关管的输出端与所述驱动模块输出端连接;
    所述第十六开关管的控制端与所述第十八开关管的输出端连接,所述第十六开关管的输入端输入第二低频电位信号,所述第十六开关管的输出端与所述第二参考点连接;
    所述第十七开关管的控制端与所述第二开关管的输出端连接,所述第十七开关管的输入端与所述恒压低电平源连接,所述第十七开关管的输出端与所述第二参考点连接;
    所述第十八开关管的控制端输入所述第二低频电位信号,所述第十八开关管的输入端输入所述第二低频电位信号;
    所述第十九开关管的控制端与所述第二开关管的输出端连接,所述第十九开关管的输入端与所述恒压低电平源连接,所述第十九开关管的输出端与所述第十六开关管的控制端连接。
  7. 根据权利要求6所述的扫描驱动电路,其中所述第一低频电位信号和所述第二低频电位信号为反相信号。
  8. 一种扫描驱动电路,用于对级联的扫描线进行驱动操作,其包括:
    上拉控制模块,用于接收上级的扫描信号,并根据所述上级的扫描信号生成相应的所述扫描线的扫描电平信号;
    驱动模块,用于根据所述扫描电平信号以及本级的时钟信号,拉升相应的所述扫描线的本级的扫描信号;
    下拉模块,用于根据下级的扫描信号,拉低相应的所述扫描线的扫描电平信号;
    下拉维持模块,用于维持相应的所述扫描线的扫描电平信号的低电平;以及
    恒压低电平源,用于提供下拉低电平;
    其中所述上拉控制模块包括第一开关管、第二开关管以及第三开关管,所述第一开关管的输入端输入所述上级的扫描信号,所述第一开关管的控制端输入所述上级的扫描信号,所述第一开关管的输出端与所述第二开关管的输入端连接,所述第二开关管的控制端输入端所述上级的扫描信号,所述第二开关管的输出端输出所述扫描电平信号;所述第三开关管的输入端与驱动模块的输出端连接,所述第三开关管的输出端与所述第二开关管的输入端连接,所述第三开关管的控制端与所述第二开关管的输出端连接。
  9. 根据权利要求8所述的扫描驱动电路,其中所述上级的扫描信号为上四级的扫描信号,所述下级的扫描信号为下五级的扫描信号。
  10. 根据权利要求8所述的扫描驱动电路,其中所述驱动模块包括第四开关管以及第五开关管;
    所述第四开关管的控制端与所述上拉控制模块的输出连接,所述第四开关管的输入端输入所述本级的时钟信号,所述第四开关管的输出端输出本级的级联信号;所述第五开关管的控制端与所述上拉控制模块的输出连接,所述第五开关管的输入端输入所述本级的时钟信号,所述第五开关管的输出端输出本级的扫描信号。
  11. 根据权利要求10所述的扫描驱动电路,其中所述扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;
    所述自举电容一端与所述上拉控制模块的输出连接,所述自举电容的另一端与所述第五开关管的输出端连接。
  12. 根据权利要求8所述的扫描驱动电路,其中所述下拉模块包括第六开关管以及第七开关管;
    所述第六开关管的控制端输入所述下级的扫描信号,所述第六开关管的输入端与所述恒压低电平源连接,所述第六开关管的输出端与所述第二开关管的输出端连接;
    所述第七开关管的控制端输入所述下级的扫描信号,所述第七开关管的输入端与所述恒压低电平源连接,所述第七开关管的输出端与所述驱动模块输出端连接。
  13. 根据权利要求8所述的扫描驱动电路,其中所述下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;
    其中所述第八开关管的控制端与第一参考点连接,所述第八开关管的输入端与所述恒压低电平源连接,所述第八开关管的输出端与所述第二开关管的输出端连接;
    所述第九开关管的控制端与所述第一参考点连接,所述第九开关管的输入端与所述恒压低电平源连接,所述第九开关管的输出端与所述驱动模块输出端连接;
    所述第十开关管的控制端与所述第十二开关管的输出端连接,所述第十开关管的输入端输入第一低频电位信号,所述第十开关管的输出端与所述第一参考点连接;
    所述第十一开关管的控制端与所述第二开关管的输出端连接,所述第十一开关管的输入端与所述恒压低电平源连接,所述第十一开关管的输出端与所述第一参考点连接;
    所述第十二开关管的控制端输入所述第一低频电位信号,所述第十二开关管的输入端输入所述第一低频电位信号;
    所述第十三开关管的控制端与所述第二开关管的输出端连接,所述第十三开关管的输入端与所述恒压低电平源连接,所述第十三开关管的输出端与所述第十开关管的控制端连接;
    所述第十四开关管的控制端与第二参考点连接,所述第十四开关管的输入端与所述恒压低电平源连接,所述第十四开关管的输出端与所述第二开关管的输出端连接;
    所述第十五开关管的控制端与所述第二参考点连接,所述第十五开关管的输入端与所述恒压低电平源连接,所述第十五开关管的输出端与所述驱动模块输出端连接;
    所述第十六开关管的控制端与所述第十八开关管的输出端连接,所述第十六开关管的输入端输入第二低频电位信号,所述第十六开关管的输出端与所述第二参考点连接;
    所述第十七开关管的控制端与所述第二开关管的输出端连接,所述第十七开关管的输入端与所述恒压低电平源连接,所述第十七开关管的输出端与所述第二参考点连接;
    所述第十八开关管的控制端输入所述第二低频电位信号,所述第十八开关管的输入端输入所述第二低频电位信号;
    所述第十九开关管的控制端与所述第二开关管的输出端连接,所述第十九开关管的输入端与所述恒压低电平源连接,所述第十九开关管的输出端与所述第十六开关管的控制端连接。
  14. 根据权利要求13所述的扫描驱动电路,其中所述第一低频电位信号和所述第二低频电位信号为反相信号。
  15. 一种显示装置,其包括用于对级联的扫描线进行驱动操作的扫描驱动电路,所述扫描驱动电路包括:
    上拉控制模块,用于接收上级的扫描信号,并根据所述上级的扫描信号生成相应的所述扫描线的扫描电平信号;
    驱动模块,用于根据所述扫描电平信号以及本级的时钟信号,拉升相应的所述扫描线的本级的扫描信号;
    下拉模块,用于根据下级的扫描信号,拉低相应的所述扫描线的扫描电平信号;
    下拉维持模块,用于维持相应的所述扫描线的扫描电平信号的低电平;以及
    恒压低电平源,用于提供下拉低电平;
    其中所述上拉控制模块包括第一开关管、第二开关管以及第三开关管,所述第一开关管的输入端输入所述上级的扫描信号,所述第一开关管的控制端输入所述上级的扫描信号,所述第一开关管的输出端与所述第二开关管的输入端连接,所述第二开关管的控制端输入端所述上级的扫描信号,所述第二开关管的输出端输出所述扫描电平信号;所述第三开关管的输入端与恒压高电平源连接,所述第三开关管的输出端与所述第二开关管的输入端连接,所述第三开关管的控制端与所述第二开关管的输出端连接。
  16. 根据权利要求15所述的显示装置,其中所述上级的扫描信号为上四级的扫描信号,所述下级的扫描信号为下五级的扫描信号。
  17. 根据权利要求15所述的显示装置,其中所述驱动模块包括第四开关管以及第五开关管;
    所述第四开关管的控制端与所述上拉控制模块的输出连接,所述第四开关管的输入端输入所述本级的时钟信号,所述第四开关管的输出端输出本级的级联信号;所述第五开关管的控制端与所述上拉控制模块的输出连接,所述第五开关管的输入端输入所述本级的时钟信号,所述第五开关管的输出端输出本级的扫描信号。
  18. 根据权利要求17所述的显示装置,其中所述扫描驱动电路还包括用于生成所述扫描线的本级的扫描信号的高电平的自举电容;
    所述自举电容一端与所述上拉控制模块的输出连接,所述自举电容的另一端与所述第五开关管的输出端连接。
  19. 根据权利要求15所述的显示装置,其中所述下拉模块包括第六开关管以及第七开关管;
    所述第六开关管的控制端输入所述下级的扫描信号,所述第六开关管的输入端与所述恒压低电平源连接,所述第六开关管的输出端与所述第二开关管的输出端连接;
    所述第七开关管的控制端输入所述下级的扫描信号,所述第七开关管的输入端与所述恒压低电平源连接,所述第七开关管的输出端与所述驱动模块输出端连接。
  20. 根据权利要求15所述的显示装置,其中所述下拉维持模块包括第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管、第十四开关管、第十五开关管、第十六开关管、第十七开关管、第十八开关管以及第十九开关管;
    其中所述第八开关管的控制端与第一参考点连接,所述第八开关管的输入端与所述恒压低电平源连接,所述第八开关管的输出端与所述第二开关管的输出端连接;
    所述第九开关管的控制端与所述第一参考点连接,所述第九开关管的输入端与所述恒压低电平源连接,所述第九开关管的输出端与所述驱动模块输出端连接;
    所述第十开关管的控制端与所述第十二开关管的输出端连接,所述第十开关管的输入端输入第一低频电位信号,所述第十开关管的输出端与所述第一参考点连接;
    所述第十一开关管的控制端与所述第二开关管的输出端连接,所述第十一开关管的输入端与所述恒压低电平源连接,所述第十一开关管的输出端与所述第一参考点连接;
    所述第十二开关管的控制端输入所述第一低频电位信号,所述第十二开关管的输入端输入所述第一低频电位信号;
    所述第十三开关管的控制端与所述第二开关管的输出端连接,所述第十三开关管的输入端与所述恒压低电平源连接,所述第十三开关管的输出端与所述第十开关管的控制端连接;
    所述第十四开关管的控制端与第二参考点连接,所述第十四开关管的输入端与所述恒压低电平源连接,所述第十四开关管的输出端与所述第二开关管的输出端连接;
    所述第十五开关管的控制端与所述第二参考点连接,所述第十五开关管的输入端与所述恒压低电平源连接,所述第十五开关管的输出端与所述驱动模块输出端连接;
    所述第十六开关管的控制端与所述第十八开关管的输出端连接,所述第十六开关管的输入端输入第二低频电位信号,所述第十六开关管的输出端与所述第二参考点连接;
    所述第十七开关管的控制端与所述第二开关管的输出端连接,所述第十七开关管的输入端与所述恒压低电平源连接,所述第十七开关管的输出端与所述第二参考点连接;
    所述第十八开关管的控制端输入所述第二低频电位信号,所述第十八开关管的输入端输入所述第二低频电位信号;
    所述第十九开关管的控制端与所述第二开关管的输出端连接,所述第十九开关管的输入端与所述恒压低电平源连接,所述第十九开关管的输出端与所述第十六开关管的控制端连接。
PCT/CN2016/111055 2016-09-21 2016-12-20 扫描驱动电路及显示装置 WO2018053957A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197011371A KR102134172B1 (ko) 2016-09-21 2016-12-20 스캐닝 구동 회로 및 디스플레이 장치
JP2019516242A JP6692002B2 (ja) 2016-09-21 2016-12-20 走査駆動回路および表示装置
EP16916696.4A EP3518225A4 (en) 2016-09-21 2016-12-20 SCAN DRIVER CIRCUIT AND DISPLAY DEVICE
US15/325,962 US10068544B2 (en) 2016-09-21 2016-12-20 Gate driver on array driving circuit and LCD device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610836750.1 2016-09-21
CN201610836750.1A CN106128409B (zh) 2016-09-21 2016-09-21 扫描驱动电路及显示装置

Publications (1)

Publication Number Publication Date
WO2018053957A1 true WO2018053957A1 (zh) 2018-03-29

Family

ID=57271506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111055 WO2018053957A1 (zh) 2016-09-21 2016-12-20 扫描驱动电路及显示装置

Country Status (6)

Country Link
US (1) US10068544B2 (zh)
EP (1) EP3518225A4 (zh)
JP (1) JP6692002B2 (zh)
KR (1) KR102134172B1 (zh)
CN (1) CN106128409B (zh)
WO (1) WO2018053957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538268A (zh) * 2018-04-20 2018-09-14 南京中电熊猫液晶显示科技有限公司 一种双向扫描栅极驱动电路

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336291B (zh) * 2015-12-04 2018-11-02 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法与显示装置
CN106128409B (zh) * 2016-09-21 2018-11-27 深圳市华星光电技术有限公司 扫描驱动电路及显示装置
CN106571123B (zh) * 2016-10-18 2018-05-29 深圳市华星光电技术有限公司 Goa驱动电路及液晶显示装置
CN106683631B (zh) * 2016-12-30 2018-06-22 深圳市华星光电技术有限公司 一种igzo薄膜晶体管的goa电路及显示装置
CN106531109A (zh) * 2016-12-30 2017-03-22 深圳市华星光电技术有限公司 一种goa电路以及液晶显示器
CN106782395B (zh) * 2016-12-30 2019-02-26 深圳市华星光电技术有限公司 Goa电路的驱动方法和驱动装置
CN106486078B (zh) 2016-12-30 2019-05-03 深圳市华星光电技术有限公司 一种扫描驱动电路、驱动电路及显示装置
CN106898290B (zh) * 2017-04-21 2019-08-02 深圳市华星光电半导体显示技术有限公司 扫描驱动电路
US10431135B2 (en) 2017-04-21 2019-10-01 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Scanning driving circuit
CN107039016B (zh) * 2017-06-07 2019-08-13 深圳市华星光电技术有限公司 Goa驱动电路及液晶显示器
KR102348667B1 (ko) * 2017-06-15 2022-01-06 엘지디스플레이 주식회사 쉬프트 레지스터 및 이를 포함하는 디스플레이 장치
CN107146589A (zh) * 2017-07-04 2017-09-08 深圳市华星光电技术有限公司 Goa电路及液晶显示装置
CN107705762B (zh) * 2017-09-27 2020-03-10 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动装置和显示装置
CN108831367B (zh) * 2018-06-29 2021-07-09 厦门天马微电子有限公司 扫描驱动单元、电路和显示面板
CN109581773B (zh) * 2018-12-29 2021-11-19 厦门天马微电子有限公司 显示面板和显示装置
CN109935204B (zh) * 2019-01-18 2022-06-03 合肥京东方卓印科技有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
CN110264940B (zh) * 2019-07-16 2020-11-10 深圳市华星光电半导体显示技术有限公司 驱动电路
CN110689858B (zh) 2019-10-18 2022-04-15 京东方科技集团股份有限公司 一种移位寄存器及其驱动方法、栅极驱动电路
CN110890077A (zh) * 2019-11-26 2020-03-17 深圳市华星光电半导体显示技术有限公司 一种goa电路及液晶显示面板
CN111105763A (zh) * 2019-12-19 2020-05-05 深圳市华星光电半导体显示技术有限公司 Goa电路及显示面板
US10984696B1 (en) 2019-12-19 2021-04-20 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Gate on array circuit and display panel
CN111627402B (zh) * 2020-06-01 2021-09-24 武汉华星光电技术有限公司 Goa电路、显示面板以及显示装置
CN114360431B (zh) * 2022-01-28 2023-08-22 深圳市华星光电半导体显示技术有限公司 Goa电路及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853705A (zh) * 2010-05-27 2010-10-06 友达光电股份有限公司 移位缓存器电路
CN102592561A (zh) * 2011-12-29 2012-07-18 友达光电股份有限公司 栅极驱动电路
CN104008739A (zh) * 2014-05-20 2014-08-27 深圳市华星光电技术有限公司 一种扫描驱动电路和一种液晶显示装置
US20150356909A1 (en) * 2014-06-09 2015-12-10 Samsung Display Co., Ltd. Gate circuit and display device using the same
CN105609041A (zh) * 2016-03-23 2016-05-25 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN106128409A (zh) * 2016-09-21 2016-11-16 深圳市华星光电技术有限公司 扫描驱动电路及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501048B2 (ja) * 2000-12-28 2010-07-14 カシオ計算機株式会社 シフトレジスタ回路及びその駆動制御方法並びに表示駆動装置、読取駆動装置
KR20080047110A (ko) * 2006-11-24 2008-05-28 배병성 시프터 레지스터 성능 개선을 위한 입력 회로
CN103680386B (zh) * 2013-12-18 2016-03-09 深圳市华星光电技术有限公司 用于平板显示的goa电路及显示装置
CN103928007B (zh) * 2014-04-21 2016-01-20 深圳市华星光电技术有限公司 一种用于液晶显示的goa电路及液晶显示装置
TWI486959B (zh) 2014-05-05 2015-06-01 Au Optronics Corp 移位暫存器電路
CN104409057B (zh) * 2014-11-14 2017-09-29 深圳市华星光电技术有限公司 一种扫描驱动电路
CN104700801B (zh) * 2015-03-24 2016-11-02 深圳市华星光电技术有限公司 Pmos栅极驱动电路
KR102281753B1 (ko) * 2015-04-14 2021-07-27 삼성디스플레이 주식회사 스테이지 회로 및 이를 이용한 주사 구동부
CN105096863B (zh) * 2015-08-05 2018-04-10 深圳市华星光电技术有限公司 一种液晶显示装置及其栅极驱动电路
CN105118419B (zh) * 2015-09-28 2017-11-10 深圳市华星光电技术有限公司 一种显示装置、tft基板及goa驱动电路
CN105405421B (zh) * 2015-11-09 2018-04-20 深圳市华星光电技术有限公司 液晶显示设备及goa电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853705A (zh) * 2010-05-27 2010-10-06 友达光电股份有限公司 移位缓存器电路
CN102592561A (zh) * 2011-12-29 2012-07-18 友达光电股份有限公司 栅极驱动电路
CN104008739A (zh) * 2014-05-20 2014-08-27 深圳市华星光电技术有限公司 一种扫描驱动电路和一种液晶显示装置
US20150356909A1 (en) * 2014-06-09 2015-12-10 Samsung Display Co., Ltd. Gate circuit and display device using the same
CN105609041A (zh) * 2016-03-23 2016-05-25 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN106128409A (zh) * 2016-09-21 2016-11-16 深圳市华星光电技术有限公司 扫描驱动电路及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3518225A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538268A (zh) * 2018-04-20 2018-09-14 南京中电熊猫液晶显示科技有限公司 一种双向扫描栅极驱动电路
CN108538268B (zh) * 2018-04-20 2020-08-04 南京中电熊猫液晶显示科技有限公司 一种双向扫描栅极驱动电路

Also Published As

Publication number Publication date
CN106128409A (zh) 2016-11-16
KR20190070924A (ko) 2019-06-21
US10068544B2 (en) 2018-09-04
EP3518225A1 (en) 2019-07-31
EP3518225A4 (en) 2020-06-17
CN106128409B (zh) 2018-11-27
JP6692002B2 (ja) 2020-05-13
US20180218698A1 (en) 2018-08-02
JP2019537044A (ja) 2019-12-19
KR102134172B1 (ko) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2018053957A1 (zh) 扫描驱动电路及显示装置
WO2017075843A1 (zh) 一种扫描驱动装置
WO2016074269A1 (zh) 一种扫描驱动电路
WO2018120303A1 (zh) 一种igzo薄膜晶体管的goa电路及显示装置
WO2017000359A1 (zh) 一种扫描驱动电路
WO2016074264A1 (zh) 一种扫描驱动电路
WO2016074303A1 (zh) 一种扫描驱动电路
WO2017197687A1 (zh) 一种cmos goa电路结构及液晶显示面板
WO2019109454A1 (zh) 一种 goa 电路
WO2018192026A1 (zh) 扫描驱动电路
WO2016192176A1 (zh) 一种扫描驱动电路
WO2015137709A1 (ko) 표시장치
WO2017049659A1 (zh) 一种goa电路、显示装置和goa电路的驱动方法
WO2016095262A1 (zh) 一种扫描驱动电路
WO2016074283A1 (zh) 用于液晶显示的goa电路及液晶显示装置
WO2019010765A1 (zh) 一种 amoled 像素驱动电路及像素驱动方法
WO2018120676A1 (zh) 一种像素充电方法、电路、液晶显示屏及液晶显示装置
WO2015182998A1 (ko) 시프트 회로, 시프트 레지스터 및 표시장치
WO2016090670A1 (zh) 一种扫描驱动电路
WO2013143148A1 (zh) 显示器的闸极驱动电路
WO2017020327A1 (zh) 一种扫描驱动电路
WO2017124598A1 (zh) 一种栅极驱动电路及显示面板
WO2016165178A1 (zh) 源极驱动器及液晶显示器
WO2017124597A1 (zh) 一种栅极驱动电路及其液晶显示器
WO2017197686A1 (zh) Goa 驱动电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15325962

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011371

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016916696

Country of ref document: EP

Effective date: 20190423