WO2018038198A1 - 耐硫酸露点腐食鋼 - Google Patents

耐硫酸露点腐食鋼 Download PDF

Info

Publication number
WO2018038198A1
WO2018038198A1 PCT/JP2017/030264 JP2017030264W WO2018038198A1 WO 2018038198 A1 WO2018038198 A1 WO 2018038198A1 JP 2017030264 W JP2017030264 W JP 2017030264W WO 2018038198 A1 WO2018038198 A1 WO 2018038198A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
steel
acid dew
point corrosion
dew point
Prior art date
Application number
PCT/JP2017/030264
Other languages
English (en)
French (fr)
Inventor
康人 猪原
村瀬 正次
啓泰 菊池
俊司 桐本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020197008031A priority Critical patent/KR102215679B1/ko
Priority to MYPI2019000935A priority patent/MY186700A/en
Priority to CN201780050931.4A priority patent/CN109642283B/zh
Priority to JP2017564514A priority patent/JP6338031B1/ja
Publication of WO2018038198A1 publication Critical patent/WO2018038198A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the present invention relates to a sulfuric acid dew point corrosion steel used as a constituent material for heat exchangers, tanks, plants, etc. in an environment where sulfuric acid is in contact with or in which sulfuric acid dew point is generated, and in particular, excellent sulfuric acid dew point corrosion resistance and manufacturability. And sulfuric acid dew-point corrosion steel having excellent bendability and fatigue resistance.
  • sulfuric acid dew point corrosion steel As a solution to this sulfuric acid dew point corrosion problem, sulfuric acid dew point corrosion steel has been developed and already put into practical use. As such a sulfuric acid dew point corrosion steel, Sb that improves sulfuric acid corrosion resistance, and also Cu, which is an element that improves acid resistance, are utilized to propose a technology that improves acid resistance as well as sulfuric acid corrosion resistance. Has been.
  • Patent Document 2 aims to improve hot workability by reducing the amount of S and adding Mo and B. “By weight, C: 0.01 to 0.15%, Si: 0.1 to 0.5%, Mn: 0.1 to 0.5%, P: 0.03% or less, S: 0.0.
  • JP 2003-213367 A Japanese Patent Laid-Open No. 10-110237
  • the concentration of sulfuric acid generated in the sulfuric acid dew point environment varies depending on the temperature.
  • sulfuric acid concentration about 20% by mass at low temperature: 40 ° C.
  • sulfuric acid concentration about 50% by mass at medium temperature: 70 ° C.
  • high temperature 100
  • the sulfuric acid concentration is 70 to 80% by mass at °C to 140 °C.
  • the desired sulfuric acid dew point corrosion resistance may not be obtained even when S is reduced or Mo is added.
  • the present invention was developed in view of the above-described present situation, and provides sulfuric acid dew point corrosion steel that simultaneously realizes excellent sulfuric acid dew point corrosion resistance and manufacturability, and is also excellent in bendability and fatigue resistance.
  • the purpose is to do.
  • each additive element that improves sulfuric acid dew point corrosion resistance has an effect on manufacturability, and also bendability and fatigue resistance, and each additive element that improves manufacturability, bendability, and fatigue resistance.
  • steels with various composition are manufactured to achieve both sulfuric acid dew point corrosion resistance and manufacturability, as well as to obtain excellent bendability and fatigue resistance. Thus, effective combinations of additive elements were examined.
  • the gist configuration of the present invention is as follows.
  • the sulfuric acid dew-point corrosion steel according to any one of 1 to 3, In the cathodic polarization curve showing the relationship between the current density and the potential in a sulfuric acid aqueous solution having a temperature of 70 ° C. and a concentration of 50% by mass, the potential at the current density of 0.1 A / cm 2 is shown.
  • Is Va (V) The above Va is related to the potential Vg (V) when the current density in the cathode polarization curve in the sulfuric acid aqueous solution of the reference steel of the sulfuric acid dew-point corrosion steel is 0.1 A / cm 2 , and the following (4) Sulfuric acid dew-point corrosion steel that satisfies the formula.
  • a sulfuric acid dew point corrosion-resistant steel having excellent sulfuric acid dew point corrosion resistance and manufacturability and excellent bendability and fatigue resistance can be obtained.
  • the sulfuric acid dew point corrosion steel of the present invention can be suitably used as a constituent material for tanks, plants, etc. under various sulfuric acid dew point corrosion environments. Such a tank, plant, etc. can be manufactured.
  • C 0.050 to 0.150%
  • C is an element that increases the strength of steel.
  • the C content is 0.050% or more.
  • the C content is in the range of 0.050 to 0.150%.
  • it is in the range of 0.060 to 0.100%.
  • Si 0.10 to 0.80% Si is a component added as a deoxidizer and has the effect of increasing the strength of steel. For this reason, the amount of Si shall be 0.10% or more. However, if the Si content exceeds 0.80%, the toughness of the steel deteriorates. Therefore, the Si amount is in the range of 0.10 to 0.80%. Note that Si contributes to the improvement of the resistance to sulfuric acid dew point corrosion by forming an anticorrosion film in a sulfuric acid aqueous solution environment. In order to obtain such an effect of improving the resistance to sulfuric acid dew point corrosion, the Si content is preferably 0.25% or more.
  • Mn 0.50 to 1.00%
  • Mn is an element that increases the strength of steel. In order to obtain a desired strength, the amount of Mn is set to 0.50% or more. On the other hand, when the amount of Mn exceeds 1.00%, the toughness and weldability of steel are reduced. Therefore, the amount of Mn is set in the range of 0.50 to 1.00%. From the viewpoint of maintaining strength and suppressing the formation of inclusions that degrade the sulfuric acid dew point corrosion resistance, the Mn content is preferably in the range of 0.50 to 0.70%.
  • P 0.050% or less
  • P is a harmful element that segregates at grain boundaries and lowers the toughness of steel.
  • the P content is 0.050% or less.
  • P is desirably reduced as much as possible, a reduction to less than 0.005% causes an increase in manufacturing cost. Therefore, the lower limit of the amount of P is preferably 0.005%.
  • S 0.0020 to 0.0200%
  • S is an element that contributes to the formation of a Cu 2 S film in the presence of Cu, suppresses the corrosion reaction on the steel surface, and improves the resistance to sulfuric acid dew point corrosion.
  • S forms MnS which is a non-metallic inclusion, and this MnS is a harmful element that lowers the local corrosion resistance due to the origin of local corrosion. Therefore, from the viewpoint of ensuring sulfuric acid dew point corrosion resistance, the S amount is set to 0.0020% or more. On the other hand, from the viewpoint of avoiding a decrease in local corrosion resistance, the amount of S is set to 0.0200% or less. In addition, from the viewpoint of further improving the sulfuric acid dew point corrosion resistance, the S amount is preferably 0.0050% or more.
  • Cu 0.20 to 0.50%
  • Cu is an essential element that improves acid resistance in a corrosive environment caused by acid.
  • the amount of Cu is less than 0.20%, the effect is small.
  • the amount of Cu exceeds 0.50%, the acid resistance improving effect is saturated and the productivity, in particular, the hot workability is deteriorated. Therefore, the Cu amount is set in the range of 0.20 to 0.50%.
  • Ni 0.10 to 0.80%
  • Ni is an element that suppresses deterioration of hot workability due to the addition of Cu or Sb. However, when the amount of Ni is less than 0.10%, the effect is small. On the other hand, if the Ni content exceeds 0.80%, the effect of suppressing deterioration of hot workability is saturated and the cost is increased. Therefore, the Ni content is in the range of 0.10 to 0.80%.
  • Cr 0.20 to 1.50%
  • Cr does not greatly contribute to the effect of improving the sulfuric acid dew point corrosion resistance in a normal temperature environment, it is an element that improves the sulfuric acid dew point corrosion resistance when the use environment becomes a high temperature of 120 ° C. or higher.
  • the Cr content is less than 0.20%, these effects are small.
  • the Cr content exceeds 1.50%, these effects are saturated and the cost is increased. Therefore, the Cr content is in the range of 0.20 to 1.50%. Preferably, it is in the range of 0.40 to 1.50%.
  • Sb 0.050 to 0.300%
  • Sb is an element that concentrates on the steel surface as a Cu compound by complex addition with Cu and improves acid resistance.
  • the Sb content is less than 0.050%, the effect is small.
  • the amount of Sb exceeds 0.300%, the effect is saturated and manufacturability, particularly hot workability is deteriorated. Therefore, the Sb amount is set in the range of 0.050 to 0.300%.
  • the Sb content is preferably in the range of 0.100 to 0.200%.
  • Ti 0.005 to 0.050%
  • Ti is an element added for the purpose of improving the strength and toughness of steel.
  • the amount of Ti is less than 0.005%, a desired effect cannot be obtained.
  • the amount of Ti exceeds 0.050%, the effect of improving the strength and toughness of the steel is saturated. Therefore, the Ti amount is set to a range of 0.005 to 0.050%.
  • Al 0.001 to 0.050%
  • Al is an element added as a deoxidizer. From the viewpoint of obtaining such an effect, the Al amount needs to be 0.001% or more. On the other hand, if the Al content exceeds 0.050%, the toughness of the steel decreases. Therefore, the Al content is set in the range of 0.001 to 0.050%. Preferably, it is in the range of 0.010 to 0.050%.
  • N 0.0005 to 0.0050% N is an element that degrades the toughness of steel in a solid solution state, and is preferably reduced as much as possible, but is acceptable if the N content is 0.0050% or less. On the other hand, it is technically difficult to completely remove N, and reduction more than necessary causes an increase in manufacturing cost. Therefore, the lower limit of the N amount is 0.0005%.
  • each component satisfies the above range, and the contents of S, Cu and Sb are the following formula (1), and the contents of Cu, Ni and Sb are the following formula (2), respectively. It is important to be satisfied. 0.50 ⁇ [% Cu] / (10 ⁇ [% S] + [% Sb]) ⁇ 5.00 (1) 0.50 ⁇ [% Ni] / ([% Cu] + [% Sb]) ⁇ 2.50 (2)
  • [% S], [% Cu], [% Ni] and [% Sb] are the contents (mass%) of S, Cu, Ni and Sb in the component composition, respectively.
  • the rolling reduction 97.75%
  • the finishing temperature 850 ° C.
  • the winding temperature 560 ° C.
  • the average cooling rate from 800 ° C. to 650 ° C. is 3.0 to 8.0 ° C./s. It was made to be within the range.
  • a corrosion test piece having a width of 20 mm ⁇ length of 30 mm ⁇ thickness of 3 mm was cut out, and the cut out corrosion test piece was subjected to a sulfuric acid aqueous solution ( (Corrosion weight loss was measured in a sulfuric acid immersion corrosion test immersed in a temperature of 70 ° C. and a concentration of 50 mass%) for 6 hours, and the corrosion rate of each specimen was calculated from the corrosion weight loss.
  • the sulfuric acid dew point corrosion resistance was evaluated according to the following criteria.
  • the value of [% Ni] / ([% Cu] + [% Sb]) is preferably 0.55 or more, more preferably 0.60 or more. From the standpoint of improving manufacturability, only the lower limit of [% Ni] / ([% Cu] + [% Sb]) may be specified. However, when the amount of Ni increases, the resistance to sulfuric acid dew point corrosion is reduced. Since there is a possibility of adverse effects, the upper limit of [% Ni] / ([% Cu] + [% Sb]) is also defined here.
  • the contents of C, Ti and N satisfy the relationship of the following formula (3). 0.30 ⁇ [% Ti] / (0.2 ⁇ [% C] + [% N]) ⁇ 2.50 (3)
  • [% C], [% Ti] and [% N] are the contents (mass%) of C, Ti and N in the component composition, respectively.
  • Fe and inevitable impurities are elements that are inevitably mixed from steel raw material ore and scrap, etc., and are not added consciously and do not affect the effects of the present invention. It refers to an impurity component. Examples of such inevitable impurities include O (oxygen), and the upper limit is about 0.0050%.
  • the area ratio of the ferrite phase occupying the entire steel structure is 75% or more, the area ratio of the pearlite phase is less than 25%, and the remainder other than the ferrite phase and the pearlite phase.
  • Examples include steel structures having a total area ratio of less than 5%.
  • the hot rolling conditions described later are appropriately controlled.
  • the average cooling rate in the temperature range of 800 ° C. to 650 ° C. is 1.0 ° C./s to 20.0 ° C. It is important to keep it below / s.
  • Area ratio of ferrite phase 75% or more
  • the sulfuric acid dew-point corrosion steel may be used after being bent depending on the shape of the final product.
  • the area ratio of the ferrite phase in the entire steel structure is preferably 75% or more. More preferably, it is 80% or more.
  • the area ratio of the ferrite phase may be 100%.
  • Perlite phase area ratio less than 25%
  • the sulfuric acid dew-point corrosion steel may be used after being bent depending on the shape of the final product.
  • the area ratio of the pearlite phase is 25% or more, there is a possibility that cracking may occur during bending. Therefore, the area ratio of the pearlite phase in the entire steel structure is preferably less than 25%. More preferably, it is 20% or less.
  • the area ratio of the pearlite phase may be 0%.
  • the remaining structure other than the ferrite phase and the pearlite phase includes a bainite phase and the like, and when a bainite phase or a martensite phase is mixed, there is a concern about cracking during bending. Therefore, the total area ratio of the remaining structure other than the ferrite phase and the pearlite phase is preferably less than 5%.
  • the maximum Vickers hardness exceeds 200, cracks tend to occur during bending, and fatigue resistance tends to deteriorate.
  • the average Vickers hardness is less than 80, it is difficult to ensure a predetermined strength. For this reason, it is preferable that the maximum Vickers hardness is 200 or less and the average Vickers hardness is 80 or more.
  • the current density 0.1 A / cm in the cathodic polarization curve showing the relationship between the current density and the potential in a sulfuric acid aqueous solution having a temperature of 70 ° C. and a concentration of 50% by mass.
  • Va is the current density in the cathodic polarization curve in the sulfuric acid aqueous solution of the reference steel of the sulfuric acid dew-point corrosion steel: 0.1 A / cm 2
  • FIG. 4 shows the relationship between the cathodic polarization curve representing the relationship between the current density and potential of the reduction reaction of hydrogen ions in a sulfuric acid aqueous solution at a temperature of 70 ° C. and a concentration of 50% by mass, and the relationship between the current density and potential of the iron dissolution reaction.
  • An example of the anodic polarization curve to represent is shown. In FIG. 4, the point where the cathodic polarization curve and the anodic polarization curve intersect is the point where corrosion actually proceeds.
  • the inventors obtained the cathode polarization curves of various steels under various conditions, and further investigated the relationship between the cathode polarization curves and sulfuric acid dew point corrosion resistance. As a result, it is effective to suppress the cathodic reaction to improve the sulfuric acid dew point corrosion resistance.
  • the sulfuric acid dew point corrosion resistance is cathodic polarization in a sulfuric acid aqueous solution having a temperature of 70 ° C. and a concentration of 50% by mass. The current density in the curve was found to be closely related to the potential at 0.1 A / cm 2 .
  • Va is a standard that is so-called general steel.
  • Current density: Vg (V) which is the potential at 0.1 A / cm 2 , as described above (4 It has been found that it is preferable to satisfy the formula (1), and by satisfying such a relationship, the resistance to sulfuric acid dew point corrosion is further enhanced. Therefore, it is preferable to satisfy the relationship of Vg ⁇ Va> 0.03. More preferably, Vg ⁇ Va> 0.05.
  • Vg ⁇ Va is not particularly limited, but is usually about 0.15. Note that when potential measurement is performed using the Hg / Hg (SO 4 ) reference electrode, both Va and Vg show negative values. Even in this case, Va is made relatively smaller than Vg. This is very important. In addition, the current density in the cathode polarization curve: 0.1 A / cm 2 potential was selected. If the current density is smaller than this, noise may occur depending on the measurement conditions. This is because the cathode reaction itself is rate-limiting and it may be difficult to accurately measure the potential.
  • the reference steel referred to here is mass%, C: 0.050 to 0.150%, Si: 0.10 to 0.80%, Mn: 0.50 to 1.00%, P: 0. .050% or less, S: 0.0020 to 0.0200%, Al: 0.001 to 0.050% and N: 0.0005 to 0.0050%, with the balance being Fe and inevitable impurities Steel having a component composition (particularly, Cu: less than 0.02%, Ni: less than 0.02%, Cr: less than 0.02%, Sb: less than 0.010% and Ti: less than 0.005%) Steel having a component composition).
  • the cathodic polarization curves in a sulfuric acid aqueous solution having a temperature of 70 ° C. and a concentration of 50% by mass are substantially the same.
  • the sulfuric acid dew-point corrosion steel of the present invention is obtained by finishing a steel material adjusted to the above component composition into various shapes such as a thin steel plate, a thick steel plate, and a shaped steel. After melting by a generally known method such as a furnace, electric furnace, vacuum degassing apparatus, etc., a steel slab is formed by a continuous casting method, etc., and this steel slab is hot-rolled by reheating immediately or after cooling. A method is mentioned. Moreover, when making it a cold-rolled steel sheet, pickling, cold rolling, and annealing are further performed to obtain a product.
  • the hot rolling conditions include the required mechanical properties, ie, strength (hardness), bendability, and fatigue resistance, from the viewpoint of ensuring the reduction rate of 50 to 99% and the finishing temperature of 650 to 950 ° C.
  • the winding temperature is preferably 400 to 650 ° C.
  • the average cooling rate from 800 ° C. to 650 ° C. is preferably 1.0 to 20.0 ° C./s.
  • the average cooling rate from 800 ° C. to 650 ° C. is preferably set to 1.0 to 10.0 ° C./s.
  • Vickers hardness is an arbitrary value in the surface layer (position 0.5 mm from the surface) of the hot-rolled steel sheet obtained as described above under the condition of load: 9.8 N according to JIS Z 2244. These 20 points were measured, and the average value and the maximum value were obtained.
  • a corrosion test piece having a width of 20 mm, a length of 30 mm, and a thickness of 3 mm was cut out from the hot-rolled steel sheet obtained as described above, and the cut out corrosion test piece was converted into a sulfuric acid aqueous solution (temperature: 140 ° C., concentration: 80
  • the sample was subjected to a sulfuric acid immersion corrosion test that was immersed in (mass%) for 3 hours, the corrosion weight loss was measured, and the corrosion rate of each specimen was calculated from the corrosion weight loss.
  • the sulfuric acid dew point corrosion resistance at high temperatures was evaluated according to the following criteria.
  • test material having a size of 10 mm ⁇ 10 mm was cut out from the hot-rolled steel sheet obtained as described above, and the end surface and the back surface of the cut-out test piece were covered with a protective coating to be protected.
  • This test material was immersed in a sulfuric acid aqueous solution (temperature: 70 ° C., concentration: 50 mass%) for 10 minutes, and then the potential was swept to the cathode side at a rate of 1 mV / sec to about 0.4 V to obtain a cathode polarization curve. Collected. Using the obtained cathode polarization curve, the potential Va (V) at a current density of 0.1 A / cm 2 was obtained by drawing, and the reference steel No. 1 was obtained.
  • the current difference in the cathode polarization curve of 18 was determined as a potential difference from the potential Vg (V) at 0.1 A / cm 2 .
  • a Hg / Hg (SO 4 ) reference electrode was used. The results are also shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本発明は、優れた耐硫酸露点腐食性と製造性とを同時に実現するとともに、曲げ性や耐疲労性にも優れる耐硫酸露点腐食鋼を提供することを目的とする。 本発明は、所定の成分組成を有し、該成分組成におけるS、CuおよびSbの含有量が以下の(1)式、Cu、NiおよびSbの含有量が以下の(2)式の関係をそれぞれ満足する耐硫酸露点腐食鋼に関する。 0.50≦[%Cu]/(10×[%S]+[%Sb])≦5.00 ・・・(1) 0.50≦[%Ni]/([%Cu]+[%Sb])≦2.50 ・・・(2)ここで、[%S]、[%Cu]、[%Ni]および[%Sb]はそれぞれ、成分組成におけるS、Cu、NiおよびSbの含有量(質量%)である。

Description

耐硫酸露点腐食鋼
 本発明は、硫酸に接する環境下または硫酸露点が生じる環境下の熱交換器やタンク、プラント等の構成材料として用いられる耐硫酸露点腐食鋼に関し、特に、優れた耐硫酸露点腐食性および製造性を有するとともに、曲げ性や耐疲労性にも優れた耐硫酸露点腐食鋼に関するものである。
 硫黄を含む重油や石炭等の燃料を燃焼させるボイラーや火力発電所の熱交換器や煙道では、排気ガス中に含まれる硫黄酸化物が、温度の低下とともに結露して硫酸となり、激しい腐食を生じる、いわゆる「硫酸露点腐食」が問題となる。
 この硫酸露点腐食の問題を解決するものとして、耐硫酸露点腐食鋼が開発され、既に実用化されている。
 このような耐硫酸露点腐食鋼として、耐硫酸腐食性を向上させるSb、さらには耐酸性を向上させる元素であるCuを活用することにより、耐硫酸腐食性とともに、耐酸性も向上させる技術が提案されている。
 例えば、特許文献1には、
「質量%で、C:0.001~0.2%、Si:0.01~2.5%、Mn:0.1~2%、Cu:0.1~1%、Mo:0.001~1%、Sb:0.01~0.2%、P:0.05%以下、S:0.05%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ、耐酸腐食性指数AI(AI/10000=0.0005+0.045×Sb%-C%×Mo%)が0以上であることを特徴とする耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼。」
が開示されている。
 一方、Feよりも融点の低いCuや、偏析しやすいSbを添加すると、鋳造や圧延といった熱間加工時にスラブ割れやスラブ表面傷が発生し、製品品質の劣化を避けるための手入れが必要になるため、生産性の低下やコストアップが問題となる。
 このような問題を解決するものとして、特許文献2には、S量を低減するとともに、MoおよびBを添加することで、熱間加工性の改善を図った、
「重量%で、C:0.01~0.15%、Si:0.1~0.5%、Mn:0.1~0.5%、P:0.03%以下、S:0.005%以下、Cu:0.2~1.0%、Ni:0.5%以下、Cr:2.0%以下、Al:0.1%以下、V:0.2%以下、Nb:0.2%以下、Ti:0.2%以下、Sn及びSbの1種又は2種の合計が0.01~1.0%、並びにB:0.001~0.01%及びMo:0.01~0.5%の1種以上を含有し、残部はFe及び不可避不純物からなることを特徴とする熱間加工性に優れた耐酸露点腐食鋼。」
が開示されている。
特開2003-213367号公報 特開平10-110237号公報
 ところで、硫酸露点環境において生成する硫酸は、その温度によって濃度も変化し、例えば、低温:40℃では硫酸濃度:20質量%程度、中温:70℃では硫酸濃度:50質量%程度、高温:100℃~140℃では硫酸濃度:70~80質量%となる。
 このため、耐硫酸露点腐食鋼を実際の設備に適用するにあたっては、種々の硫酸露点腐食環境で高い耐食性を示す材料が求められる。
 しかしながら、特許文献1の低合金鋼を実際の設備に適用した場合、耐酸性、特に耐塩酸性に関しては、従来の耐硫酸露点腐食鋼よりも優れた耐食性を示すものの、耐硫酸露点腐食性については必ずしも満足いくほどの特性を得ることができず、特に高温における高濃度の硫酸に対する耐食性(耐硫酸露点腐食性)が低いという問題があった。
 また、特許文献2の耐硫酸露点腐食鋼でも、Sの低減やMoの添加によっても、やはり所望とする耐硫酸露点腐食性が得られない場合があった。
 本発明は、上記の現状に鑑み開発されたものであって、優れた耐硫酸露点腐食性と製造性とを同時に実現するとともに、曲げ性や耐疲労性にも優れる耐硫酸露点腐食鋼を提供することを目的とする。
 さて、発明者らは、上記の目的を達成すべく、まず硫酸露点腐食環境における各添加元素の影響を調査し、その効果を詳細に検討した。
 具体的には、耐硫酸露点腐食性を向上させる各添加元素が、製造性、さらには曲げ性や耐疲労性におよぼす影響と、製造性や曲げ性、耐疲労性を向上させる各添加元素が、耐硫酸露点腐食性におよぼす影響とを調査すべく、種々の成分組成の鋼を製造し、耐硫酸露点腐食性と製造性とを両立するとともに、優れた曲げ性や耐疲労性を得るうえで、有効となる添加元素の組み合わせを検討した。
 その結果、以下のような知見を得た。
1)Cu、SbおよびSを複合添加した成分組成において、これらの各元素の含有量には最適な範囲が存在しており、これらをその範囲内に制御することで、製造性、さらには曲げ性や耐疲労性を確保しつつ、優れた耐硫酸露点腐食性を得ることができる。
2)耐硫酸露点腐食性を向上させるCuおよびSbに対し、適量のNiを含有させることで、耐硫酸露点腐食性を維持しつつ、製造性、特に熱間加工性を大幅に改善することができる。また、同時に優れた曲げ性や耐疲労性を得ることもできる。
 本発明は、上記の知見に基づき、さらに検討を重ねて完成させたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.050~0.150%、
 Si:0.10~0.80%、
 Mn:0.50~1.00%、
 P:0.050%以下、
 S:0.0020~0.0200%、
 Cu:0.20~0.50%、
 Ni:0.10~0.80%、
 Cr:0.20~1.50%、
 Sb:0.050~0.300%、
 Ti:0.005~0.050%、
 Al:0.001~0.050%および
 N:0.0005~0.0050%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 上記成分組成におけるS、CuおよびSbの含有量が下記(1)式、Cu、NiおよびSbの含有量が下記(2)式の関係をそれぞれ満足する、耐硫酸露点腐食鋼。
                   記
 0.50≦[%Cu]/(10×[%S]+[%Sb])≦5.00 ・・・(1)
 0.50≦[%Ni]/([%Cu]+[%Sb])≦2.50 ・・・(2)
 ここで、[%S]、[%Cu]、[%Ni]および[%Sb]はそれぞれ、成分組成におけるS、Cu、NiおよびSbの含有量(質量%)である。
2.前記成分組成におけるC、TiおよびNの含有量が下記(3)式の関係を満足する、前記1に記載の耐硫酸露点腐食鋼。
                   記
 0.30≦[%Ti]/(0.2×[%C]+[%N])≦2.50 ・・・(3)
 ここで、[%C]、[%Ti]および[%N]はそれぞれ、成分組成におけるC、TiおよびNの含有量(質量%)である。
3.鋼組織全体に占めるフェライト相の面積率が75%以上、パーライト相の面積率が25%未満、上記フェライト相とパーライト相以外の組織の合計の面積率が5%未満である鋼組織を有するとともに、
 最大ビッカース硬さが200以下でかつ、平均ビッカース硬さが80以上である、前記1または2に記載の耐硫酸露点腐食鋼。
4.前記1~3のいずれかに記載の耐硫酸露点腐食鋼であって、
 該耐硫酸露点腐食鋼の温度:70℃、濃度:50質量%の硫酸水溶液中での電流密度と電位との関係を示すカソード分極曲線において、電流密度:0.1A/cm2のときの電位をVa(V)としたとき、
 上記Vaが、上記耐硫酸露点腐食鋼の基準鋼の上記硫酸水溶液中でのカソード分極曲線における電流密度:0.1A/cm2のときの電位Vg(V)との関係で、下記(4)式を満足する、耐硫酸露点腐食鋼。
                   記
 Vg-Va>0.03 ・・・(4)
 本発明によれば、優れた耐硫酸露点腐食性および製造性を有するとともに、曲げ性や耐疲労性にも優れた耐硫酸露点腐食鋼が得られる。
 そして、本発明の耐硫酸露点腐食鋼は、種々の硫酸露点腐食環境下のタンク、プラント等の構成材料として好適に用いることができるので、高品質かつ高生産性の下、低コストに、かようなタンク、プラント等を製造することが可能となる。
[%Cu]/(10×[%S]+[%Sb])の値と、鋼の硫酸浸漬試験における腐食速度との関係を示すものである。 [%Ni]/([%Cu]+[%Sb])の値と、製造性の評価との関係を示すものである。 [%Cu]/(10×[%S]+[%Sb])および[%Ni]/([%Cu]+[%Sb])の値に対し、耐硫酸露点腐食性と製造性の評価結果をプロットしたものである。 温度:70℃、濃度:50質量%の硫酸水溶液中におけるカソード分極曲線の一例を示すものである。
 以下、本発明を具体的に説明する。まず、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、鋼の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.050~0.150%
 Cは、鋼の強度を高める元素である。所望の強度を得るために、C量は0.050%以上とする。一方、C量が0.150%を超えると、耐硫酸露点腐食性を劣化させるとともに、溶接性および溶接熱影響部の靱性を劣化させる。よって、C量は0.050~0.150%の範囲とする。好ましくは、0.060~0.100%の範囲である。
Si:0.10~0.80%
 Siは、脱酸剤として添加される成分であり、また、鋼の強度を高める効果がある。このため、Si量は0.10%以上とする。しかし、Si量が0.80%を超えると、鋼の靱性が劣化する。よって、Si量は0.10~0.80%の範囲とする。なお、Siは、硫酸水溶液環境下では、防食被膜を形成して耐硫酸露点腐食性の向上に寄与する。このような耐硫酸露点腐食性の向上効果を得るためには、Si量を0.25%以上とすることが好ましい。
Mn:0.50~1.00%
 Mnは、鋼の強度を高める元素である。所望の強度を得るために、Mn量を0.50%以上とする。一方、Mn量が1.00%を超えると、鋼の靱性および溶接性を低下させる。よって、Mn量は0.50~1.00%の範囲とする。なお、強度の維持および耐硫酸露点腐食性を劣化させる介在物の形成を抑制する観点からは、Mn量を0.50~0.70%の範囲とすることが好ましい。
P:0.050%以下
 Pは、粒界に偏析して、鋼の靱性を低下させる有害な元素である。特に、P量が0.050%を超えると、靱性が顕著に低下する。よって、P量は0.050%以下とする。
 なお、Pはできるだけ低減することが望ましいが、0.005%未満への低減は、製造コストの上昇を招く。よって、P量の下限は0.005%とすることが好ましい。
S:0.0020~0.0200%
 Sは、Cuの存在下においてCu2S被膜の形成に寄与し、鋼表面における腐食反応を抑制して、耐硫酸露点腐食性を向上させる元素である。一方、Sは、非金属介在物であるMnSを形成し、このMnSが局部腐食の起点となって、耐局部腐食性を低下させる有害な元素でもある。そこで、耐硫酸露点腐食性を確保する観点から、S量は0.0020%以上とする。一方、耐局部腐食性の低下を回避する観点から、S量は0.0200%以下とする。なお、耐硫酸露点腐食性を一層高める観点からは、S量は0.0050%以上とすることが好ましい。
Cu:0.20~0.50%
 Cuは、酸による腐食環境において耐酸性を向上させる必須の元素である。ここで、Cu量が0.20%未満では、その効果が小さい。一方、Cu量が0.50%を超えると、耐酸性向上効果が飽和するとともに製造性、特には熱間加工性の劣化を招く。よって、Cu量は0.20~0.50%の範囲とする。
Ni:0.10~0.80%
 Niは、CuやSbの添加による熱間加工性の劣化を抑制する元素である。しかし、Ni量が0.10%未満では、その効果が小さい。一方、Ni量が0.80%を超えると、熱間加工性の劣化を抑制する効果が飽和するとともに、コストの上昇を招く。よって、Ni量は0.10~0.80%の範囲とする。
Cr:0.20~1.50%
 Crは、常温環境における耐硫酸露点腐食性の向上効果には大きくは寄与しないものの、使用環境が120℃以上の高温となる場合の耐硫酸露点腐食性を向上させる元素である。Cr量が0.20%未満では、これらの効果が小さい。一方、Cr量が1.50%を超えると、これらの効果が飽和するとともに、コストの上昇を招く。よって、Cr量は0.20~1.50%の範囲とする。好ましくは、0.40~1.50%の範囲である。
Sb:0.050~0.300%
 Sbは、Cuとの複合添加によりCu化合物として鋼表面に濃化し、耐酸性を向上させる元素である。しかし、Sb量が0.050%未満では、その効果は小さい。一方、Sb量が0.300%を超えると、その効果が飽和するとともに、製造性、特に熱間加工性を劣化させる。よって、Sb量は0.050~0.300%の範囲とする。また、耐硫酸露点腐食性と製造性とを両立する観点からは、Sb量は0.100~0.200%の範囲とすることが好ましい。
Ti:0.005~0.050%
 Tiは、鋼の強度および靱性向上を目的に添加する元素である。しかし、Ti量が0.005%未満では、所望の効果が得られない。一方、Ti量が0.050%を超えると、鋼の強度および靱性向上の効果が飽和する。そのため、Ti量は0.005~0.050%の範囲とする。
Al:0.001~0.050%
 Alは、脱酸剤として添加される元素である。このような効果を得る観点から、Al量は0.001%以上とする必要がある。一方、Al量が0.050%を超えると、鋼の靱性が低下する。よって、Al量は0.001~0.050%の範囲とする。好ましくは、0.010~0.050%の範囲である。
N:0.0005~0.0050%
 Nは、固溶状態で、鋼の靱性を劣化させる元素であり、極力低減することが好ましいが、N量が0.0050%以下であれば許容できる。一方、Nを完全に除去することは技術的に難しく、また、必要以上の低減は、製造コストの上昇を招く。そのため、N量の下限は0.0005%とする。
 また、各成分が上記の範囲を満足するだけでは不十分で、S、CuおよびSbの含有量が下記(1)式、Cu、NiおよびSbの含有量が下記(2)式の関係をそれぞれ満足することが重要である。
                   記
 0.50≦[%Cu]/(10×[%S]+[%Sb])≦5.00 ・・・(1)
 0.50≦[%Ni]/([%Cu]+[%Sb])≦2.50 ・・・(2)
 ここで、[%S]、[%Cu]、[%Ni]および[%Sb]はそれぞれ、成分組成におけるS、Cu、NiおよびSbの含有量(質量%)である。
 以下、この知見を導き出すに至った実験について、説明する。
[実験]
 C:0.050~0.150%、Si:0.10~0.80%、Mn:0.50~1.00%、P:0.050%以下、Cr:0.20~1.50%、Ti:0.005~0.050%、Al:0.001~0.050%およびN:0.0005~0.0050%を含有し、S、Cu、NiおよびSbの含有量を種々に変化させた鋼(残部はFeおよび不可避的不純物)を転炉で溶製し、連続鋳造法により厚さ:200mmの鋼スラブとした。この鋼スラブを冷却後、1200℃に再加熱して熱間圧延を施し、板厚:4.5mmの熱延鋼板とした。
 なお、熱間圧延では、圧下率:97.75%、仕上終了温度:850℃、巻き取り温度:560℃、800℃から650℃までの平均冷却速度は3.0~8.0℃/sの範囲内となるようにした。
 かくして得られた熱延鋼板から、硫酸露点腐食環境における各添加元素の影響を調査すべく、幅20mm×長さ30mm×厚さ3mmの腐食試験片を切り出し、切り出した腐食試験片を硫酸水溶液(温度:70℃、濃度:50質量%)中に6時間浸漬する硫酸浸漬腐食試験に供して、腐食減量を測定し、腐食減量から各試験片の腐食速度を算出した。
 そして、以下の基準により、耐硫酸露点腐食性を評価した。
 合格(○):280g/(m2・hr)以下
 不合格(×):腐食速度が280g/(m2・hr)超
 また、鋼スラブ鋳造時の表面キズ深さを、表面に着色する事により傷を確認し、目視観察および断面を切り出して観察することで以下の基準で製造性(熱間加工性)を評価した。
 合格(○):表面キズ深さが0.2mm未満
 不合格(×):表面キズ深さが0.2mm以上
 これらの耐硫酸露点腐食性および製造性の評価結果を、[%Cu]/(10×[%S]+[%Sb])および/または[%Ni]/([%Cu]+[%Sb])との関係で図1~3に示す。
 図1に示したように、[%Cu]/(10×[%S]+[%Sb])を0.50~5.00の範囲に制御することにより、優れた耐硫酸露点腐食性の向上効果が得られることがわかる。また、図2に示したように、[%Ni]/([%Cu]+[%Sb])を0.50~2.50の範囲に制御することにより、優れた製造性が得られることがわかる。
 そして、図3に示したように、[%Cu]/(10×[%S]+[%Sb])を0.50~5.00の範囲とし、かつ[%Ni]/([%Cu]+[%Sb])を0.50~2.50の範囲に制御することにより、優れた耐硫酸露点腐食性と製造性とを両立できることがわかる。
 発明者らは、上記の実験結果から、上掲(1)式と(2)式とを同時に満足させることにより優れた耐硫酸露点腐食性と製造性とを両立でき、さらには曲げ性および耐疲労性についても十分なものが得られることを知見し、本発明を開発するに至ったのである。
0.50≦[%Cu]/(10×[%S]+[%Sb])≦5.00
 上述したように、Cu量に応じてSおよびSbを適正量添加する、具体的には、[%Cu]/(10×[%S]+[%Sb])を0.50~5.00の範囲に調整することにより、製造性、さらには曲げ性や耐疲労性を確保しつつ、耐硫酸露点腐食性の大幅な向上効果が得られる。
 このため、S、CuおよびSbの含有量については、0.50≦[%Cu]/(10×[%S]+[%Sb])≦5.00の関係を満足させる必要がある。
 また、[%Cu]/(10×[%S]+[%Sb])の値は、好ましくは3.50以下、より好ましくは3.00以下、さらに好ましくは2.50以下である。
0.50≦[%Ni]/([%Cu]+[%Sb])≦2.50
 また、上述したように、Cu量およびSb量に応じてNiを適正量添加する、具体的には、[%Ni]/([%Cu]+[%Sb])を0.50~2.50の範囲に調整することにより、耐硫酸露点腐食性を維持しつつ、製造性、特には熱間加工性の大幅な改善効果が得られる。
 このため、Cu、NiおよびSbの含有量については、0.50≦[%Ni]/([%Cu]+[%Sb])≦2.50の関係を満足させる必要がある。
 また、[%Ni]/([%Cu]+[%Sb])の値は、好ましくは0.55以上、より好ましくは0.60以上である。
 なお、製造性の向上の観点だけであれば、[%Ni]/([%Cu]+[%Sb])の下限のみを規定すればよいが、Ni量が多くなると耐硫酸露点腐食性に悪影響を及ぼすおそれがあるため、[%Ni]/([%Cu]+[%Sb])の上限についてもここでは規定している。
 さらに、C、TiおよびNの含有量が下記(3)式の関係を満足することが好適である。
                   記
 0.30≦[%Ti]/(0.2×[%C]+[%N])≦2.50 ・・・(3)
 ここで、[%C]、[%Ti]および[%N]はそれぞれ、成分組成におけるC、TiおよびNの含有量(質量%)である。
0.30≦[%Ti]/(0.2×[%C]+[%N])≦2.50
 発明者らは、上記の成分組成において、Ti、CおよびN量の関係を適正に制御する、具体的には、[%Ti]/(0.2×[%C]+[%N])を0.30~2.50の範囲に制御することで、耐疲労性を大幅に改善できることを見出した。
 このため、上記の成分組成においては、Ti、CおよびNの含有量について上掲式(3)式の関係をさらに満足させることが好適である。
 また、[%Ti]/(0.2×[%C]+[%N])の値は、より好ましくは0.40以上、2.00以下、より好ましくは0.50以上、1.50以下、さらに好ましくは0.50以上、1.10以下である。
 上記以外の成分は、Feおよび不可避的不純物である。
 なお、ここでいう不可避的不純物は、鉄鋼原料鉱石およびスクラップ等より不可避的に混入する元素のことであり、意識的に添加せず、また本発明の効果に影響をおよぼさない範囲内の不純物成分を指すものである。このような不可避的不純物としては、例えば、O(酸素)が挙げられ、その上限は0.0050%程度である。
 次に、本発明の耐硫酸露点腐食鋼の好適な鋼組織について、説明する。
 本発明の耐硫酸露点腐食鋼の好適な鋼組織としては、鋼組織全体に占めるフェライト相の面積率が75%以上、パーライト相の面積率が25%未満、上記フェライト相とパーライト相以外の残部組織の合計の面積率が5%未満である鋼組織が挙げられる。
 なお、このような組織を得るためには、後述する熱間圧延条件を適正に制御する、特に、800℃~650℃の温度域における平均冷却速度を1.0℃/s以上20.0℃/s以下とすることが重要である。
フェライト相の面積率:75%以上
 耐硫酸露点腐食鋼は、最終製品の形状等によっては曲げ加工を施して使用される場合がある。ここで、フェライト相の面積率が75%未満になると、曲げ加工時に割れが発生するおそれがある。よって、鋼組織全体に占めるフェライト相の面積率は75%以上とすることが好ましい。より好ましくは80%以上である。なお、フェライト相の面積率は100%であってもよい。
パーライト相の面積率:25%未満
 耐硫酸露点腐食鋼は、最終製品の形状等によっては曲げ加工を施して使用される場合がある。ここで、パーライト相の面積率が25%以上になると、曲げ加工時に割れが発生するおそれがある。よって、鋼組織全体に占めるパーライト相の面積率は25%未満とすることが好ましい。より好ましくは20%以下である。なお、パーライト相の面積率は0%であってもよい。
 上記したフェライト相とパーライト相以外の残部組織としては、ベイナイト相等が挙げられ、ベイナイト相やマルテンサイト相等が混入した場合には曲げ加工時の割れが懸念される。このため、フェライト相とパーライト相以外の残部組織の合計の面積率は5%未満とすることが好ましい。
 また、最大ビッカース硬さが200を超えると、曲げ加工時に割れが発生し易くなるとともに、耐疲労性も劣化し易くなる。ただし、平均ビッカース硬さが80未満になると、所定の強度を確保することが困難となる。
 このため、最大ビッカース硬さが200以下でかつ、平均ビッカース硬さが80以上とすることが好適である。
 さらに、本発明の耐硫酸露点腐食鋼では、温度:70℃、濃度:50質量%の硫酸水溶液中での電流密度と電位との関係を示すカソード分極曲線において、電流密度:0.1A/cm2のときの電位をVa(V)としたとき、該Vaが、該耐硫酸露点腐食鋼の基準鋼の上記硫酸水溶液中でのカソード分極曲線における電流密度:0.1A/cm2のときの電位Vg(V)との関係で、下記(4)式を満足することが好適である。
                   記
 Vg-Va>0.03 ・・・(4)
 すなわち、硫酸水溶液中の鋼の腐食は、硫酸水溶液中の水素イオンの還元反応と鉄の溶解反応で進行する。図4に、温度:70℃、濃度:50質量%の硫酸水溶液中における水素イオンの還元反応の電流密度と電位の関係を表すカソード分極曲線と、鉄の溶解反応の電流密度と電位の関係を表すアノード分極曲線の一例を示す。図4中、カソード分極曲線とアノード分極曲線とが交わる点が、実際に腐食が進行する点となる。
 ここで、発明者らは、種々の鋼のカソード分極曲線を種々の条件で求め、カソード分極曲線と耐硫酸露点腐食性との関係について、さらに検討を重ねた。
 その結果、耐硫酸露点腐食性の向上には、カソード反応を抑制することが有効であり、また耐硫酸露点腐食性は、温度:70℃、濃度:50質量%の硫酸水溶液中でのカソード分極曲線における電流密度:0.1A/cm2のときの電位と密接に関連していることを見出した。
 そして、さらに検討を進めたところ、対象とする鋼のカソード分極曲線において、電流密度:0.1A/cm2のときの電位をVa(V)としたとき、Vaが、いわゆる一般鋼である基準鋼の温度:70℃、濃度:50質量%の硫酸水溶液中でのカソード分極曲線の電流密度:0.1A/cm2のときの電位であるVg(V)との関係で、上掲(4)式を満足することが好適であり、このような関係を満足させることで、耐硫酸露点腐食性が一層高まることを知見した。
 このため、Vg-Va>0.03の関係を満足させることが好ましい。より好ましくは、Vg-Va>0.05である。また、Vg-Vaの上限については特に限定されるものではないが、通常0.15程度である。
 なお、Hg/Hg(SO4)参照電極を使用して電位計測を行うと、VaおよびVgはともに負の値を示すことになるが、この場合でも、VaをVgよりも相対的に小さくすることが重要である。
 また、カソード分極曲線における電流密度:0.1A/cm2の電位を選択したのは、これより電流密度が小さくなると測定条件によってはノイズなどが生じる場合がある一方、これより電流密度が大きくなると、カソード反応自体が律速になって電位を正確に測定するのが難しくなる場合があるからである。
 また、ここでいう基準鋼とは、質量%で、C:0.050~0.150%、Si:0.10~0.80%、Mn:0.50~1.00%、P:0.050%以下、S:0.0020~0.0200%、Al:0.001~0.050%およびN:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼(特には、Cu:0.02%未満、Ni:0.02%未満、Cr:0.02%未満、Sb:0.010%未満およびTi:0.005%未満に抑制した成分組成を有する鋼)である。なお、このような成分組成の鋼であれば、温度:70℃、濃度:50質量%の硫酸水溶液中でのカソード分極曲線はほぼ同様のものとなる。
 次に、本発明の耐硫酸露点腐食鋼の好適製造方法について説明する。
 本発明の耐硫酸露点腐食鋼は、上記の成分組成に調整した鋼素材を、薄鋼板、厚鋼板および形鋼などの種々の形状に仕上げたものであり、その製造方法としては、例えば、転炉や電気炉、真空脱ガス装置等の通常公知の方法で溶製した後、連続鋳造法等で鋼スラブとし、この鋼スラブを、その後直ちに、または冷却後、再加熱して熱間圧延する方法が挙げられる。また、冷延鋼板とする場合には、さらに酸洗と冷間圧延および焼鈍を行い、製品とする。
 なお、熱間圧延条件としては、要求される機械的特性、すなわち強度(硬度)や曲げ性、耐疲労性を確保する観点から、圧下率を50~99%、仕上終了温度を650~950℃、巻き取り温度を400~650℃、800℃から650℃までの平均冷却速度を1.0~20.0℃/sとすることが好適である。
 また、上掲(4)式を満足させる観点からは、800℃から650℃までの平均冷却速度を1.0~10.0℃/sとすることが好適である。
 表1に示す成分組成になる鋼(残部はFeおよび不可避的不純物である)を転炉で溶製し、連続鋳造法により厚さ:200mmの鋼スラブとした。この鋼スラブを冷却後、1200℃に再加熱して熱間圧延を施し、板厚:4.5mmの熱延鋼板とした。
 なお、熱間圧延では、圧下率:97.75%、仕上終了温度:850℃、巻き取り温度:560℃、800℃から650℃までの平均冷却速度を表2のとおりとした。
 かくして得られた熱延鋼板について、以下に示す方法で、鋼組織における各相の面積率およびビッカース硬度の測定、ならびに耐硫酸露点腐食性、製造性、曲げ性および耐疲労性の評価を行った。これらの結果を表2に示す。
・鋼組織における各相の面積率の測定
 3%ナイタール試薬(3%硝酸+エタノール)を用いて、熱延鋼板の圧延方向に平行な垂直断面(板厚1/4の深さ位置)を腐食し、当該部を倍率:100倍の光学顕微鏡により観察・撮影し、撮影した組織写真を用いて、フェライトおよびパーライトの面積率を求めた。ここで、フェライトおよびパーライトの面積率は、それぞれ5視野の観察を行い、ポイントカウント法(ASTM E562-83(1988)に準拠)を用いて測定した。また、上記したフェライトおよびパーライト以外の残部組織の面積率は、100%からフェライトおよびパーライトの合計の面積率を減ずることで求めることができる。
・ビッカース硬度の測定
 ビッカース硬度は、JIS Z 2244に準拠して、荷重:9.8Nの条件で、上記のようにして得られた熱延鋼板の表層(表面から0.5mmの位置)における任意の20点について測定を行い、これらの平均値および最大値を求めた。
・耐硫酸露点腐食性
 上記のようにして得た熱延鋼板から、幅20mm×長さ30mm×厚さ3mmの腐食試験片を切り出し、切り出した腐食試験片を硫酸水溶液(温度:70℃、濃度:50質量%)中に6時間浸漬する硫酸浸漬腐食試験に供して、腐食減量を測定し、腐食減量から各試験片の腐食速度を算出した。
 そして、以下の基準により、中温での耐硫酸露点腐食性を評価した。
 合格、特に優れる(◎):腐食速度が250g/(m2・hr)未満
 合格(○):腐食速度が250g/(m2・hr)以上280g/(m2・hr)以下
 不合格(×):腐食速度が280g/(m2・hr)超
 また、別途、上記のようにして得た熱延鋼板から、幅20mm×長さ30mm×厚さ3mmの腐食試験片を切り出し、切り出した腐食試験片を硫酸水溶液(温度:140℃、濃度:80質量%)中に3時間浸漬する硫酸浸漬腐食試験に供して、腐食減量を測定し、腐食減量から各試験片の腐食速度を算出した。
 そして、以下の基準により、高温での耐硫酸露点腐食性を評価した。
 合格、特に優れる(◎):腐食速度が92g/(m2・hr)未満
 合格(○):腐食速度が92g/(m2・hr)以上97g/(m2・hr)以下
 不合格(×):腐食速度が97g/(m2・hr)超
・製造性
 製造性は、鋼スラブ鋳造時の表面キズ深さを、表面に着色する事により傷を確認し、目視観察および断面を切り出して観察することで以下の基準で評価した。
 合格、特に優れる(◎):表面キズの観察なし
 合格(○):表面キズ深さが0.2mm未満
 不合格(×):表面キズ深さが0.2mm以上
・曲げ性
 上記のようにして得た熱延鋼板から、幅50mm×長さ100mm×厚さ3.2mmの試験片を切り出し、切り出した試験片に、同じ板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施し、曲げ部の状況を目視により観察し、以下の基準で曲げ性を評価した。
 合格(○):割れなし
 不合格(×):割れあり
・耐疲労性
 耐疲労性は、長手方向が鋼板の圧延方向と垂直になるようにサンプルを採取し、JIS Z 2275(1978年)に準拠し、平面曲げ疲労試験を両振り(応力比:-1)、周波数:10Hzの条件で行った。
 両振り平面曲げ疲労試験において、100万サイクルまで破断が認められなかった応力を測定し、この応力を疲労強度として、以下の基準で耐疲労性を評価した。
 合格、特に優れる(◎):疲労強度が200MPa以上
 合格(○):疲労強度が150MPa以上200MPa未満
 不合格(×):疲労強度が150MPa未満
 また、上記のようにして得た熱延鋼板から10mm×10mmのサイズの試験材を切り出して、切り出した試験片の端面および裏面を保護被覆で覆い、保護した。この試験材を硫酸水溶液(温度:70℃、濃度:50質量%)中に10分間浸漬し、その後、1mV/secの速度で0.4V程度までカソード側に電位を掃引し、カソード分極曲線を採取した。得られたカソード分極曲線を用いて、電流密度:0.1A/cm2のときの電位Va(V)を作図により求め、基準鋼であるNo.18のカソード分極曲線における電流密度:0.1A/cm2のときの電位Vg(V)との電位差を求めた。なお、電位計測にあたっては、Hg/Hg(SO4)参照電極を使用した。結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、発明例ではいずれも、耐硫酸露点腐食性、製造性、曲げ性および耐疲労性に優れていることがわかる。
 一方、比較例ではいずれも、耐硫酸露点腐食性、製造性、曲げ性および耐疲労性のうちの少なくとも1つが、所望の特性を満足することができなかった。

Claims (4)

  1.  質量%で、
     C:0.050~0.150%、
     Si:0.10~0.80%、
     Mn:0.50~1.00%、
     P:0.050%以下、
     S:0.0020~0.0200%、
     Cu:0.20~0.50%、
     Ni:0.10~0.80%、
     Cr:0.20~1.50%、
     Sb:0.050~0.300%、
     Ti:0.005~0.050%、
     Al:0.001~0.050%および
     N:0.0005~0.0050%
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     上記成分組成におけるS、CuおよびSbの含有量が下記(1)式、Cu、NiおよびSbの含有量が下記(2)式の関係をそれぞれ満足する、耐硫酸露点腐食鋼。
                       記
     0.50≦[%Cu]/(10×[%S]+[%Sb])≦5.00 ・・・(1)
     0.50≦[%Ni]/([%Cu]+[%Sb])≦2.50 ・・・(2)
     ここで、[%S]、[%Cu]、[%Ni]および[%Sb]はそれぞれ、成分組成におけるS、Cu、NiおよびSbの含有量(質量%)である。
  2.  前記成分組成におけるC、TiおよびNの含有量が下記(3)式の関係を満足する、請求項1に記載の耐硫酸露点腐食鋼。
                       記
     0.30≦[%Ti]/(0.2×[%C]+[%N])≦2.50 ・・・(3)
     ここで、[%C]、[%Ti]および[%N]はそれぞれ、成分組成におけるC、TiおよびNの含有量(質量%)である。
  3.  鋼組織全体に占めるフェライト相の面積率が75%以上、パーライト相の面積率が25%未満、上記フェライト相とパーライト相以外の組織の合計の面積率が5%未満である鋼組織を有するとともに、
     最大ビッカース硬さが200以下でかつ、平均ビッカース硬さが80以上である、請求項1または2に記載の耐硫酸露点腐食鋼。
  4.  請求項1~3のいずれかに1項に記載の耐硫酸露点腐食鋼であって、
     該耐硫酸露点腐食鋼の温度:70℃、濃度:50質量%の硫酸水溶液中での電流密度と電位との関係を示すカソード分極曲線において、電流密度:0.1A/cm2のときの電位をVa(V)としたとき、
     上記Vaが、上記耐硫酸露点腐食鋼の基準鋼の上記硫酸水溶液中でのカソード分極曲線における電流密度:0.1A/cm2のときの電位Vg(V)との関係で、下記(4)式を満足する、耐硫酸露点腐食鋼。
                       記
     Vg-Va>0.03 ・・・(4)
PCT/JP2017/030264 2016-08-25 2017-08-24 耐硫酸露点腐食鋼 WO2018038198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197008031A KR102215679B1 (ko) 2016-08-25 2017-08-24 내황산 이슬점 부식강
MYPI2019000935A MY186700A (en) 2016-08-25 2017-08-24 Sulfuric acid dew point corrosion-resistant steel
CN201780050931.4A CN109642283B (zh) 2016-08-25 2017-08-24 耐硫酸露点腐蚀钢
JP2017564514A JP6338031B1 (ja) 2016-08-25 2017-08-24 耐硫酸露点腐食鋼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016165102 2016-08-25
JP2016-165102 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018038198A1 true WO2018038198A1 (ja) 2018-03-01

Family

ID=61246081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030264 WO2018038198A1 (ja) 2016-08-25 2017-08-24 耐硫酸露点腐食鋼

Country Status (5)

Country Link
JP (1) JP6338031B1 (ja)
KR (1) KR102215679B1 (ja)
CN (1) CN109642283B (ja)
MY (1) MY186700A (ja)
WO (1) WO2018038198A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045539A (ja) * 2018-09-20 2020-03-26 日本製鉄株式会社 鋼材
JP2020045541A (ja) * 2018-09-20 2020-03-26 日本製鉄株式会社 鋼材
JP2020111791A (ja) * 2019-01-11 2020-07-27 日本製鉄株式会社 鋼材
JP2020111790A (ja) * 2019-01-11 2020-07-27 日本製鉄株式会社 鋼材
JP2021017637A (ja) * 2019-07-23 2021-02-15 日本製鉄株式会社 鋼材
JP2021017636A (ja) * 2019-07-23 2021-02-15 日本製鉄株式会社 鋼材
JPWO2021095185A1 (ja) * 2019-11-13 2021-05-20
CN113564481A (zh) * 2021-08-04 2021-10-29 马鞍山钢铁股份有限公司 一种低成本耐硫酸盐酸露点腐蚀钢板及其制造方法
KR20220017485A (ko) 2019-07-09 2022-02-11 제이에프이 스틸 가부시키가이샤 내황산 노점 부식성이 우수한 이음매 없는 강관 및 그의 제조 방법
EP3998356A4 (en) * 2019-07-09 2023-01-04 JFE Steel Corporation SEAMLESS STEEL PIPE EXHIBITING EXCEPTIONAL RESISTANCE TO SULFURIC ACID DEW POINT CORROSION, AND METHOD OF MAKING THE SAME SEAMLESS STEEL PIPE
WO2023223744A1 (ja) * 2022-05-20 2023-11-23 Jfeスチール株式会社 熱延厚物耐硫酸鋼板およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205548A (zh) * 2019-06-20 2019-09-06 本钢板材股份有限公司 一种耐多元酸腐蚀的木材干燥罐体专用钢及其制备方法
CN112522585B (zh) * 2019-09-19 2022-10-21 宝山钢铁股份有限公司 一种薄规格耐硫酸露点腐蚀用热轧钢板/带的生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073139A (ja) * 1998-08-26 2000-03-07 Nkk Corp 耐硫酸腐食性に優れたボルト用鋼
JP2002327236A (ja) * 2001-05-01 2002-11-15 Nippon Steel Corp 冷間加工性、高温特性、耐低温腐食性に優れた鋼およびその製造方法
JP2003213367A (ja) * 2001-11-19 2003-07-30 Nippon Steel Corp 耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手
JP2007277615A (ja) * 2006-04-04 2007-10-25 Kobe Steel Ltd 耐食性に優れた船舶用鋼材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584636B2 (ja) 1996-10-08 2004-11-04 住友金属工業株式会社 熱間加工性に優れた耐硫酸・塩酸露点腐食鋼
JP4823930B2 (ja) 2006-02-10 2011-11-24 新日本製鐵株式会社 耐酸腐食鋼
WO2010087509A1 (ja) * 2009-01-30 2010-08-05 Jfeスチール株式会社 原油タンク用耐食鋼材とその製造方法ならびに原油タンク
CN101921966B (zh) * 2010-08-19 2011-12-21 攀钢集团钢铁钒钛股份有限公司 一种耐硫酸露点腐蚀热轧钢板的生产方法
CN103882315A (zh) * 2012-12-20 2014-06-25 上海梅山钢铁股份有限公司 耐硫酸露点腐蚀热连轧钢的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073139A (ja) * 1998-08-26 2000-03-07 Nkk Corp 耐硫酸腐食性に優れたボルト用鋼
JP2002327236A (ja) * 2001-05-01 2002-11-15 Nippon Steel Corp 冷間加工性、高温特性、耐低温腐食性に優れた鋼およびその製造方法
JP2003213367A (ja) * 2001-11-19 2003-07-30 Nippon Steel Corp 耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手
JP2007277615A (ja) * 2006-04-04 2007-10-25 Kobe Steel Ltd 耐食性に優れた船舶用鋼材

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091968B2 (ja) 2018-09-20 2022-06-28 日本製鉄株式会社 鋼材
JP2020045541A (ja) * 2018-09-20 2020-03-26 日本製鉄株式会社 鋼材
JP2020045539A (ja) * 2018-09-20 2020-03-26 日本製鉄株式会社 鋼材
JP7218523B2 (ja) 2018-09-20 2023-02-07 日本製鉄株式会社 鋼材
JP2020111791A (ja) * 2019-01-11 2020-07-27 日本製鉄株式会社 鋼材
JP2020111790A (ja) * 2019-01-11 2020-07-27 日本製鉄株式会社 鋼材
JP7348463B2 (ja) 2019-01-11 2023-09-21 日本製鉄株式会社 鋼材
JP7269467B2 (ja) 2019-01-11 2023-05-09 日本製鉄株式会社 鋼材
EP3998356A4 (en) * 2019-07-09 2023-01-04 JFE Steel Corporation SEAMLESS STEEL PIPE EXHIBITING EXCEPTIONAL RESISTANCE TO SULFURIC ACID DEW POINT CORROSION, AND METHOD OF MAKING THE SAME SEAMLESS STEEL PIPE
KR20220017485A (ko) 2019-07-09 2022-02-11 제이에프이 스틸 가부시키가이샤 내황산 노점 부식성이 우수한 이음매 없는 강관 및 그의 제조 방법
JP2021017636A (ja) * 2019-07-23 2021-02-15 日本製鉄株式会社 鋼材
JP7277749B2 (ja) 2019-07-23 2023-05-19 日本製鉄株式会社 鋼材
JP2021017637A (ja) * 2019-07-23 2021-02-15 日本製鉄株式会社 鋼材
JP7385106B2 (ja) 2019-07-23 2023-11-22 日本製鉄株式会社 鋼材
WO2021095185A1 (ja) * 2019-11-13 2021-05-20 日本製鉄株式会社 熱間圧延鋼材
JP7252497B2 (ja) 2019-11-13 2023-04-05 日本製鉄株式会社 熱間圧延鋼材
JPWO2021095185A1 (ja) * 2019-11-13 2021-05-20
CN113564481A (zh) * 2021-08-04 2021-10-29 马鞍山钢铁股份有限公司 一种低成本耐硫酸盐酸露点腐蚀钢板及其制造方法
WO2023223744A1 (ja) * 2022-05-20 2023-11-23 Jfeスチール株式会社 熱延厚物耐硫酸鋼板およびその製造方法
JP7444338B1 (ja) 2022-05-20 2024-03-06 Jfeスチール株式会社 熱延厚物耐硫酸鋼板およびその製造方法

Also Published As

Publication number Publication date
CN109642283B (zh) 2021-02-12
KR102215679B1 (ko) 2021-02-15
CN109642283A (zh) 2019-04-16
JPWO2018038198A1 (ja) 2018-08-30
MY186700A (en) 2021-08-11
JP6338031B1 (ja) 2018-06-06
KR20190042044A (ko) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6338031B1 (ja) 耐硫酸露点腐食鋼
JP6338032B1 (ja) 耐硫酸露点腐食鋼
JP6332576B1 (ja) 耐硫酸露点腐食鋼
JP6332575B1 (ja) 耐硫酸露点腐食鋼
JP4997808B2 (ja) 耐塩酸性に優れる耐硫酸露点腐食鋼
WO2018105510A1 (ja) 高Mn鋼板およびその製造方法
EA020105B1 (ru) Ферритно-аустенитная нержавеющая сталь
JP6212473B2 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
JP6018364B2 (ja) 線状加熱性に優れたケミカルタンカー用二相ステンレス鋼
US20140373980A1 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
JP5937861B2 (ja) 溶接性に優れた耐熱フェライト系ステンレス鋼板
JP5677819B2 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板
JP5836619B2 (ja) 耐酸性良好な二相ステンレス鋼
RU2681074C1 (ru) Способ производства коррозионностойкого проката из низколегированной стали
RU2735605C1 (ru) Высокопрочная толстолистовая сталь для магистральных труб, стойких к воздействию высокосернистого нефтяного газа, и способ ее изготовления, и высокопрочная стальная труба, использующая высокопрочную толстолистовую сталь для магистральных труб, стойких к воздействию высокосернистого нефтяного газа
JP6771963B2 (ja) 二相ステンレス鋼
JP5012194B2 (ja) 溶接継手強度が高い温水器用フェライト系ステンレス鋼板およびその製造方法
WO2021125283A1 (ja) 鋼板及びその製造方法
JP3574903B2 (ja) 熱間加工性に優れた高合金オーステナイト系ステンレス鋼
WO2023162507A1 (ja) 鋼板およびその製造方法
WO2009041703A1 (ja) 原油タンク用熱間圧延形鋼およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017564514

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008031

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17843675

Country of ref document: EP

Kind code of ref document: A1