WO2017195826A1 - 積層配線膜および薄膜トランジスタ素子 - Google Patents

積層配線膜および薄膜トランジスタ素子 Download PDF

Info

Publication number
WO2017195826A1
WO2017195826A1 PCT/JP2017/017690 JP2017017690W WO2017195826A1 WO 2017195826 A1 WO2017195826 A1 WO 2017195826A1 JP 2017017690 W JP2017017690 W JP 2017017690W WO 2017195826 A1 WO2017195826 A1 WO 2017195826A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
wiring
layer
alloy
Prior art date
Application number
PCT/JP2017/017690
Other languages
English (en)
French (fr)
Inventor
陽子 志田
裕史 後藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780029216.2A priority Critical patent/CN109155243A/zh
Priority to US16/092,976 priority patent/US20190148412A1/en
Priority to KR1020187032013A priority patent/KR20180133455A/ko
Publication of WO2017195826A1 publication Critical patent/WO2017195826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3655Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing at least one conducting layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/40Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal all coatings being metal coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/253Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to a laminated wiring film and a thin film transistor element.
  • Oxide semiconductors and low-temperature polysilicon semiconductors as semiconductor materials for thin film transistors (hereinafter also referred to as TFTs: Thin Film Transistors) used for display devices such as flat panel displays such as liquid crystal panels and organic EL (Electro Luminescence) panels and touch panels
  • TFTs Thin Film Transistors
  • LTPS Low Temperature Poly-Silicon
  • Oxide semiconductors and LTPS semiconductors have large electron mobility and can speed up TFT elements, as compared to amorphous silicon semiconductor materials that have been used conventionally.
  • the following problems occur.
  • a TFT element using an oxide semiconductor or an LTPS semiconductor it is necessary to go through a high temperature heat treatment process than a conventional element using amorphous silicon, and have to withstand heating at about 400 ° C. to 500 ° C.
  • the Cu wiring has poor adhesion to a glass substrate, a semiconductor film such as a Si (silicon) film, a metal oxide film, and the like.
  • Patent Document 1 proposes a display device provided with a Cu alloy film excellent in adhesion to a transparent substrate such as a glass substrate.
  • the Cu alloy film contains 2 to 20 atomic% in total of at least one element selected from the group consisting of Zn, Ni, Ti, Al, Mg, Ca, W, Nb, and Mn.
  • a first layer (Y) made of a Cu alloy containing Cu, a pure Cu, or a Cu alloy containing Cu as a main component and having a lower electrical resistivity than the first layer (Y) X), and the first layer (Y) is in contact with the transparent substrate.
  • Patent Document 2 discloses a transparent conductive film and a wiring film for a touch panel sensor connected to the transparent conductive film, wherein the wiring film includes at least one of alloy elements selected from the group consisting of Ni, Zn, and Mn.
  • a Cu alloy (first layer) containing 0.1 to 40 atomic% in total, and a pure Cu or a Cu alloy containing Cu as a main component and having a lower electrical resistivity than the first layer;
  • a Cu alloy wiring film for a touch panel sensor excellent in oxidation resistance is proposed, which has a laminated structure including two layers, and the second layer is connected to the transparent conductive film. .
  • an SiOx film which is an interlayer insulating film, is formed by a CVD (Chemical Vapor Deposition) method. If the SiOx film is formed at a high temperature, a film with few impurities can be formed. Since the impurities adversely affect the driving of the TFT element, the Cu wiring needs to be able to withstand the film formation of the SiOx film by the CVD method at a high temperature of 300 ° C. or more. However, Cu is a material having high affinity to oxygen. When the SiOx film is formed by the CVD method, N 2 O gas is introduced.
  • N 2 O gas is an oxygen radical in plasma, and when a SiOx film is formed on a single Cu film at a high temperature of 300 ° C. or more, oxygen radical and Cu easily react as shown in FIG. 3 to FIG. 4 , Form copper oxide and exfoliate.
  • FIGS. 3 (a) and 4 (a) and 4 (b) no film peeling is observed when the SiOx film is formed by the CVD method at a temperature of about 200 ° C.
  • film peeling occurs.
  • JP JP 2011-48323 A Japan JP 2013-120411
  • a SiOx film is formed as a gate insulating film (interlayer insulating film) by a CVD method at 300 ° C. or higher.
  • a CVD method at 300 ° C. or higher.
  • lamination of a cap layer is needed. It is generally known that a Cu-30 at% Ni alloy film is used for the cap layer. By laminating a Cu-30 at% Ni alloy film, exfoliation of the film can be suppressed even when the SiOx film is formed by the CVD method at 300 ° C. or higher as shown in FIG. 5, but heat treatment at 400 ° C. or higher is performed. The resistance of the laminated film increases.
  • the wiring width of the source / drain wiring and the gate wiring is processed to 10 ⁇ m or less.
  • the cap layer 13 protrudes beyond the wiring layer 12 to form the extension 13a, and as shown in FIG. It causes breakage of the interlayer insulating film and wiring stacked on the upper layer. Therefore, there is a need to control the wiring shape in a forward tapered shape (see FIG. 6C).
  • Patent Document 1 an element is included which causes an increase in resistance by heat treatment at 400 ° C. or higher because Ni or the like is added to the cap layer. In addition, since an element such as Zn is included to reduce the taper angle, the exposed width of the Cu wiring portion may be increased.
  • Patent Document 2 is limited to touch panel applications, and it is essential to connect to an ITO thin film, and contains Ni, which is an element that causes an increase in resistance at 500 ° C. heating.
  • the present invention has been made focusing on the above circumstances, has a low electrical resistance, is free from peeling of an interlayer insulating film formed by CVD using a SiOx film, and is electrically conductive even when heat treatment at a high temperature of 400 ° C. or higher is performed.
  • An object of the present invention is to provide a laminated wiring film without a rise in resistance.
  • Another object of the present invention is to provide a thin film TFT element provided with the laminated wiring film.
  • the element X is at least one selected from the group X consisting of Al, Mn, Zn and Ni, and the metal constituting the Cu-X alloy layer has a composition according to any one of the following (1) to (5) And a wiring pattern having a width of 10 ⁇ m or less.
  • the element of the X group is contained only in one kind, and the content is 6 at% or more and 27 at% or less.
  • the metal constituting the Cu-X alloy layer is a composition system of any one of the following (1 ′) to (5 ′), and the width of the wiring pattern is 5 ⁇ m or less Laminated wiring film as described.
  • (1 ') Only one element of the above-mentioned X group is contained, and the content is 6 at% or more and 14 at% or less.
  • (2 ') It contains 4 at% or more and 9 at% or less of Al, and further contains 5 at% or more and 10 at% or less of Mn.
  • [4] The multilayer wiring film according to [1] or [2], wherein the film thickness of the wiring layer is 50 nm or more and 1000 nm or less, and the film thickness of the Cu—X alloy layer is 5 nm or more and 200 nm or less.
  • [5] The multilayer wiring film according to [3], wherein the film thickness of the wiring layer is 50 nm or more and 1000 nm or less, and the film thickness of the Cu—X alloy layer is 5 nm or more and 200 nm or less.
  • a thin film transistor element comprising the laminated wiring film according to the above [1] and an oxide semiconductor.
  • a thin film transistor element comprising the laminated wiring film according to the above [2] and a low temperature polysilicon semiconductor or an oxide semiconductor.
  • the laminated wiring film having the configuration of the above [1] can be suitably used for a TFT element using an oxide semiconductor
  • the laminated wiring film having the configuration of the above [2] is a low temperature polysilicon semiconductor or It can be suitably used for a TFT element using an oxide semiconductor.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of the laminated wiring film of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the configuration of a thin film transistor element provided with the laminated wiring film of the present invention.
  • FIG. 3 is an external view of an SiOx film formed on a Cu single film by the CVD method.
  • FIG. 3 (a) is an external view of the film formed at about 200 ° C.
  • FIG. 3 (b) is about 300 ° C. It is an external appearance photograph figure at the time of forming into a film by.
  • FIG. 4 is a cross-sectional TEM observation photograph at a magnification of 200,000 times when an SiOx film is formed at a film forming temperature of about 200 ° C.
  • FIG. 5 is an external view photograph of a SiOx film formed on a Cu-30 at% Ni / Cu laminated film by a CVD method at a film forming temperature of 200 ° C.
  • FIG. 6 is a schematic view of the wiring shape obtained by the wet etching method, in which (a) is a wiring shape in which the cap layer protrudes from the wiring layer and an extension is formed, and (b) is a reverse taper shape.
  • the wiring shape, (c) is a forward tapered wiring shape.
  • FIG. 7 is a schematic cross-sectional view illustrating another configuration of the laminated wiring film of the present invention.
  • the laminated wiring film according to the present invention will be described below.
  • the laminated wiring film of the present invention comprises a wiring layer made of Cu or a Cu alloy having an electrical resistance of 10 ⁇ cm or less, and a Cu—X alloy layer containing Cu and an X element provided on at least one of the upper layer and the lower layer of the wiring layer.
  • the element X is at least one selected from the group X consisting of Al, Mn, Zn and Ni.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of the laminated wiring film of the present invention.
  • a laminated wiring film composed of the wiring layer 2 and the cap layer (Cu-X alloy layer) 3 is laminated in this order on the glass substrate 1 and further laminated.
  • An insulating film (SiOx) 4 is formed on the wiring film.
  • the insulating film (SiOx) 4 a gate insulating film provided between a gate electrode (Cu wiring) and an oxide semiconductor layer in a TFT is exemplified.
  • the wiring layer is a film made of Cu or a Cu alloy.
  • these films may be referred to as "Cu-based films".
  • the wiring layer is a Cu-based film, and the electric resistance thereof is 10 ⁇ cm or less.
  • the electric resistance of the wiring layer is 10 ⁇ cm or less, low electric resistance of the laminated wiring film can be realized.
  • the electric resistance of the wiring layer is preferably 5 ⁇ cm or less, more preferably 4 ⁇ cm or less.
  • the wiring layer is preferably formed of Cu.
  • Z element Z By containing the above-mentioned element Z, there are effects such as improvement of various corrosion resistances and adhesion with the substrate.
  • These Z elements may be used alone or in combination of two or more.
  • the element Z can be contained, for example, in the range of more than 0 atomic percent and 2 atomic percent or less in total.
  • the thickness of the wiring layer is preferably 50 nm or more, preferably 70 nm or more, from the viewpoint of obtaining a film having uniform film thickness and components at the time of film formation, because the specification of the electrode resistance is determined considering the performance required for the panel. More preferably, 100 nm or more is more preferable.
  • the film thickness of the wiring layer is preferably 1000 nm or less, more preferably 700 nm or less, and still more preferably 500 nm or less.
  • the Cu—X alloy layer is provided as a cap layer on at least one of the upper layer and the lower layer of the wiring layer.
  • the Cu-X alloy layer is formed of a Cu alloy containing Cu and an X element.
  • the element X is at least one selected from the group X consisting of Al, Mn, Zn and Ni.
  • the X element may be used alone or in combination of two or more.
  • the Cu alloy forming the Cu—X alloy layer contains at least one X element selected from the group X consisting of Al, Mn, Zn and Ni, with the balance being Cu and unavoidable impurities.
  • the metal constituting the Cu—X alloy layer is a composition system in which the X element is any one of the following (1) to (5).
  • the element of the X group is contained only in one kind, and the content is 6 at% or more and 27 at% or less.
  • It contains 4 at% or more and 15 at% or less of Al, and further contains 5 at% or more and 10 at% or less of Mn.
  • the electric resistance after heat treatment at 400 ° C. can be 3 ⁇ cm or less.
  • the resistance value of the electrode after the heat treatment at 400 ° C. may exceed 3 ⁇ cm. This is considered to be due to the diffusion of the X element into the wiring layer by the heat treatment.
  • the laminated wiring film provided with the Cu—X alloy layer having the above composition system can be suitably used as a Cu wiring for a TFT element using an oxide semiconductor.
  • the metal for synthesizing the Cu-X alloy layer has a composition in which the X element is any one of the following (1 ′) to (5 ′) It is preferable that it is a system.
  • the X element is any one of the following (1 ′) to (5 ′) It is preferable that it is a system.
  • (2 ') It contains 4 at% or more and 9 at% or less of Al, and further contains 5 at% or more and 10 at% or less of Mn.
  • the electrical resistance after heat treatment can be 3 ⁇ cm or less even at 500 ° C.
  • the laminated wiring film provided with the Cu—X alloy layer having the above composition system can be suitably used as a Cu wiring for a TFT element using an oxide semiconductor or an LTPS semiconductor.
  • the Mn element diffuses to the alloy surface to form a concentrated layer. Concentrated Mn is oxidized and rendered inactive. Therefore, except for the Cu element which has been oxidized at the initial stage of the reaction, it is protected by the passivated Mn oxide, oxygen is not diffused further inside the Cu--Mn film, and the progress of oxidation is suppressed. At this time, if the content of Mn falls below a predetermined range, a thickened layer may not be formed to an extent that suppresses oxidation.
  • the etching of the Cu—Mn film is promoted at the time of wiring processing using a hydrogen peroxide solution or mixed acid type etching solution used in the process of thin film transistors, The shape may not be obtained.
  • the X element is Al or Zn, it is passivated in the same manner as Mn and has an effect of protecting the surface of Cu from oxidation.
  • Al interferes with etching and Zn has an effect of promoting the etching.
  • the addition amount of Al is increased beyond a predetermined level, the etching rate becomes slower than the wiring layer, and the Cu-X alloy layer protrudes more than the wiring layer, leaving an extension. Not desirable.
  • the addition amount of Zn is increased to a predetermined amount or more, the etching rate of the Cu—X alloy layer is further accelerated, and thus a good etched shape may not be obtained.
  • Ni is an element which easily dissolves in Cu, and is diffused into Cu or a Cu alloy laminated as a wiring layer by heating.
  • the content of Ni exceeds a predetermined range, the resistance after the heat treatment increases, which is not preferable.
  • the laminated wiring film provided with the Cu—X alloy layer having the above composition system is laminated on a substrate, it is preferable to further include an adhesion layer containing Ti on the surface on the side laminated on the substrate.
  • an adhesion layer containing Ti between the semiconductor substrate and the wiring layer Ti alone, Ti alloy, Ti oxide, Ti nitride
  • Ti may be diffused into Cu due to the influence of high temperature heat treatment at the time of SiOx film formation, and wiring resistance may increase.
  • the cap layer formed of the above specific alloy layer is provided as the laminated wiring film, the diffusion of Ti into Cu can be suppressed, and the increase of the wiring resistance can be suppressed.
  • the diffusion of Ti is considered to be the reason for inhibiting the oxygen penetration into the wiring layer (Cu wiring film) by laminating the cap layer of the present invention, since oxygen is a driving source. .
  • FIG. 7 the schematic sectional drawing which illustrates the structure of the laminated wiring film at the time of using the contact
  • an insulating film (SiOx) 4 is formed on the laminated wiring film.
  • the cap layer 3 may be further provided between the adhesion layer 14 and the wiring layer 2. Further, the adhesive layer 14, the cap layer 3 and the wiring layer 2 may be stacked in this order on the glass substrate 1.
  • the thickness of the adhesive layer is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 20 nm or more.
  • the thickness of the adhesion layer is preferably 50 nm or less, more preferably 40 nm or less, and still more preferably 30 nm or less.
  • the Cu-X alloy layer is insufficient in oxidation resistance when the film thickness is thin, and impairs the etching processability when it is thick, and when the film thickness of the Cu-X alloy layer is thick, the resistance when viewed from the resistance of the entire Cu electrode becomes large. Therefore, the film thickness of the Cu—X alloy layer is preferably 5 nm or more and 200 nm or less. 10 nm or more is more preferable, 20 nm or more is further preferable, 150 nm or less is more preferable, and 100 nm or less is still more preferable.
  • the total film thickness of the wiring layer and the Cu—X alloy layer ie, the film thickness of the laminated wiring film, is preferably 55 nm or more, more preferably 70 nm or more, and still more preferably 100 nm or more.
  • the total film thickness is preferably 1200 nm or less, more preferably 700 nm or less, and still more preferably 500 nm or less.
  • the laminated wiring film of the present invention preferably has a wiring shape of a forward tapered shape as shown in FIG. If the Cu—X alloy layer does not have a shape projecting more than the wiring layer, but has a forward tapered shape, breakage of the interlayer insulating film or the wiring coated on the Cu—X alloy layer can be suppressed.
  • the taper angle of the wiring layer is preferably 100 ° or less with respect to the substrate, more preferably 30 ° to 80 ° with respect to the substrate, still more preferably 30 ° to 60 °, and 40 ° It is more preferable that the angle is ⁇ 60 °.
  • the taper angle of the wiring layer is in the above range, the exposed width of the wiring layer can be narrowed from the tapered end of the laminated wiring film. If the taper angle is small and the exposed width of the wiring layer is large, this means an increase in the area of the wiring layer not protected by the cap layer, and there is a risk of oxidation in subsequent processing. When the tapered end is oxidized by oxidation, this means that the width of the low electric resistance functioning as a wiring becomes narrow, and the wiring resistance may be increased.
  • the taper angle of the wiring layer is preferably in the range of -25% to + 50% with respect to the taper angle of the Cu single layer film having the same film thickness.
  • the taper angle of the wiring layer with respect to the taper angle of the Cu single-layer film having the same film thickness is in the above range, breakage of the interlayer insulating film or the wiring coated on the Cu-X alloy layer can be further suppressed. .
  • the wiring layer and the Cu—X alloy layer are preferably formed by sputtering.
  • the sputtering method is excellent in productivity, and an alloy film of substantially the same composition can be stably formed by using a sputtering target.
  • a sputtering method for example, any sputtering method such as a DC sputtering method, an RF sputtering method, a magnetron sputtering method, a reactive sputtering method, etc. may be adopted, and the formation conditions may be set appropriately.
  • the target is a Cu alloy containing a predetermined amount of X element, and has the same composition as the desired Cu-X alloy layer.
  • a Cu alloy sputtering target it is possible to form a Cu—X alloy layer of a desired component and composition without causing a compositional deviation.
  • two or more pure metal targets or alloy targets different in composition may be simultaneously discharged to form a film.
  • film formation may be performed while adjusting the components by tipping on a metal of an alloying element on a pure Cu target.
  • the following conditions may be mentioned as an example of the sputtering conditions.
  • Film forming apparatus DC magnetron sputtering apparatus ("CS-200" manufactured by ULVAC, Inc.)
  • Substrate Alkali-free glass ("Eagle 2000" manufactured by Corning)
  • Substrate temperature Room temperature Deposition gas: Ar gas Gas pressure: 2 mTorr Sputtering power: 300 W Degree of vacuum achievement: 1 ⁇ 10 -6 Torr or less
  • the Cu alloy sputtering target of the present invention may have any shape depending on the shape and structure of the sputtering apparatus, for example, rectangular plate, circular plate, donut plate and the like.
  • the Cu alloy sputtering target may be produced by a method of producing an ingot comprising a Cu alloy by a melt casting method, a powder sintering method, or a spray forming method, or a preform comprising a Cu alloy, that is, a final compact
  • the method may be obtained by densifying the preform by densifying means after producing an intermediate before obtaining a body.
  • the wiring pattern can be formed on the laminated wiring film of the present invention by a process such as etching. By narrowing the wiring pattern, the aperture ratio of the pixel element can be increased. Therefore, it is possible to cope with a high definition display device.
  • a TFT element using an oxide semiconductor or a low temperature polysilicon semiconductor is mounted on a high definition panel, and is required to narrow the wiring width. From such a point of view, the width of the specific wiring pattern is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the laminated wiring film of the present invention can be applied to wiring electrodes and input devices.
  • the input device includes an input device such as a touch panel provided with input means on the display device, and an input device not provided with a display device such as a touch pad.
  • the laminated wiring film of the present invention is preferably used for a touch panel sensor.
  • the thin film transistor element of the present invention comprises a wiring layer made of Cu or a Cu alloy having an electric resistance of 10 ⁇ cm or less, and a Cu—X alloy layer containing Cu and an X element provided on at least one of the upper layer and the lower layer of the wiring layer.
  • the X element is at least one selected from the group X consisting of Al, Mn, Zn and Ni.
  • an oxide semiconductor or an LTPS semiconductor is used as an active layer of the TFT.
  • FIG. 2 is a schematic cross-sectional view illustrating the configuration of a thin film transistor element provided with the laminated wiring film of the present invention.
  • a laminated wiring film composed of a wiring layer 2 and a cap layer (Cu-X alloy layer) 3 on a glass substrate 1, an insulating film (SiOx) 4, an oxide semiconductor 5, a laminated wiring film composed of a wiring layer 6 and a cap layer (Cu-X alloy layer) 7, and an insulating film (SiOx) 8 are laminated in this order.
  • the specific alloy layers described above are preferably used as the cap layer (Cu-X alloy layer) 3 and the cap layer (Cu-X alloy layer) 7.
  • Example 1 Preparation of laminated wiring film Prepare an alkali-free glass plate with a diameter of 4 inches and a thickness of 0.7 mm as a transparent substrate, wash it with a neutral detergent, and irradiate the excimer UV lamp for 30 minutes to contaminate the surface. Was removed. On the surface-treated non-alkali glass plate, a laminated wiring film having a wiring layer shown in Table 1 and a cap layer which is a Cu—X alloy layer was formed by DC magnetron sputtering. Sample No. The wiring film 1 is a single layer film of only the wiring layer.
  • the atmosphere in the chamber is temporarily adjusted to 3 ⁇ 10 ⁇ 6 Torr before film formation, and sputtering is then performed on the substrate in the order of the wiring layer and cap layer under the following sputtering conditions to form a laminated wiring film Formed.
  • a sputtering target a pure Cu sputtering target, or a target having the same component composition as each cap layer, and a disk-shaped sputtering target having a diameter of 4 inches each was used. The following evaluation was performed using the obtained laminated wiring film.
  • Film forming apparatus DC magnetron sputtering apparatus ("CS-200" manufactured by ULVAC, Inc.)
  • Substrate Non-alkali glass plate (manufactured by Corning "Eagle 2000")
  • Substrate temperature Room temperature
  • Deposition gas Ar gas
  • Gas pressure 2 mTorr Sputtering power: 300 W
  • Degree of vacuum achievement 1 ⁇ 10 -6 Torr or less
  • the electric resistivity of the laminated wiring film was measured as follows. That is, the electrical resistance was measured by a four-terminal method for a sample in which a cap layer was formed to a film thickness described on the Cu-based film described in Table 1 on an alkali-free glass plate. The electrical resistivity was calculated from the measured electrical resistance and the total value of the film thickness of the Cu-based film and the cap layer. Next, after performing heat treatment for 1 hour each at 400 ° C. and 500 ° C. under N 2 atmosphere using an infrared lamp heater manufactured by ULVAC, Inc .: RTP-6, the electric resistance is similarly measured, and the same as above The electrical resistivity was calculated by the method.
  • a sample having an electrical resistivity of 3 ⁇ cm or less at 400 ° C. is regarded as a heat resistance for a TFT element using an oxide semiconductor
  • a sample having an electrical resistivity of 3 ⁇ cm or less at 500 ° C. is an oxide semiconductor or Passed for TFT devices using LTPS.
  • Table 1 shows the results of (2) measurement of electrical resistivity of laminated wiring film, (3) evaluation of wiring shape, taper angle, and (4) evaluation of oxidation resistance.
  • the heat resistance at 400 ° C. is 3 ⁇ cm or less
  • the wiring shape is a forward taper shape
  • the peeling at the time of forming the SiOx film by the CVD method is Those that did not meet the criteria were regarded as pass " ⁇ " as being suitable for TFT elements using oxide semiconductors, and those that did not satisfy any one of the above conditions were considered as fail " ⁇ ".
  • the electrical resistivity is 3 ⁇ cm or less by heat treatment at 400 ° C. and 500 ° C.
  • the wiring shape is a forward taper shape
  • the taper angle to the transparent substrate is 30 ° to 80 °.
  • no. 1 is an example of the Cu single film which does not have a cap layer, and exfoliation was seen at the time of film-forming of a SiOx film.
  • No. Reference numerals 2 to 13 denote laminated wiring films in which the Cu—X alloy layer, which is a cap layer, contains Cu and one element.
  • No. Nos. 5, 8 to 10, and 13 are examples satisfying the composition system (1) of the X element of the Cu-X alloy layer defined in the present invention, and the wiring shape is in a forward tapered shape, and electricity is maintained even after heat treatment at 400.degree.
  • the resistance was an electrical resistance of 3 ⁇ cm or less, and no peeling was observed even when the SiOx film was formed.
  • no. 5 and 8 are examples satisfying the composition system (1 ′) of the X element of the Cu—X alloy layer defined in the present invention, and the wiring shape is forward tapered and the taper angle is also 30 ° to 80 °. Even after the heat treatment at 400 ° C. and 500 ° C., the electric resistance was 3 ⁇ cm or less, and no peeling was observed even when the SiOx film was formed.
  • no. 14 to 39 are laminated wiring films in which the Cu—X alloy layer, which is a cap layer, contains Cu and two or more elements.
  • No. 19 to 39 are examples satisfying the composition system (2) to (5) of the X element of the Cu-X alloy layer defined in the present invention, and the wiring shape is a forward taper shape and heat treatment at 400 ° C. The electric resistance was still 3 ⁇ cm or less, and no peeling was observed even when the SiOx film was formed. On the other hand, no. 14 to 18 could not stably obtain low electrical resistance at the time of high heat treatment.
  • no. 19, 27 to 30 and 32 to 39 are examples satisfying the composition system (2 ') to (5') of the X element of the Cu-X alloy layer defined in the present invention, and the wiring shape is forward tapered Shape, with a taper angle of 30 ° to 80 °, and an electric resistance of 3 ⁇ cm or less after heat treatment at 400 ° C. and 500 ° C., and no peeling was observed even at the time of forming a SiOx film .
  • the composition system (3 ') of the X element of the Cu-X alloy layer defined in the present invention is satisfied, and the electrical resistance after the heat treatment at 500 ° C. is No. 4. It is a low value (2.0 ⁇ cm or less) compared to 22 and 23. From this result, it is understood that the content of Mn is preferably 10 at% or less when the Cu—Zn—Mn alloy layer is used.
  • the composition system (5 ') of the X element of the Cu-X alloy layer defined in the present invention is satisfied, and the electrical resistance after heat treatment at 500.degree. It is a low value (2.3 ⁇ cm) compared to 35, 36 and 39. From this result, it is understood that the content of Ni is preferably 6 at% or more when the Cu-Al-Ni alloy layer is used.
  • Example 2 The laminated wiring film in the case of using the adhesion layer containing Ti was produced by the following procedure. Specifically, as in the case of Example 1, a cap layer which is the adhesion layer, the wiring layer and the Cu-X alloy layer shown in Table 2 on an alkali-free glass plate as a transparent substrate by DC magnetron sputtering. Were sequentially formed. Sample No. The wiring film 40 is a laminated film of only the adhesion layer and the wiring layer. The film forming conditions for the adhesion layer, the wiring layer and the cap layer are the same as in the case of the first embodiment.
  • the measurement of the electrical resistivity and the evaluation of the oxidation resistance were performed under the same conditions as in Example 1. Further, according to the above results, it is considered that it is suitable for a TFT element using an oxide semiconductor that has an electrical resistivity of 3 ⁇ cm or less by heat treatment at 400 ° C. and no SiOx film formation by CVD method. "O”, and one which does not satisfy even one of the above conditions is considered as "X”.
  • no. 40 is an example of a laminated film of only the adhesion layer and the wiring layer, and peeling was observed at the time of forming the SiOx film.
  • the electric resistance did not satisfy 3 ⁇ cm or less.
  • No. 41 is an example which does not satisfy composition system (1) of X element of the Cu-X alloy layer specified in the present invention, and although peeling was not seen at the time of film-forming of a SiOx film, either 400 ° C or 500 ° C. The electric resistance did not satisfy 3 ⁇ cm or less even after the heat treatment of
  • no. 42 to 46 are examples satisfying the composition system (1) to (5) of the X element of the Cu-X alloy layer defined in the present invention, and the electrical resistance after heat treatment at either 400 ° C. or 500 ° C. Of 3 ⁇ cm or less, and no peeling was observed at the time of film formation of the SiOx film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、電気抵抗が10μΩcm以下のCuまたはCu合金からなる配線層と、該配線層の上層および下層のうちの少なくとも一方に設けられるCuとX元素を含むCu-X合金層とを備え、X元素は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種であり、Cu-X合金層を構成する金属が、特定の組成系である積層配線膜に関する。本発明の積層配線膜によれば、低い電気抵抗であり、CVD法による層間絶縁膜のSiOx成膜での剥離が無く、かつ400℃以上の高温熱処理を行っても電気抵抗上昇の無い積層配線膜を提供することができる。

Description

積層配線膜および薄膜トランジスタ素子
 本発明は、積層配線膜および薄膜トランジスタ素子に関する。
 液晶パネルや有機EL(Electro Luminescence)パネルなどのフラットパネルディスプレイやタッチパネルなどの表示装置に用いられる薄膜トランジスタ(以下、TFT:Thin Film Transistorともいう)の半導体材料として、酸化物半導体や低温ポリシリコン半導体(以下、LTPS:Low Temperature Poly‐Siliconともいう)が知られている。
 酸化物半導体やLTPS半導体は、従来利用されているアモルファスシリコン半導体材料と比較して、電子移動度が大きくTFT素子を高速化できる。
 一方で、配線材料を低抵抗化することでTFT素子の駆動速度を速くする検討が行われている。従来のフラットパネルディスプレイの電極配線にはAl(アルミニウム)薄膜やITO(Indium Tin Oxide)薄膜が使用されてきたが、より電気抵抗の低いCu(銅)電極配線やCu合金電極配線の適用が提案されている。
 しかし、Cu配線を用いる場合、以下のような課題が生じる。たとえば、酸化物半導体やLTPS半導体を用いたTFT素子では、従来のアモルファスシリコンを用いた素子より高温熱処理プロセスを経由しなければならず、400℃~500℃程度の加熱に耐えなければならない。また、Cu配線は、ガラス基板、Si(シリコン)膜などの半導体膜、金属酸化物膜などとの密着性が悪い。
 上記Cuを用いた技術として、特許文献1には、ガラス基板などの透明基板との密着性に優れたCu合金膜を備えた表示装置が提案されている。特許文献1の表示装置において、Cu合金膜は、Zn,Ni,Ti,Al,Mg,Ca,W,NbおよびMnよりなる群から選択される少なくとも1種の元素を合計で2~20原子%含むCu合金からなる第一層(Y)と、純Cu、またはCuを主成分とするCu合金であって前記第一層(Y)よりも電気抵抗率の低いCu合金からなる第二層(X)と、を含む積層構造を有し、第一層(Y)が透明基板と接触していることを特徴とする。上記構成により、透明基板とCu合金膜におけるCuの密着性と低電気抵抗を実現している。
 特許文献2には、透明導電膜、および前記透明導電膜と接続するタッチパネルセンサー用の配線膜において、前記配線膜は、Ni、Zn、およびMnよりなる群から選択される合金元素の少なくとも一種を合計量で0.1~40原子%含むCu合金(第1層)と、純CuまたはCuを主成分とするCu合金であって前記第1層よりも電気抵抗率の低いCu合金からなる第2層と、を含む積層構造を有し、前記第2層は、前記透明導電膜と接続されていることを特徴とする耐酸化性に優れたタッチパネルセンサー用Cu合金配線膜が提案されている。
 TFT素子形成プロセスにおいて、層間絶縁膜であるSiOx膜はCVD(Chemical Vapor Deposition)法で成膜する。SiOx膜は高温で成膜する方が、不純物の少ない膜を成膜することができる。不純物は、TFT素子の駆動に悪影響を与えるため、Cu配線は300℃以上の高温のCVD法によるSiOx膜の成膜に耐えうる必要性がある。しかしながら、Cuは酸素と親和性が高い材料である。CVD法でSiOx膜を成膜する場合、NOガスを導入する。NOガスはプラズマ中で酸素ラジカルになっており、Cu単膜に300℃以上の高温でSiOx膜を成膜した場合、図3~図4のように酸素ラジカルとCuが容易に反応し、酸化銅を形成して剥離する。図3(a)および図4(a)、(b)に示したように、約200℃の温度でCVD法によりSiOx膜を成膜した場合には膜剥離は見られないが、図3(b)に示したように、約300℃の温度で成膜した場合には膜剥離が発生してしまう。
日本国特開2011-48323号公報 日本国特開2013-120411号公報
 上記したように、酸化物半導体やLTPS半導体を用いたTFT素子では、ゲート絶縁膜(層間絶縁膜)として、300℃以上でのCVD法によるSiOx膜が形成されるため、Cu配線にはSiOx成膜時のダメージを保護するため、キャップ層の積層が必要となる。キャップ層にはCu-30at%Ni合金膜を用いることが一般的に知られている。Cu-30at%Ni合金膜を積層することで、図5のように300℃以上のCVD法によるSiOx膜の成膜でも膜の剥離を抑制することができるが、400℃以上の熱処理を行うと積層膜の抵抗が上昇する。
 また、酸化物半導体やLTPS半導体を用いたTFT素子を搭載したフラットパネルディスプレイは、高精細なパネルに利用が見込まれる。高精細パネルでは、開口率を上げるため、ソースドレイン配線やゲート配線の配線幅を10μm以下に加工する。配線形状について、キャップ層13が図6(a)のように配線層12よりも張り出して延出部13aが形成される場合と、図6(b)のように逆テーパー状になる場合は、その上層に積層する層間絶縁膜や配線の破断の原因になる。そのため配線形状は順テーパー状(図6(c)参照)に制御する必要性がある。また、順テーパー状の配線形状が得られる場合も、基板11に対する配線層12のテーパー角度が小さい場合は、端部のCu配線部の露出幅が大きくなる。そのため、テーパー角度も制御する必要性がある。
 特許文献1では、Ni等がキャップ層に添加されていることで400℃以上の熱処理で抵抗上昇を招く元素を含んでいる。また、Zn等のテーパー角度を小さくする元素を含んでいるため、Cu配線部の露出幅が大きくなる場合がある。特許文献2は、タッチパネル用途に限定されており、ITO薄膜との接続が必須であるし、500℃加熱で抵抗上昇を起こす元素であるNiを含んでいる。
 本発明は、上記事情に注目してなされたものであり、低い電気抵抗であり、CVD法による層間絶縁膜のSiOx成膜での剥離が無く、かつ400℃以上の高温熱処理を行っても電気抵抗上昇の無い積層配線膜を提供することを課題とする。また、本発明は、該積層配線膜を備えた薄膜TFT素子を提供することも課題とする。
 本発明者らは、鋭意検討を重ねた結果、特定の合金層により形成されるキャップ層を備えたCu積層配線膜が、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[7]に係るものである。
[1]電気抵抗が10μΩcm以下のCuまたはCu合金からなる配線層と、該配線層の上層および下層のうちの少なくとも一方に設けられるCuとX元素を含むCu-X合金層とを備え、前記X元素は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種であり、前記Cu-X合金層を構成する金属が、下記(1)~(5)のいずれか1つの組成系であり、配線パターンの幅が10μm以下であることを特徴とする積層配線膜。
(1)前記X群の元素を1種類のみ含み、その含有量が6at%以上27at%以下である。
(2)Alを4at%以上15at%以下含み、さらにMnを5at%以上10at%以下含む。
(3)Znを5at%以上10at%以下含み、さらにMnを5at%以上26at%以下含む。
(4)Znを4at%以上14at%以下含み、さらにAlを5at%以上15at%以下含む。
(5)Alを5at%以上10at%以下含み、さらにNiを2at%以上10at%以下含む。
[2]前記Cu-X合金層を構成する金属が、下記(1’)~(5’)のいずれか1つの組成系であり、配線パターンの幅が5μm以下である、前記[1]に記載の積層配線膜。
(1’)前記X群の元素を1種類のみ含み、その含有量が6at%以上14at%以下である。
(2’)Alを4at%以上9at%以下含み、さらにMnを5at%以上10at%以下含む。
(3’)Znを5at%以上10at%以下含み、さらにMnを5at%以上10at%以下含む。
(4’)Znを4at%以上14at%以下含み、さらにAlを5at%以上10at%以下含む。
(5’)Alを5at%以上10at%以下含み、さらにNiを6at%以上10at%以下含む。
[3]基板に積層される積層配線膜であって、前記基板に積層される側の表面に、Tiを含む密着層をさらに有する、前記[1]または[2]に記載の積層配線膜。
[4]前記配線層の膜厚が50nm以上1000nm以下であり、前記Cu-X合金層の膜厚が5nm以上200nm以下である、前記[1]または[2]に記載の積層配線膜。
[5]前記配線層の膜厚が50nm以上1000nm以下であり、前記Cu-X合金層の膜厚が5nm以上200nm以下である、前記[3]に記載の積層配線膜。
[6]前記[1]記載の積層配線膜と、酸化物半導体を含むことを特徴とする薄膜トランジスタ素子。
[7]前記[2]記載の積層配線膜と、低温ポリシリコン半導体または酸化物半導体を含むことを特徴とする薄膜トランジスタ素子。
 本発明によれば、低い電気抵抗とCVD法による層間絶縁膜のSiOx成膜で剥離が無く、かつ400℃以上の高温熱処理を行っても電気抵抗上昇の無いCu配線用の積層配線膜およびTFT素子を提供することができる。特に、上記[1]の構成を備えた積層配線膜は、酸化物半導体を用いるTFT素子に好適に用いることができ、上記[2]の構成を備えた積層配線膜は、低温ポリシリコン半導体または酸化物半導体を用いるTFT素子に好適に用いることができる。
図1は、本発明の積層配線膜の構成を例示する概略断面図である。 図2は、本発明の積層配線膜を備えた薄膜トランジスタ素子の構成を例示する概略断面図である。 図3は、Cu単膜上にCVD法でSiOx膜を成膜した時の外観写真図であり、(a)は約200℃で成膜した場合の外観写真図、(b)は約300℃で成膜した場合の外観写真図である。 図4は、Cu単膜上にCVD法で、約200℃の成膜温度でSiOx膜を成膜した時の、倍率20万倍の断面TEM観察写真図であり、(a)は積層膜の全体図、(b)は表面の拡大図である。 図5は、Cu-30at%Ni/Cu積層膜上に、成膜温度200℃のCVD法でSiOx膜を成膜した時の外観写真図である。 図6は、ウェットエッチング法で得られる配線形状の概略図であり、(a)はキャップ層が配線層よりも張り出して、延出部が形成された配線形状、(b)は逆テーパー状の配線形状、(c)は順テーパー状の配線形状である。 図7は、本発明の積層配線膜の他の構成を例示する概略断面図である。
 以下、本発明に係る積層配線膜について説明する。
(積層配線膜)
 本発明の積層配線膜は、電気抵抗が10μΩcm以下のCuまたはCu合金からなる配線層と、該配線層の上層および下層のうちの少なくとも一方に設けられるCuとX元素を含むCu-X合金層とを備え、前記X元素は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種である。
 図1は、本発明の積層配線膜の構成を例示する概略断面図である。図1に示すように、本実施形態においては、ガラス基板1上に配線層2およびキャップ層(Cu-X合金層)3から構成される積層配線膜がこの順序で積層されており、更に積層配線膜上に絶縁膜(SiOx)4が形成されている。絶縁膜(SiOx)4としては、TFTにおけるゲート電極(Cu配線)と酸化物半導体層の間に設けられるゲート絶縁膜などが例示される。
(配線層)
 配線層はCuまたはCu合金からなる膜である。以下、これらの膜を「Cu系膜」ということがある。配線層を導電層として形成する場合、該配線層はCu系膜であって、その電気抵抗は10μΩcm以下である。配線層の電気抵抗が10μΩcm以下であることで、積層配線膜の低電気抵抗を実現することができる。積層配線膜の電気抵抗をより低くし、導電性を改善するため、配線層の電気抵抗は、5μΩcm以下であることが好ましく、4μΩcm以下であることがより好ましい。また、CuはCu合金よりも電気抵抗が低いため、配線層はCuにより形成されることが好ましい。
 配線層を形成するCu合金としては、Ti、Mn、Fe、Co、Ni、GeおよびZnよりなるZ群から選択される少なくとも1種のZ元素を含み、残部がCuおよび不可避不純物よりなる合金が挙げられる。上記Z元素を含むことによって、各種耐食性や基板との密着性が改善するなどの効果がある。これらのZ元素は、単独で用いてもよいし2種以上を併用してもよい。Z元素は、例えば合計で0原子%超2原子%以下の範囲で含有させることができる。
 配線層の膜厚は、パネルに求められる性能から考えて電極抵抗のスペックが決まるため、成膜時に膜厚や成分の均一な膜を得る観点から、50nm以上とすることが好ましく、70nm以上がより好ましく、100nm以上が更に好ましい。一方、生産性とエッチング加工性を確保する観点から、配線層の膜厚は、1000nm以下であることが好ましく、700nm以下がより好ましく、500nm以下が更に好ましい。
(Cu-X合金層)
 Cu-X合金層は、キャップ層として配線層の上層および下層のうちの少なくとも一方に設けられる。配線層の少なくとも一方の面にキャップ層を設けることで、400℃以上500℃以下の高温熱処理においてもCu系膜の電気抵抗の上昇を抑え、また、SiOx成膜での膜剥離を抑制することができる。
 Cu-X合金層はCuとX元素を含むCu合金により形成される。X元素は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種である。X元素は、1種を単独で用いてもよいし2種以上を併用してもよい。Cu-X合金層を形成するCu合金は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種のX元素を含み、残部がCuおよび不可避不純物よりなる。
 本発明において、Cu-X合金層を構成する金属は、そのX元素が、下記(1)~(5)のいずれか1つの組成系である。
(1)前記X群の元素を1種類のみ含み、その含有量が6at%以上27at%以下である。
(2)Alを4at%以上15at%以下含み、さらにMnを5at%以上10at%以下含む。
(3)Znを5at%以上10at%以下含み、さらにMnを5at%以上26at%以下含む。
(4)Znを4at%以上14at%以下含み、さらにAlを5at%以上15at%以下含む。
(5)Alを5at%以上10at%以下含み、さらにNiを2at%以上10at%以下含む。
 Cu-X合金層を形成するCu合金中のX元素の含有量が上記(1)~(5)であると、400℃での熱処理後の電気抵抗を3μΩcm以下とすることができる。前記範囲を超えてX元素を含有すると、400℃熱処理後の電極の抵抗値が3μΩcm超える場合がある。これは、熱処理によってX元素が配線層中に拡散するためと考えられる。
 上記組成系を有するCu-X合金層を備えた積層配線膜は、酸化物半導体を用いたTFT素子用のCu配線として好適に使用することができる。
 熱処理の温度が400℃を超え、500℃以下で処理する場合は、Cu-X合金層を合成する金属が、そのX元素が、下記(1’)~(5’)のいずれか1つの組成系であることが好ましい。
(1’)前記X群の元素を1種類のみ含み、その含有量が6at%以上14at%以下である。
(2’)Alを4at%以上9at%以下含み、さらにMnを5at%以上10at%以下含む。
(3’)Znを5at%以上10at%以下含み、さらにMnを5at%以上10at%以下含む。
(4’)Znを4at%以上14at%以下含み、さらにAlを5at%以上10at%以下含む。
(5’)Alを5at%以上10at%以下含み、さらにNiを6at%以上10at%以下含む。
 Cu-X合金層を形成するCu合金中のX元素の含有量が上記(1’)~(5’)であると、500℃においても熱処理後の電気抵抗を3μΩcm以下とすることができる。
 上記組成系を有するCu-X合金層を備えた積層配線膜は、酸化物半導体もしくはLTPS半導体を用いたTFT素子用のCu配線として好適に使用することができる。
 Cu-Mn膜を酸化雰囲気中で加熱したり、もしくは酸素プラズマ存在下で処理するとMn元素が合金表面に拡散して濃化層を形成する。濃化したMnは酸化され不導態化する。そのため反応初期に酸化されてしまったCu元素以外は不導態化したMn酸化物によって保護され、それ以上Cu-Mn膜内部に酸素が拡散せず、酸化の進行を抑制する効果がある。このとき、Mnの含有量が所定範囲を下回ると、酸化を抑制するほどの濃化層が形成できない場合がある。またMnの含有量が所定範囲を超えると、薄膜トランジスタの工程で用いられる過酸化水素水や混酸系のエッチング液を用いた配線加工時に、Cu-Mn膜のエッチングが促進されるため、良好な配線形状が得られない場合がある。
 X元素がAl、Znの場合も、Mn同様に不動態化し、Cuの表面を酸化から保護する効果がある。しかしながら、これらのX元素は過酸化水素水や混酸系のエッチング液を用いたとき、Alはエッチングを妨げ、Znはエッチングを促進する効果がある。これらの元素を添加したとき、Alは所定以上に添加量を増やすと、配線層よりもエッチング速度が遅くなり、Cu-X合金層が配線層よりも張り出してしまい、延出部が残るため、好ましくない。また、Znは所定以上に添加量を増やすと、Cu-X合金層のエッチング速度をより促進するため、良好なエッチング形状が得られない場合がある。
 X元素がNiの場合、Niの含有量が所定範囲を下回ると、酸化からの保護の効果が十分でないため、好ましくない。また、NiはCuに対して固溶しやすい元素であり、加熱によって配線層として積層するCuまたはCu合金内に拡散する。Niの含有量が所定範囲を超えると、加熱処理後の拡散によって抵抗が増加するため、好ましくない。
 上記組成系を有するCu-X合金層を備えた積層配線膜は、基板に積層される場合において、前記基板に積層される側の表面に、Tiを含む密着層をさらに有することが好ましい。半導体基板(絶縁体)と配線層(Cu金属)との密着性を向上させるべく、半導体基板と配線層との間にTiを含む密着層(Ti単体、Ti合金、Ti酸化物、Ti窒化物など)を設けることがあるが、SiOx成膜時の高温熱処理による影響で、Cu中にTiが拡散して、配線抵抗が上昇するおそれがある。一方、積層配線膜として上述の特定の合金層により形成されるキャップ層を設けた場合には、TiのCu中への拡散を抑制でき、配線抵抗の上昇を抑制することができる。
 その理由については明らかではないが、Tiの拡散は酸素が駆動源になるため、本発明のキャップ層を積層することにより配線層(Cu配線膜)中への酸素進入を阻害するためと考えられる。
 なお、Tiを含む密着層を用いた場合の積層配線膜の構成を例示する概略断面図を図7に示す。図7に示すように、本実施形態においては、ガラス基板1上に密着層14、配線層2およびキャップ層(Cu-X合金層)3から構成される積層配線膜がこの順序で積層されており、更に積層配線膜上に絶縁膜(SiOx)4が形成されている。なお、本実施形態に対し、さらに密着層14と配線層2との間にキャップ層3を有する形態であってもよい。また、ガラス基板1上に密着層14、キャップ層3および配線層2がこの順序で積層された形態であってもよい。
 密着層の膜厚は10nm以上とすることが好ましく、15nm以上がより好ましく、20nm以上が更に好ましい。また、密着層の膜厚は、50nm以下とすることが好ましく、40nm以下がより好ましく、30nm以下が更に好ましい。密着層の膜厚が前記範囲であることにより、基板との間に均一な密着層を形成することができ、皮膜の密着性を確保できる。
 Cu-X合金層は、膜厚が薄いと耐酸化性が不十分となり、厚いとエッチング加工性を損なううえ、Cu-X合金層の膜厚が厚いとCu電極全体の抵抗でみたときの抵抗が大きくなってしまう。このため、Cu-X合金層の膜厚は5nm以上200nm以下であることが好ましい。Cu-X合金層の膜厚は、10nm以上がより好ましく、20nm以上が更に好ましく、150nm以下がより好ましく、100nm以下が更に好ましい。
 配線層とCu-X合金層の合計膜厚、すなわち積層配線膜の膜厚は、55nm以上とすることが好ましく、70nm以上がより好ましく、100nm以上が更に好ましい。また、前記合計膜厚は、1200nm以下とすることが好ましく、700nm以下がより好ましく、500nm以下が更に好ましい。積層配線膜の膜厚が前記範囲であると、安価で成膜が可能であり、かつ良好な配線形状を得ることができる。
 本発明の積層配線膜は、配線形状が図6(c)に示したような順テーパー形状であることが好ましい。Cu-X合金層が配線層よりも張り出した形状ではなく、順テーパー形状であると、Cu-X合金層上に被覆される層間絶縁膜や配線の破綻を抑制することができる。
 配線層のテーパー角度は、基板に対して100°以下であることが好ましく、基板に対して30°~80°であることがより好ましく、30°~60°であることがさらに好ましく、40°~60°であることが更に好ましい。配線層のテーパー角度が前記範囲であると、積層配線膜のテーパー端部から、配線層の露出幅を狭くすることができる。テーパー角度が小さく配線層の露出幅が大きい場合、キャップ層で保護されていない配線層面積の増加を意味しており、その後の処理で酸化される恐れがある。酸化によってテーパー端部が酸化した場合、電気抵抗が低い配線として機能する幅が狭くなることを意味しており、配線抵抗が増加する恐れがある。
 また、配線層のテーパー角度は、同じ膜厚のCu単層膜のテーパー角度に対して、-25%~+50%の範囲であることが好ましい。同じ膜厚のCu単層膜のテーパー角度に対する配線層のテーパー角度が前記範囲であることにより、Cu-X合金層上に被覆される層間絶縁膜や配線の破綻をより一層抑制することができる。
 本発明において、配線層とCu-X合金層は、スパッタリング法により成膜することが好ましい。スパッタリング法は生産性に優れ、スパッタリングターゲットを用いれば、ほぼ同じ組成の合金膜を安定して成膜できる。スパッタリング法としては、例えばDCスパッタリング法、RFスパッタリング法、マグネトロンスパッタリング法、反応性スパッタリング法等のいずれのスパッタリング法を採用してもよく、その形成条件は適宜設定すればよい。
 上記スパッタリング法で、例えば、Cu-X合金層を形成するには、上記ターゲットとして、X元素を所定量含有するCu合金からなるものであって、所望のCu-X合金層と同一の組成のCu合金スパッタリングターゲットを用いれば、組成ズレすることなく、所望の成分・組成のCu-X合金層を形成できる。または、組成の異なる二つ以上の純金属ターゲットや合金ターゲットを用い、これらを同時に放電させて成膜してもよい。または、純Cuターゲットに合金元素の金属をチップオンすることにより成分を調整しながら成膜してもよい。
 Cu-X合金層をスパッタリング法で成膜する場合、スパッタリング条件の一例として、以下の条件が挙げられる。(スパッタリング条件)
 成膜装置:DCマグネトロンスパッタリング装置(ULVAC社製「CS-200」)
 基板:無アルカリガラス(コーニング社製「イーグル2000」)
 基板温度:室温
 成膜ガス:Arガス
 ガス圧:2mTorr
 スパッタパワー:300W
 真空到達度:1×10-6Torr以下
 本発明のCu合金スパッタリングターゲットは、その形状が、スパッタリング装置の形状や構造に応じて任意の形状、例えば角型プレート状、円形プレート状、ドーナツプレート状等のものが挙げられる。上記Cu合金スパッタリングターゲットの製造方法としては、溶解鋳造法や粉末焼結法、スプレイフォーミング法で、Cu合金からなるインゴットを製造して得る方法や、Cu合金からなるプリフォーム、即ち最終的な緻密体を得る前の中間体を製造した後、該プリフォームを緻密化手段により緻密化して得られる方法が挙げられる。
 配線パターンは、本発明の積層配線膜に対して、エッチング等の処理により形成することができる。配線パターンを細くすると、画素素子の開口率を上げることができる。そのため、高精細な表示装置に対応することができる。酸化物半導体や低温ポリシリコン半導体を用いたTFT素子は、高精細パネルに搭載されており、配線幅を細くするよう求められる。このような観点から、具体的な配線パターンの幅は、10μm以下にすることが好ましく、より好ましくは5μm以下である。
 上記Cu-X合金層以外の各層の成膜方法は、本発明の技術分野において通常用いられる方法を適宜採用することができる。
 本発明の積層配線膜は、配線電極や入力装置に適用することができる。入力装置には、タッチパネルなどのように表示装置に入力手段を備えた入力装置や、タッチパッドのような表示装置を有さない入力装置が含まれる。特に本発明の積層配線膜は、タッチパネルセンサーに好ましく用いられる。
 続いて、本発明に係る薄膜トランジスタ素子について説明する。
(薄膜トランジスタ素子)
 本発明の薄膜トランジスタ素子は、電気抵抗が10μΩcm以下のCuまたはCu合金からなる配線層と、該配線層の上層および下層のうちの少なくとも一方に設けられるCuとX元素を含むCu-X合金層とを備え、前記X元素は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種である積層配線膜を用いることを特徴とする。また、TFTの活性層として、酸化物半導体もしくはLTPS半導体が用いられる。
 図2は、本発明の積層配線膜を備えた薄膜トランジスタ素子の構成を例示する概略断面図である。図2に示すように、本実施形態においては、ガラス基板1上に配線層2およびキャップ層(Cu-X合金層)3から構成される積層配線膜、絶縁膜(SiOx)4、酸化物半導体5、配線層6およびキャップ層(Cu-X合金層)7から構成される積層配線膜、絶縁膜(SiOx)8がこの順序で積層されている。キャップ層(Cu-X合金層)3およびキャップ層(Cu-X合金層)7として、上述した特定の合金層が好適に用いられる。
 以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、その趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
<実施例1>
(1)積層配線膜の作製
 透明基板として、直径4インチ、板厚が0.7mmの無アルカリ硝子板を用意し、中性洗剤で洗浄後、エキシマUVランプに30分間照射して表面の汚染を除去した。この表面処理した無アルカリ硝子板上に、DCマグネトロンスパッタリング法により、表1に示す配線層とCu-X合金層であるキャップ層を備えた積層配線膜を成膜した。なお、試料No.1の配線膜は配線層のみの単層膜である。
 成膜にあたっては、成膜前にチャンバー内の雰囲気を一旦、3×10-6Torrに調整してから、前記基板上に配線層、キャップ層の順に下記スパッタリング条件でスパッタリングを行い、積層配線膜を形成した。スパッタリングターゲットとしては、純Cuスパッタリングターゲット、または各キャップ層と同一の成分組成のターゲットであって、いずれも直径4インチの円盤型スパッタリングターゲットを用いた。得られた積層配線膜を用いて下記の評価を行った。
(スパッタリング条件)
 成膜装置:DCマグネトロンスパッタリング装置(ULVAC社製「CS-200」)
 基板:無アルカリ硝子板(コーニング社製「イーグル2000」)
 基板温度:室温
 成膜ガス:Arガス
 ガス圧:2mTorr
 スパッタパワー:300W
 真空到達度:1×10-6Torr以下
(2)積層配線膜の電気抵抗率の測定
 積層配線膜の電気抵抗率を、次の通り測定した。即ち、無アルカリ硝子板上に表1に記載のCu系膜上にキャップ層を記載の膜厚で成膜したサンプルを4端子法で電気抵抗を測定した。測定した電気抵抗とCu系膜とキャップ層の膜厚の合計値から電気抵抗率を算出した。次いで、ULVAC社製の赤外線ランプ加熱装置:RTP-6を用い、N雰囲気下で400℃と500℃のそれぞれで1時間の熱処理を行った後、同様に電気抵抗を測定し、上記同様の方法で電気抵抗率を算出した。
 その結果を表1に示す。本実施例では、400℃で電気抵抗率が3μΩcm以下の試料を、酸化物半導体を用いたTFT素子向けの耐熱性として合格とし、500℃で電気抵抗率が3μΩcm以下の試料を酸化物半導体もしくはLTPSを用いたTFT素子向けに合格とした。
(3)配線形状、テーパー角度の評価
 フォトレジストを用いて積層配線膜上にラインおよびスペースからなるレジストパターンを形成した。試料No.2~39に記載する積層配線膜について、三菱ガス化学株式会社製の過水系エッチング液でエッチング加工を行い、その後、アセトンに浸漬してレジストを除去して透明基板ごと劈開した。次いで、上記エッチング加工を行った試料について、株式会社日立パワーソリューションズ製の電子顕微鏡:S-4000を用いて、その断面形状を観察した。図6(a)に示したように、キャップ層13が配線層12よりも張り出して延出部13aが形成されたものを「延出部有り」、図6(b)に示したように逆テーパー状になっているものを「逆テーパー形状」、図6(c)に示したように順テーパー状になっているものを「順テーパー形状」と評価した。
 続いて、試料No.1~39に記載する積層配線膜について、断面形状より、透明基板に対するテーパー角度を測定した。また、同方法で作製した試料No.1のCu単膜のテーパー角度に対する配線層のテーパー角度の比率を、下記式(1)により計算した。なお、透明基板に対するテーパー角度が30°~80°であるものを合格とし、特に試料No.1のCu単膜のテーパー角度に対する配線層のテーパー角度の比率が-25%~+50%の範囲内の角度で加工できたものをより優れたものであると判断した。その結果を表1に示す。
 Cu単膜に対するテーパー角度の比率(%)=[(Cu単膜のテーパー角度)-(積層配線膜のテーパー角度)]/(Cu単膜のテーパー角度)・・・(1)
(4)耐酸化の評価
 積層配線膜のキャップ層上に、サムコ株式会社製のプラズマCVD装置:PD-220MLを用いてSiOx膜を成膜した。成膜にはSiHとNOガスを用い、膜厚250nmのSiOx膜を成膜し、目視により外観を検査し、SiOx膜の剥離の有無を確認した。その結果を表1に示す。なお、耐酸化が不足している場合、SiOx膜の成膜時に膜の表面の酸化が進み、色ムラやさらには界面の体積膨張によってSiOx膜の膜剥がれが生じるため、好ましくない。
 上記(2)積層配線膜の電気抵抗率の測定、(3)配線形状、テーパー角度の評価、および(4)耐酸化の評価の結果を、表1に示す。
 また、上記(2)~(4)項の結果より、400℃熱処理で電気抵抗率が3μΩcm以下であって、配線形状が順テーパー形状であり、かつCVD法でSiOx成膜した際の剥離が無いものを、酸化物半導体を用いたTFT素子向けに好適であるとして合格『○』とし、上記条件のいずれか1つでも満たさないものを不合格『×』とした。
 加えて、400℃および500℃熱処理で電気抵抗率が3μΩcm以下であって、配線形状が順テーパー形状であり、かつ、透明基板に対するテーパー角度が30°~80°であり、加えてCVD法でSiOx成膜した際に剥離が無いものを、酸化物半導体および低温ポリシリコン半導体を用いたTFT素子向けに好適であるとして合格『○』とし、上記条件のいずれか1つでも満たさないものを不合格『×』とした。
 結果をあわせて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、次のことがわかる。まず、No.1は、キャップ層を有さないCu単膜の例であり、SiOx膜の成膜時において剥離が見られた。続いて、No.2~13は、キャップ層であるCu-X合金層が、Cuと1種の元素を含む積層配線膜である。No.5、8~10、13は、本発明で規定するCu-X合金層のX元素の組成系(1)を満たす例であり、配線形状が順テーパー状であり、400℃の熱処理後も電気抵抗が3μΩcm以下の電気抵抗であり、SiOx膜の成膜時においても剥離は認められなかった。これに対し、No.3、6は、高熱処理時の低電気抵抗を安定して得ることができず、かつ、No.3は、Cu-X合金層に延出部が形成された配線形状となった。No.2、4、7、11および12は、SiOx膜の成膜時において剥離が見られた。
 特に、No.5と8は、本発明で規定するCu-X合金層のX元素の組成系(1’)を満たす例であり、配線形状が順テーパー状であり、且つテーパー角度も30°~80°であり、400℃と500℃の熱処理後のいずれにおいても3μΩcm以下の電気抵抗であり、SiOx膜の成膜時においても剥離は認められなかった。
 また、No.14~39は、キャップ層であるCu-X合金層が、Cuと2種以上の元素を含む積層配線膜である。No.19~39は、本発明で規定するCu-X合金層のX元素の組成系(2)~(5)のいずれかを満たす例であり、配線形状が順テーパー状であり、400℃の熱処理後も電気抵抗が3μΩcm以下の電気抵抗であり、SiOx膜の成膜時においても剥離は認められなかった。これに対し、No.14~18は高熱処理時の低電気抵抗を安定して得ることができなかった。
 特に、No.19、27~30および32~39は、本発明で規定するCu-X合金層のX元素の組成系(2’)~(5’)のいずれかを満たす例であり、配線形状が順テーパー状であり、且つテーパー角度も30°~80°であり、400℃と500℃の熱処理後のいずれにおいても3μΩcm以下の電気抵抗であり、SiOx膜の成膜時においても剥離は認められなかった。
 なお、No.22~26のCu-Zn-Mn合金層に着目すると、No.24~26の例においては、本発明で規定するCu-X合金層のX元素の組成系(3’)を満たしており、かつ、500℃の熱処理後の電気抵抗がNo.22および23に比べて低い値(2.0μΩcm以下)となっている。この結果より、Cu-Zn-Mn合金層を用いた場合の、Mnの含有量は10at%以下が好ましいことがわかる。
 また同様に、No.35~39のCu-Al-Ni合金層に着目すると、No.37および38の例においては、本発明で規定するCu-X合金層のX元素の組成系(5’)を満たしており、かつ、500℃の熱処理後の電気抵抗がNo.35、36および39に比べて低い値(2.3μΩcm)となっている。この結果より、Cu-Al-Ni合金層を用いた場合の、Niの含有量は6at%以上が好ましいことがわかる。
<実施例2>
 Tiを含む密着層を用いた場合の積層配線膜を下記の手順により作製した。具体的には、実施例1の場合と同様に、透明基板としての無アルカリ硝子板上に、DCマグネトロンスパッタリング法により、表2に示す密着層、配線層およびCu-X合金層であるキャップ層を備えた積層配線膜を順次成膜した。なお、試料No.40の配線膜は密着層および配線層のみの積層膜である。密着層、配線層およびキャップ層の成膜条件は、実施例1の場合と同様である。
 上記のようにして得られた積層配線膜について、実施例1の場合と同じ条件で、電気抵抗率の測定および耐酸化の評価を行った。また、上記結果より、400℃熱処理で電気抵抗率が3μΩcm以下であって、CVD法でSiOx成膜した際の剥離が無いものを、酸化物半導体を用いたTFT素子向けに好適であるとして合格『○』とし、上記条件のいずれか1つでも満たさないものを不合格『×』とした。
 加えて、400℃および500℃熱処理で電気抵抗率が3μΩcm以下であって、CVD法でSiOx成膜した際に剥離が無いものを、酸化物半導体および低温ポリシリコン半導体を用いたTFT素子向けに好適であるとして合格『○』とし、上記条件のいずれか1つでも満たさないものを不合格『×』とした。
 積層配線膜の電気抵抗率の測定、耐酸化の評価、および酸化物半導体または低温ポリシリコン半導体を用いたTFT素子への適合性の結果をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、次のことがわかる。まず、No.40は、密着層および配線層のみの積層膜の例であり、SiOx膜の成膜時において剥離が見られた。また、500℃の熱処理後において電気抵抗が3μΩcm以下を満たさなかった。続いて、No.41は、本発明で規定するCu-X合金層のX元素の組成系(1)を満たさない例であり、SiOx膜の成膜時において剥離が見られなかったものの、400℃および500℃いずれの熱処理後においても電気抵抗が3μΩcm以下を満たさなかった。
 これに対し、No.42~46は、本発明で規定するCu-X合金層のX元素の組成系(1)~(5)のいずれかを満たす例であり、400℃および500℃いずれの熱処理後においても電気抵抗が3μΩcm以下を満たし、SiOx膜の成膜時において剥離が見られなかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年5月13日付けで出願された日本特許出願(特願2016-097321)及び2017年4月11日付けで出願された日本特許出願(特願2017-078505)に基づいており、その全体が引用により援用される。
1 ガラス基板
2 配線層
3 キャップ層(Cu-X合金層)
4 絶縁膜(SiOx)
5 酸化物半導体
6 配線層
7 キャップ層(Cu-X合金層)
8 絶縁膜(SiOx)
11 基板
12 配線層
13 キャップ層
13a 延出部
14 密着層

Claims (7)

  1.  電気抵抗が10μΩcm以下のCuまたはCu合金からなる配線層と、該配線層の上層および下層のうちの少なくとも一方に設けられるCuとX元素を含むCu-X合金層とを備え、
     前記X元素は、Al、Mn、ZnおよびNiからなるX群から選ばれる少なくとも1種であり、
     前記Cu-X合金層を構成する金属が、下記(1)~(5)のいずれか1つの組成系であり、
     配線パターンの幅が10μm以下であることを特徴とする積層配線膜。
    (1)前記X群の元素を1種類のみ含み、その含有量が6at%以上27at%以下である。
    (2)Alを4at%以上15at%以下含み、さらにMnを5at%以上10at%以下含む。
    (3)Znを5at%以上10at%以下含み、さらにMnを5at%以上26at%以下含む。
    (4)Znを4at%以上14at%以下含み、さらにAlを5at%以上15at%以下含む。
    (5)Alを5at%以上10at%以下含み、さらにNiを2at%以上10at%以下含む。
  2.  前記Cu-X合金層を構成する金属が、下記(1’)~(5’)のいずれか1つの組成系であり、
     配線パターンの幅が5μm以下である、請求項1に記載の積層配線膜。
    (1’)前記X群の元素を1種類のみ含み、その含有量が6at%以上14at%以下である。
    (2’)Alを4at%以上9at%以下含み、さらにMnを5at%以上10at%以下含む。
    (3’)Znを5at%以上10at%以下含み、さらにMnを5at%以上10at%以下含む。
    (4’)Znを4at%以上14at%以下含み、さらにAlを5at%以上10at%以下含む。
    (5’)Alを5at%以上10at%以下含み、さらにNiを6at%以上10at%以下含む。
  3.  基板に積層される積層配線膜であって、前記基板に積層される側の表面に、Tiを含む密着層をさらに有する、請求項1または2に記載の積層配線膜。
  4.  前記配線層の膜厚が50nm以上1000nm以下であり、前記Cu-X合金層の膜厚が5nm以上200nm以下である、請求項1または2に記載の積層配線膜。
  5.  前記配線層の膜厚が50nm以上1000nm以下であり、前記Cu-X合金層の膜厚が5nm以上200nm以下である、請求項3に記載の積層配線膜。
  6.  請求項1記載の積層配線膜と、酸化物半導体を含むことを特徴とする薄膜トランジスタ素子。
  7.  請求項2記載の積層配線膜と、低温ポリシリコン半導体または酸化物半導体を含むことを特徴とする薄膜トランジスタ素子。
PCT/JP2017/017690 2016-05-13 2017-05-10 積層配線膜および薄膜トランジスタ素子 WO2017195826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780029216.2A CN109155243A (zh) 2016-05-13 2017-05-10 层叠配线膜及薄膜晶体管元件
US16/092,976 US20190148412A1 (en) 2016-05-13 2017-05-10 Multilayer wiring film and thin film transistor element
KR1020187032013A KR20180133455A (ko) 2016-05-13 2017-05-10 적층 배선막 및 박막 트랜지스터 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-097321 2016-05-13
JP2016097321 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017195826A1 true WO2017195826A1 (ja) 2017-11-16

Family

ID=60267897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017690 WO2017195826A1 (ja) 2016-05-13 2017-05-10 積層配線膜および薄膜トランジスタ素子

Country Status (6)

Country Link
US (1) US20190148412A1 (ja)
JP (2) JP2017208533A (ja)
KR (1) KR20180133455A (ja)
CN (1) CN109155243A (ja)
TW (1) TWI652359B (ja)
WO (1) WO2017195826A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988673B2 (ja) * 2018-04-26 2022-01-05 住友金属鉱山株式会社 銅合金ターゲット及びその製造方法
JP2020012190A (ja) * 2018-07-20 2020-01-23 株式会社アルバック 密着膜用ターゲット、配線層、半導体装置、液晶表示装置
JP6965856B2 (ja) * 2018-09-19 2021-11-10 株式会社三洋物産 遊技機
JP6965857B2 (ja) * 2018-09-19 2021-11-10 株式会社三洋物産 遊技機
JPWO2020213232A1 (ja) 2019-04-19 2021-05-06 株式会社アルバック Cu合金ターゲット
KR20210126839A (ko) * 2020-04-10 2021-10-21 삼성디스플레이 주식회사 표시장치 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088498A (ja) * 1994-06-21 1996-01-12 Canon Inc 配線構造、その製造方法および該配線構造を用いた画像形成装置
JP2010258346A (ja) * 2009-04-28 2010-11-11 Kobe Steel Ltd 表示装置およびこれに用いるCu合金膜
JP2011048323A (ja) * 2009-01-16 2011-03-10 Kobe Steel Ltd 表示装置用Cu合金膜および表示装置
JP2012222166A (ja) * 2011-04-08 2012-11-12 Ulvac Japan Ltd 配線膜、薄膜トランジスタ、ターゲット、配線膜の形成方法
WO2015029286A1 (ja) * 2013-08-27 2015-03-05 パナソニック株式会社 薄膜トランジスタ基板の製造方法及び薄膜トランジスタ基板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589835B2 (ja) * 2005-07-13 2010-12-01 富士通セミコンダクター株式会社 半導体装置の製造方法及び半導体装置
JP4835657B2 (ja) * 2008-07-11 2011-12-14 カシオ計算機株式会社 配線電極構造の製造方法
JP5308206B2 (ja) * 2009-03-27 2013-10-09 株式会社ジャパンディスプレイ 表示装置製造方法
TWI537400B (zh) * 2011-12-06 2016-06-11 神戶製鋼所股份有限公司 觸控面板感測器用銅合金配線膜及其之製造方法、以及觸控面板感測器、以及濺鍍靶

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088498A (ja) * 1994-06-21 1996-01-12 Canon Inc 配線構造、その製造方法および該配線構造を用いた画像形成装置
JP2011048323A (ja) * 2009-01-16 2011-03-10 Kobe Steel Ltd 表示装置用Cu合金膜および表示装置
JP2010258346A (ja) * 2009-04-28 2010-11-11 Kobe Steel Ltd 表示装置およびこれに用いるCu合金膜
JP2012222166A (ja) * 2011-04-08 2012-11-12 Ulvac Japan Ltd 配線膜、薄膜トランジスタ、ターゲット、配線膜の形成方法
WO2015029286A1 (ja) * 2013-08-27 2015-03-05 パナソニック株式会社 薄膜トランジスタ基板の製造方法及び薄膜トランジスタ基板

Also Published As

Publication number Publication date
TWI652359B (zh) 2019-03-01
JP2017208533A (ja) 2017-11-24
TW201812034A (zh) 2018-04-01
CN109155243A (zh) 2019-01-04
KR20180133455A (ko) 2018-12-14
JP2018174342A (ja) 2018-11-08
US20190148412A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2017195826A1 (ja) 積層配線膜および薄膜トランジスタ素子
TWI437697B (zh) Wiring structure and a display device having a wiring structure
US8482189B2 (en) Display device
JP5247448B2 (ja) 導電膜形成方法、薄膜トランジスタの製造方法
TWI504765B (zh) Cu alloy film, and a display device or an electronic device provided therewith
WO2010018864A1 (ja) 表示装置、これに用いるCu合金膜およびCu合金スパッタリングターゲット
US20120301732A1 (en) Al alloy film for use in display device
JP2011091364A (ja) 配線構造およびその製造方法、並びに配線構造を備えた表示装置
JPWO2011024770A1 (ja) 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
WO2010103587A1 (ja) バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
JPWO2008044757A1 (ja) 導電膜形成方法、薄膜トランジスタ、薄膜トランジスタ付パネル、及び薄膜トランジスタの製造方法
US10365520B2 (en) Wiring structure for display device
JP5491947B2 (ja) 表示装置用Al合金膜
JP2012189725A (ja) Ti合金バリアメタルを用いた配線膜および電極、並びにTi合金スパッタリングターゲット
JP2012189726A (ja) Ti合金バリアメタルを用いた配線膜および電極、並びにTi合金スパッタリングターゲット
JP2008124450A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、薄膜トランジスタの製造方法、及び薄膜トランジスタ付パネルの製造方法
JP2016156087A (ja) Cu積層膜、およびCu合金スパッタリングターゲット
JP2010258346A (ja) 表示装置およびこれに用いるCu合金膜
WO2016132847A1 (ja) Cu合金膜およびCu積層膜
TWI654339B (zh) Wiring film
JPWO2010143609A1 (ja) 電子装置の形成方法、電子装置、半導体装置及びトランジスタ
TW201928074A (zh) 配線構造及靶材
JP5756319B2 (ja) Cu合金膜、及びそれを備えた表示装置または電子装置
TW201030819A (en) Al alloy film for display device, thin film transistor substrate, method for manufacturing same, and display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187032013

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796186

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796186

Country of ref document: EP

Kind code of ref document: A1