JP5308206B2 - 表示装置製造方法 - Google Patents

表示装置製造方法 Download PDF

Info

Publication number
JP5308206B2
JP5308206B2 JP2009078203A JP2009078203A JP5308206B2 JP 5308206 B2 JP5308206 B2 JP 5308206B2 JP 2009078203 A JP2009078203 A JP 2009078203A JP 2009078203 A JP2009078203 A JP 2009078203A JP 5308206 B2 JP5308206 B2 JP 5308206B2
Authority
JP
Japan
Prior art keywords
film
copper
silicon nitride
forming
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009078203A
Other languages
English (en)
Other versions
JP2010230965A (ja
Inventor
卓也 高橋
孝明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd, Japan Display Inc filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2009078203A priority Critical patent/JP5308206B2/ja
Publication of JP2010230965A publication Critical patent/JP2010230965A/ja
Application granted granted Critical
Publication of JP5308206B2 publication Critical patent/JP5308206B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は表示装置及び表示装置製造方法に関し、より詳しくは、薄膜トランジスタ基板を用いた表示装置、並びにその表示装置の製造方法に関する。
TFT(Thin Film Transistor)基板を具備した液晶パネルが大画面サイズの薄型テレビに適用されている。近年、動画質向上のために駆動周波数が高速化しており、これに伴い信号線の低抵抗化が必要となっている。有機EL(ElectroLuminescence)装置を適用した薄型テレビの研究開発も盛んであるが、素子を電流駆動する必要からやはりTFT基板の信号線の低抵抗化が必要となっている。また、薄型テレビは激しい価格競争に晒されている。従って、市場の要求に応えるためには原価低減が必須であり、信号線の形成プロセスにおいてもコストパフォーマンスの良い薄膜材料やプロセス薬液が求められている。
従来、低抵抗なTFT基板の信号線を構成するためには抵抗率が約3μΩcmのアルミニウムを主たる導体材料とするMo/Al/Mo積層膜(ここで/は積層の界面を表し、/の右側が下層、/の左側が上層である。以下同様)が用いられてきた。この積層膜の信号線を更に低抵抗化するにはAl層を厚くすることになるが、Mo/Al/Mo積層膜の成膜処理時間が長くなるので生産性を悪化させることのほか、製造歩留り悪化の原因となるヒロック発生の頻度を飛躍的に高めてしまうなどの問題が発生する。材料費の点でも、アルミニウムの下層、上層にはそれぞれバリア膜、キャップ膜として高価なモリブデンを使用していることに加え、そのエッチング液の主成分である燐酸が肥料需要の高まりとともに高騰しつつあるなど、高コスト要因が並んでいる。
アルミニウムを下回る低抵抗率を有し、かつ材料費がリーズナブルである信号線材料として銅がある。銅は、薄膜の抵抗率が約2μΩcmと低く、透明導電膜(一般的には、インジウムを主成分とする酸化物)と直接的に電気的コンタクトを取ることができるという特徴を有している。しかし、下地との付着力が弱いことや、薄膜トランジスタの半導体層であるケイ素に拡散してトランジスタ特性を悪化させ易いといった欠点がある。
特許文献1には、酸素を含有する絶縁体(酸化ケイ素)の上にAl、Mg、Mn、Crからなる群とTi、Ta、Zrからなる群からそれぞれ少なくとも一種類の元素を含有する銅合金皮膜を形成して熱処理することにより、酸素を含有する絶縁体と銅合金皮膜との界面に前記添加元素の酸化物を析出させ、銅の拡散バリアとする方法が記載されている。
しかしながら、この方法は酸化ケイ素上に銅配線を形成することを前提としており、TFT基板のようなガラス基板に形成された非晶質ケイ素や窒化ケイ素の上に銅配線を形成する場合には、酸化物を析出できず、密着性に欠けることとなるため、TFT基板を歩留まりに影響を与えることが考えられる。
一方、特許文献2には、液晶表示装置用アレイ基板上に形成されるCu/Mo積層膜からなる信号線を使用する方法が開示されている。この信号線の膜構造においてモリブデンは下地との付着力確保を担い、半導体層への銅の拡散バリアをも兼ねている。
また、非特許文献1には、TFT基板(ガラス基板)のソース・ドレイン電極を形成する方法として、半導体層のコンタクト層の表面を予備酸化し、その上にCuMn合金を成膜しアルゴン雰囲気で熱処理することによりCuMn合金/コンタクト層界面とCuMn合金表面にMnを酸化物として析出する方法が開示されており、これによって、密着性の確保と銅の拡散バリアと低抵抗率とを実現している。
特開2007−27259号公報 特開2004−163901号公報
"大画面液晶配線を全て低抵抗Cu合金に残されたソース・ドレイン課題を解決"、[online]、2008年9月10日、東北大学大学院工学研究科 情報広報室、[平成21年3月6日検索]、インターネット<URL:http://www.eng.tohoku.ac.jp/news/news.php?news=20080910105628>
しかし、特許文献2による方法では、積層配線を加工するために、不安定な過酸化水素を酸化剤とするウェットエッチング液を使用しなければならない。そのパフォーマンスを維持するためには液組成をほぼ一定に保つ必要があり、そのためにはエッチング液の更新頻度を高める必要がある。これは、液の使用量増大に繋がり、延いては高コスト要因となってしまう。また、バリア膜に高価なモリブデンを使用する点も高コストの要因である。
また、非特許文献1ではCuMn合金を低抵抗率化するため、熱処理によってCuMn合金膜中のマンガンをその表面に酸化物として析出させている。このような熱処理を施すためにはマンガンを酸化しながらも銅を酸化させないような微妙な酸化雰囲気の制御が必要となる。しかしながら、現状のTFT型表示装置の装置インフラを用いてそのような熱処理を実現することは困難である。
本発明は、上述の事情を鑑みてしたものであり、窒化ケイ素膜上への銅の微細加工配線をより簡易に行った薄膜トランジスタ基板を用いた表示装置を提供することを目的とする。
本発明の表示装置は、窒化ケイ素の膜により形成された窒化ケイ素層と、前記窒化ケイ素層上に形成され、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムのうちから少なくとも一種の元素を第1添加元素として含み、更にマンガンを含む銅を主成分とする合金により形成された第1銅合金層と、前記第1合金層の上に純銅により形成された第1純銅配線と、を有する薄膜トランジスタ基板を備える表示装置である。
ここで、窒化物はほとんど観測できないものと考えられるため記載していないが、窒化ケイ素層と第1銅合金層との間には、第1添加元素の窒化物が存在してもよい。また、ここでは、銅を99.9%以上含むものを「純銅」としている。
また、本発明の表示装置は、前記薄膜トランジスタ基板は、非晶質ケイ素の膜により形成された非晶質ケイ素層と、前記非晶質ケイ素層上に形成され、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムのうちから、少なくとも一種の元素を第2添加元素として含み、更にマンガンを含む銅を主成分とする合金により形成された第2銅合金層と、前記第2合金層の上に純銅により形成された第2純銅配線と、を更に有し、前記第2合金層と非晶質ケイ素層との間には、第2添加元素の酸化物が形成されている、とすることができる。
また、本発明の表示装置は、前記第2添加元素は、前記第1添加元素と同じ元素である、とすることができる。
また、本発明の表示装置は、前記第1銅合金層の前記銅を主成分とする合金は、アルミニウム、ベリリウム、ハフニウム、リチウム、マグネシウム、スカンジウム、チタニウム、ジルコニウムのうち少なくとも一種の元素を含み、更に、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムのうち少なくとも一種の元素を含有する二元以上の合金である、とすることができる。
また、本発明の表示装置は、前記第1合金層の前記銅を主成分とする合金は、ハフニウム、リチウム、マグネシウム、スカンジウム、ジルコニウムのうち少なくとも一種の元素を含み、更に、ホウ素、ハフニウム、マグネシウム、ニオブ、スカンジウム、ジルコニウムのうち少なくとも一種の元素を含む二元合金以上の合金である、とすることができる。
また、本発明の表示装置は、前記第1合金層の前記銅を主成分とする合金は、ハフニウム、マグネシウム、スカンジウム、ジルコニウムのうち一種の元素を含む二元合金のうち、一種の元素を含有する二元合金である、とすることができる。
本発明の表示装置製造方法は、窒化ケイ素からなる膜である第1窒化ケイ素膜を成膜する第1窒化ケイ素膜成膜工程と、前記窒化ケイ素膜の上に、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムのうちから少なくとも一種の元素を第1添加元素として含み、更にマンガンを含む銅を主成分とする合金からなる第1銅合金膜を成膜し、更に、前記第1銅合金膜上に純銅からなる第1純銅膜を成膜する第1銅膜成膜工程と、前記第1純銅膜上にレジストパタンを形成するレジストパタン形成工程と、前記レジストパタンに合わせて、前記第1銅合金膜及び前記第1純銅膜をエッチングし、銅配線を形成するエッチング工程と、を有する薄膜トランジスタ基板製造工程を備える表示装置製造方法である。
また、本発明の表示装置製造方法は、前記薄膜トランジスタ基板製造工程は、前記第1銅膜成膜工程の前に、非晶質ケイ素からなる非晶質ケイ素膜を成膜する非晶質ケイ素膜成膜工程と、前記非晶質ケイ素膜成膜工程において成膜された非晶質ケイ素膜の表面を酸化する酸化工程と、を更に有し、前記第1銅膜成膜工程では、前記第1窒化ケイ素膜の上と共に、表面が酸化された前記非晶質ケイ素膜の上にも成膜する、とすることができる。
また、本発明の表示装置製造方法は、前記薄膜トランジスタ基板製造工程は、前記エッチング工程の後に、窒化ケイ素からなる膜である第2窒化ケイ素膜を成膜し、前記第2窒化ケイ素膜を成膜する際の熱により、前記非晶質ケイ素膜と前記第1銅合金膜との間に第1添加元素の金属酸化物を生成する、第2窒化ケイ素膜成膜工程を更に有する、とすることができる。
また、本発明の表示装置製造方法は、前記薄膜トランジスタ基板製造工程は、前記第1窒化ケイ素膜成膜工程の前に、基材上に、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムのうちから少なくとも一種の元素を第2添加元素として含み、更にマンガンを含む銅を主成分とする合金からなる第2銅合金膜を成膜し、更に、前記第2銅合金膜上に純銅からなる第2純銅膜を成膜する第2銅膜成膜工程を更に有し、前記第1窒化ケイ素膜成膜工程は、更に、前記第1窒化ケイ素膜を成膜する際の熱により、前記基材と前記第2銅合金膜との間に第2添加元素の金属酸化物を生成する、とすることができる。
また、本発明の表示装置製造方法は、前記第2銅膜成膜工程ではゲート線を形成し、前記第1銅膜成膜工程では、ソース・ドレイン線を形成することにより、トランジスタを形成する、とすることができる。
また、本発明の表示装置製造方法は、前記基材はガラス基板である、とすることができる。
また、本発明の表示装置製造方法は、前記基材は透明電極である、とすることができる。
第1実施形態の第1フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第1実施形態の第1フォトリソグラフィ工程を示す図である。 第1実施形態の第2フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第1実施形態の第2フォトリソグラフィ工程を示す図である。 第1実施形態の第3フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第1実施形態の第3フォトリソグラフィ工程を示す図である。 第1実施形態の第4フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第1実施形態の第4フォトリソグラフィ工程を示す図である。 第1実施形態の第5フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第1実施形態の第5フォトリソグラフィ工程を示す図である。 第1実施形態のTFT基板を使用した液晶パネルの一部断面を概略的に示す図である。 第2実施形態の第1フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第2実施形態の第1フォトリソグラフィ工程を示す図である。 第2実施形態の第2フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第2実施形態の第2フォトリソグラフィ工程を示す図である。 第2実施形態の第3フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第2実施形態の第3フォトリソグラフィ工程を示す図である。 第2実施形態の第4フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第2実施形態の第4フォトリソグラフィ工程を示す図である。 第2実施形態の第5フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第2実施形態の第5フォトリソグラフィ工程を示す図である。 第2実施形態のTFT基板を使用した液晶パネルの一部断面を概略的に示す図である。 第3実施形態の第1フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第3実施形態の第1フォトリソグラフィ工程を示す図である。 第3実施形態の第2フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第3実施形態の第2フォトリソグラフィ工程を示す図である。 第3実施形態の第3フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第3実施形態の第3フォトリソグラフィ工程を示す図である。 第3実施形態の第4フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第3実施形態の第4フォトリソグラフィ工程を示す図である。 第3実施形態の第5フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第3実施形態の第5フォトリソグラフィ工程を示す図である。 第3実施形態のTFT基板を使用した液晶パネルの一部断面を概略的に示す図である。 第4実施形態の第1フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第4実施形態の第1フォトリソグラフィ工程を示す図である。 第4実施形態の第2フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第4実施形態の第2フォトリソグラフィ工程を示す図である。 第4実施形態の第3フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第4実施形態の第3フォトリソグラフィ工程を示す図である。 第4実施形態の第4フォトリソグラフィ工程により形成されるTFT基板の一部断面を概略的に示す図である。 第4実施形態の第4フォトリソグラフィ工程を示す図である。 第4実施形態のTFT基板を使用した液晶パネルの一部断面を概略的に示す図である。 本発明の第5実施形態に係る液晶表示装置を概略的に示す図である。 図24の液晶表示パネルの構成を示す図である。
本発明における銅合金の添加元素としては、マンガン、アルミニウム、ホウ素、ベリリウム、ハフニウム、リチウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムが挙げられるが、添加元素をこのように定めた理由について以下に述べる。これらの添加元素は以下の要件を満たすように定められている。
第1要件は、「酸化反応の平衡酸素ポテンシャルがケイ素の酸化反応の平衡酸素ポテンシャルよりも低い」という要件である。この要件は、添加元素が酸化ケイ素から酸素を奪って酸化するための要件である。
第2要件は、「銅中における固溶限が0.1原子%よりも大きい」という要件である。この要件は、添加元素が銅を主成分とする合金中で析出せずに界面での酸化反応に有効に寄与させるための要件である。従って、第1要件及び第2要件を同時に満たすことによって、酸素を含有する絶縁体(酸化ケイ素)や予備酸化した半導体層のコンタクト層を下地とした場合に、銅を主成分とする合金と下地との界面に添加元素の酸化物を析出させることができる。または、銅を主成分とする合金と下地との界面に密着性を発現するような親和性を付与することができる。
第3要件は、「230℃の銅中における拡散定数が10−21/sよりも小さい」という要件である。この要件は、第二の導電層である99.5%以上の純度を有する銅に添加元素を拡散させないための要件であり、これによって第二の導電層の抵抗率が上昇することを防止し、低抵抗な映像信号線を得ることが可能となる。
以上の第1要件〜第3要件をすべて満足することにより、予備酸化を施した半導体層のコンタクト層の上にソース電極及びドレイン電極を形成でき、低抵抗な映像信号線も形成することができる。
第4要件は、「窒化反応の平衡窒素ポテンシャルがケイ素の窒化反応の平衡酸素ポテンシャルよりも低い」という要件である。第4要件は、添加元素が窒化ケイ素から窒素を奪って窒化するための要件である。従って、この第4要件と、上述の第2要件とを同時に満たすことによって、窒化ケイ素を下地とした場合に、銅を主成分とする合金と下地との界面に密着性を発現するような親和性を付与することができる。更に、第2要件〜第4要件を同時に満足することにより、窒化ケイ素からなるゲート絶縁膜の上に低抵抗な映像信号線を形成することが可能となる。
また、第1要件〜第4要件のすべてを同時に満足することにより、予備酸化を施した半導体層のコンタクト層の上と、窒化ケイ素からなるゲート絶縁膜の上とに同時にソース電極及びドレイン電極を形成でき、低抵抗な映像信号線も形成することができる。
ここで、酸化反応の平衡酸素ポテンシャル及び窒化反応の平衡窒素ポテンシャルは次式の左辺または右辺で定義される。
Figure 0005308206
上式において、Rは気体定数、Tは絶対温度、pは平衡酸素分圧または平衡窒素分圧、nは酸化物の酸素または窒化物の窒素の化学量論数、ΔGは酸化物または窒化物の生成自由エネルギーである。酸化物及び窒化物の生成自由エネルギーの値は、例えば「Ihsan Barin,THERMOCHEMICAL DATA OF PURE SUBSTANCES,VHC(1993)」などのデータベースに記載されている。
また、銅中における金属元素の固溶限は、例えば、「ASM HANDBOOK Volume 3,Alloy Phase Diagrams」などに記載されている二元合金状態図から読み取ることができる。
また、熱工程の時間をtとすると、拡散距離はπDtの平方根として与えられるが、拡散係数Dが10−21(m/s)よりも小さければ熱工程の時間を30分と見積っても拡散距離は数nm程度である。従って、Cu/Cu合金の上層CuへのCu合金添加元素の拡散距離はその膜厚(100nm〜)に対して無視しうる程度に制限できる。拡散定数の値は、日本金属学界編「金属データブック」などに記載されている頻度因子と活性化エネルギーのデータベースからアレニウス式を用いて求めることができる。
以上のデータベースをサーベイすることにより、第1要件〜第3要件を満足する銅への添加元素種群(第1群)として、アルミニウム、ベリリウム、ハフニウム、リチウム、マグネシウム、スカンジウム、チタニウム、ジルコニウムを得ることができる。また、マンガンは第2要件と第3要件を満たすものの第1要件を満たさないが、その酸化反応の平衡酸素ポテンシャルがケイ素の酸化反応の平衡酸素ポテンシャルに近いため、予備酸化した半導体層のコンタクト層を下地とした場合に、CuMn合金と下地との界面にマンガン酸化物を薄く析出させることができる。従って、第1群の添加元素にマンガンを加えることが可能である。
また、第2要件〜第4要件を満足する銅への添加元素種群(第2群)として、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウムを得ることができる。第一の導電層を、第1群、及び第2群の添加元素を少なくとも一種ずつ含む銅を主成分とする三元以上の合金とすることによって、予備酸化を施した半導体層のコンタクト層の上と、窒化ケイ素からなるゲート絶縁膜の上とに同時にソース電極及びドレイン電極を形成でき、低抵抗な映像信号線も形成することができる。
また、第1群と第2群との共通の添加元素群、すなわちアルミニウム、ベリリウム、ハフニウム、マグネシウム、スカンジウム、チタニウム、ジルコニウムを第3群とする。第一の導電層を、第3群の添加元素を一種含有する銅を主成分とする二元合金とすることによって、予備酸化を施した半導体層のコンタクト層の上と、窒化ケイ素からなるゲート絶縁膜の上とに同時にソース電極及びドレイン電極を形成でき、低抵抗な映像信号線も形成することができる。
第一の導電層の銅を主成分とする合金に添加するこれら元素の含有量は、0.1原子%よりも大きいことが望ましい。更には、銅への固溶限以下であることが望ましい。
第一の導電層の銅を主成分とする合金に添加する元素は、その銅への固溶限の大きさや、経済性、毒性などを考慮して選択されるべきである。それを考慮した場合、第1群は、アルミニウム、リチウム、マグネシウム、マンガン、チタニウム、第2群は、アルミニウム、ホウ素、マグネシウム、チタニウム、バナジウム、第3群は、アルミニウム、マグネシウム、チタニウムであることが最も望ましい。また、第一の導電層の銅を主成分とする合金に添加するこれら元素の含有量は、1原子%よりも大きく、かつ銅への固溶限以下であることが最も望ましい。
以下、本発明の第1実施形態乃至第5実施形態について、図面を参照しつつ説明する。なお、図面において、同一又は同等の要素には同一の符号を付し、重複する説明を省略する。また、第1実施形態乃至第4実施形態では、インプレインスイッチング型液晶表示装置のTFT基板の製造方法について示している。各実施形態では、各フォトリソグラフィ工程ごとに部分断面図と工程図が示されており、部分断面図では、フォトレジストを除去した段階を示している。以下の説明で、レジストパタン形成とは、フォトレジストの塗布からマスクを使用した選択露光を経てそれを現像しベークするまでの一連の工程を示すものとし、繰返しの説明は避ける。
[第1実施形態]
図1Aには、TFT基板100の製造工程のうち、第1フォトリソグラフィ工程151により形成されるTFT基板100の断面が概略的に示されている。また、図1Bには第1フォトリソグラフィ工程151が示されている。第1フォトリソグラフィ工程151では、まず、無アルカリガラスからなるガラス基板101上にインジウム錫酸化物からなる透明導電膜102をスパッタリングにより成膜する。ここで、透明導電膜102は、インジウム亜鉛酸化物、インジウム錫亜鉛酸化物であってもよい。膜厚は10nm〜150nmの程度であり、約20nm〜50nmが好適である。続いて、アルミニウムを4原子%含有し銅を主成分とする合金からなる第一の導電層103と99.99%純度の純銅からなる第二の導電層104とをマグネトロンスパッタリングにより連続成膜する(ステップS111)。
第一の導電層103の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層104の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。なお、銅合金の添加元素は、本実施例のアルミニウムのほか、ベリリウム、ガリウム、マグネシウム、マンガン、チタン、バナジウム、亜鉛から選ぶことが可能であるが、後述する第3フォトリソグラフィ工程で形成する第一の導電層109の材料と共通化するのであれば、ベリリウム、マグネシウム、マンガン、チタンが好適である。第二の導電層104は99.5%以上の含有量の純銅とすることができる。
次に、ハーフ露光マスクを用いてレジストパタンを形成する(ステップS112)。ここで、走査信号線、共通信号線を構成する部分には露光をせずレジストを厚く形成し、共通(透明)電極を形成する部分はハーフ露光としてレジストを薄く形成する。その後、第二の導電層104と第一の導電層103とを選択的にエッチング除去し(ステップS113)、続いて透明導電膜を選択的にエッチング除去する(ステップS114)。次に、ハーフ露光部のレジストをアッシングにより除去する(ステップS115)。アッシングの後、ハーフ露光部の第二の導電層と第一の導電層とを選択的にエッチング除去し(ステップS116)、レジストを剥離する(ステップS117)。
図2Aには、TFT基板100の製造工程のうち、第2フォトリソグラフィ工程152により形成されるTFT基板100の断面が概略的に示されている。また、図2Bには第2フォトリソグラフィ工程152が示されている。第2フォトリソグラフィ工程152では、まず、窒化ケイ素からなるゲート絶縁膜106と、非晶質ケイ素からなる半導体層107と、n+型非晶質ケイ素からなるコンタクト層108をプラズマ化学蒸着法で連続的に成膜し(ステップS121)、酸素プラズマによりコンタクト層108の表面を予備酸化する(ステップS122)。
ゲート絶縁膜106の成膜温度は約300℃であり、この時、第1フォトリソグラフィ工程で形成した透明導電膜102と第一の導電層103との界面に金属酸化物層105(この場合はアルミニウム酸化物層)が形成され、これが密着層として機能する。バイナリ露光マスクによるレジストパタン形成の後(ステップS123)、コンタクト層108、半導体層107を選択的にエッチング除去し(ステップS124)、レジストを剥離すると、いわゆる島状パタンが形成される(ステップS125)。以上の工程により、走査信号線(ゲート電極、走査信号線端子を含む)171、共通信号線(共通信号線端子を含む)175、共通(透明)電極174が形成される(図6参照)。
図3Aには、TFT基板100の製造工程のうち、第3フォトリソグラフィ工程153により形成されるTFT基板100の断面が概略的に示されている。また、図3Bには第3フォトリソグラフィ工程153が示されている。第3フォトリソグラフィ工程153では、まず、アルミニウムを4原子%含有し銅を主成分とする合金からなる第一の導電層109と99.99%純度の純銅からなる第二の導電層110とをマグネトロンスパッタリングにより連続成膜する(ステップ131)。第一の導電層109の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層110の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。
なお、銅合金の添加元素は、本実施例のアルミニウムのほか、ベリリウム、マグネシウム、マンガン、チタンが好適である。バイナリ露光マスクによるレジストパタン形成の後(ステップS132)、第二の導電層110と第一の導電層109とを選択的にエッチング除去し(ステップS133)、コンタクト層108を選択的にエッチング除去し(ステップS134)、レジストを剥離すると(ステップS135)、ドレイン電極172(映像信号線及び映像信号線端子を含む)、及びソース電極173が形成される。
図4Aには、TFT基板100の製造工程のうち、第4フォトリソグラフィ工程154により形成されるTFT基板100の断面が概略的に示されている。また、図4Bには第4フォトリソグラフィ工程154が示されている。第4フォトリソグラフィ工程154では、まず、窒化ケイ素からなる保護絶縁膜112をプラズマ化学蒸着法で成膜する(ステップS141)。保護絶縁膜112の成膜温度は約230℃であり、この時、第3フォトリソグラフィ工程で形成した予備酸化したコンタクト層108と第一の導電層109との界面で、第一の導電層109の添加元素であるアルミニウムの酸化反応が起こり、薄いアルミニウム酸化物の酸化物層111が生成する。このアルミニウム酸化物が第一の導電層109と第二の導電層110の銅のコンタクト層108と半導体層107への拡散を遮断するバリア層として、または密着層として機能する。
ここで、第一の導電層109の添加元素の酸化物層111の膜厚は0.5nm〜5nmであり1nm〜2nm程度が好適である。また、ゲート絶縁膜106と第一の導電層109との界面で、第一の導電層109の添加元素であるアルミニウムの窒化反応が起こる。この反応速度は遅いのでアルミニウム窒化物を直接観察することは困難であるが、これによりゲート絶縁膜106と第一の導電層109との間に親和性が生じ、第一の導電層109の密着性を確保することができる。
バイナリ露光マスクによるレジストパタン形成の後(ステップS142)、ソース電極173(図6参照)上の保護絶縁膜112にスルーホール114を開口し、同時に映像信号線端子(図示せず)上の保護絶縁膜112にスルーホール(図示せず)を開口し、同時に走査信号線端子(図示せず)上の保護絶縁膜112とゲート絶縁膜106にスルーホール(図示せず)を開口し(ステップS143)、レジストを剥離する(ステップS144)。
図5Aには、TFT基板100の製造工程のうち、第5フォトリソグラフィ工程155により形成されるTFT基板100の断面が概略的に示されている。また、図5Bには第5フォトリソグラフィ工程155が示されている。第5フォトリソグラフィ工程155では、まず、インジウム錫酸化物からなる透明導電膜をスパッタリングにより成膜する(ステップS151)。まず、バイナリ露光マスクによるレジストパタン形成の後(ステップS152)、画素電極、走査信号線端子、共通信号線端子、映像信号線端子のパタン部を除き透明導電膜113を選択的にエッチング除去し(ステップS153)、レジストを剥離する(ステップS154)。以上の工程により液晶表示装置のTFT基板が完成する。
図6には、以上の工程により製造された液晶表示装置のTFT基板100を使用した液晶パネル160の一部断面が概略的に示されている。液晶パネル160は、上述の第1フォトリソグラフィ工程151〜第5フォトリソグラフィ工程155により製造されたTFT基板100と、液晶168と、カラーフィルタ基板165とにより構成されている。この図に示されるように、TFT基板の走査信号線であるゲート線171、映像信号線であるドレイン線172、ソース電極173、及び共通電極175は、銅により配線されている。
したがって、第1実施形態によれば、窒化ケイ素膜上への銅の微細加工配線を、通常のプロセスにより行うことができると共に、非晶質ケイ素膜上への銅の微細加工配線も行うことができる。
また、第1実施形態によれば、TFT基板100は純銅により配線されるため、TFT基板100の消費電力を低下させることができる。
[第2実施形態]
図7Aには、第1フォトリソグラフィ工程251により形成されるTFT基板200の断面が概略的に示されている。また、図7Bには第1フォトリソグラフィ工程251が示されている。第1フォトリソグラフィ工程251では、まず、無アルカリガラスからなるガラス基板201上に、マンガンを2原子%含有しバナジウムを2原子%含有し銅を主成分とする三元合金からなる第一の導電層203と99.99%純度の純銅からなる第二の導電層204とをマグネトロンスパッタリングにより連続成膜する(ステップS211)。第一の導電層203の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。
第二の導電層204の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。第二の導電層204は99.5%以上の含有量の銅とすることができる。次に、バイナリ露光マスクを用いてレジストパタンを形成する(ステップS212)。その後、第二の導電層204と第一の導電層203とを選択的にエッチング除去し(ステップS213)、レジストを剥離する(ステップS214)。
図8Aには、第2フォトリソグラフィ工程252により形成されるTFT基板200の断面が概略的に示されている。図8Bには第2フォトリソグラフィ工程252が示されている。この第2フォトリソグラフィ工程252では、まず、窒化ケイ素からなるゲート絶縁膜206と、非晶質ケイ素からなる半導体層207と、n+型非晶質ケイ素からなるコンタクト層208をプラズマ化学蒸着法で連続的に成膜する(ステップS221)。ゲート絶縁膜206の成膜温度は約300℃であり、この時、ガラス基板201と第一の導電層203との界面に金属酸化物層205(この場合はマンガン酸化物層)が形成され、これが密着層として機能する。次に、バイナリ露光マスクによるレジストパタン形成の後(ステップS222)、コンタクト層208、半導体層207を選択的にエッチング除去し(ステップS223)、酸素プラズマによりレジストを剥離すると、コンタクト層208の表面が予備酸化されたいわゆる島状パタンが形成される(ステップS224)。レジストを剥離する際には、剥離液を用いてから酸素プラズマを用いても良い。
図9Aには、第3フォトリソグラフィ工程253により形成されるTFT基板200の断面が概略的に示されている。また、図9Bには第3フォトリソグラフィ工程253が示されている。第3フォトリソグラフィ工程253では、まず、マンガンを2原子%含有しバナジウムを2原子%含有し銅を主成分とする三元合金からなる第一の導電層209と99.99%純度の純銅からなる第二の導電層210とをマグネトロンスパッタリングにより連続成膜する(ステップS231)。
第一の導電層209の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層210の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。なお、銅三元合金の添加元素は、本実施例のマンガンに代替してアルミニウム、ベリリウム、ハフニウム、リチウム、マグネシウム、スカンジウム、チタニウム、ジルコニウムでもよく、本実施例のバナジウムに代替してアルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、ジルコニウムでもよい。添加元素同士で金属間化合物を生成しないような元素種の組合せ、含有量であることが望ましい。バイナリ露光マスクによるレジストパタン形成の後(ステップS232)、第二の導電層210と第一の導電層209とを選択的にエッチング除去し(ステップS233)、コンタクト層208を選択的にエッチング除去し(ステップS234)、レジストを剥離する(ステップS235)。
図10Aには、第4フォトリソグラフィ工程254により形成されるTFT基板200の断面が概略的に示されている。また、図10Bには第4フォトリソグラフィ工程254が示されている。第4フォトリソグラフィ工程254では、まず、窒化ケイ素からなる保護絶縁膜212をプラズマ化学蒸着法で成膜する(ステップS241)。保護絶縁膜212の成膜温度は約230℃であり、この時、第3フォトリソグラフィ工程253で形成した予備酸化したコンタクト層208と第一の導電層209との界面で、第一の導電層209の添加元素であるマンガンの酸化反応が起こり、薄いマンガン酸化物の酸化物層211が生成される。このマンガン酸化物が第一の導電層209と第二の導電層210の銅のコンタクト層208と半導体層207への拡散を遮断するバリア層として、または密着層として機能する。ここで、第一の導電層209の添加元素の酸化物層の膜厚は0.5nm〜5nmであり1nm〜2nm程度が好適である。
また、ゲート絶縁膜206と第一の導電層209との界面で、第一の導電層209の添加元素であるバナジウムの窒化反応が起こる。この反応速度は遅いのでバナジウム窒化物を直接観察することは困難であるが、これによりゲート絶縁膜206と第一の導電層209との間に親和性が生じ、第一の導電層209の密着性を確保することができる。バイナリ露光マスクによるレジストパタン形成の後(ステップS242)、ソース電極273(図12参照)上の保護絶縁膜212にスルーホール214を開口し、同時に映像信号線端子(図示せず)上の保護絶縁膜212にスルーホール(図示せず)を開口し、同時に走査信号線端子(図示せず)上の保護絶縁膜212とゲート絶縁膜206にスルーホール(図示せず)を開口し(ステップS243)、レジストを剥離する(ステップS244)。
図11Aには、第5フォトリソグラフィ工程255により形成されるTFT基板200の断面が概略的に示されている。また、図11Bには第5フォトリソグラフィ工程255が示されている。第5フォトリソグラフィ工程255では、まず、インジウム錫酸化物からなる透明導電膜213をスパッタリングにより成膜する(ステップS251)。次に、バイナリ露光マスクによるレジストパタン形成の後(ステップS252)、画素電極、捜査信号線端子、共通信号線端子、映像信号線端子のパタン部を除き、透明導電膜213を選択的にエッチング除去(ステップS253)し、レジストを剥離する(ステップS254)。
図12には、以上の工程により製造された液晶表示装置のTFT基板200を使用した液晶パネル260の一部断面が概略的に示されている。液晶パネル260は、上述の工程により製造されたTFT基板200と、液晶268と、カラーフィルタ基板265とにより構成されている。この図に示されるように、TFT基板200の走査信号線であるゲート線271、映像信号線であるドレイン線272、及びソース電極273は、銅により配線されている。
したがって、第2実施形態によれば、窒化ケイ素膜上への銅の微細加工配線を、通常のプロセスにより行うことができると共に、非晶質ケイ素膜上への銅の微細加工配線も行うことができる。
また、第2実施形態によれば、TFT基板200は純銅により配線されるため、TFT基板200の消費電力を低下させることができる。
[実施形態3]
図13Aには、第1フォトリソグラフィ工程351により形成されるTFT基板300の断面が概略的に示されている。また、図13Bには第1フォトリソグラフィ工程351が示されている。第1フォトリソグラフィ工程351では、まず、無アルカリガラスからなるガラス基板301上にインジウム錫酸化物からなる透明導電膜302をスパッタリングにより成膜する。ここで、透明導電膜302は、インジウム亜鉛酸化物、インジウム錫亜鉛酸化物であってもよい。膜厚は10nm〜150nmの程度であり、約20nm〜50nmが好適である。
続いて、チタンを4原子%含有し銅を主成分とする合金からなる第一の導電層303と99.99%純度の純銅からなる第二の導電層304とをマグネトロンスパッタリングにより連続成膜する(ステップS311)。第一の導電層303の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層304の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。なお、銅合金の添加元素は、本実施例のアルミニウムのほか、ベリリウム、ガリウム、マグネシウム、マンガン、バナジウム、亜鉛から選ぶことが可能であるが、後述する第3フォトリソグラフィ工程で形成する映像信号線、ソース電極、ドレイン電極の第一の導電層309(図15A参照)の材料と共通化するのであれば、アルミニウム、ベリリウム、マグネシウム、マンガンが好適である。第二の導電層304は99.5%以上の含有量の銅とすることができる。
次に、ハーフ露光マスクを用いてレジストパタンを形成する(ステップS312)。ここで、走査信号線371、共通信号線375(図18参照)を構成する部分には露光をせずレジストを厚く形成し、共通(透明)電極374(図18参照)を形成する部分はハーフ露光としてレジストを薄く形成する。その後、第二の導電層304と第一の導電層303とを選択的にエッチング除去し(ステップS313)、続いて透明導電膜302を選択的にエッチング除去する(ステップS314)。
次に、ハーフ露光部のレジストをアッシングにより除去する(ステップS315)。アッシングの後、ハーフ露光部の第二の導電層と第一の導電層とを選択的にエッチング除去し(ステップS316)、レジストを剥離する(ステップS317)。以上の工程により、走査信号線371(ゲート電極、走査信号線端子を含む)、共通信号線375(共通信号線端子を含む)、共通(透明)電極374が形成される(図18参照)。
図14Aには、第2フォトリソグラフィ工程352により形成されるTFT基板300の断面が概略的に示されている。また、図14Bには第2フォトリソグラフィ工程352が示されている。第2フォトリソグラフィ工程352では、まず、窒化ケイ素からなるゲート絶縁膜306と、非晶質ケイ素からなる半導体層307と、n+型非晶質ケイ素からなるコンタクト層308をプラズマ化学蒸着法で連続的に成膜する(ステップS321)。ゲート絶縁膜306の成膜温度は約300℃であり、この時、第1フォトリソグラフィ工程351で形成した透明導電膜302と第一の導電層303との界面に金属酸化物層305(この場合はチタン酸化物層)が形成され、これが密着層として機能する。
バイナリ露光マスクによるレジストパタン形成の後(ステップS322)、コンタクト層308、半導体層307を選択的にエッチング除去し(ステップS323)、レジストを剥離すると(ステップS324)、いわゆる島状パタンが形成される。また、本実施例では、映像信号線の端子パッド部分(図示せず)にも半導体層307とコンタクト層308のパタンを形成した。
図15Aには、第3フォトリソグラフィ工程353により形成されるTFT基板300の断面が概略的に示されている。また、図15Bには第3フォトリソグラフィ工程353が示されている。第3フォトリソグラフィ工程353では、まず、基板を酸素プラズマに曝してから(ステップS331)、チタンを4原子%含有し銅を主成分とする合金からなる第一の導電層309と99.99%純度の純銅からなる第二の導電層310とをマグネトロンスパッタリングにより連続成膜する(ステップS332)。基板を酸素プラズマに曝すのは、コンタクト層308の表面を予備酸化するためである。第一の導電層309の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層310の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。なお、銅合金の添加元素は、本実施例のチタンのほか、アルミニウム、ベリリウム、マグネシウム、マンガンが好適である。バイナリ露光マスクによるレジストパタン形成の後(ステップS333)、第二の導電層と第一の導電層とを選択的にエッチング除去し(ステップS334)、コンタクト層308を選択的にエッチング除去し(ステップS335)、レジストを剥離すると(ステップS336)、ドレイン電極372及びソース電極373が形成される。
図16Aには、第4フォトリソグラフィ工程354により形成されるTFT基板300の断面が概略的に示されている。また、図16Bには第4フォトリソグラフィ工程354が示されている。第4フォトリソグラフィ工程354では、まず、窒化ケイ素からなる保護絶縁膜312をプラズマ化学蒸着法で成膜する(ステップS341)。保護絶縁膜312の成膜温度は約230℃であり、この時、第3フォトリソグラフィ工程353で形成した予備酸化したコンタクト層308と第一の導電層309との界面で、第一の導電層309の添加元素であるチタンの酸化反応が起こり、薄いチタン酸化物が生成する。このチタン酸化物の酸化物層311が第一の導電層309と第二の導電層310の銅のコンタクト層308と半導体層307への拡散を遮断するバリア層として、または密着層として機能する。本実施形態では、第2フォトリソグラフィ工程352にて、映像信号線の端子パッド部分にも半導体層307とコンタクト層308のパタンを形成しておいたのでその部分においてもこのチタン酸化物が密着層として機能する。
ここで、第一の導電層309の添加元素の酸化物層の膜厚は0.5nm〜5nmであり1nm〜2nm程度が好適である。また、ゲート絶縁膜306と第一の導電層309との界面で、第一の導電層309の添加元素であるチタンの窒化反応が起こる。この反応速度は遅いのでチタン窒化物を直接観察することは困難であるが、これによりゲート絶縁膜306と第一の導電層309との間に親和性が生じ、第一の導電層309の密着性を確保することができる。
バイナリ露光マスクによるレジストパタン形成の後(ステップS342)、ソース電極373(図18参照)上の保護絶縁膜312にスルーホール314を開口し、同時に映像信号線端子(図示せず)上の保護絶縁膜312にスルーホール(図示せず)を開口し、同時に走査信号線端子(図示せず)上の保護絶縁膜312とゲート絶縁膜306にスルーホール(図示せず)を開口し(ステップS343)、レジストを剥離する(ステップS344)。
図17Aには、第3フォトリソグラフィ工程355により形成されるTFT基板300の断面が概略的に示されている。また、図17Bには第3フォトリソグラフィ工程355が示されている。第3フォトリソグラフィ工程355では、まず、インジウム錫酸化物からなる透明導電膜313をスパッタリングにより成膜する(ステップS351)。まず、バイナリ露光マスクによるレジストパタン形成の後(ステップS352)、画素電極、走査信号線端子、共通信号線端子、映像信号線端子のパタン部を除き透明導電膜313を選択的にエッチング除去し(ステップS353)、レジストを剥離する(ステップS354)。以上の工程により液晶表示装置のTFT基板300が完成する。
図18には、以上の工程により製造された液晶表示装置のTFT基板300を使用した液晶パネル360の一部断面が概略的に示されている。液晶パネル360は、上述の工程により製造されたTFT基板300と、液晶368と、カラーフィルタ基板365とにより構成されている。この図に示されるように、TFT基板300の走査信号線であるゲート線371、映像信号線であるドレイン線372、及びソース電極373は、銅により配線されている。
したがって、第3実施形態によれば、窒化ケイ素膜上への銅の微細加工配線を、通常のプロセスにより行うことができると共に、非晶質ケイ素膜上への銅の微細加工配線も行うことができる。
また、第3実施形態によれば、TFT基板300は純銅により配線されるため、TFT基板300の消費電力を低下させることができる。
[実施形態4]
図19Aには、第1フォトリソグラフィ工程451により形成されるTFT基板400の断面が概略的に示されている。また、図19Bには第1フォトリソグラフィ工程451が示されている。第1フォトリソグラフィ工程451では、まず、無アルカリガラスからなるガラス基板401上にインジウム錫酸化物からなる透明導電膜402をスパッタリングにより成膜する。ここで、透明導電膜402は、インジウム亜鉛酸化物、インジウム錫亜鉛酸化物であってもよい。膜厚は10nm〜150nmの程度であり、約20nm〜50nmが好適である。続いて、マグネシウムを4原子%含有し銅を主成分とする合金からなる第一の導電層403と99.99%純度の純銅からなる第二の導電層404とをマグネトロンスパッタリングにより連続成膜する(ステップS411)。第一の導電層403の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層404の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。なお、銅合金の添加元素は、本実施例のマグネシウムのほか、アルミニウム、ベリリウム、ガリウム、マンガン、チタン、バナジウム、亜鉛から選ぶことが可能であるが、後述する第2フォトリソグラフィ工程452で形成する映像信号線、ソース電極、ドレイン電極の第一の導電層409の材料と共通化するのであれば、アルミニウム、ベリリウム、マンガン、チタンが好適である。第二の導電層404は99.5%以上の含有量の純銅とすることができる。
次に、ハーフ露光マスクを用いてレジストパタンを形成する(ステップS412)。ここで、走査信号線471、共通信号線475(図23参照)を構成する部分には露光をせずレジストを厚く形成し、共通(透明)電極474(図23参照)を形成する部分はハーフ露光としてレジストを薄く形成する。その後、第二の導電層404と第一の導電層403とを選択的にエッチング除去し(ステップS413)、続いて透明導電膜402を選択的にエッチング除去する(ステップS414)。
次に、ハーフ露光部のレジストをアッシングにより除去する(ステップS415)。アッシングの後、ハーフ露光部の第二の導電層と第一の導電層とを選択的にエッチング除去し(ステップS416)、レジストを剥離する(ステップS417)。
以上の工程により、走査信号線471(ゲート電極、走査信号線端子を含む)、共通信号線475(共通信号線端子を含む)、共通(透明)電極474が形成される(図23参照)。
図20Aには、第2フォトリソグラフィ工程452により形成されるTFT基板400の断面が概略的に示されている。また、図20Bには第2フォトリソグラフィ工程452が示されている。第2フォトリソグラフィ工程452では、まず、窒化ケイ素からなるゲート絶縁膜406と、非晶質ケイ素からなる半導体層407と、n+型非晶質ケイ素からなるコンタクト層408をプラズマ化学蒸着法で連続的に成膜し(ステップS421)、酸素プラズマによりコンタクト層408の表面を予備酸化する(ステップS422)。ゲート絶縁膜406の成膜温度は約300℃であり、この時、第1フォトリソグラフィ工程で形成した透明導電膜402と第一の導電層403との界面に金属酸化物層405(この場合はマグネシウム酸化物層)が形成され、これが密着層として機能する。続いて、マグネシウムを4原子%含有し銅を主成分とする合金からなる第一の導電層409と99.99%純度の純銅からなる第二の導電層410とをマグネトロンスパッタリングにより連続成膜する(ステップS423)。第一の導電層403の膜厚は10nm〜100nmの程度であり、約20nm〜50nmが好適である。第二の導電層404の膜厚は100nm〜1000nmの程度であり、約200nm〜500nmが好適である。
次に、ハーフ露光マスクを用いてレジストパタンを形成する(ステップS424)。ここで、ドレイン電極472、ソース電極473(図23参照)、映像信号線(映像信号線端子を含む)を構成する部分には露光をせずレジストを厚く形成し、半導体層407とコンタクト層408のいわゆる島状パタンを形成する部分はハーフ露光としてレジストを薄く形成する。その後、第二の導電層410と第一の導電層409とを選択的にエッチング除去し(ステップS425)、続いてコンタクト層408と半導体層407とを選択的にエッチング除去する(ステップS426)。
次に、ハーフ露光部のレジストをアッシングにより除去する(ステップS427)。アッシングの後、ハーフ露光部の第二の導電層と第一の導電層とを選択的にエッチング除去し(ステップS428)、続いてコンタクト層408を選択的にエッチング除去し(ステップS429)、レジストを剥離する(ステップS430)。
以上の工程により、半導体層407とコンタクト層408のいわゆる島状パタンと、ドレイン電極472、ソース電極473、映像信号線(映像信号線端子を含む)が形成される。
図21Aには、第3フォトリソグラフィ工程453により形成されるTFT基板400の断面が概略的に示されている。また、図21Bには第3フォトリソグラフィ工程453が示されている。第3フォトリソグラフィ工程453では、まず、窒化ケイ素からなる保護絶縁膜412をプラズマ化学蒸着法で成膜する(ステップS431)。保護絶縁膜412の成膜温度は約230℃であり、この時、第3フォトリソグラフィ工程453で形成した予備酸化したコンタクト層408と第一の導電層409との界面で、第一の導電層409の添加元素であるマグネシウムの酸化反応が起こり、薄いマグネシウム酸化物の酸化物層411が生成する。このマグネシウム酸化物が第一の導電層409と第二の導電層410の銅のコンタクト層408と半導体層407への拡散を遮断するバリア層として、または密着層として機能する。ここで、第一の導電層409の添加元素の酸化物層の膜厚は0.5nm〜5nmであり1nm〜2nm程度が好適である。バイナリ露光マスクによるレジストパタン形成の後(ステップS432)、ソース電極473上の保護絶縁膜412にスルーホール414を開口し、同時に映像信号線端子(図示せず)上の保護絶縁膜412にスルーホール(図示せず)を開口し、同時に走査信号線端子(図示せず)上の保護絶縁膜412とゲート絶縁膜406にスルーホール(図示せず)を開口し(ステップS433)、レジストを剥離する(ステップS434)。
図22Aには、第4フォトリソグラフィ工程454により形成されるTFT基板400の断面が概略的に示されている。また、図22Bには第4フォトリソグラフィ工程454が示されている。第4フォトリソグラフィ工程454では、まず、インジウム錫酸化物からなる透明導電膜をスパッタリングにより成膜する(ステップS441)。次に、バイナリ露光マスクによるレジストパタン形成の後(ステップS442)、画素電極、走査信号線端子、共通信号線端子、映像信号線端子のパタン部を除き透明導電膜413を選択的にエッチング除去し(ステップS443)、レジストを剥離するステップ(S444)。以上の工程により液晶表示装置のTFT基板400が完成する。
図23には、以上の工程により製造された液晶表示装置のTFT基板400を使用した液晶パネル460の一部断面が概略的に示されている。液晶パネル460は、上述の工程により製造されたTFT基板400と、液晶468と、カラーフィルタ基板465とにより構成されている。この図に示されるように、TFT基板400の走査信号線であるゲート線471、映像信号線であるドレイン線472、及びソース電極473は、銅により配線されている。
したがって、第4実施形態によれば、窒化ケイ素膜上への銅の微細加工配線を、通常のプロセスにより行うことができると共に、非晶質ケイ素膜上への銅の微細加工配線も行うことができる。
また、第4実施形態によれば、TFT基板400は純銅により配線されるため、TFT基板400の消費電力を低下させることができる。
[実施形態5]
図24は、本発明の液晶表示装置の一実施形態に係る液晶表示装置700を概略的に示す図である。この図に示されるように、液晶表示装置700は、上フレーム710及び下フレーム720に挟まれるように固定された液晶表示パネル800及び不図示のバックライト装置等から構成されている。
図25には、図24の液晶表示パネル800の構成が示されている。液晶表示パネル800は、第1実施形態の製造方法により製造されたTFT基板100とカラーフィルタ基板165の2枚の基板を有し、これらの基板の間には液晶組成物が封止されている。TFT基板100には、駆動回路832により制御されるゲート信号線837及び駆動回路840により制御されるドレイン信号線835が張り巡らされ、これらの信号線は、液晶表示装置700の一画素として機能するセル810を形成している。なお、液晶表示パネル800は、その表示の解像度に対応する数のセル810を有するが、煩雑になるため、図25では簡略化して示している。
したがって、第5実施形態によれば、液晶表示装置700は、純銅により配線されたTFT基板100を用いているため、消費電力を抑えることができると共に、通常のプロセスにより製造することができる。
なお、実施形態1、および実施形態3〜実施形態5においては、IPS(In Plane Switching)方式の液晶表示装置のTFT基板を用いることとしているが、TN(Twisted Nematic)方式及びVA(Vertical Alignment)方式のうちのいずれの方式のTFT基板であってもよい。また実施形態2においては、TN方式またはVA方式の液晶表示装置のTFT基板を用いることとしているが、IPS方式のTFT基板であってもよい。
また、液晶表示装置用のTFT基板としているが、有機EL(Electro-Luminescence)表示装置のTFT基板等のガラス基板に形成される窒化ケイ素膜上の銅配線、その他の基板に形成される窒化ケイ素膜上の銅配線であってもよい。
100,200,300,400 TFT基板、101,201,301,401 ガラス基板、102,113,213,302,313,402,413 透明導電膜、103,109,203,209,303,309,403,409 第一の導電層、104,110,204,210,304,310,404,410 第二の導電層、105,111,205,211,305,311,405,411 酸化物層、106,206,306,406 ゲート絶縁膜、107,207,307,407 半導体層、108,208,308,408 コンタクト層、112,212,312,412 保護絶縁膜、114,214,314,414 スルーホール、160,260,360,460 液晶パネル、165,265,365,465 カラーフィルタ基板、168,268,368,468 液晶、171,271,371,471 ゲート線、172,272,372,472 ドレイン線、173,273,373,473 ソース電極、174,374,474 共通(透明)電極、175,375,475 共通信号線、700 液晶表示装置、710 上フレーム、720 下フレーム、800 液晶表示パネル、810 セル、832,840 駆動回路、835 ドレイン信号線、837 ゲート信号線。

Claims (6)

  1. 窒化ケイ素からなる膜である第1窒化ケイ素膜を成膜する第1窒化ケイ素膜成膜工程と、
    前記窒化ケイ素膜の上に、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウム、マンガンのうちから少なくとも一種の元素を第1添加元素として含む銅を主成分とする合金からなる第1銅合金膜を成膜し、更に、前記第1銅合金膜上に純銅からなる第1純銅膜を成膜する第1銅膜成膜工程と、
    前記第1純銅膜上にレジストパタンを形成するレジストパタン形成工程と、
    前記レジストパタンに合わせて、前記第1銅合金膜及び前記第1純銅膜をエッチングし、銅配線を形成するエッチング工程と、を有する薄膜トランジスタ基板製造工程を備え、
    前記薄膜トランジスタ基板製造工程は、
    前記第1銅膜成膜工程の前に、
    非晶質ケイ素からなる非晶質ケイ素膜を成膜する非晶質ケイ素膜成膜工程と、
    前記非晶質ケイ素膜成膜工程において成膜された非晶質ケイ素膜の表面を酸化する酸化工程と、を更に有し、
    前記第1銅膜成膜工程では、前記第1窒化ケイ素膜の上と共に、表面が酸化された前記非晶質ケイ素膜の上にも前記第1銅合金膜および前記第1純銅膜を成膜する、
    ことを特徴とする表示装置製造方法。
  2. 前記薄膜トランジスタ基板製造工程は、
    前記エッチング工程の後に、
    窒化ケイ素からなる膜である第2窒化ケイ素膜を成膜し、前記第2窒化ケイ素膜を成膜する際の熱により、前記非晶質ケイ素膜と前記第1銅合金膜との間に前記第1添加元素の金属酸化物を生成する、第2窒化ケイ素膜成膜工程を更に有する、ことを特徴とする請求項1に記載の表示装置製造方法。
  3. 前記薄膜トランジスタ基板製造工程は、
    前記第1窒化ケイ素膜成膜工程の前に、
    基材上に、アルミニウム、ホウ素、ベリリウム、ハフニウム、マグネシウム、ニオブ、スカンジウム、チタニウム、バナジウム、ジルコニウム、マンガンのうちから少なくとも一種の元素を第2添加元素として含む銅を主成分とする合金からなる第2銅合金膜を成膜し、更に、前記第2銅合金膜上に純銅からなる第2純銅膜を成膜する第2銅膜成膜工程を更に有し、
    前記第1窒化ケイ素膜成膜工程は、更に、前記第1窒化ケイ素膜を成膜する際の熱により、前記基材と前記第2銅合金膜との間に第2添加元素の金属酸化物を生成する、ことを特徴とする請求項1に記載の表示装置製造方法。
  4. 前記第2銅膜成膜工程ではゲート線を形成し、
    前記第1銅膜成膜工程では、ソース・ドレイン線を形成することにより、トランジスタを形成する、ことを特徴とする請求項3に記載の表示装置製造方法。
  5. 前記基材はガラス基板である、ことを特徴とする請求項3に記載の表示装置製造方法。
  6. 前記基材は透明電極である、ことを特徴とする請求項3に記載の表示装置製造方法。
JP2009078203A 2009-03-27 2009-03-27 表示装置製造方法 Expired - Fee Related JP5308206B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078203A JP5308206B2 (ja) 2009-03-27 2009-03-27 表示装置製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078203A JP5308206B2 (ja) 2009-03-27 2009-03-27 表示装置製造方法

Publications (2)

Publication Number Publication Date
JP2010230965A JP2010230965A (ja) 2010-10-14
JP5308206B2 true JP5308206B2 (ja) 2013-10-09

Family

ID=43046840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078203A Expired - Fee Related JP5308206B2 (ja) 2009-03-27 2009-03-27 表示装置製造方法

Country Status (1)

Country Link
JP (1) JP5308206B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830227A (zh) * 2013-12-24 2016-08-03 材料概念有限公司 太阳能电池及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111533A1 (ja) * 2012-01-23 2013-08-01 シャープ株式会社 薄膜トランジスタ基板の製造方法及びその方法により製造された薄膜トランジスタ基板
JP5912046B2 (ja) 2012-01-26 2016-04-27 株式会社Shカッパープロダクツ 薄膜トランジスタ、その製造方法および該薄膜トランジスタを用いた表示装置
US20130207111A1 (en) 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
KR101953215B1 (ko) * 2012-10-05 2019-03-04 삼성디스플레이 주식회사 식각 조성물, 금속 배선 및 표시 기판의 제조방법
CN102929059B (zh) * 2012-11-14 2015-07-29 信利半导体有限公司 一种薄膜晶体管液晶显示屏
US10263114B2 (en) 2016-03-04 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
JP2017208533A (ja) * 2016-05-13 2017-11-24 株式会社神戸製鋼所 積層配線膜および薄膜トランジスタ素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245558A (ja) * 2005-02-04 2006-09-14 Advanced Lcd Technologies Development Center Co Ltd 銅配線層、銅配線層の形成方法、半導体装置、及び半導体装置の製造方法
JP2007072428A (ja) * 2005-08-09 2007-03-22 Tohoku Univ 平面電子表示装置及びその製造方法
JP5121299B2 (ja) * 2007-05-09 2013-01-16 アルティアム サービシズ リミテッド エルエルシー 液晶表示装置
JP4496237B2 (ja) * 2007-05-14 2010-07-07 株式会社 日立ディスプレイズ 液晶表示装置
JP2009004518A (ja) * 2007-06-20 2009-01-08 Kobe Steel Ltd 薄膜トランジスタ基板、および表示デバイス
JP2009010089A (ja) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp 密着性に優れた配線下地膜およびこの配線下地膜を含む密着性に優れた二重構造配線膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830227A (zh) * 2013-12-24 2016-08-03 材料概念有限公司 太阳能电池及其制造方法
CN105830227B (zh) * 2013-12-24 2017-09-22 材料概念有限公司 太阳能电池及其制造方法

Also Published As

Publication number Publication date
JP2010230965A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5308206B2 (ja) 表示装置製造方法
US7696088B2 (en) Manufacturing methods of metal wire, electrode and TFT array substrate
JP4458563B2 (ja) 薄膜トランジスタの製造方法およびこれを用いた液晶表示装置の製造方法
KR101447342B1 (ko) 어레이 기판 및 그 제조 방법, 액정 패널, 디스플레이
TW501282B (en) Method of manufacturing semiconductor device
CN104508808B (zh) 半导体装置及其制造方法
TW563226B (en) Semiconductor film, semiconductor device, and method of manufacturing the same
US9812472B2 (en) Preparation method of oxide thin-film transistor
TW201032289A (en) Method of fabricating array substrate
JP5226154B2 (ja) 薄膜トランジスタ
WO2007088722A1 (ja) Tft基板及び反射型tft基板並びにそれらの製造方法
JP2007157916A (ja) Tft基板及びtft基板の製造方法
JP2007258675A (ja) Tft基板及び反射型tft基板並びにそれらの製造方法
WO2012008192A1 (ja) 回路基板、表示装置、及び、回路基板の製造方法
JP2009033140A (ja) Al合金膜を用いた低接触電気抵抗型電極およびその製造方法並びに表示装置
JP2000258799A (ja) 液晶表示装置の製造方法
TW572996B (en) An etchant for a wire, a method for manufacturing the wire and a method for manufacturing a thin film transistor array panel including the method
JP2007173489A (ja) Tft基板及びtft基板の製造方法
TWI297548B (en) Pixel structure for flat panel display and method for fabricating the same
TW201203394A (en) Array substrate and method of fabricating the same
WO2018113214A1 (zh) 薄膜晶体管及其制作方法、显示基板、显示装置
US7940344B2 (en) Display substrate, method of manufacturing the same and display apparatus having the same
JPWO2012108301A1 (ja) アクティブマトリクス基板の製造方法、表示パネル、及び表示装置
CN106935660B (zh) 薄膜晶体管及其制作方法、阵列基板和显示装置
CN103022056B (zh) 一种阵列基板及制备方法、显示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees