WO2017194034A1 - 三组分耐低温聚酯型聚氨酯弹性体及其制备方法 - Google Patents

三组分耐低温聚酯型聚氨酯弹性体及其制备方法 Download PDF

Info

Publication number
WO2017194034A1
WO2017194034A1 PCT/CN2017/091015 CN2017091015W WO2017194034A1 WO 2017194034 A1 WO2017194034 A1 WO 2017194034A1 CN 2017091015 W CN2017091015 W CN 2017091015W WO 2017194034 A1 WO2017194034 A1 WO 2017194034A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyurethane elastomer
resistant polyester
temperature resistant
low
Prior art date
Application number
PCT/CN2017/091015
Other languages
English (en)
French (fr)
Inventor
陈海良
刘兆阳
张芳
董良
陈伟
Original Assignee
山东一诺威聚氨酯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东一诺威聚氨酯股份有限公司 filed Critical 山东一诺威聚氨酯股份有限公司
Publication of WO2017194034A1 publication Critical patent/WO2017194034A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic

Definitions

  • the invention relates to a three-component low-temperature resistant polyester polyurethane elastomer and a preparation method thereof, and belongs to the technical field of polyurethane application.
  • Polyurethane elastomer is a kind of polymer synthetic material between plastic and rubber. It has excellent wear resistance, good mechanical strength, oil resistance, low temperature resistance and ozone aging resistance. In practical applications, the two-component MOCA system is widely used due to its simple operation. However, the two-component MOCA system has relatively large viscosity and is not environmentally friendly during use, and has certain limitations in the use process.
  • the temperature of the general polyurethane elastomer is basically above zero degrees Celsius. However, the temperature in winter in northeast China and Russia is about zero degrees Celsius or even minus twenty degrees Celsius. This requires polyurethane elastomers to have good low temperature flexibility. Polyether polyurethane elastomer has good low temperature resistance, but its tear resistance and tensile strength are low, which can not meet certain application fields with high mechanical properties. Polyester polyurethane elastomer has higher The tear resistance and tensile strength, but the ordinary polyester polyurethane elastomer has poor low temperature resistance, thereby limiting its application in low temperature environments.
  • the object of the present invention is to provide a three-component low-temperature resistant polyester polyurethane elastomer which not only has high tear resistance and tensile strength, but also has low system viscosity, low temperature resistance and good low temperature.
  • the utility model has the flexibility to meet the application of the low temperature environment; and the invention simultaneously provides the simple and easy preparation method of the above three-component low temperature resistant polyester polyurethane elastomer.
  • the percentages of the content referred to in the present invention are all by weight.
  • One aspect of the invention provides a three component low temperature resistant polyester polyurethane elastomer made from component A, component B and component C, wherein:
  • polyester polyol 85%-100% and plasticizer 0%-15% at 100 ° C ⁇ 120 ° C and vacuum; the degree of vacuum is preferably 0.09 MPa, and the dehydration time is preferably 1- 2h.
  • the content of the polyester polyol can be reasonably adjusted within the above range according to the properties of the desired product, for example, may be 90%, 95%, 98%, etc.; the content of the catalyst may be as described above according to the actual reaction needs.
  • the B component is a prepolymer, and the preparation method is as follows:
  • liquefied MDI modified from diisocyanate MDI-100 18.1% to 65.8%, carbodiimide 0%-18.1%, polyester polyol 34.2% to 46.5% and plasticizer 0% to 20%
  • liquefied MDI modified from diisocyanate MDI-100 18.1% to 65.8%, carbodiimide 0%-18.1%, polyester polyol 34.2% to 46.5% and plasticizer 0% to 20%
  • the content of the diisocyanate MDI-100 can be reasonably adjusted within the above range according to actual needs, such as 20%, 30%, 40%, 50%, etc.; the carbodiimide-modified liquefied MDI
  • the content may be in the above range according to the actual reaction needs, for example, may be 5%, 10%, 15%, etc.; the content of the polyester polyol in the above B component can be reasonably adjusted within the above range as needed For example, it may be 35%, 40%, 45%, etc.; the plasticizer in the above B component may be selected within the above range according to the required product performance requirements, for example, may be 5%, 10%, 15%, etc.;
  • the reaction temperature may be adjusted within the above range depending on the reaction, and may be 78 ° C, 80 ° C, 82 ° C or the like.
  • the C component is a curing agent component, which is obtained by dehydration of an alcohol chain extender and mixing with a catalyst.
  • the polyester polyol in the A component and the B component is a polyadipate polyester polyol containing 1,4-butanediol.
  • the polyester polyol in the A component and the B component is a polyadipate polyester polyol having a number average molecular weight of 1,500 to 3,000, a functionality of 2, and 1,4-butanediol, 1 , the molar percentage of 4-butanediol to the total amount of small molecule alcohol is 50%-80%; the small molecule alcohol is a raw material polyol used for synthesizing polyester polyol, including ethylene glycol, 1,2 propanediol and 1 , 4-butanediol.
  • the above small molecule alcohols may also be only ethylene glycol and 1,4-butanediol.
  • the polyester polyol is one or more of PE-2415, PE-2420 or PE-24207.
  • the moisture content of the component A is ⁇ 0.03%.
  • the content of the cyanate group (NCO) in the component B is from 10 to 20%.
  • the moisture content of the C component is ⁇ 0.03%, and the amount of the catalyst is from 1% to 2% of the total mass of the C component.
  • the moisture content refers to the moisture content of the alcohol chain extender after dehydration.
  • the alcohol chain extender is 1,4-butanediol, hydroquinone diethanol ether or resorcinol bis(2-hydroxyethyl)ether.
  • the alcohol chain extender is one or more of 1,4-butanediol, hydroquinone diethanol ether or resorcinol bis(2-hydroxyethyl)ether.
  • the plasticizer used in the A component and the B component is a benzoate plasticizer, dimethyl glycol phthalate, butyl benzyl phthalate or phthalate. Diisobutyl formate.
  • the addition of plasticizer makes the system operating at low temperature and viscosity, good flow performance and excellent operation performance.
  • the plasticizer used in the component A and the component B is a benzoate plasticizer, dimethyl phthalate.
  • a benzoate plasticizer dimethyl phthalate.
  • the catalyst is a ruthenium, zinc, mercury or amine catalyst.
  • Another aspect of the present invention provides a method for preparing a three-component low-temperature resistant polyester polyurethane elastomer according to any one of the above aspects, wherein the components A, B, and C are uniformly mixed in different proportions and poured into a mold.
  • Vulcanization molding, mixing temperature is 40-60 ° C
  • mold temperature is 90 ° C ⁇ 100 ° C, 20-50 minutes to open the mold, 80 ° C -100 ° C after vulcanization 10-16h to obtain the target product.
  • the three-component low-temperature resistant polyester polyurethane elastomer is prepared by using a polyadipate polyester polyol containing a certain proportion of 1,4-butanediol, and/or a suitable amount of a plasticizer.
  • the glass transition temperature has a certain degree of decline, at -35 ° C ⁇ -43 ° C, resistant
  • the low temperature performance is improved, and the low temperature flexibility is obtained, so as to meet the application of the low temperature environment, the hardness of the prepared polyurethane elastomer is 60A to 95A.
  • the three-component low-temperature resistant polyester polyurethane elastomer of the present invention has high tear resistance and tensile strength, low system viscosity, and can lower the glass transition temperature, and the low temperature resistance of the product. It is improved, has good low temperature flexibility, and meets the application of low temperature environment.
  • the product has high molding speed and high production efficiency; the post-vulcanization speed is low and the time is short, and the energy consumption is reduced; Moreover, it is beneficial to extend the life of the mold and is suitable for large-scale industrial production.
  • PE-2020 polyadipate polyester diol number average molecular weight 2000, prepared from adipic acid, ethylene glycol;
  • PE-4020 polyadipate polyester diol, number average molecular weight 2000, prepared from adipic acid and 1,4-butanediol;
  • composition of the three component low temperature resistant polyester type polyurethane elastomer is as follows:
  • Component A PE-2415 is dehydrated to a moisture content of ⁇ 0.03% at a temperature of 100 ° C and a vacuum of 0.095 MPa to obtain a component A.
  • Component B PE-24207 43.8%, MDI-100 18.1%, liquefied MDI 18.1%, 9-88SG 20% reacted at 85 ° C for 3 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain isocyanate content of 10 % prepolymer.
  • Component C BDO 99% with a moisture content of ⁇ 0.03%, 1% of an amine catalyst, and uniformly mixed to obtain a C component.
  • the chain extender is not limited to BDO, and may be other commonly used alcohol chain extenders such as HQEE, HER, and the like.
  • composition of the three component low temperature resistant polyester type polyurethane elastomer is as follows:
  • Component A PE-2415 is dehydrated to a moisture content of ⁇ 0.03% at a temperature of 100 ° C and a vacuum of 0.095 MPa to obtain a component A.
  • Component B PE-2420 46.5%, MDI-100 30.5%, liquefied MDI 13%, DMEP 10% reacted at 80 ° C for 3 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain isocyanate content of 12% Prepolymer.
  • Component C 98% of BDO with a moisture content of ⁇ 0.03%, 1.2% of a mercury catalyst, and uniformly mixed to obtain a C component.
  • the chain extender is not limited to BDO, and may be other commonly used alcohol chain extenders such as HQEE, HER, and the like.
  • the mold was injected into a mold at 90 ° C, opened at 25 minutes, and vulcanized at 90 ° C for 10 h to obtain a low-temperature resistant polyester polyurethane elastomer having a hardness of 85 A and a glass transition temperature of -37 ° C.
  • composition of the three component low temperature resistant polyester type polyurethane elastomer is as follows:
  • Component A PE-2420 is dehydrated to a moisture content of ⁇ 0.03% at a temperature of 110 ° C and a vacuum of 0.095 MPa to obtain a component A.
  • Component B PE-2420 41.6%, MDI-100 38.7%, liquefied MDI 9.7%, DMEP 10% reacted at 80 ° C for 3 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain isocyanate content of 14% Prepolymer.
  • Component C BDO 99% with a moisture content of ⁇ 0.03%, 1% of an amine catalyst, and uniformly mixed to obtain a C component.
  • the chain extender is not limited to BDO, and may be other commonly used alcohol chain extenders such as HQEE, HER, and the like.
  • composition of the three component low temperature resistant polyester type polyurethane elastomer is as follows:
  • Component A PE-2420 85%, BBP 15% dehydrated to a moisture content of ⁇ 0.03% at a temperature of 120 ° C and a vacuum of 0.095 MPa to obtain a component A.
  • Component B PE-2415 34.2%, MDI-100 65.8% was reacted at 75 ° C for 3 hours, and the bubbles were removed by vacuum (-0.095 MPa) to obtain a prepolymer having an isocyanate content of 20%.
  • Component C 98% BDO with a moisture content of ⁇ 0.03%, 2% of an amine catalyst, and uniformly mixed to obtain a C component.
  • the chain extender is not limited to BDO, and may be other commonly used alcohol chain extenders such as HQEE, HER, and the like.
  • Component A PE-2020 is dehydrated to a moisture content of ⁇ 0.03% at a temperature of 100 ° C and a vacuum of 0.095 MPa to obtain a component A.
  • Component B PE-2020 50.5%, MDI-100 39.6%, liquefied MDI 9.9%, reacted at 80 ° C for 3 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain prepolymer with 14% isocyanate content .
  • Component C BDO 99% with a moisture content of ⁇ 0.03%, 1% of an amine catalyst, and uniformly mixed to obtain a C component.
  • Component A PE-2420 is dehydrated to a moisture content of ⁇ 0.03% at a temperature of 100 ° C and a vacuum of 0.095 MPa to obtain a component A.
  • Component B PE-2420 50.5%, MDI-100 39.6%, liquefied MDI 9.9%, reacted at 80 ° C for 3 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain prepolymer with 14% isocyanate content. .
  • Component C BDO 99% with a moisture content of ⁇ 0.03%, 1% of an amine catalyst, and uniformly mixed to obtain a C component.
  • the glass transition temperature of the product was tested by a 204-type differential scanning calorimeter manufactured by NETZSCH, Germany.
  • the test conditions were as follows: the sample was raised from room temperature to 180 ° C under N 2 protection, and the temperature was kept for 5 minutes to eliminate the heat history. After -70 ° C, rise again to 180 ° C.
  • the performance test results of the implementation and comparative examples are shown in Table 1.
  • Table 1 is a table showing the results of performance test of the polyurethane elastomer obtained in the examples of the present invention and Comparative Examples 1-2.
  • Comparative Example 1 the present invention was prepared by using a polyester polyol containing 1,4-butanediol.
  • the obtained polyurethane elastomer has significant improvement in tensile strength and tear strength, and the glass transition temperature is lowered, the low temperature resistance is improved, the low temperature flexibility is good, and the application in a low temperature environment can be satisfied.
  • Comparing the examples of the present invention with Comparative Example 2 it can be seen that the products obtained by using the amount of the polyester polyol in the present invention have properties such as hardness, tensile strength and tear strength. It is improved, and the glass transition temperature is also low, which not only enables high-performance low-temperature resistant polyurethane elastomers, but also saves raw materials and saves costs.
  • a two-component polyurethane elastomer is prepared as follows:
  • component A PE4020 48.0%, MDI-100 24.0%, liquefied MDI 3.0%, BBP 25.0% at 80 ° C for 2.5 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain different a polyurethane prepolymer having a cyanate content of 7.0%;
  • a two-component polyurethane elastomer is prepared as follows:
  • component A PE2420 60.0%, MDI-100 22.5%, liquefied MDI 2.5%, 9-88SG15% reacted at 75 ° C for 2 hours, vacuum (-0.095 MPa) to remove bubbles, to obtain isocyanide a polyurethane prepolymer having an acid group content of 6.0%;
  • Table 2 is a performance test table of Example 2-3 three-component polyurethane elastomer and Comparative Example 3-4 two-component polyurethane elastomer.
  • the three-component polyurethane elastomer obtained in the present application has slightly improved properties such as tensile strength and tear strength compared with the two-component polyurethane elastomer, but the mold opening time of the preparation method of the present invention and The vulcanization time is obviously shortened, and the vulcanization temperature is also significantly reduced.
  • the product Under the premise of not degrading the product performance, the product has a high molding speed, low energy consumption, high production efficiency, and is suitable for large-scale mass production.

Abstract

一种三组分耐低温聚酯型聚氨酯弹性体及其制备方法,属于聚氨酯应用技术领域。所述的三组分耐低温聚酯型聚氨酯弹性体,由A组分、B组分和C组分制成,其中:(1)A组分由聚酯多元醇与增塑剂在100℃~120℃及真空下脱水制得;(2)B组分为预聚物,由二异氰酸酯MDI-100、碳化二亚胺改性的液化MDI、聚酯多元醇与增塑剂在75℃~85℃反应制得;(3)C组分为固化剂组分,由醇类扩链剂脱水后与催化剂混合而得。该三组分耐低温聚酯型聚氨酯弹性体体系粘度低,耐低温性能提高,具有较好的低温柔顺性,满足低温环境的应用;同时提供了简单易行的制备方法。

Description

三组分耐低温聚酯型聚氨酯弹性体及其制备方法 技术领域
本发明涉及一种三组分耐低温聚酯型聚氨酯弹性体及其制备方法,属于聚氨酯应用技术领域。
背景技术
聚氨酯弹性体是介于塑料与橡胶之间的一种高分子合成材料,具有优良的耐磨性、良好的力学强度及耐油、耐低温、耐臭氧老化等性能,因而得到广泛应用。在实际的应用中由于操作简单,双组分MOCA体系得到广泛的应用,但双组分MOCA体系在使用过程中粘度相对较大且不环保,在使用过程中存在一定的局限性。
一般的聚氨酯弹性体的使用温度基本在零摄氏度以上,然而我国东北及俄罗斯等国冬季气温在零摄氏度甚至零下二十摄氏度左右,这就要求聚氨酯弹性体有较好的低温柔顺性。聚醚型聚氨酯弹性体具有较好的耐低温性,然而其抗撕裂及抗拉伸强度较低,无法满足某些对机械性能要求较高的应用领域,聚酯型聚氨酯弹性体具有较高的抗撕裂及抗拉伸强度,但是普通聚酯型聚氨酯弹性体耐低温性能差,从而限制其在低温环境的应用。
发明内容
本发明的目的是提供一种三组分耐低温聚酯型聚氨酯弹性体,其不仅具有较高的抗撕裂及抗拉伸强度,而且体系粘度低,耐低温性能提高,具有较好的低温柔顺性,满足低温环境的应用;本发明同时提供了上述三组分耐低温聚酯型聚氨酯弹性体简单易行的制备方法。
本发明中所涉及到的含量百分数皆为重量百分数。
本发明一方面提供一种三组分耐低温聚酯型聚氨酯弹性体,由A组分、B组分和C组分制成,其中:
(1)A组分的制备方法如下:
以重量百分数计,由聚酯多元醇85%-100%与增塑剂0%-15%在100℃~120℃及真空下脱水制得;真空度优选为0.09MPa,脱水时间优选为1-2h。
所述聚酯多元醇的含量可根据所需产品的性能在上述范围内进行合理地调整,例如可以为90%、95%、98%等;所述催化剂的含量可根据实际反应的需要在上述范围内进行选取,例如可以为5%、8%、10%等;反应温度可根据实际进行调整,例如还可以为110℃、115℃等。
(2)B组分为预聚物,制备方法如下:
以重量百分数计,由二异氰酸酯MDI-100 18.1%~65.8%、碳化二亚胺改性的液化MDI 0%-18.1%、聚酯多元醇34.2%~46.5%与增塑剂0%~20%在75℃~85℃反应制得;
所述二异氰酸酯MDI-100的含量可根据实际需要在上述范围内进行合理地调整,如还可以为20%、30%、40%、50%等;所述碳化二亚胺改性的液化MDI的含量可根据实际反应需要在上述范围内取值,例如可以为5%、10%、15%等;上述B组分中的聚酯多元醇的含量可根据需要在上述范围内进行合理地调整,例如可以为35%、40%、45%等;上述B组分中的增塑剂可根据所需产品性能要求在上述范围内进行选择,例如可以为5%、10%、15%等;上述反应温度可根据反应情况在上述范围内进行调整,还可以为78℃、80℃、82℃等。
(3)C组分为固化剂组分,由醇类扩链剂脱水后与催化剂混合而得。
作为优选,所述A组分和B组分中的聚酯多元醇为含有1,4-丁二醇的聚己二酸聚酯多元醇。
作为优选,所述A组分和B组分中的聚酯多元醇为数均分子量为1500~3000、官能度为2、含有1,4-丁二醇的聚己二酸聚酯多元醇,1,4-丁二醇占小分子醇总量的摩尔百分比为50%-80%;所述小分子醇为合成聚酯多元醇所用的原料多元醇,包括乙二醇、1,2丙二醇和1,4-丁二醇。
上述小分子醇还可以仅为乙二醇和1,4-丁二醇。
作为优选,所述聚酯多元醇为PE-2415、PE-2420或PE-24207中的一种或多种。
作为优选,所述A组分中水分含量≤0.03%。
作为优选,所述B组分中氰酸酯基(NCO)的含量为10~20%。
作为优选,所述C组分中水分含量≤0.03%,催化剂用量为C组分总质量的1%-2%。此处,水分含量是指醇类扩链剂脱水后的水分含量。
作为优选,所述醇类扩链剂为1,4-丁二醇、对苯二酚二乙醇醚或间苯二酚二(2-羟乙基)醚。
进一步的,所述醇类扩链剂为1,4-丁二醇、对苯二酚二乙醇醚或间苯二酚二(2-羟乙基)醚中的一种或多种。
作为优选,所述A组分和B组分中所用的增塑剂为苯甲酸酯类增塑剂、邻苯二甲酸二甲基乙二醇酯、邻苯二甲酸丁苄酯或邻苯二甲酸二异丁酯。增塑剂的加入使体系操作温度低且粘度小,流动性能好,操作性能优。
进一步的,所述A组分和B组分中所用的增塑剂为苯甲酸酯类增塑剂、邻苯二甲酸二甲 基乙二醇酯、邻苯二甲酸丁苄酯或邻苯二甲酸二异丁酯中的一种或多种。
作为优选,所述催化剂为铋类、锌类、汞类或胺类催化剂。
本发明另一方面提供一种如上述任一技术方案所述的三组分耐低温聚酯型聚氨酯弹性体的制备方法,将A、B、C组分按照不同比例混合均匀,浇入模具中硫化成型,混合温度为40~60℃,模具温度为90℃~100℃,20-50分钟开模,80℃-100℃下后硫化10-16h后制得目标产品。上述A、B、C三组分的含量为A:B:C=(9.5-10.5):(10-300):100
所述的三组分耐低温聚酯型聚氨酯弹性体通过使用含有一定比例的1,4-丁二醇的聚己二酸聚酯多元醇,和/或配合适量的增塑剂制备出体系粘度小、可操作性好、耐低温性能好、综合性能优越和环保的产品,与普通聚酯型弹性体相比,其玻璃化转变温度有一定程度下降,在-35℃~-43℃,耐低温性能提高,具有较好的低温柔顺性,从而满足低温环境的应用,所制备的聚氨酯弹性体的硬度为邵60A~95A。
本发明具有以下有益效果:
(1)本发明所述的三组分耐低温聚酯型聚氨酯弹性体,具有较高的抗撕裂及抗拉伸强度,体系粘度低,同时能降低玻璃化转变温度,产品的耐低温性能得到提高,具有较好的低温柔顺性,满足低温环境的应用。
(2)本发明所述的三组分耐低温聚酯型聚氨酯弹性体的制备方法,产品的成型速度快,生产效率高;后硫化速度低且时间短,降低能耗;不仅简单易行,而且有利于延长模具寿命,适用于大规模工业化生产。
具体实施方式
下面结合实施例对本发明作进一步的说明,但其并不限制本发明的实施。
所用材料如下:
PE-2415 聚己二酸聚酯二元醇,数均分子量1500,由己二酸、1,4-丁二醇和乙二醇制备而成,其中,1,4-丁二醇:乙二醇=1:1(摩尔比);
PE-2420 聚己二酸聚酯二元醇,数均分子量2000,由己二酸、1,4-丁二醇和乙二醇制备而成,其中,1,4-丁二醇:乙二醇=1:1(摩尔比);
PE-24207 聚己二酸聚酯二元醇,数均分子量3000,由己二酸、1,4-丁二醇和乙二醇制备而成,其中,1,4-丁二醇:乙二醇=4:1(摩尔比);
PE-2020 聚己二酸聚酯二元醇,数均分子量2000,由己二酸、乙二醇制备而成;
PE-4020 聚己二酸聚酯二元醇,数均分子量2000,由己二酸和1,4-丁二醇制备而成;
MDI-100 4,4’-二苯基甲烷二异氰酸酯;
液化MDI 碳化二亚胺改性的MDI-100;
BDO     1,4-丁二醇;
HQEE    对苯二酚二乙醇醚;
HER     间苯二酚二(2-羟乙基)醚;
DMEP    邻苯二甲酸二甲基乙二醇酯;
9-88SG  苯甲酸酯类增塑剂;
BBP     邻苯二甲酸丁苄酯;
DIBP    邻苯二甲酸二异丁酯;
TMP     三羟甲基丙烷。
实施例1
三组分耐低温聚酯型聚氨弹性体的组分如下:
A组分:将PE-2415在温度100℃,真空度0.095MPa条件下脱水至水分含量≤0.03%,得到A组分。
B组分:PE-24207 43.8%,MDI-100 18.1%,液化MDI 18.1%,9-88SG 20%在85℃反应3小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为10%的预聚体。
C组分:水分含量≤0.03%的BDO 99%,胺催化剂1%,混合均匀得到C组分。此处,扩链剂并不局限于BDO,还可以为其它常用的醇类扩链剂,如HQEE、HER等。
A、B、C三组分的温度控制在40℃,按照C/A/B=9.8/10/100的质量比例混合均匀后,浇注入90℃的模具中,20分钟开模,100℃条件下后硫化16h后,可得到硬度为邵氏95A,玻璃化转变温度为-38℃的耐低温聚酯型聚氨酯弹性体。
实施例2
三组分耐低温聚酯型聚氨弹性体的组分如下:
A组分:将PE-2415在温度100℃,真空度0.095MPa条件下脱水至水分含量≤0.03%,得到A组分。
B组分:PE-2420 46.5%,MDI-100 30.5%,液化MDI 13%,DMEP 10%在80℃反应3小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为12%的预聚体。
C组分:水分含量≤0.03%的BDO 98.8%,汞催化剂1.2%,混合均匀得到C组分。此处,扩链剂并不局限于BDO,还可以为其它常用的醇类扩链剂,如HQEE、HER等。
A、B、C三组分的温度控制在45℃,按照C/A/B=10/40/100的质量比例混合均匀后,浇 注入90℃的模具中,25分钟开模,90℃条件下后硫化10h后,可得到硬度为邵氏85A,玻璃化转变温度为-37℃的耐低温聚酯型聚氨酯弹性体。
实施例3
三组分耐低温聚酯型聚氨弹性体的组分如下:
A组分:将PE-2420在温度110℃,真空度0.095MPa条件下脱水至水分含量≤0.03%,得到A组分。
B组分:PE-2420 41.6%,MDI-100 38.7%,液化MDI 9.7%,DMEP 10%在80℃反应3小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为14%的预聚体。
C组分:水分含量≤0.03%的BDO 99%,胺催化剂1%,混合均匀得到C组分。此处,扩链剂并不局限于BDO,还可以为其它常用的醇类扩链剂,如HQEE、HER等。
A、B、C三组分的温度控制在50℃,按照C/A/B=10.5/90/100的质量比例混合均匀后,浇注入95℃的模具中,30分钟开模,85℃条件下后硫化12h后,可得到硬度为邵氏75A,玻璃化转变温度为-40℃的耐低温聚酯型聚氨酯弹性体。
实施例4
三组分耐低温聚酯型聚氨弹性体的组分如下:
A组分:将PE-2420 85%,BBP 15%在温度120℃,真空度0.095MPa条件下脱水至水分含量≤0.03%,得到A组分。
B组分:PE-2415 34.2%,MDI-100 65.8%在75℃反应3小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为20%的预聚体。
C组分:水分含量≤0.03%的BDO 98%,胺催化剂2%,混合均匀得到C组分。此处,扩链剂并不局限于BDO,还可以为其它常用的醇类扩链剂,如HQEE、HER等。
A、B、C三组分的温度控制在50℃,按照C/A/B=9.5/300/100的质量比例混合均匀后,浇注入90℃的模具中,50分钟开模,80℃条件下后硫化12h后,可得到硬度为邵氏60A,玻璃化转变温度为-43℃的耐低温聚酯型聚氨酯弹性体。
对比例1
A组分:将PE-2020在温度100℃,真空度0.095MPa条件下脱水至水分含量≤0.03%,得到A组分。
B组分:PE-2020 50.5%,MDI-100 39.6%,液化MDI 9.9%,在80℃反应3小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为14%的预聚体。
C组分:水分含量≤0.03%的BDO 99%,胺催化剂1%,混合均匀得到C组分。
A、B、C三组分的温度控制在50℃,按照C/A/B=10.5/90/100的质量比例混合均匀后,浇注入95℃的模具中,30分钟开模,85℃条件下后硫化12h后,可得到硬度为邵氏75A,玻璃化转变温度为-27℃聚酯型聚氨酯弹性体。
对比例2
A组分:将PE-2420在温度100℃,真空度0.095MPa条件下脱水至水分含量≤0.03%,得到A组分。
B组分:PE-2420 50.5%,MDI-100 39.6%,液化MDI 9.9%,在80℃反应3小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为14%的预聚体。
C组分:水分含量≤0.03%的BDO 99%,胺催化剂1%,混合均匀得到C组分。
A、B、C三组分的温度控制在50℃,按照C/A/B=10.5/90/100的质量比例混合均匀后,浇注入95℃的模具中,30分钟开模,85℃条件下后硫化12h后,可得到硬度为邵氏75A,玻璃化转变温度为-34℃聚酯型聚氨酯弹性体。
制品的玻璃化温度采用德国耐驰公司生产的204型差示扫描量热仪测试,测试条件为:将样品在N2保护下从室温升至180℃,恒温5分钟以消除热历史,降至-70℃后再次升至180℃。实施和对比例的性能测试结果见表1。
表1 实施例和对比例1-2的性能测试结果
项目 实施例1 实施例2 实施例3 实施例4 对比例1 对比例2
硬度/邵A 95 85 75 60 75 75
拉伸强度/MPa 51 50 48 36 48 48
撕裂强度/(KN/m) 136 106 88 55 90 89
回弹(23℃)/% 42 46 47 50 42 47
玻璃化温度Tg/℃ -38 -37 -40 -43 -27 -34
表1为本发明实施例与对比例1-2所获得的聚氨酯弹性体的性能测试结果表,与对比例1进行对比可知,本发明采用含1,4-丁二醇的聚酯多元醇制备获得的聚氨酯弹性体,其拉伸强度和撕裂强度都有显著的提高,并且玻璃化转变温度降低,耐低温性能得到明显提高,具有较好的低温柔顺性,能够满足低温环境的应用。本发明实施例与对比例2进行对比可知,选用本发明中聚酯多元醇的用量所制得的产品,其性能,如硬度、拉伸强度、撕裂强度等都有 提高,并且玻璃化转变温度也较低,不仅能够获得高性能耐低温的聚氨酯弹性体,而且能够节省原料,节约成本。
对比例3
一种双组份聚氨酯弹性体按照以下方法制备得到:
(1)制备A组分:将分子量2000的PE4020 48.0%,MDI-100 24.0%,液化MDI3.0%,BBP 25.0%在80℃反应2.5小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为7.0%的聚氨酯预聚物;
(2)制备聚氨酯弹性体:将上述聚氨酯预聚物和扩链剂BDO以100:7.1的重量比例在80℃下混合,然后将混合物浇注到110℃的模具中,120分钟后开模,将脱模后的制品在120℃下后硫化48小时,得到双组份聚氨酯弹性体。
对比例4
一种双组份聚氨酯弹性体按照以下方法制备得到:
(1)制备A组分:分子量2200的PE2420 60.0%,MDI-100 22.5%,液化MDI 2.5%,9-88SG15%在75℃反应2小时,真空(-0.095MPa)脱除气泡,得到异氰酸根含量为6.0%的聚氨酯预聚物;
(2)制备聚氨酯弹性体:将上述聚氨酯预聚物和扩链剂(BDO:TMP=20:3)以100:4.6的重量比例在75℃下混合,然后将混合物浇注到70℃的模具中,120分钟后脱模,将脱模后的制品在115℃下后硫化48小时,得到双组份聚氨酯弹性体。
表2 实施例2-3与对比例3-4的性能测试结果
项目 实施例2 实施例3 对比例3 对比例4
硬度/邵A 85 75 85 75
拉伸强度/MPa 50 48 48 46
撕裂强度/(KN/m) 106 88 100 78
开模时间(min) 25 30 120 120
硫化时间(h) 10 12 48 48
硫化温度(℃) 90 85 120 115
表2为本发明实施例2-3三组分聚氨酯弹性体与对比例3-4双组份聚氨酯弹性体性能测试表。通过对比分析可知,本申请所获得的三组分聚氨酯弹性体与双组份聚氨酯弹性体相比,性能,如拉伸强度、撕裂强度稍有提高,但本发明制备方法的开模时间和硫化时间明显缩短,并且硫化温度也明显降低,在不降低产品性能的前提下,产品的成型速度快,能耗低,生产效率高,适于大规模批量化生产。

Claims (10)

  1. 一种三组分耐低温聚酯型聚氨酯弹性体,其特征在于:由A组分、B组分和C组分制成,其中:
    (1)A组分的制备方法如下:
    以重量百分数计,由聚酯多元醇85%-100%与增塑剂0%-15%在100℃~120℃及真空下脱水制得;
    (2)B组分为预聚物,制备方法如下:
    以重量百分数计,由二异氰酸酯MDI-100 18.1%~65.8%、碳化二亚胺改性的液化MDI 0%-18.1%、聚酯多元醇34.2%~46.5%与增塑剂0%~20%在75℃~85℃反应制得;
    (3)C组分为固化剂组分,由醇类扩链剂脱水后与催化剂混合而得。
  2. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:A组分和B组分中的聚酯多元醇为数均分子量为1500~3000、官能度为2、含有1,4-丁二醇的聚己二酸聚酯多元醇,1,4-丁二醇占小分子醇总量的摩尔百分比为50%-80%;所述小分子醇为合成聚酯多元醇所用的原料多元醇,包括乙二醇、1,2丙二醇和1,4-丁二醇。
  3. 根据权利要求2所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:聚酯多元醇为PE-2415、PE-2420或PE-24207中的一种或多种。
  4. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:A组分中水分含量≤0.03%。
  5. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:B组分中NCO的含量为10~20%。
  6. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:C组分中水分含量≤0.03%,催化剂用量为C组分总质量的1%-2%。
  7. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:醇类扩链剂为1,4-丁二醇、对苯二酚二乙醇醚或间苯二酚二(2-羟乙基)醚。
  8. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:A组分和B组分中所用的增塑剂为苯甲酸酯类增塑剂、邻苯二甲酸二甲基乙二醇酯、邻苯二甲酸丁苄酯或邻苯二甲酸二异丁酯。
  9. 根据权利要求1所述的三组分耐低温聚酯型聚氨酯弹性体,其特征在于:催化剂为铋类、锌类、汞类或胺类催化剂。
  10. 一种权利要求1-9任一所述的三组分耐低温聚酯型聚氨酯弹性体的制备方法,其特征在于:将A、B、C组分混合,浇入模具中硫化成型,混合温度为40~60℃,模具温度为90℃~100℃,20-50分钟开模,80℃-100℃下后硫化10-16h后制得目标产品。
PCT/CN2017/091015 2016-12-30 2017-06-30 三组分耐低温聚酯型聚氨酯弹性体及其制备方法 WO2017194034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611257887.8 2016-12-30
CN201611257887.8A CN106632981A (zh) 2016-12-30 2016-12-30 三组分耐低温聚酯型聚氨酯弹性体及其制备方法

Publications (1)

Publication Number Publication Date
WO2017194034A1 true WO2017194034A1 (zh) 2017-11-16

Family

ID=58838784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091015 WO2017194034A1 (zh) 2016-12-30 2017-06-30 三组分耐低温聚酯型聚氨酯弹性体及其制备方法

Country Status (2)

Country Link
CN (1) CN106632981A (zh)
WO (1) WO2017194034A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121786A (zh) * 2020-01-16 2021-07-16 北京化工大学 一种生物基无定型多元聚酯为软段的聚氨酯弹性体及制备方法
WO2021155440A1 (en) * 2020-02-07 2021-08-12 Lanxess Solutions Australia Pty. Ltd. Polyurethane multi-part kit system
CN114685755A (zh) * 2020-12-29 2022-07-01 浙江华峰新材料有限公司 一种耐养蒸聚氨酯弹性体及其制备方法
CN115260450A (zh) * 2022-08-25 2022-11-01 佛山市立大立塑新材料有限公司 一种高透光率芳香族弹性聚氨酯膜及其制备方法
CN115304737A (zh) * 2022-09-14 2022-11-08 晋江市民富鞋材有限公司 一种耐低温鞋材用聚氨酯弹性体及其制备工艺
US11548363B2 (en) 2018-06-27 2023-01-10 Daimler Truck AG Vehicle battery pack support device
CN116102709A (zh) * 2023-02-23 2023-05-12 旭川化学(苏州)有限公司 一种用于轮胎实芯填充的聚氨酯组合料及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632981A (zh) * 2016-12-30 2017-05-10 山东诺威聚氨酯股份有限公司 三组分耐低温聚酯型聚氨酯弹性体及其制备方法
CN109679060A (zh) * 2018-12-21 2019-04-26 山东一诺威聚氨酯股份有限公司 耐低温耐溶剂聚酯型聚氨酯弹性体及其制备方法
CN110117351A (zh) * 2019-05-13 2019-08-13 山西科灜科技有限公司 一种耐溶剂聚氨酯复合材料及其制备方法
CN111607060A (zh) * 2020-07-13 2020-09-01 扬州雷应精密科技有限公司 高熵聚氨酯及其制备方法
CN112961300B (zh) * 2021-04-17 2022-07-26 郑州大学 一种耐超低温热塑性聚氨酯弹性体及其制备方法
CN113698565B (zh) * 2021-08-19 2023-05-05 山东一诺威聚氨酯股份有限公司 降低聚酯型改性mdi结晶点的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942674A (zh) * 2012-11-26 2013-02-27 山东东大一诺威聚氨酯有限公司 三组分聚氨酯弹性体组合物
CN104031239A (zh) * 2014-06-20 2014-09-10 奥斯汀新材料(张家港)有限公司 一种聚酯型耐低温热塑性聚氨酯弹性体的制备方法
CN105482055A (zh) * 2015-12-31 2016-04-13 山东一诺威聚氨酯股份有限公司 耐低温聚氨酯弹性体及其制备方法
CN106632981A (zh) * 2016-12-30 2017-05-10 山东诺威聚氨酯股份有限公司 三组分耐低温聚酯型聚氨酯弹性体及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100572413C (zh) * 2007-10-31 2009-12-23 无锡双象化学工业有限公司 聚酯型超低密度聚氨酯鞋用树脂
CN101596765B (zh) * 2009-06-19 2011-06-15 天津爱尼机电有限公司 一种耐高温聚氨酯弹性体的制造方法
CN101735596A (zh) * 2009-12-15 2010-06-16 上海联景聚氨酯工业有限公司 热塑性聚氨酯弹性体及其制造方法
CN101735426A (zh) * 2009-12-25 2010-06-16 山东东大一诺威聚氨酯有限公司 一种用于生产复印机刮片的聚氨酯弹性体组合物
CN101851326B (zh) * 2010-05-26 2013-09-25 华南理工大学 一种聚氨酯弹性体及其制备方法
CN102464790A (zh) * 2010-11-12 2012-05-23 陈学利 热塑性聚氨酯弹性体的制备方法
CN104558498B (zh) * 2015-02-13 2017-11-10 山东一诺威聚氨酯股份有限公司 聚氨酯弹性体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942674A (zh) * 2012-11-26 2013-02-27 山东东大一诺威聚氨酯有限公司 三组分聚氨酯弹性体组合物
CN104031239A (zh) * 2014-06-20 2014-09-10 奥斯汀新材料(张家港)有限公司 一种聚酯型耐低温热塑性聚氨酯弹性体的制备方法
CN105482055A (zh) * 2015-12-31 2016-04-13 山东一诺威聚氨酯股份有限公司 耐低温聚氨酯弹性体及其制备方法
CN106632981A (zh) * 2016-12-30 2017-05-10 山东诺威聚氨酯股份有限公司 三组分耐低温聚酯型聚氨酯弹性体及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11548363B2 (en) 2018-06-27 2023-01-10 Daimler Truck AG Vehicle battery pack support device
CN113121786A (zh) * 2020-01-16 2021-07-16 北京化工大学 一种生物基无定型多元聚酯为软段的聚氨酯弹性体及制备方法
CN113121786B (zh) * 2020-01-16 2022-05-24 北京化工大学 一种生物基无定型多元聚酯为软段的聚氨酯弹性体及制备方法
WO2021155440A1 (en) * 2020-02-07 2021-08-12 Lanxess Solutions Australia Pty. Ltd. Polyurethane multi-part kit system
EP4100453A4 (en) * 2020-02-07 2024-03-20 Lanxess Solutions Australia Pty Ltd MULTI-PART POLYURETHANE CONSTRUCTION SYSTEM
CN114685755A (zh) * 2020-12-29 2022-07-01 浙江华峰新材料有限公司 一种耐养蒸聚氨酯弹性体及其制备方法
CN115260450A (zh) * 2022-08-25 2022-11-01 佛山市立大立塑新材料有限公司 一种高透光率芳香族弹性聚氨酯膜及其制备方法
CN115260450B (zh) * 2022-08-25 2023-10-20 佛山市立大立塑新材料有限公司 一种高透光率芳香族弹性聚氨酯膜及其制备方法
CN115304737A (zh) * 2022-09-14 2022-11-08 晋江市民富鞋材有限公司 一种耐低温鞋材用聚氨酯弹性体及其制备工艺
CN115304737B (zh) * 2022-09-14 2023-12-15 中山鸿泰鞋业有限公司 一种耐低温鞋材用聚氨酯弹性体及其制备工艺
CN116102709A (zh) * 2023-02-23 2023-05-12 旭川化学(苏州)有限公司 一种用于轮胎实芯填充的聚氨酯组合料及其制备方法和应用
CN116102709B (zh) * 2023-02-23 2023-09-15 旭川化学(苏州)有限公司 一种用于轮胎实芯填充的聚氨酯组合料及其制备方法和应用

Also Published As

Publication number Publication date
CN106632981A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017194034A1 (zh) 三组分耐低温聚酯型聚氨酯弹性体及其制备方法
KR101446231B1 (ko) 폴리우레탄 폼 타이어에 사용하는 인테그랄 미공질 엘라스토머 조성물
CN104448791B (zh) 高硬度透明聚氨酯弹性体及其制备方法
EP3183282B1 (de) Polyestermodifizierte polybutadienole zur herstellung von polyurethan-elastomeren und thermoplastischen polyurethanen
WO2020125577A1 (zh) 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN103833951B (zh) 快速脱模低硬度聚氨酯弹性体组合物的制备方法
WO2013091271A1 (zh) 动态性能优异的微孔聚氨酯弹性体组合物及其制备方法
CN110105525B (zh) 一种耐湿热老化ndi基聚氨酯微孔弹性体及其制备方法
CN102558496B (zh) 室温固化聚氨酯弹性体组合物
CN105482055A (zh) 耐低温聚氨酯弹性体及其制备方法
WO2020024539A1 (zh) 耐溶剂聚氨酯弹性体及其制备方法
TWI727207B (zh) 熱塑性聚氨酯、含彼之發泡熱塑性聚氨酯彈性體粒子及彼等之製備方法
CN108164991B (zh) 轮胎填充用聚氨酯弹性体组合料及其制备方法和用途
CN113045730B (zh) 一种基于生物基的混炼型聚氨酯橡胶及制备方法与应用
CN103665311A (zh) 一种改性聚氨酯/不饱和聚酯树脂的二元醇制备方法
CN106883591B (zh) 一种聚氨酯废料的利用方法和弹性体
CN102040824B (zh) 一种服装模特用浇注型聚氨酯弹性体组合物
BR112013026720B1 (pt) Método de preparação de poliuretano rígido
TWI819310B (zh) 高熵聚氨酯及其製備方法
WO2017113568A1 (zh) 耐铬酸聚氨酯弹性体及其制备方法
CN108587118B (zh) 一种具有高尺寸稳定性的工装零部件用tpu材料及其制备方法
CN113956522B (zh) 一种高强度聚氨酯制品的制备方法
CN109251294A (zh) 混凝土嵌缝用聚氨酯弹性体组合物及其制备方法
KR101804543B1 (ko) 사출 또는 프레스 성형용 고내열 열가소성 폴리우레탄 조성물 및 그 제조방법
CN113801465B (zh) 聚氨酯微孔发泡弹性体及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17795652

Country of ref document: EP

Kind code of ref document: A1