WO2020125577A1 - 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法 - Google Patents

可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法 Download PDF

Info

Publication number
WO2020125577A1
WO2020125577A1 PCT/CN2019/125566 CN2019125566W WO2020125577A1 WO 2020125577 A1 WO2020125577 A1 WO 2020125577A1 CN 2019125566 W CN2019125566 W CN 2019125566W WO 2020125577 A1 WO2020125577 A1 WO 2020125577A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
polyurethane elastomer
thermoplastic polyurethane
mass
biodegradable thermoplastic
Prior art date
Application number
PCT/CN2019/125566
Other languages
English (en)
French (fr)
Inventor
陈淑海
刘凯良
陈海良
高振胜
宋小娜
Original Assignee
山东一诺威聚氨酯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东一诺威聚氨酯股份有限公司 filed Critical 山东一诺威聚氨酯股份有限公司
Publication of WO2020125577A1 publication Critical patent/WO2020125577A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4283Hydroxycarboxylic acid or ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings

Definitions

  • the invention relates to a biodegradable thermoplastic polyurethane elastomer foamed beads and a preparation method thereof, which belong to the technical field of polymers.
  • Thermoplastic polyurethane elastomer is a kind of special, excellent performance and wide range of polymer materials whose performance and processing technology are between plastic and rubber.
  • the foamed material prepared with thermoplastic polyurethane elastomer as the matrix not only retains the excellent performance of the original matrix, but also obtains excellent resilience, and can be used in a relatively wide temperature range.
  • most foamed thermoplastic elastomers are foamed by chemical foaming agents. Using this foaming agent will not decompose for a long time while causing environmental pollution.
  • the physical supercritical foaming has become an international research hotspot due to its advantages of environmental protection and high efficiency.
  • thermoplastic polyurethane elastomer foam beads are mainly intermittent kettle pressure foaming and continuous extrusion foam molding.
  • the prepared foam particles have low density, heat insulation and sound insulation, high specific strength, and good heat insulation performance. Therefore, it is widely used in the fields of packaging, industry, agriculture, transportation and daily necessities.
  • the decomposition of thermoplastic polyurethane elastomer foam particles is difficult. After a large amount of use, it causes great pressure on the environment and exacerbates white pollution. Therefore, the development of an environmentally friendly, biodegradable thermoplastic polyurethane elastomer foam beads (ETPU) has become a research hotspot.
  • ETPU biodegradable thermoplastic polyurethane elastomer foam beads
  • the object of the present invention is to provide a biodegradable thermoplastic polyurethane elastomer foam beads.
  • the obtained foam beads can ensure the original expansion ratio, strength and density. It can quickly degrade and can be widely used in packaging and other industries.
  • the invention also provides a preparation method thereof, which is scientific and reasonable and simple and easy to implement.
  • thermoplastic polyurethane elastomer foam beads are composed of the following parts by mass:
  • the bio-based polyol is a combination of two or more of polymethyl ethylene carbonate diol (PPC), polycaprolactone diol (PCL), polylactic acid PLA or polyglycolide (PGA) .
  • PPC polymethyl ethylene carbonate diol
  • PCL polycaprolactone diol
  • PGA polyglycolide
  • the bio-based polyol is one of PPC-PLA, PPC-PCL or PLA-PCL composition, wherein the mass ratio of the former to the latter in each combination is 1-10:9-1.
  • the isocyanate is one of 4,4' diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI) or isophorone diisocyanate (IPDI).
  • MDI 4,4' diphenylmethane diisocyanate
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • the small molecule alcohol chain extender is one of 1,4-butanediol, 1,3-dimethyl-propanediol or 1,6-hexanediol.
  • the small molecule alcohol chain extender is 1,4-butanediol or a combination of 1,4-butanediol and 1,3-dimethylpropanediol.
  • the ultraviolet absorber is 2-hydroxy-4-n-octyloxybenzophenone (UV-531) or 2-(2'-hydroxy-5'-methylphenyl)benzotriazole (UV -P).
  • the ultraviolet absorber is UV-531.
  • the catalyst is one of organic tin-based or bismuth-based catalysts.
  • the catalyst is organotin.
  • the catalyst is one of dibutyltin dilaurate, stannous octoate, or di(dodecylsulfide) dibutyltin.
  • the physical blowing agent is one or two of carbon dioxide, nitrogen or pentane.
  • the physical blowing agent is carbon dioxide.
  • the preparation method of the biodegradable thermoplastic polyurethane elastomer foamed beads according to the present invention includes the following steps:
  • the twin-screw extruder is divided into ten temperature zones, all of which have a temperature of 90-230°C; the twin-screw extruder has a die temperature of 160-210°C and a water temperature of 10-45°C.
  • the temperature in the ten temperature zones is 115-210°C.
  • the mold temperature is 175-205°C.
  • the water temperature is 15-45°C.
  • step 2 the physical blowing agent enters the twin-screw extruder from the exhaust port of the tenth temperature zone through a high-pressure gas bottle; pelletizing is performed with a pelletizer, and the pelletizer speed is 200-4500 r/min.
  • the speed of the pelletizer is 2500-3500r/min.
  • the present invention has the following beneficial effects:
  • the obtained expanded beads have an expansion ratio of 1-8 times, a density of 0.05-3 g/cm 3 , a yellowing resistance grade of 3-4, and a shrinkage rate of 0.1-1%;
  • the obtained foamed beads pass the controlled aerobic composting test, and the biodegradation percentage is calculated according to the national standard GB/T 19277-2003.
  • the bio-based polyol is PLA/PCL, PPC/PLA or PPC/PCL, ETPU
  • the biodegradation percentage is between 70%-95%, and the biodegradable effect is excellent.
  • Figure 1 shows the ETPU biodegradation rate of different bio-based polyols.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • thermoplastic polyurethane elastomer foam beads The die foaming, through underwater pelletizing, dehydration, and drying to obtain biodegradable thermoplastic polyurethane elastomer foam beads.
  • the mold temperature is 180 °C
  • the water temperature is 40 °C
  • the speed of the pelletizer is 2600r/min
  • the drying time condition is: 70 °C drying for 4 hours.
  • Table 1 shows the effect of different polyol ratios on the properties of biodegradable ETPU foam beads
  • the controlled aerobic composting test (the percentage of biodegradation calculated based on the amount of carbon dioxide released, GB/T 19277-2003) is the standard method for judging whether a polymer is biodegradable. After 45 days, the higher the percentage of biodegradation, the better the degradation.
  • Figure 1 shows the biodegradation rate curves of PBA-based ETPU, PCL/PLA(5:5)-based ETPU, PCL/PPC(5:5)-based ETPU, PPC/PLA(5:5)-based ETPU. After 45 days, PPC/ The biodegradation rates of PCL, PLA/PCL, and PPC/PLA were 66%, 68%, and 71%, respectively, much higher than the biodegradation rate of PBA-based ETPU (38%).
  • bio-based polyols can effectively promote the degradation of ETPU and play an important role in mitigating white pollution.
  • This kind of biodegradable ETPU foam beads can be widely used in the packaging industry to replace traditional packaging materials .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法,属于聚合物技术领域。所述的聚氨酯弹性体发泡珠粒,由下列质量份数的物质组成:生物基多元醇100-200份;异氰酸酯20-100份;小分子醇扩链剂10-100份;紫外线吸收剂0.1-10份;催化剂0.1-10份;物理发泡剂1-20份;其中,生物基多元醇为聚甲基乙撑碳酸酯二醇(PPC)、聚已内酯二醇(PCL)、聚乳酸PLA或聚乙交酯(PGA)中的两种或多种的组合。制得的发泡珠粒在保证原有的发泡倍率、强度和密度外,还能快速降解,可广泛用于包装等行业。同时,本发明还提供其制备方法,科学合理,简单易行。

Description

可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法 技术领域
本发明涉及一种可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法,属于聚合物技术领域。
背景技术
热塑性聚氨酯弹性体是一类性能与加工工艺介于塑料和橡胶之间的特殊的、性能优异的、应用范围广的高分子材料。以热塑性聚氨酯弹性体为基体制备的发泡材料既保留原基体优异的性能,同时又获得优异的回弹性,可以在比较宽泛的温度范围内使用。目前,大部分发泡热塑性弹性体通过化学发泡剂进行发泡,使用这种发泡剂在造成环境污染的同时还会长时间不分解。而物理超临界发泡因环保、效率高等优势已经成为国际上的研究热点。目前热塑性聚氨酯弹性体发泡珠粒的制备工艺主要为间歇式釜压发泡和连续挤出发泡成型,制备出的发泡粒子密度低,隔热隔音、比强度高、隔热性能好,因此在包装业、工业、农业、交通运输业以及日用品等领域得到广泛应用。然而,目前热塑性聚氨酯弹性体发泡粒子分解困难,大量使用后对环境造成巨大压力,加剧了白色污染。因此,开发一种环保、可生物降解的热塑性聚氨酯弹性体发泡珠粒(ETPU)已经成为研究热点。
发明内容
针对现有技术的不足,本发明的目的是提供一种可生物降解的热塑性聚氨酯弹性体发泡珠粒,制得的发泡珠粒在保证原有的发泡倍率、强度和密度外,还能快速降解,可广泛用于包装等行业。
同时,本发明还提供其制备方法,科学合理,简单易行。
本发明所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,由下列质量份数的物质组成:
Figure PCTCN2019125566-appb-000001
其中,生物基多元醇为聚甲基乙撑碳酸酯二醇(PPC)、聚已内酯二醇(PCL)、聚乳酸PLA或聚乙交酯(PGA)中的两种或多种的组合。
优选的,所述的生物基多元醇为PPC-PLA、PPC-PCL或PLA-PCL组合物中的一种,其 中,各组合中前者与后者质量比都为1-10:9-1。
所述的异氰酸酯为4,4’二苯甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)或异佛尔酮二异氰酸酯(IPDI)中的一种。
所述的小分子醇扩链剂为1,4-丁二醇、1,3-二甲基-丙二醇或1,6-己二醇中的一种。
优选的,所述的小分子醇扩链剂为1,4-丁二醇或1,4-丁二醇与1,3-二甲基丙二醇的组合。
所述的紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮(UV-531)或2-(2’-羟基-5’-甲基苯基)苯并三氮唑(UV-P)中的一种。
优选的,所述的紫外线吸收剂为UV-531。
所述的催化剂为有机锡类或铋类催化剂中的一种。
优选的,所述的催化剂为有机锡类。
更优选的,所述的催化剂为二丁基锡二月桂酸酯、辛酸亚锡或二(十二烷基硫)二丁基锡中的一种。
所述的物理发泡剂为二氧化碳、氮气或戊烷中的一种或两种。
优选的,所述的物理发泡剂为二氧化碳。
本发明所述的可生物降解热塑性聚氨酯弹性体发泡珠粒的制备方法,包括以下步骤:
1)将质量比例的生物基多元醇、异氰酸酯、小分子醇扩链剂、催化剂和紫外线吸收剂通过浇注机依次注入到双螺杆挤出机中;
2)在双螺杆挤出机第十温区处加入质量比例的物理发泡剂,经口模发泡后再经过水下切粒、脱水干燥得到可生物降解热塑性聚氨酯弹性体发泡珠粒。
所述的步骤1中,双螺杆挤出机分为十个温区,温度都为90-230℃;双螺杆挤出机的模温为160-210℃,水温为10-45℃。
优选的,所述的十个温区的温度为115-210℃。
优选的,所述的模温为175-205℃。
优选的,所述的水温为15-45℃。
所述的步骤2中,物理发泡剂从第十温区排气口通过高压气瓶进入双螺杆挤出机中;切粒采用切粒机进行,切粒机转速为200-4500r/min。
优选的,所述的切粒机转速为2500-3500r/min。
与现有技术相比,本发明具有如下有益效果:
1.制得的发泡珠粒具有1-8倍的发泡倍率,密度0.05-3g/cm 3,耐黄变等级3-4级,收缩率0.1-1%;
2.制得的发泡珠粒通过受控需氧堆肥试验,按照国标GB/T 19277-2003计算生物分解百 分率,当生物基多元醇为PLA/PCL、PPC/PLA或PPC/PCL时,ETPU的生物分解百分率在70%-95%,可生物降解效果优异。
附图说明
图1为不同生物基多元醇的ETPU生物分解率图。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1
将50质量份PPC、50质量份PLA充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆挤出机的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例2:
将50质量份PPC、50质量份PCL充分混合得到生物基多元醇,之后将100质量份的生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例3:
将50质量份PCL、50质量份PLA充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例4:
将30质量份PPC、70质量份PLA充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例5:
将10质量份PPC、90质量份PLA充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531,0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例6
将30质量份PPC、70质量份PCL充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例7
将10质量份PPC、90质量份PCL充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例8
将30质量份PCL、70质量份PLA充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
实施例9
将10质量份PCL、90质量份PLA充分混合得到生物基多元醇,之后将100质量份生物基多元醇、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531和0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
对比例1
将100质量份聚己二酸-1,4-丁二醇酯二醇(PBA)、43质量份MDI、12质量份1,4-丁二醇、1质量份UV-531,0.2质量份催化剂(T-9,辛酸亚锡)通过浇注机注入到双螺杆挤出机中,其中,螺杆的十区温度分别为120℃、140℃、140℃、150℃、150℃、150℃、170℃、180℃、170℃、160℃,在第十温区处定量加入3质量份物理发泡剂CO 2,使得TPU聚合物熔体与CO 2混合均匀得到均相体系,经口模发泡,通过水下切粒、脱水、干燥得到可生物降解的热塑性聚氨酯弹性体发泡珠粒。其中,模温为180℃,水温40℃,切粒机转速2600r/min,干燥时间条件为:70℃干燥4小时。
对实施例1-9和对比例中的发泡珠粒性能进行表征,结果如图1所示。
表1为不同多元醇比例对可生物降解ETPU发泡珠粒性能的影响
Figure PCTCN2019125566-appb-000002
Figure PCTCN2019125566-appb-000003
通过对实施例与对比例进行性能分析,尽管不同比例的生物基多元醇对发泡珠粒的发泡密度、收缩率、耐黄变等级的影响规律性不强,但总体性能与PBA基的发泡珠粒性能相当,证明该可生物降解的ETPU在使用性能上达到常规要求。
受控需氧堆肥试验(根据释放出二氧化碳量计算的生物分解百分率,GB/T 19277-2003)是判断聚合物是否能够可生物降解的标准方法。45天后生物分解百分率越高,说明其降解程度越好。图1为PBA基ETPU,PCL/PLA(5:5)基ETPU,PCL/PPC(5:5)基ETPU,PPC/PLA(5:5)基ETPU的生物分解率曲线,45天后,PPC/PCL、PLA/PCL、PPC/PLA的生物分解率分别为66%,68%和71%,远远高于PBA基ETPU的生物分解率(38%)。
综上所述,生物基多元醇可有效促进ETPU的降解,对减缓白色污染起到重要的促进作用,这种可生物降解的ETPU发泡珠粒可大量应用于包装行业,代替传统的包装材料。

Claims (10)

  1. 一种可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:由下列质量份数的物质组成:
    Figure PCTCN2019125566-appb-100001
    其中,生物基多元醇为聚甲基乙撑碳酸酯二醇、聚已内酯二醇、聚乳酸或聚乙交酯中的两种或多种的组合。
  2. 根据权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:生物基多元醇为聚甲基乙撑碳酸酯二醇与聚乳酸的组合、聚甲基乙撑碳酸酯二醇与聚已内酯二醇的组合或聚乳酸与聚己内酯二醇的组合中的一种;其中,各组合中前者与后者质量比都为1-10:9-1。
  3. 根据权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:异氰酸酯为4,4’二苯甲烷二异氰酸酯、甲苯二异氰酸酯或异佛尔酮二异氰酸酯中的一种。
  4. 根据权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:小分子醇扩链剂为1,4-丁二醇、1,3-二甲基-丙二醇或1,6-己二醇中的一种。
  5. 根据权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮或2-(2’-羟基-5’-甲基苯基)苯并三氮唑中的一种。
  6. 根据权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:催化剂为有机锡类或铋类催化剂中的一种。
  7. 根据权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒,其特征在于:物理发泡剂为二氧化碳、氮气或戊烷中的一种或两种。
  8. 一种权利要求1所述的可生物降解热塑性聚氨酯弹性体发泡珠粒的制备方法,其特征在于:包括以下步骤:
    1)将质量比例的生物基多元醇、异氰酸酯、小分子醇扩链剂、催化剂和紫外线吸收剂通过浇注机依次注入到双螺杆挤出机中;
    2)在双螺杆挤出机第十温区处加入质量比例的物理发泡剂,经口模发泡后再经过水下切粒、脱水干燥得到可生物降解热塑性聚氨酯弹性体发泡珠粒。
  9. 根据权利要求8所述的可生物降解热塑性聚氨酯弹性体发泡珠粒的制备方法,其特征 在于:步骤1中,双螺杆挤出机分为十个温区,温度都为90-230℃;双螺杆挤出机模温为160-210℃,水温为10-45℃。
  10. 根据权利要求8所述的可生物降解热塑性聚氨酯弹性体发泡珠粒的制备方法,其特征在于:步骤2中,物理发泡剂从第十温区排气口通过高压气瓶进入双螺杆挤出机中;切粒采用切粒机进行,切粒机转速为200-4500r/min。
PCT/CN2019/125566 2018-12-21 2019-12-16 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法 WO2020125577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811571402.1 2018-12-21
CN201811571402.1A CN109694494B (zh) 2018-12-21 2018-12-21 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法

Publications (1)

Publication Number Publication Date
WO2020125577A1 true WO2020125577A1 (zh) 2020-06-25

Family

ID=66231911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125566 WO2020125577A1 (zh) 2018-12-21 2019-12-16 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法

Country Status (2)

Country Link
CN (1) CN109694494B (zh)
WO (1) WO2020125577A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388136A (zh) * 2021-05-20 2021-09-14 北京化工大学 Pga增强的降解薄膜及其制备方法
WO2022224996A1 (ja) * 2021-04-21 2022-10-27 旭化成株式会社 ポリカーボネートジオール組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694494B (zh) * 2018-12-21 2020-09-18 山东一诺威聚氨酯股份有限公司 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN110183843B (zh) * 2019-05-16 2021-12-14 美瑞新材料股份有限公司 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法
CN110563917B (zh) * 2019-10-24 2020-09-04 江苏中科金龙环保新材料有限公司 一种在线改性ppc树脂及其制备工艺
CN110563916B (zh) * 2019-10-24 2020-10-16 江苏中科金龙环保新材料有限公司 一种ppc树脂衍生物及其在线制备方法
CN114630851B (zh) * 2019-11-12 2024-05-28 亨茨曼国际有限公司 低密度热塑性聚氨酯软质泡沫的原位形成
WO2022043428A1 (de) * 2020-08-28 2022-03-03 Basf Se Geschäumtes granulat aus thermoplastischem polyurethan
CN115505247B (zh) * 2021-06-07 2024-04-02 国家能源投资集团有限责任公司 全生物可降解微米发泡材料及其制备方法与应用
WO2024062300A1 (en) * 2022-09-20 2024-03-28 SDIP Innovations Pty Ltd Biodegradable elastomeric copolymer
CN117510791B (zh) * 2023-12-29 2024-04-23 山东一诺威聚氨酯股份有限公司 可生物降解的生物基热塑性聚氨酯弹性体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050013793A1 (en) * 2003-01-16 2005-01-20 Beckman Eric J. Biodegradable polyurethanes and use thereof
US20120239161A1 (en) * 2009-04-03 2012-09-20 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
CN104356345A (zh) * 2014-12-01 2015-02-18 四川大学 具有荧光性的接枝可降解嵌段聚氨酯、骨修复材料及制备方法
CN105884998A (zh) * 2016-04-14 2016-08-24 美瑞新材料股份有限公司 一种发泡型热塑性聚氨酯弹性体材料及其制备方法
CN107312322A (zh) * 2017-06-30 2017-11-03 苏州奥斯汀新材料科技有限公司 一种可生物降解热塑性聚氨酯弹性体的制备方法
CN108794797A (zh) * 2018-05-11 2018-11-13 美瑞新材料股份有限公司 一种具有低色差的彩色热塑性聚氨酯发泡粒子的制备方法
CN109694494A (zh) * 2018-12-21 2019-04-30 山东一诺威聚氨酯股份有限公司 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050013793A1 (en) * 2003-01-16 2005-01-20 Beckman Eric J. Biodegradable polyurethanes and use thereof
US20120239161A1 (en) * 2009-04-03 2012-09-20 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
CN104356345A (zh) * 2014-12-01 2015-02-18 四川大学 具有荧光性的接枝可降解嵌段聚氨酯、骨修复材料及制备方法
CN105884998A (zh) * 2016-04-14 2016-08-24 美瑞新材料股份有限公司 一种发泡型热塑性聚氨酯弹性体材料及其制备方法
CN107312322A (zh) * 2017-06-30 2017-11-03 苏州奥斯汀新材料科技有限公司 一种可生物降解热塑性聚氨酯弹性体的制备方法
CN108794797A (zh) * 2018-05-11 2018-11-13 美瑞新材料股份有限公司 一种具有低色差的彩色热塑性聚氨酯发泡粒子的制备方法
CN109694494A (zh) * 2018-12-21 2019-04-30 山东一诺威聚氨酯股份有限公司 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224996A1 (ja) * 2021-04-21 2022-10-27 旭化成株式会社 ポリカーボネートジオール組成物
CN113388136A (zh) * 2021-05-20 2021-09-14 北京化工大学 Pga增强的降解薄膜及其制备方法

Also Published As

Publication number Publication date
CN109694494A (zh) 2019-04-30
CN109694494B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2020125577A1 (zh) 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CA2360114C (en) Foamed thermoplastic polyurethanes
KR102100655B1 (ko) 팽창된 열가소성 폴리우레탄 비드 및 이의 제조 방법 및 적용
KR102109392B1 (ko) 압출된 팽창된 열가소성 폴리우레탄 엘라스토머 비드 및 그 제조 방법
WO2017194034A1 (zh) 三组分耐低温聚酯型聚氨酯弹性体及其制备方法
CN110922564A (zh) 聚醚酯型热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN104387560A (zh) 热塑性聚氨酯弹性体及其制备方法
EP1174458A1 (en) Foamed thermoplastic polyurethanes
CN102229709A (zh) 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN106832203B (zh) 轮胎用聚氨酯树脂及制备方法
CN107828205B (zh) 一种可硫化交联的发泡聚氨酯混炼胶粒子及其制备方法和成型工艺
CN104151519B (zh) 人体模特用聚氨酯微孔弹性体组合料及其制备方法
KR20060009381A (ko) 발포성 열가소성 엘라스토머의 제조 방법
CN109705563B (zh) 阻燃热塑性聚氨酯组合物及其发泡珠粒
CN110343286B (zh) 一种聚丁二酸丁二醇酯离聚物泡沫及其制备方法与应用
CN109438661A (zh) 高耐黄变热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN113968954B (zh) 一种可降解热塑性聚氨酯弹性体及其制备方法和应用
US20190055342A1 (en) Thermoplastic Polyurethane Imparted with Crosslinking Sites and Method for Producing Crosslinked Foam Using the Same
CN103788335A (zh) 一种固相醇解回收聚氨酯制备聚氨酯弹性体的方法
CN103881222A (zh) 塑料发泡材料及其制备方法
KR20190015758A (ko) 폴리락트산-함유 발포성 펠릿의 제조 방법
CN110256734A (zh) 降解交联聚乙烯及其制备方法
WO2019237280A1 (zh) 发泡热塑性聚氨基甲酸酯及其微波成型体
EP3456783A1 (en) Thermoplastic polyurethane having cross-linking site, and cross-linking foaming method using same
KR20120135971A (ko) 물성이 우수한 폴리우레탄을 제조하는 폴리올 재생방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900116

Country of ref document: EP

Kind code of ref document: A1