WO2017188684A1 - 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법 - Google Patents

코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법 Download PDF

Info

Publication number
WO2017188684A1
WO2017188684A1 PCT/KR2017/004340 KR2017004340W WO2017188684A1 WO 2017188684 A1 WO2017188684 A1 WO 2017188684A1 KR 2017004340 W KR2017004340 W KR 2017004340W WO 2017188684 A1 WO2017188684 A1 WO 2017188684A1
Authority
WO
WIPO (PCT)
Prior art keywords
fucosyllactose
corynebacterium glutamicum
glutamicum
lactose
mannose
Prior art date
Application number
PCT/KR2017/004340
Other languages
English (en)
French (fr)
Inventor
서진호
진영욱
조해용
Original Assignee
서울대학교산학협력단
(주)에이피테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, (주)에이피테크놀로지 filed Critical 서울대학교산학협력단
Priority to JP2017560310A priority Critical patent/JP6650950B2/ja
Priority to CA3020682A priority patent/CA3020682C/en
Priority to US15/574,028 priority patent/US10570399B2/en
Priority to CN201780001667.5A priority patent/CN107849577B/zh
Priority to EP17789868.1A priority patent/EP3450562B1/en
Priority to AU2017256470A priority patent/AU2017256470B2/en
Publication of WO2017188684A1 publication Critical patent/WO2017188684A1/ko
Priority to US16/589,724 priority patent/US10876122B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01187GDP-4-dehydro-D-rhamnose reductase (1.1.1.187)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01271GDP-L-fucose synthase (1.1.1.271)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010653-Galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase (2.4.1.65), i.e. alpha-1-3 fucosyltransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01069Galactoside 2-alpha-L-fucosyltransferase (2.4.1.69)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07013Mannose-1-phosphate guanylyltransferase (2.7.7.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01047GDP-mannose 4,6-dehydratase (4.2.1.47), i.e. GMD
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02008Phosphomannomutase (5.4.2.8)

Definitions

  • the present invention is ⁇ -1,2-fucosyltransferase, GDP-D-mannose-4,6-dehydratase (GDP-D-mannose-4,6-dehydratase , Gmd), to express GDP-L-fucose synthase (GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase, WcaG) and lactose permease (LacY) Recombinant corynebacterium glutamiform transformed and transformed to overexpress phosphomannomutase (ManB) and mannose-1-phosphate guanylyl transferase (GTP-mannose-1-phosphate guanylyltransferase (ManC) C. glutamicum and a method for producing fucosylactose using the same.
  • Human milk contains over 200 unique structures of human milk oligosaccharides (HMO) at significantly higher concentrations (5-15 g / L) than other mammalian milk.
  • HMO human milk oligosaccharides
  • HMO provides a variety of biological activities that positively affect infant development and health, such as prebiotic effects, pathogen infection prevention, immune system regulation, and brain development.
  • fucosyllactose there is a method of extracting directly from breast milk and a method synthesized by chemical or enzymatic methods.
  • the direct extraction method is a problem of limited milk supply and low productivity, and the chemical synthesis method has problems such as expensive substrate, low iso-selectivity and yield, and use of toxic organic solvent.
  • the enzymatic synthesis method has a problem that GDP-L-fucose, which is used as a donor of fucose, is very expensive and the purification cost of fucosyltransferase is high.
  • Escherichia coli since the cell membrane components of Escherichia coli can act as endotoxins, the cost of separation and purification is high in the production of 2'-fucosyllactose. Therefore, it is difficult to use Escherichia coli as a host cell for producing fucosyllactose, which is a food and pharmaceutical material.
  • the present invention is transformed so that ⁇ -1,2-fucosyltransferase is expressed and GDP-D-mannose-4,6-dehydratase (GDP-D- transformed to express mannose-4,6-dehydratase, transformed to express GDP-L-fucose synthase, and to express lactose permease Recombinant Corynebacterium glutamimes, which are transformed and possess phosphomannomutase and GTP-mannose-1-phosphate guanylyltransferase Provide Cormebacterium glutamicum .
  • the present inventors have previously patented the method for producing 2'-fucosyllactose using E. coli through Korean Patent Registration No. 10-1544184 (2015.08.21).
  • the production of E. coli may be a problem due to various safety concerns of E. coli. Therefore, the present invention attempted to produce 2'-fucosyllactose through an alternative strain without food safety problems.
  • Corynebacterium glutamicum ( Coynebacterium) as a host cell producing 2'- fucosyllactose glutamicum ), which is a strain recognized as GRAS (generally recognized as safe) unlike E. coli, which is not used in the past, does not produce endotoxin and is widely used for industrial production of amino acids and nucleic acids as food additives. It is becoming a strain. Therefore, Corynebacterium glutamicum can be said to be a suitable strain for the production of food and pharmaceutical materials, there is an advantage that can dispel the concern for consumers on the safety aspects.
  • E. coli and Corynebacterium glutamicum differ in the genetic characteristics of the strain itself, a strategy different from that applied to E. coli should be used. It is basically the same to introduce foreign ⁇ -1,2-fucosyltransferase, whether E. coli or Corynebacterium glutamicum to produce 2'-fucosyllactose.
  • Corynebacterium glutamicum additionally contains GDP-D-mannose-4,6-dehydratase (Gmd), GDP-L-fucose synth (GDP-L-fucose synthase, this enzyme is also called 'GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase'), also abbreviated as 'WcaG' Genes encoding these enzymes, in particular called WcaG) and lactose permease (LacY).
  • Gmd GDP-D-mannose-4,6-dehydratase
  • GDP-L-fucose synthase this enzyme is also called 'GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase'
  • WcaG lactose permease
  • Escherichia coli contains GDP-D-mannose-4,6-dehydratase (GDP), GDP-L-fucose synthase (GDP-L-fucose synthase). , WcaG) and lactose permease (LacY), but genes encoding, but because the Corynebacterium glutamicum strain does not have a gene encoding the enzymes, it is introduced from outside It should be expressed.
  • the gene encoding ⁇ -1,2-fucosyltransferase may be derived from Helicobacter pylori , GDP-D-mannose-4. , 6-dehydratase (GDP-D-mannose-4,6-dehydratase, Gmd), GDP-L-fucose-synthase (WcaG) and lactose permease (The gene encoding lactose permease (LacY) is recommended to be derived from E. coli.
  • the recombinant Corynebacterium glutamicum of the present invention is preferably transformed to overexpress the phosphomannomutase, GTP-mannose-1-phosphate guanyltransferase (GTP-mannose-1- It is recommended that the phosphate guanylyltransferase be transformed to overexpress.
  • Corynebacterium glutamicum itself encodes genes encoding phosphomannomutase (ManB), GTP-mannose-1-phosphate guanylyltransferase (ManC). Since it can be retained and expressed, it is not necessary to introduce a gene encoding the enzyme, but it is necessary to overexpress the enzyme for mass production. Accordingly, in the present invention, it is desirable to transform Corynebacterium glutamicum to overexpress these two enzymes.
  • lactose permease LacY
  • LacY lactose permease
  • the term 'expression' used in the present invention the expression of the gene derived from the outside introduced into the strain in order to artificially express the enzyme that the Corynebacterium glutamicum strain of the present invention can not express itself
  • the term 'overexpression' means that the Corynebacterium glutamicum strain of the present invention has a gene encoding its own enzyme and can be expressed by itself, but its expression amount is for the purpose of mass production. In order to increase the artificially increased the amount of expression of the enzyme means overexpressed.
  • Corynebacterium glutamicum C. glutamicum
  • 2'- fucosyllactose a breast milk oligosaccharide
  • the gene encoding the ⁇ -1,2-fucosyltransferase is preferably a fucT2 gene, more preferably wild type fucT2 It is preferred that the fucT2 gene has the nucleic acid sequence set forth in SEQ ID NO: 6 in which some bases of the gene (eg SEQ ID NO: 4) are modified.
  • SEQ ID NO: 6 some bases of the gene
  • the present invention provides a method for producing 2'-fucosyllactose, characterized in that the culture of the recombinant Corynebacterium glutamicum of the present invention in a medium to which lactose is added.
  • the recombinant Corynebacterium glutamicum strain of the present invention it is possible to produce 2'-fucosyllactose in high concentration, high yield, high productivity.
  • the medium further comprises glucose.
  • glucose is added to the medium, the growth of the strain is promoted, and 2'-fucosyllactose can be produced with higher productivity.
  • the method for producing 2'-fucosyllactose of the present invention is preferably fed-batch culture additionally supplying glucose or lactose. This is because continuous feeding of glucose or lactose through fed-batch cultivation can further increase cell growth and produce fucosylactose with high purity, high yield, and high productivity. Detailed local techniques related to fed-batch culture may also use known techniques in the art, and thus description thereof will be omitted.
  • FIG. 1 illustrates a metabolic pathway introduced to the biosynthesis of Corynebacterium glutamicum GDP-L-fucose, and lactose in the Foucault chamber (C. glutamicum) strain.
  • 2 is lacZ removed lac The introduction of operon ( lacYA ) In Corynebacterium glutamicum (C. glutamicum) It is a graph evaluating the effect on 2'-fucosyllactose production.
  • 2a is Corynebacterium glutamicum (C.
  • Figure 2b the culture result of the strain (control) was overexpressed only ManB, ManC, Gmd and WcaG is overexpressed and the ManB, ManC, Gmd and WcaG, add FucT2
  • the culture result of the strain introduced (Comparative Example 1)
  • Figure 2c is a culture result of the strain introduced the lac operon ( lacYA ) in which the ManB, ManC, Gmd, WcaG, FucT2 and lacZ gene is removed (Example 1) .
  • Symbols in the graph are as follows: ⁇ : dry cell weight, ⁇ : glucose, ⁇ : lactose,: lactate, ⁇ : 2'-fucosyllactose.
  • Figure 3 is a graph showing the results of batch culture using recombinant Corynebacterium glutamicum ( C. glutamicum ) pVBCL + pEGWT.
  • Figure 3a is a batch batch culture results
  • Figure 3b is a fermenter batch culture results.
  • OD 600 optical density
  • IPTG and lactose were added so that the final concentrations were 1.0 mM and 10 g / L (arrows), respectively.
  • Symbols in the graph are as follows: ⁇ : dry cell weight, ⁇ : glucose, ⁇ : lactose,: lactate, ⁇ : 2'-fucosyllactose.
  • Figure 4 is a batch culture of recombinant Corynebacterium glutamicum ( C. glutamicum ) was confirmed the production of 2'-fucosyllactose through LC-MS / MS analysis.
  • Figure 4a is a graph showing the production of fucosyllactose through the molecular weight in the cation mode using MALDI-TOP MS
  • Figure 4b is structural of the fucosyllactose using Tandem mass spectrometry (MS / MS) It is a graph confirming the composition.
  • FIG. 5 is a graph showing the fed-batch culture results using recombinant Corynebacterium glutamicum ( C. glutamicum ) pVBCL + pEGWT. After 40 g / L glucose was consumed at the beginning, glucose was supplied by continuous feeding and IPTG and lactose were added simultaneously (large arrow). Symbols in the graph are as follows: ⁇ : dry cell weight, ⁇ : glucose, ⁇ : lactose,: lactate, ⁇ : 2'-fucosyllactose.
  • FIG. 6 fucT2 from Helicobacter pylori ( H. pylori ) To increase the translation efficiency of the gene, fucT2 Codon optimization of the gene for Corynebacterium glutamicum ( C.glutamicum ) is shown.
  • Figure 7 is codon optimized for Corynebacterium glutamicum (C.glutamicum) fucT2 It is a graph showing the effect of the introduction of the gene (CO fucT2 ) on the production of 2'- fucosyllactose .
  • Figure 7a is recombinant Corynebacterium glutamicum (C. glutamicum) pVBCL + pEGWT in flask batch culture results with (CO), the optical density (OD 600) is reached to about 0.8, respectively to have a final concentration of IPTG and lactose 1.0 mM, 10 g / L (arrow) was added.
  • Figure 7b is recombinant Corynebacterium glutamicum (C.
  • Example 1 Recombinant strain and plasmid preparation
  • Escherichia coli for the production of plasmid and production of 2'-fucosyllactose (2'-FL), respectively.
  • coli was used as the TOP10 and Corynebacterium glutamicum (C. glutamicum) ATCC 13032.
  • H. pylori (Helicobacter pylori) FucT2 by PCR using two DNA primers (F_inf_ Sac I_RBS_fucT2 and R_inf_ Sac I_fucT2) from genomic DNA of ATCC 700392 After amplifying the gene, pEGWT was constructed by treating restriction enzyme Sac I and inserting it into the pEGW plasmid treated with the same restriction enzyme.
  • pGRG36 Tn7 insertion vector pSC101 replicon, Amp R pBHA Cloning vector, pUC replicon, Amp R pGlacYA pGRG36 + lacYA pBHA (CO fucT2 ) pBHA + CO fucT2 pEGW pEKEx2 + gmd-wcaG pVmBC pVWEx2 + manB + manC pEGWT pEGW + fucT2 pVBCL PVmBC + lacYA pEGWT (CO) pEGW + CO fucT2
  • test tube containing 5 mL of BHI (Brain Heart Infusion) medium containing appropriate antibiotics (kanamycin 25 ⁇ g / mL, tetracycline 5 ⁇ g / mL) was used. The temperature was maintained at 30 ° C. and the stirring speed was 250 rpm. And incubated for 12 hours.
  • BHI Brain Heart Infusion
  • antibiotics kanamycin 25 ⁇ g / mL, tetracycline 5 ⁇ g / mL
  • Batch cultivation consists of 100 mL or 1 L of minimal medium ((NH 4 ) 2 SO 4 20 g / L, urea 5 g / L, KH 2 PO 4 1 g / L, K 2 HPO 4 1 g / L, MgSO 4 0.25 g / L, MOPS 42 g / L, CaCl 2 10 mg / L, Biotin 0.2 mg / L, Protocatechuic acid 30 mg / L, FeSO 4 7H 2 0 10 mg / L, MnSO 4 H 2 O 10 mg / L In 500 mL of bioreactor (bioreactor, Kobiotech, Incheon, Korea) containing ZnSO 4 7H 2 O 1 mg / L, CuSO 4 0.2 mg / L, NiCl 2 6H 2 O 0.02 mg / L, pH7.0 It was performed at 30 °C.
  • minimal medium ((NH 4 ) 2 SO 4 20 g / L, urea 5 g / L, KH 2 PO
  • the stirring speed was maintained at 250 rpm for the flask and 1000 rpm for the bioreactor at 2 vvm.
  • optical density OD 600
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • lactose were added at a final concentration of 1.0 mM and 10 g / L, respectively.
  • a fed-batch culture for high concentration cell culture consists of a 2.5 L bioreactor containing a 1.0 L minimal medium containing 40 g / L glucose and appropriate antibiotics (kanamycin 25 ⁇ g / mL, tetracycline 5 ⁇ g / mL). , Kobiotech, Incheon, Korea).
  • a feeding solution containing 800 g / L of glucose was supplied by a continuous feeding method at a rate of 5.7 g / L / h.
  • lactose was added to a final concentration of 1.0 mM, 10 g / L.
  • Dry cell weight was determined by multiplying the optical density (OD) by a conversion factor of 0.3.
  • Optical density (OD) was measured at an absorbance of 600 nm using a spectrophotometer (spectrophotometer, Ultrospec 2000, Amersham Pharmacia Biotech, USA) after appropriate dilution of the sample to adjust the optical density in the range between 0.1-0.5.
  • Concentrations of 2'-fucosyllactose, lactose, lactate, glucose and acetic acid were determined by HPLC (high performance) equipped with 'Carbohydrate Analysis column (Rezex ROA-organic acid, Phenomenex, USA)' and 'refractive index' (RI) detectors. liquid chromatography) (Agilent 1100LC, USA). A column heated at 60 ° C. was applied to analyze 20 ⁇ l of culture medium diluted 10-fold. A 5 mM H 2 SO 4 solution at 0.6 mL / min flow rate was used as the mobile phase.
  • lac operon on the chromosome of E. coli was removed to form E. coli without the activity of ⁇ -galactosidase and only the activity of the lactose transporter, and ⁇ -galactosidase ( ⁇ ).
  • lacZ encoding -galactosidase) 2'-fucosyllactose was produced by introducing the lac operon ( lacYA ) from which the gene was removed, into the genome of E. coli (Korean Patent No. 10-1544184).
  • lactose transporter was introduced into the strain and used to produce 2'- fucosyllactose .
  • the production of 2'- fucosyllactose was performed by the lac operon ( lacYA ) from which the lacZ gene was removed. It was confirmed that the introduction is essential.
  • lacZ removed lac The introduction of operon ( lacYA ) In Corynebacterium glutamicum (C. glutamicum) Assessment of the effect on 2'-fucosyllactose production Plasmid Final dry cell weight (g / L) Lactose Consumption a (g / L) Maximum 2'-fucosyllactose concentration a (mg / L) Yield (mole 2'-fucosyllactose / mole lactose) Productivity a (mg / L / h) pVBCpEGW 13.5 0.02 N.D. - - pVBCpEGWT 12.9 0.02 N.D. - - pVBCLpEGWT 13.4 0.78 246 0.22 5.0
  • Figure 3 is a graph showing the batch culture results using recombinant Corynebacterium glutamicum ( C. glutamicum ) pVBCL + pEGWT
  • Figure 3a is a flask batch culture results 3b is the result of the fermenter batch culture.
  • Figure 4a is to confirm the production of fucosyllactose through the molecular weight analysis of the material contained in the culture medium using MALDI-TOP MS, Figure 4b using Tandem mass spectrometry (MS / MS) By structurally confirming that the peak of 511.134 m / z is 2'-fucosyllactose.
  • Feeding solution was supplied at a rate of 5.7 g / L / h by using a continuous feeding method to maintain cell growth from the time when 40 g / L of glucose was initially added. .
  • IPTG and lactose were added to induce the production of 2'-fucosyllactose.
  • Figure 5 is a graph showing the fed-batch culture results using recombinant Corynebacterium glutamicum pVBCL + pEGWT.
  • Codon optimized fucT2 A fed-batch culture in batch culture, in a fermentor flask to investigate the 2'Foucault room lactose fermentation production performance and features of a recombinant of Corynebacterium glutamicum (C. glutamicum) are constructed using the gene (CO fucT2) Each was carried out.
  • IPTG and lactose were added at a final concentration of 1.0 mM and 10 g / L, respectively.
  • 40 g / L of glucose was initially added.
  • Feeding solution was supplied at a rate of 5.7 g / L / h using a continuous feeding method in order to maintain cell growth from the point at which all of them were consumed.
  • IPTG and lactose were added to induce the production of 2'-fucosyllactose.
  • Figure 7a is a graph showing the flask batch culture results using recombinant Corynebacterium glutamicum ( C. glutamicum ) pVBCL + pEGWT (CO)
  • Figure 7b is a recombinant Cory Nebacterium glutamicum ( C. glutamicum ) is a graph showing the fermentation fed-batch culture results using pVBCL + pEGWT (CO).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase), GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase, Gmd), GDP-L-푸코오스 신타아제 (GDP-L-fucose-synthase, WcaG) 및 락토오즈 퍼미아제 (lactose permease, LacY)가 발현되도록 형질전환되며, 포스포만노뮤타아제 (Phosphomannomutase) 및 GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)를 보유하고 있는 것을 특징으로 하는 푸코실락토오스 생산용 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) 및 이를 이용한 푸코실락토오스의 제조방법에 관한 것이다. 본 발명에 따른 재조합 코리네박테리움 글루타미쿰 및 이를 이용한 푸코실락토오스 생산방법에 의하면, GRAS인 코리네박테리움 글루타미쿰 균주를 사용함으로써, 종래의 대장균에 비해 안전하며, 생산농도가 낮아 산업적 측면에서 적용이 불가능하던 종래기술의 제약을 극복하고, 매우 높은 농도로 2'-푸코실락토오스를 생산할 수 있다.

Description

코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법
본 발명은 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase), GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase, Gmd), GDP-L-푸코오스 신타아제 (GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase, WcaG) 및 락토오즈 퍼미아제 (lactose permease, LacY)가 발현되도록 형질전환되며, 포스포만노뮤타아제 (Phosphomannomutase, ManB) 및 만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase, ManC)가 과발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) 및 이를 이용한 푸코실락토오스의 생산방법에 관한 것이다.
사람의 모유에는 200여종 이상의 독특한 구조를 가지는 올리고당 (human milk oligosaccharides, HMO)이 다른 포유류의 젖에 비해 상당히 높은 농도 (5~15 g/L)로 존재한다.
HMO는 프리바이오틱 (prebiotic) 효과, 병원균 감염 예방, 면역시스템 조절 및 두뇌발달과 같이 유아의 발달 및 건강에 긍정적 영향을 미치는 다양한 생물학적 활성을 제공하기 때문에 유아기 때의 모유수유가 매우 중요하다.
모유에는 약 200여종의 올리고당이 함유되어 있으며, 이 중, 특히 2'-푸코실락토오스와 3'-푸코실락토오스가 앞서 언급한 다양한 생물학적 활성에 관여하는 주요 HMO인 것으로 보고되어 있다. 이로 인하여 최근 푸코실락토오스가 유아용 분유, 노인용 건강기능식품 소재 및 의약품 소재로 이용될 가능성으로 주목받고 있다. 하지만, 여성의 약 20%는 푸코실올리고당을 합성하는 푸코스전이효소에 변이 때문에, 체내에서 이들을 제대로 합성하지 못하는 것으로 알려져 있다. 이로 인하여 푸코실락토오스의 산업적 생산이 필요한 실정이다.
그러나 현재 푸코실락토오스는 산업적으로 대량생산이 어렵기 때문에, 이들을 대신하여 유사체인 갈락토올리고당 (galactooligosaccharide) 또는 프럭토올리고당 (fructooligosaccharide)을 이유식에 첨가하여 유사한 효과를 기대하고 있는 실정이다.
한편, 푸코실락토오스의 생산방법으로는 직접 모유로부터 추출하는 방법과 화학적 또는 효소적 방법으로 합성하는 방법이 있다.
직접 추출하는 방법은 모유수급의 한계와 낮은 생산성이 문제이고, 화학적 합성법은 고가의 기질, 낮은 이성체 선택성 (stereo-selectivity)과 생산수율, 독성 유기용매의 사용 등의 문제가 있다. 또한, 효소적 합성법은 푸코오스의 공여체 (donor)로 이용되는 GDP-L-fucose가 매우 고가라는 점과 푸코스 전이효소 (fucosyltransferase)의 정제비용이 많이 든다는 문제점이 있다.
상기와 같은 문제점으로 인하여 직접추출, 화학적 또는 효소적 생산법은 푸코실락토오스의 대량생산에 적용이 어렵고 대량 생산을 위한 기술이 거의 없는 실정이다. 그러나, 2'-푸코실락토오스를 이용한 건강기능성식품 및 의약품 소재로의 개발을 기대할 수 있기 때문에, 미생물을 이용한 2'-푸코실락토오스의 산업적 생산을 위하여 더욱 많은 연구가 필요한 실정이다.
또한, 미생물을 이용한 2'-푸코실락토오스 생산의 종래의 기술은 대부분 재조합 대장균을 이용한 생산기술이었다. 그러나, 실험용으로 이용되는 대부분의 대장균은 실제로 병원균이 아니지만 소비자들에게는 해로운 균이라는 인식이 강하다.
또한, 대장균의 세포막 성분이 엔도톡신으로 작용할 수 있기 때문에 2'-푸코실락토오스의 생산에 있어서 분리 정제의 비용이 많이 소요된다. 따라서 식품 및 의약품 소재인 푸코실락토오스를 생산하는 숙주세포로 대장균을 이용하기에는 어려움이 있는 실정이다.
본 발명에서는 식품 및 의약품 소재인 푸코실락토오스를 생산하는 숙주세포로서, 대장균보다 안전한 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하되, 고농도, 고수율, 고생산성으로 2'-푸코실락토오스를 생산하는 방법을 개발하여 제공하고자 한다.
본 발명은, α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)가 발현되도록 형질전환되고, GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase)가 발현되도록 형질전환되며, GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase)가 발현되도록 형질전환되고, 락토오즈 퍼미아제 (lactose permease)가 발현되도록 형질전환되며, 포스포만노뮤타아제 (Phosphomannomutase) 및 GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)를 보유하고 있는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 제공한다.
본 발명자들은 이전에 대한민국 특허등록번호 제10-1544184호 (2015.08.21)를 통해, 대장균을 이용한 2'-푸코실락토오스 생산방법을 특허받은 바 있다. 하지만, 2'-푸코실락토오스를 기능성 식품첨가물로 이용함에 있어서, 이를 대장균을 통해 생산하는 것은, 대장균이 갖는 여러 가지 안전상의 염려로 인해 문제가 될 수 있다는 지적이 많다. 따라서, 본 발명에서는 식품안전상 문제가 없는 대체 균주를 통해 2'-푸코실락토오스를 생산해보고자 하였다.
본 발명에서는 2'-푸코실락토오스를 생산하는 숙주세포로서 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 선정하였는데, 이 균주는 종래에 사용하던 대장균과는 달리 GRAS (generally recognized as safe)로 인정된 균주일 뿐만 아니라, 엔도톡신을 생산하지 않으며, 식품첨가물인 아미노산 및 핵산의 산업적 생산에 널리 이용되고 있는 균주이다. 따라서, 코리네박테리움 글루타미쿰은 식품 및 의약품 소재의 생산을 위해 적합한 균주라 할 수 있고, 안전성 측면에 대한 소비자에 대한 우려를 불식시킬 수 있는 장점이 있다.
그런데, 대장균과 코리네박테리움 글루타미쿰은 균주 자체의 유전적 특성이 다르기 때문에, 대장균에 적용하였던 전략과는 다른 전략을 사용해야 한다. 2'-푸코실락토오스를 생산하기 위해 대장균이든 코리네박테리움 글루타미쿰이든 기본적으로 외래의 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)를 도입해야 하는 것은 동일하나, 코리네박테리움 글루타미쿰은 그 외에 추가적으로 GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase, Gmd), GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase, 이 효소는 'GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase'로도 불림. 또한, 약어로는 'WcaG'로 불리는데, 이 효소를 암호화하는 유전자를 특히 'WcaG'로 부름), 락토오즈 퍼미아제 (lactose permease, LacY)를 도입해야 한다. 즉, 대장균에는 GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase, Gmd), GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase, WcaG), 락토오즈 퍼미아제 (lactose permease, LacY)를 암호화하는 유전자를 가지고 있으나, 코리네박테리움 글루타미쿰 균주는 상기 효소들을 암호화하는 유전자를 가지고 있지 않기 때문에, 이를 외부에서 도입시켜 이를 발현시켜 주어야 하는 것이다.
이때, 바람직하게 상기 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)를 암호화하는 유전자는 헬리코박터 파이로리 (Helicobacter pylori) 유래의 것을 사용하는 것이 좋고, GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase, Gmd), GDP-L-푸코오스 신타아제 (GDP-L-fucose-synthase, WcaG) 및 락토오즈 퍼미아제 (lactose permease, LacY)를 암호화하는 유전자는 대장균에서 유래한 것을 사용하는 것이 좋다.
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰은 바람직하게 포스포만노뮤타아제 (Phosphomannomutase)가 과발현되도록 형질전환되고, GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)가 과발현되도록 형질전환된 것이 좋다. 코리네박테리움 글루타미쿰은 포스포만노뮤타아제 (Phosphomannomutase, ManB), GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase, ManC)를 암호화하는 유전자를 자체적으로 보유하여 발현시킬 수 있기 때문에, 굳이 이 효소를 암호화하는 유전자를 도입시켜줄 필요는 없으나, 대량 생산을 위해서는 이 효소를 과발현시켜줄 필요가 있다. 따라서, 본 발명에서는 바람직하게 이들 두 효소를 과발현할 수 있도록 코리네박테리움 글루타미쿰을 형질전환하는 것이 필요한 것이다.
한편, 상기 효소들의 작용은 도 1을 통해서 이해될 수 있으므로, 이에 대한 설명은 생략하기로 한다. 다만, 락토오즈 퍼미아제 (lactose permease, LacY)는 균주 외부에 존재하는 락토오스를 균주 내부로 수송하는데 관여하는 효소임을 특별히 밝혀두는 바이다. 하기 본 발명의 실시예에서는 대장균의 Lac 오페론에서 lacZ가 제거된 lacYA 유전자를 도입하여 실험하였으나, 본 발명에서 Lac 오페론의 도입 이유가 락토오스의 유입에 관한 것이기 때문에, 굳이 lacA 유전자까지는 필요 없고, lacY 유전자만 도입시켜도 충분하다.
한편, 본 발명에서 사용하는 '발현'이라는 용어는, 본 발명의 코리네박테리움 글루타미쿰 균주가 자체적으로 발현시킬 수 없는 효소를, 인위적으로 발현시키기 위해 외부 유래의 유전자를 균주 내로 도입하여 발현시키는 것을 의미하고, '과발현'이라는 용어는 본 발명의 코리네박테리움 글루타미쿰 균주가 자체적으로 해당 효소를 암호화하는 유전자를 가지고 있어, 스스로 발현시킬 수 있으나, 대량생산을 위한 목적으로 이의 발현량을 증대시키기 위해 인위적으로 해당 효소의 발현량을 증대시켜 과발현한 것을 의미한다.
한편, 본 발명자들은 상기에서 설명한 형질전환 전략을 통해, 코리네박테리움 글루타미쿰 (C. glutamicum)에서 모유올리고당인 2'-푸코실락토오스를 대량 생산할 수 있음을 확인할 수 있었다.
한편, 본 발명에 있어서, 상기 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)를 코딩하는 유전자는, 일 예로, fucT2 유전자인 것이 바람직하고, 더욱 바람직하게는 야생형의 fucT2 유전자 (일 예로, 서열번호 4)의 일부 염기를 변형한 서열번호 6에 기재된 핵산 서열을 갖는 fucT2 유전자인 것이 바람직하다. 서열번호 6에 기재된 핵산서열을 갖는 fucT2 유전자를 도입시킬 경우, 야생형 fucT2 유전자에 비해 2'-푸코실락토오스의 생산량이 늘어나는 것으로 확인되었다.
한편, 본 발명은 락토오스가 첨가된 배지에, 본 발명의 재조합 코리네박테리움 글루타미쿰을 배양하는 것을 특징으로 하는 2'-푸코실락토오스의 생산방법을 제공한다. 본 발명의 재조합 코리네박테리움 글루타미쿰 균주를 이용할 경우, 고농도, 고수율, 고생산성으로 2'-푸코실락토오스를 생산할수 있다.
한편, 상기 본 발명의 2'-푸코실락토오스의 생산방법에 있어서, 상기 배지는, 바람직하게 글루코오스를 더 포함하는 것이 좋다. 글루코오스가 배지에 추가됨으로써 균주의 생육이 활발해져 더욱 높은 생산성으로 2'-푸코실락토오스를 생산할 수 있다.
한편, 상기 본 발명의 2'-푸코실락토오스의 생산방법은, 바람직하게 글루코오스 또는 락토오스를 추가로 공급하는 유가식 배양인 것이 좋다. 유가식 배양을 통해 글루코오스 또는 락토오스를 지속적으로 공급하면, 세포의 성장을 더욱 증대시키고, 고순도, 고수율, 고생산성으로 푸코실락토오스를 생산할 수 있기 때문이다. 유가식 배양에 관한 세부 지엽적 기술들 역시 당업계의 공지 기술을 사용할 수 있으므로, 이에 대해서는 그 기재를 생략하기로 한다.
도 1은 코리네박테리움 글루타미쿰 (C. glutamicum) 균주에서 GDP-L-fucose 및 푸코실락토오스를 생합성 하기 위해 도입한 대사경로 나타낸 것이다.
도 2는 lacZ가 제거된 lac 오페론 (lacYA)의 도입이 코리네박테리움 글루타미쿰 (C. glutamicum)에서의 2'-푸코실락토오스 생산에 미치는 영향을 평가하여 나타낸 그래프이다. 도 2a는 ManB, ManC, Gmd 및 WcaG만을 과발현시킨 코리네박테리움 글루타미쿰 (C. glutamicum) 균주 (대조군)의 배양결과이고 도 2b는 ManB, ManC, Gmd 및 WcaG을 과발현시키고, FucT2를 추가로 도입한 균주 (비교예 1)의 배양결과이고, 도 2c는 ManB, ManC, Gmd, WcaG, FucT2 및 lacZ 유전자가 제거된 lac 오페론 (lacYA)을 도입한 균주 (실시예 1)의 배양결과이다. 그래프 중 기호는 다음과 같다: ●: 건조세포중량, ■: 글루코오스, ▲: 락토오스, : 락테이트, ◆: 2'-푸코실락토오스.
도 3은 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT를 이용한 회분식 배양결과를 나타낸 그래프이다. 도 3a는 플라스크 회분식 배양결과이고 도 3b는 발효기 회분식 배양결과이다. 광학밀도 (OD600)가 약 0.8에 도달하면, IPTG와 락토오스를 최종 농도가 각각 1.0 mM, 10 g/L (화살표)이 되도록 첨가하였다. 그래프 중 기호는 다음과 같다: ●: 건조세포중량, ■: 글루코오스, ▲: 락토오스, : 락테이트, ◆: 2'-푸코실락토오스.
도 4는 재조합 코리네박테리움 글루타미쿰 (C. glutamicum)의 회분식 배양액을 LC-MS/MS분석을 통해 2'-푸코실락토오스의 생산을 확인한 결과이다. 도 4a는 MALDI-TOP MS를 이용해서 양이온 모드에서 분자량을 통해 푸코실락토오스의 생성을 나타낸 그래프이고, 도 4b는 이중질량분석법 (Tandem mass spectrometry) (MS/MS)를 이용하여 푸코실락토오스의 구조적 조성을 확인한 그래프이다.
도 5는 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT를 이용한 유가식 배양결과를 나타낸 그래프이다. 초기에 투입한 40 g/L 글루코오스가 모두 소모된 후, 글루코오스를 연속식 (continuous feeding)방법으로 공급하기 시작하였고, IPTG와 락토오스를 동시에 첨가하였다 (큰 화살표). 그래프 중 기호는 다음과 같다: ●: 건조세포중량, ■: 글루코오스, ▲: 락토오스, : 락테이트, ◆: 2'-푸코실락토오스.
도 6은 헬리코박터 파일로리(H. pylori) 유래의 fucT2 유전자의 번역(translation) 효율을 증대시키기 위해, fucT2 유전자를 코리네박테리움 글루타미쿰(C.glutamicum)에 맞게 codon 최적화한 결과를 나타낸 것이다.
도 7은 코리네박테리움 글루타미쿰(C.glutamicum)으로 codon 최적화된 fucT2 유전자(COfucT2)의 도입이 2'-푸코실락토오스 생산에 미치는 영향을 나타낸 그래프이다. 도 7a는 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT(CO)를 이용한 플라스크 회분식 배양결과로, 광학밀도 (OD600)가 약 0.8에 도달하면 IPTG와 락토오스를 최종 농도가 각각 1.0 mM, 10 g/L (화살표)이 되도록 첨가하였다. 도 7b는 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT(CO)를 이용한 발효기 유가식 배양결과를 나타낸 그래프로, 초기에 투입한 40 g/L 글루코오스가 모두 소모된 후, 글루코오스를 연속식 (continuous feeding)방법으로 공급하기 시작하였고, IPTG와 락토오스를 동시에 첨가하였다 (큰 화살표). 그래프 중 기호는 다음과 같다: ●: 건조세포중량, ■: 글루코오스, ▲: 락토오스, : 락테이트, ◆: 2'-푸코실락토오스.
이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.
[실시예 1: 재조합 균주 및 플라스미드 제작]
플라스미드 제작 및 2'-푸코실락토오스 (fucosyllactose, 2'-FL)의 생산을 위해 각각 대장균 (Escherichia coli) TOP10과 코리네박테리움 글루타미쿰 (C. glutamicum) ATCC 13032를 이용하였다.
pVBCL 플라스미드를 구축하기 위해 코리네박테리움 글루타미쿰 ATCC 13032의 genomic DNA로부터 두 개의 DNA primer (F_PstI-manB와 R_BamHI- SpeI- XbaI-manB)를 이용한 PCR 반응을 통해 manB 유전자를 증폭한 후, 제한효소 PstI과 BamHI을 처리하여 동일한 제한효소가 처리된 pVWEx2 플라스미드에 이를 삽입시켰다. 구축된 상기 플라스미드에 다시 코리네박테리움 글루타미쿰 ATCC 13032의 genomic DNA로부터 두 개의 DNA primer (F_XbaI-manC와 R_SpeI-manC)를 이용한 PCR 반응을 통해 manC 유전자를 증폭하였고, 제한효소 XbaI과 SpeI을 처리한 후 삽입시킴으로써 pVmBC를 구축하였다. 그리고 선행연구 (한국등록특허 제10-1544184호) 에서 구축되었던 pGlacYA 플라스미드로부터 두 개의 DNA primer (F_inf_AsiSI_lacYA와 R_inf_AsiSI_lacYA)를 이용한 PCR 반응을 통해 lacYA 유전자 클러스터를 증폭한 후, 제한효소 AsiSI을 처리하여 동일한 제한효소가 처리된 pVmBC 플라스미드에 이를 삽입시킴으로써 pVBCL 플라스미드를 구축하였다.
또한, pEGWT 플라스미드를 구축하기 위해 대장균인 K-12 MG1655의 genomic DNA로부터 두 개의 DNA primer (F_KpnI-gmd와R_SacI-wcaG)를 이용한 PCR반응을 통해 gmd - wcaG 유전자 클러스터를 증폭한 후, 제한효소 KpnI과 SacI을 처리하여 동일한 제한효소가 처리된 pEKEx2 플라스미드에 삽입시킴으로써 pEGW를 구축하였다.
또한, 헬리코박터 파일로리 (Helicobacter pylori) ATCC 700392의 genomic DNA로부터 두 개의 DNA primer (F_inf_SacI_RBS_fucT2와 R_inf_SacI_fucT2)를 이용한 PCR 반응을 통해 fucT2 유전자를 증폭한 후, 제한효소 SacI을 처리하여 동일한 제한효소가 처리된 pEGW 플라스미드에 삽입시킴으로써 pEGWT를 구축하였다.
또한, pBHA (COfucT2) 플라스미드로부터 디자인된 두 개의 DNA primer (F_SacI_RBS_COfucT2와 R_SacI_COfucT2)를 이용한 PCR 반응을 통해 codon 최적화된 fucT2 유전자 (COfucT2)를 증폭한 후, 증폭된 COfucT2 유전자에 제한효소 SacI을 처리하여 동일한 제한효소가 처리된 pEGW 플라스미드에 이를 삽입시킴으로써 pEGWT(CO)를 구축하였다 (도 1). 도 1은 코리네박테리움 글루타미쿰 균주에서 GDP-L-fucose 및 푸코실락토오스를 생합성 하기 위해 도입한 대사경로이다.
본 실시예에서 사용된 유전자 서열, 균주, 플라스미드 및 올리고뉴클레오티드는 하기 표 1 내지 4에 기재하였다.
유전자 및 유전자 서열
유전자명 서열번호
manB 서열번호 1
manC 서열번호 2
gmd-wcaG 서열번호 3
fucT2 서열번호 4
lacYA 서열번호 5
COfucT2 서열번호 6
균주
균주 관련된 특징
E. coli TOP10 F-, mcrA Δ(mrr - hsdRMS- mcrBC) φ80lacZΔM15 lacX74 recA1 araD139Δ (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG
C. glutamicum Wild-type strain, ATCC 13032
플라스미드
플라스미드 관련된 특징
pEKEx2 KmR; C. glutamicum /E. coli shuttle vector for regulatedgene expression (P tac , lacIq , pBL1, oriVC.g., oriVE .c.)
pVWEx2 TcR; C. glutamicum /E. coli shuttle vector for regulatedgene expression (P tac , lacIq , pHM1519, oriVC .g., oriVE .c.)
pGRG36 Tn7 insertion vector, pSC101 replicon, AmpR
pBHA Cloning vector, pUC replicon, AmpR
pGlacYA pGRG36 + lacYA
pBHA(COfucT2) pBHA + COfucT2
pEGW pEKEx2 + gmd-wcaG
pVmBC pVWEx2 + manB + manC
pEGWT pEGW + fucT2
pVBCL PVmBC + lacYA
pEGWT(CO) pEGW + COfucT2
프라이머
프라이머 이름 서열(5'→3') 서열번호
F_KpnI-gmd GGGGTACC AAGGAGATATACAATGTCAAAAGTCGCTCTCATCACC 서열번호 7
R_SacI-wcaG CGAGCTCTTACCCCCGAAAGCGGTCTTG 서열번호 8
F_PstI-manB AACTGCAG AAGGAGATATACAATGCGTACCCGTGAATCTGTCAC 서열번호 9
R_BamHI-SpeI-XbaI-manB CGGGATCCGGACTAGTGCTCTAGATTATGCGCGGATAATCCCTA 서열번호 10
F_XbaI-manC GCTCTAGA AAGGAGATATACAATGACTTTAACTGACAAC 서열번호 11
R_SpeI-manC GGACTAGTCTACTGATCAGACGAAAA 서열번호 12
F_inf_AsiSI_lacYA GTCCTTTTAACAGCGATCGCACCATCGAATGGCGCAAAACCTTTCG 서열번호 13
R_inf_AsiSI_lacYA GAGACGAAATACGCGATCGCGCTGTGGGTCAAAGAGGCATGATG 서열번호 14
F_inf_SacI_RBS_fucT2 GGGGGTAACTTAAGGAGCTC AAGGAGATATACAATGGCTTTTAAGGTGGTGCAAATTTGCG 서열번호 15
R_inf_SacI_fucT2 CGGCCAGTGAATTCGAGCTCTTAAGCGTTATACTTTTGGGATTTTACCTCAAAATG 서열번호 16
F_SacI_RBS_COfucT2 CGAGCTC AAGGAGATATACAATGG 서열번호 17
R_SacI_COfucT2 CGAGCTCTTATGCGTTATACTTCTG 서열번호 18
* 이탤릭체로 표시된 서열은 RBS (ribosome binding site) 및 spacer를 의미함
* 굵게 표시한 서열은 특정 제한효소의 인지 부위를 나타냄
[실시예 2: 재조합 코리네박테리움 글루타미쿰의 배양조건 및 방법]
종균배양에는 적절한 항생제 (kanamycin 25 μg/mL, tetracycline 5 μg/mL)가 포함된 5 mL의 BHI (Brain Heart Infusion) 배지가 담긴 실험관을 이용하였고, 온도는 30℃, 교반 속도를 250 rpm으로 유지하며 12시간 배양하였다.
회분식 배양은 100 mL 또는 1 L의 최소 배지 ((NH4)2SO4 20 g/L, urea 5 g/L, KH2PO4 1 g/L, K2HPO4 1 g/L, MgSO4 0.25 g/L, MOPS 42 g/L, CaCl2 10 mg/L, Biotin 0.2 mg/L, Protocatechuic acid 30 mg/L, FeSO47H20 10 mg/L, MnSO4H2O 10 mg/L, ZnSO47H2O 1 mg/L, CuSO4 0.2 mg/L, NiCl26H2O 0.02 mg/L, pH7.0)가 담긴 500 mL 들이의 생물반응기 (bioreactor, Kobiotech, Incheon, Korea)에서 30℃로 수행하였다. 교반속도는 플라스크는 250 rpm, 생물반응기는 1000 rpm, 2 vvm으로 유지하며 배양하였다. 회분식 배양시에는 광학밀도 (OD600)가 0.8에 도달한 시점에서 IPTG (isopropyl-β-D-thiogalactopyranoside), 락토오스를 최종 농도가 각각 1.0 mM, 10 g/L가 되도록 첨가하였다.
고농도 세포배양을 위한 유가식 배양은 40 g/L 의 글루코오스 및 적절한 항생제 (kanamycin 25 μg/mL, tetracycline 5 μg/mL)를 포함하는 1.0 L의 최소배지를 포함하는 2.5 L 들이의 생물반응기 (bioreactor, Kobiotech, Incheon, Korea)에서 실시하였다.
초기에 첨가한 글루코오스가 완전히 고갈된 후, 800 g/L의 글루코오스를 포함하는 유입용액 (feeding solution)을 5.7 g/L/h의 속도로 연속식 (continuous feeding)방법으로 공급하였다. 이와 동시에, tac 프로모터-매개 유전자 발현을 유도하여 2'-푸코실락토오스를 생산하기 위해 IPTG, 락토오스를 최종 농도가 1.0 mM, 10 g/L가 되도록 첨가하였다.
발효 도중 배지의 pH가 설정포인트 (set-point)보다 더 낮아지면 자동으로 28% NH4OH가 공급되고, 높아지면 2N HCl이 첨가되어 pH가 일정범위 내 (pH6.98~7.02)에서 유지되도록 하였다. 배지의 pH는 pH 전극 (Mettler Toledo, USA)을 사용하여 실시간으로 측정되었다. 교반 속도 및 통기 속도는 산소결핍을 방지하기 위하여 각각 1000 rpm 및 2 vvm으로 유지하였다.
[실시예 3: 세포 및 대사산물의 농도 결정]
건조세포중량은 광학밀도 (optical density, OD)에 미리 측정한 변환 상수 0.3을 곱해 결정하였다. 광학밀도 (OD)는 샘플을 적절하게 희석하여 광학 밀도를 0.1-0.5 사이의 범위에 맞춘 후에 분광광도계 (spectrophotometer, Ultrospec 2000, Amersham Pharmacia Biotech, USA)를 사용하여 흡광도 600 nm 에서 측정하였다.
2'-푸코실락토오스, 락토오스, 락테이트, 글루코오스 및 아세트산의 농도는 'Carbohydrate Analysis column (Rezex ROA-organic acid, Phenomenex, USA)' 및 'RI (refractive index)' 검출기가 장착된 HPLC (high performance liquid chromatography) (Agilent 1100LC, USA)를 이용하여 측정하였다. 60℃에서 가열된 컬럼을 적용하여 10배 희석된 20 ㎕의 배양 배지를 분석하였다. 0.6 mL/min 유속으로 5 mM의 H2SO4 용액을 이동상으로 사용하였다.
[ 실험예 1: lacZ 유전자가 제거된 lac 오페론( lacYA )의 도입이 코리네박테리움 글루타미쿰( C.glutamicum )에서의 2'- 푸코실락토오스 생산에 미치는 영향의 평가]
본 실험예에서는, 코리네박테리움 글루타미쿰 (C. glutamicum)에서 2'-푸코실락토오스를 생합성하기 위하여 락토오스 이송체를 도입하고, 이에 따른 영향을 알아보고자 하였다.
이를 위하여, 선행연구 (한국등록특허 제10-1544184호) 에서 구축되었던 E. coli K-12 유래의 lacZ 유전자가 제거된 lac 오페론 (lacYA)을 코리네박테리움 글루타미쿰에 도입하여 2'-푸코실락토오스의 생산을 시도하였다.
선행연구에서는 베타갈락토시다아제 (β-galactosidase)의 활성이 없고, 락토오스 이송체의 활성만 있는 대장균을 구축하기 위해 대장균의 유전체 (chromosome)상의 lac오페론을 제거하고, 베타갈락토시다아제 (β-galactosidase)를 코딩하는 lacZ 유전자를 제거시킨 lac 오페론 (lacYA)을 다시 대장균의 유전체로 도입함으로써 2'-푸코실락토오스를 생산한 바 있다 (대한민국등록특허 제10-1544184호).
GDP-L-fucose 생합성 효소인 ManB, ManC, Gmd, WcaG만을 과발현시킨 재조합 코리네박테리움 글루타미쿰 균주 (대조군), GDP-L-fucose생합성 효소인 ManB, ManC, Gmd, WcaG를 과발현시키고, FucT2를 추가로 도입한 균주 (비교예 1) 및 GDP-L-fucose 생합성 효소인 ManB, ManC, Gmd, WcaG, FucT2 및 lacZ 유전자가 제거된 lac 오페론 (lacYA)을 도입한 균주 (실시예 1)를 사용하여 실험하였다. 플라스크에서 회분식 배양을 통해 대조군, 비교예 1 및 실시예 1을 비교함으로써, lacYA 오페론 및 푸코오스전이효소의 도입이 2'-푸코실락토오스의 생산에 미치는 영향을 평가하였다.
실험 결과, GDP-L-fucose생합성 효소인 ManB, ManC, Gmd, WcaG만을 과발현시킨 코리네박테리움 글루타미쿰 균주 (대조군) 및 GDP-L-fucose생합성 효소인 ManB, ManC, Gmd, WcaG를 과발현시키고, FucT2를 추가로 도입한 균주 (비교예 1)에서는 2'-푸코실락토오스가 전혀 생산되지 않았다.
그러나, GDP-L-fucose 생합성 효소인 ManB, ManC, Gmd, WcaG, FucT2 및 lacZ 유전자가 제거된 lac 오페론(lacYA)을 도입한 균주 (실시예 1)에서만 2'-푸코실락토오스가 생산되는 것을 확인하였다 (표 5 및 도 2). 도 2는 lacZ가 제거된 lac 오페론 (lacYA)의 도입이 코리네박테리움 글루타미쿰에서의 2'-푸코실락토오스 생산에 미치는 영향을 평가하여 나타낸 그래프이다. 도 2a는 대조군, 도 2b는 비교예 1 및 도 2c는 실험예 1의 배양결과이다.
상기의 결과로부터, 락토오스 이송체가 도입됨에 따라 락토오스가 균주내로 유입되어 2'-푸코실락토오스를 생산하는데 이용되었고, 따라서 2'-푸코실락토오스의 생산에는 lacZ 유전자가 제거된 lac 오페론 (lacYA)의 도입이 필수적이라는 것을 확인할 수 있었다.
lacZ가 제거된 lac 오페론 (lacYA)의 도입이 코리네박테리움 글루타미쿰 (C. glutamicum)에서의 2'-푸코실락토오스 생산에 미치는 영향 평가
플라스미드 최종 건조 세포 중량(g/L) 락토오스 소모량a(g/L) 최대 2'-푸코실락토오스 농도a(mg/L) 수율(mole 2'-푸코실락토오스/mole 락토오스) 생산성a (mg/L/h)
pVBCpEGW 13.5 0.02 N.D. - -
pVBCpEGWT 12.9 0.02 N.D. - -
pVBCLpEGWT 13.4 0.78 246 0.22 5.0
[실험예 2: 회분식 배양을 통한 2'-푸코실락토오스의 생산]
실험예 1에서 구축된 재조합 코리네박테리움 글루타미쿰 (C. glutamicum)의 2'-푸코실락토오스 생산성능 및 발효특징을 알아보기 위하여 ManB, ManC, Gmd, WcaG, FucT2 및 lacZ가 제거된 lac 오페론 (lacYA)을 도입한 재조합 코리네박테리움 글루타미쿰을 각각 플라스크와 발효기에서 회분식 배양을 실시하였다. 광학밀도 (OD600)가 0.8에 도달한 시점에서 IPTG, 락토오스를 최종 농도가 각각 1.0 mM, 10 g/L가 되도록 첨가하였다.
플라스크 회분식 배양의 결과, 246 mg/L의 2'-푸코실락토오스가 생산되었고, 이때의 락토오스 대비 2'-푸코실락토오스의 수율은 0.22 mole 2'-푸코실락토오스 /mole 락토오스, 생산성은 4.97 mg/L/h였다 (도 3 및 표 6).
한편, 발효기 회분식 배양에서는 274 mg/L의 2'-푸코실락토오스가 생산되었고, 락토오스 대비 2'-푸코실락토오스의 수율은 0.34 mole/mole, 생산성은 5.6 mg/L/h를 얻을 수 있었으며, 이는 플라스크 배양에 비하여 2'-푸코실락토오스의 최종농도가 약 11%, 수율은 55%, 생산성은 12% 향상된 수치이다. 이는 발효기에서 온도와 pH 및 산소공급 등의 조건이 플라스크 배양에 비해 잘 조절되었기 때문으로 사료된다.
상기 회분식 배양의 결과는 하기 표 6에 기재하였으며, 도 3은 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT를 이용한 회분식 배양결과를 나타낸 그래프로 도 3a는 플라스크 회분식 배양결과이고 도 3b는 발효기 회분식 배양결과이다.
재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT를 이용한 회분식 배양결과
최종 건조 세포 중량(g/L) 락토오스 소모량a(g/L) 최대 2'-푸코실락토오스 농도a(mg/L) 수율(mole 2'-푸코실락토오스/mole 락토오스) 생산성a (mg/L/h)
플라스크 13.4 0.78 246 0.22 4.97
발효기 13.0 0.57 274 0.34 5.6
a락토오스와 2'-푸코실락토오스의 농도는 배지에 있는 것만을 정량한 수치임.
[실험예 3: LC-MS/MS분석을 통한 2'-푸코실락토오스 생산 확인]
상기 실험예 2의 회분식 배양에서 생산된 2'-푸코실락토오스를 확인하기 위해, LC-MS/MS를 이용하여 정성분석을 실시하였다.
MALDI-TOP MS를 이용하여 양이온 모드로 분자량을 측정한 결과, 2-푸코실락토오스에 나트륨 한 분자가 결합된 분자량인 511.164m/z의 피크의 존재를 확인할 수 있었다.
또한, 이 피크의 구조적 조성을 확인하기 위하여, 이중질량분석법 (Tandem mass spectrometry) (MS/MS)을 이용하여 분석한 결과, 2'-푸코실락토오스를 구성하는 글루코오스, 갈락토오스 및 푸코오스로 구성되어 있음을 확인하였다 (도 4). 도 4는 재조합 코리네박테리움 글루타미쿰의 배양액을 LC-MS/MS분석을 통해 2'-푸코실락토오스의 생산을 확인한 결과이다. 도 4a는 MALDI-TOP MS를 이용해서 배양액에 함유된 물질들을 양이온 모드에서 분자량 분석을 통해 푸코실락토오스의 생성을 확인한 것이고, 도 4b는 이중질량분석법 (Tandem mass spectrometry) (MS/MS)를 이용하여 511.134 m/z의 피크가 2'-푸코실락토오스임을 구조적으로 확인한 것이다.
실험 결과, 상기의 회분식 배양에서 2'-푸코실락토오스가 생산되었음을 확인할 수 있었다.
[실험예 4: 유가식 배양을 통한 2'-푸코실락토오스의 생산]
고농도의 세포배양을 통하여 고농도 2'-푸코실락토오스를 생산하기 위해 pVBCL, pEGWT플라스미드를 도입한 재조합 코리네박테리움 글루타미쿰 (C. glutamicum)을 이용하여 2.5 L 수준의 발효기에서 유가식 배양을 실시하였다.
초기에 첨가해준 40 g/L의 글루코오스를 모두 소모한 시점부터 세포생장을 유지하기 위해 피딩용액 (feeding solution)을 연속식 (continuous feeding)방법을 이용하여 5.7 g/L/h의 속도로 공급하였다. 이와 동시에 2'-푸코실락토오스의 생산을 유도하기 위해 IPTG와 락토오스를 첨가해 주었다.
실험 결과, 발효가 진행되는 동안 아세트산은 전혀 생성되지 않았으며, 글루코오스의 대사를 통해 세포는 최종적으로 건조세포중량 57.3 g/L에 도달하였다. 또한, 최대 2'-푸코실락토오스의 농도는 5.8 g/L, 락토오스 대비 생산수율은 0.55 mole 2'-푸코실락토오스 /mole 락토오스이고, 생산성은 0.06 g/L/h를 얻을 수 있었다 (도 5 및 표 7).
2'-푸코실락토오스의 생산을 위한 유가식 배양의 결과는 하기 표 7에 기재하였으며, 도 5는 재조합 코리네박테리움 글루타미쿰 pVBCL + pEGWT를 이용한 유가식 배양결과를 나타낸 그래프이다.
재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT를 이용한 유가식 배양결과
플라스미드 최종 건조 세포 중량(g/L) 락토오스 소모량a(g/L) 최대 2'-푸코실락토오스 농도a(g/L) 수율(mole 2'-푸코실락토오스/mole 락토오스) 생산성a (g/L/h)
pVBCLpEGWT 57.3 7.3 5.8 0.55 0.06
a2-FL 생산성은 IPTG 인덕션 이후부터 계산한 수치임.
b락토오스와 2'-푸코실락토오스의 농도는 배지에 있는 것만을 정량한 수치임.
[ 실험예 5: 코돈 최적화 ( codon optimization)된 fucT2 유전자 ( CO fucT2 )의 도입이 재조합 코리네박테리움 글루타미쿰 ( C. glutamicum )의 2'- 푸코실락토오스 생산에 미치는 영향 평가]
(1) 코돈 최적화 (codon optimization) 된 fucT2 유전자 (CO fucT2 ) 제작
재조합 코리네박테리움 글루타미쿰 (C. glutamicum)에서 헬리코박터 파일로리 (H. pylori) 유래의 α-1,2-푸코오스전이효소인 fucT2 유전자의 번역 (translation) 효율을 증대시키기 위해, fucT2 유전자를 코리네박테리움 글루타미쿰의 코돈 사용빈도 (codon usage)에 따라 코돈 최적화를 실시하였다.
실험 결과, 기존 fucT2 유전자에 비해 약 17.1%의 서열이 변이 (mutation)된 것을 확인하였다 (도 6). 도 6은 fucT2 유전자를 코리네박테리움 글루타미쿰 (C.glutamicum)에 맞게 코돈 최적화한 결과이다.
(2) 코돈 최적화 ( codon optimization) 된 fucT2 유전자 ( CO fucT2 )의 도입이 2'-푸코실락토오스 생산에 미치는 영향 평가
코돈 최적화된 fucT2 유전자 (COfucT2)를 이용하여 구축된 재조합 코리네박테리움 글루타미쿰 (C. glutamicum)의 2'-푸코실락토오스 생산 성능 및 발효 특징을 알아보기 위하여 플라스크에서 회분식 배양, 발효기에서 유가식 배양을 각각 실시하였다.
회분식 배양에서는 광학밀도 (OD600)가 0.8에 도달한 시점에서 IPTG 및 락토오스를 최종 농도가 각각 1.0 mM, 10 g/L가 되도록 첨가하였고, 유가식 배양에서는 초기에 첨가해준 40 g/L의 글루코오스를 모두 소모한 시점부터 세포생장을 유지하기 위해 피딩용액 (feeding solution)을 연속식 (continuous feeding)방법을 이용하여 5.7 g/L/h의 속도로 공급하였다. 이와 동시에 2'-푸코실락토오스의 생산을 유도하기 위해 IPTG와 락토오스를 첨가해 주었다.
회분식 배양의 결과, 370 mg/L의 2'-푸코실락토오스가 생산되었고, 이때의 락토오스 대비 2'-푸코실락토오스의 수율은 0.28 mole 2'-푸코실락토오스/mole 락토오스, 생산성은 7.18 mg/L/h였다 (도 7a 및 표 8). 이는 실험예 2의 결과에 비하여 2'-푸코실락토오스의 최종농도가 약 50%, 수율은 27%, 생산성은 44% 향상된 수치이다.
한편, 유가식 배양 결과에서는 8.1 g/L의 2'-푸코실락토오스가 생산되었고, 락토오스 대비 2'-푸코실락토오스의 수율은 0.42 mole/mole, 생산성은 0.07 g/L/h를 얻을 수 있었으며 (도 7b 및 표 8), 이는 야생형 fucT2를 도입했을 때의 결과 (실험예 4)에 비하여 2'-푸코실락토오스의 최종농도가 약 39%, 생산성은 17% 향상된 수치이다.
상기 배양의 결과는 하기 표 8에 기재하였으며, 도 7a는 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT(CO)를 이용한 플라스크 회분식 배양결과를 나타낸 그래프이고, 도 7b는 재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT(CO)를 이용한 발효기 유가식 배양결과를 나타낸 그래프이다.
재조합 코리네박테리움 글루타미쿰 (C. glutamicum) pVBCL + pEGWT(CO)를 이용한 회분식 및 유가식 배양결과
최종 건조 세포 중량(g/L) 락토오스 소모량a(g/L) 최대 2'-푸코실락토오스 농도a 수율(mole 2'-푸코실락토오스/mole 락토오스) 생산성a
회분식(플라스크) 14.2 0.94 370 (mg/L) 0.28 7.18 (mg/L/h)
유가식(발효기) 62.1 13.6 8.1 (g/L) 0.42 0.07(g/L/h)
a2-FL 생산성은 IPTG 인덕션 이후부터 계산한 수치임.
b락토오스와 2'-푸코실락토오스의 농도는 배지에 있는 것만을 정량한 수치임.

Claims (7)

  1. α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)가 발현되도록 형질전환되고,
    GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase)가 발현되도록 형질전환되며,
    GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase)가 발현되도록 형질전환되고,
    락토오즈 퍼미아제 (lactose permease)가 발현되도록 형질전환되며,
    포스포만노뮤타아제 (Phosphomannomutase) 및 GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)를 보유하고 있는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum).
  2. 제1항에 있어서,
    상기 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)는,
    fucT2 유전자로 암호화된 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰.
  3. 제2항에 있어서,
    상기 fucT2 유전자는,
    서열번호 6의 핵산서열로 구성된 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰.
  4. 제1항에 있어서,
    상기 재조합 코리네박테리움 글루타미쿰은,
    포스포만노뮤타아제 (Phosphomannomutase)가 과발현되도록 형질전환되고,
    GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)가 과발현되도록 형질전환된 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰.
  5. 락토오스가 첨가된 배지에, 제1항의 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 2'-푸코실락토오스의 생산방법.
  6. 제5항에 있어서,
    상기 배지는,
    글루코오스를 더 포함하는 것을 특징으로 하는 2'-푸코실락토오스의 생산방법.
  7. 제6항에 있어서,
    상기 푸코실락토오스의 생산방법은,
    글루코오스 또는 락토오스를 추가로 공급하는 유가식 배양인 것을 특징으로 하는 2'-푸코실락토오스의 생산방법.
PCT/KR2017/004340 2016-04-25 2017-04-24 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법 WO2017188684A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017560310A JP6650950B2 (ja) 2016-04-25 2017-04-24 コリネバクテリウムグルタミクムを用いた2’−フコシルラクトースの生産方法
CA3020682A CA3020682C (en) 2016-04-25 2017-04-24 Method of producing 2'-fucosyllactose using corynebacterium glutamicum
US15/574,028 US10570399B2 (en) 2016-04-25 2017-04-24 Corynebacterium glutamicum for use in producing 2′-fucosyllactose
CN201780001667.5A CN107849577B (zh) 2016-04-25 2017-04-24 利用谷氨酸棒状杆菌的2’-岩藻糖基乳糖的生产方法
EP17789868.1A EP3450562B1 (en) 2016-04-25 2017-04-24 Method for producing 2'-fucosyllactose by using corynebacterium glutamicum
AU2017256470A AU2017256470B2 (en) 2016-04-25 2017-04-24 Method for producing 2'-fucosyllactose by using Corynebacterium glutamicum
US16/589,724 US10876122B2 (en) 2016-04-25 2019-10-01 Method of producing 2′-fucosyllactose using recombinant Corynebacterium glutamicum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0050219 2016-04-25
KR1020160050219A KR101731263B1 (ko) 2016-04-25 2016-04-25 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/574,028 A-371-Of-International US10570399B2 (en) 2016-04-25 2017-04-24 Corynebacterium glutamicum for use in producing 2′-fucosyllactose
US16/589,724 Division US10876122B2 (en) 2016-04-25 2019-10-01 Method of producing 2′-fucosyllactose using recombinant Corynebacterium glutamicum

Publications (1)

Publication Number Publication Date
WO2017188684A1 true WO2017188684A1 (ko) 2017-11-02

Family

ID=58742961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004340 WO2017188684A1 (ko) 2016-04-25 2017-04-24 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법

Country Status (8)

Country Link
US (2) US10570399B2 (ko)
EP (1) EP3450562B1 (ko)
JP (2) JP6650950B2 (ko)
KR (1) KR101731263B1 (ko)
CN (1) CN107849577B (ko)
AU (1) AU2017256470B2 (ko)
CA (1) CA3020682C (ko)
WO (1) WO2017188684A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613858A4 (en) * 2017-04-21 2021-01-06 Seoul National University R&DB Foundation PROCESS FOR THE PRODUCTION OF 3'-FUCOSYLLACTOSE USING CORYNEBACTERIUM GLUTAMICUM
JP2021514633A (ja) * 2018-04-04 2021-06-17 アドヴァンスド プロテイン テクノロジーズ コーポレーションAdvanced Protein Technologies Corp. シュードペドバクターサルタンス由来フコース転移酵素を用いた2’−フコシルラクトースの生産方法
WO2021122708A1 (en) 2019-12-17 2021-06-24 Inbiose N.V. Lactose converting alpha-1,2-fucosyltransferase enzymes
KR102477273B1 (ko) * 2021-11-24 2022-12-16 (주)에이피테크놀로지 효소 처리를 통한 2'-푸코실락토오스의 생산성 증대 방법
KR20230065393A (ko) * 2021-11-03 2023-05-12 (주)에이피테크놀로지 배양 배지 조성 및 배양 방식 변화에 따른 2'-푸코실락토오스의 생산성 증대 방법

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045079A (ko) 2017-10-23 2019-05-02 (주)에이피테크놀로지 2'-푸코실락토오스 또는 3-푸코실락토오스를 함유한 안약 또는 안구 건조 방지용 조성물
KR101972925B1 (ko) 2018-09-05 2019-04-26 (주)에이피테크놀로지 2'-푸코실락토오스를 함유하는 자극 완화용 화장료 조성물
CN109402158B (zh) * 2018-09-14 2022-01-11 江苏大学 一种产岩藻糖基乳糖的重组表达质粒载体、代谢工程菌及生产方法
CN109735479B (zh) * 2019-01-30 2022-04-01 光明乳业股份有限公司 一种合成2’-岩藻糖基乳糖的重组枯草芽孢杆菌及其构建方法与应用
KR102154256B1 (ko) * 2019-07-30 2020-09-10 서울대학교산학협력단 코리네박테리움 글루타미쿰을 이용한 3'-푸코실락토오스의 생산방법
KR102268092B1 (ko) 2019-09-02 2021-06-25 서울대학교산학협력단 코리네박테리움 글루타미쿰에 푸코실락토오스 수송체 도입과 gdp-l-푸코오스 생합성 경로의 최적화를 통한 2'-푸코실락토오스 생산 증대
US20240279696A1 (en) * 2019-12-16 2024-08-22 Kyowa Hakko Bio Co., Ltd. Microorganism having modified lactose permease, and method for producing lactose-containing oligosaccharide
CN111471637A (zh) * 2020-05-08 2020-07-31 江苏华燕集团有限公司 2`-岩藻糖基乳糖高产菌株及其制备方法和用途
KR102416352B1 (ko) 2020-05-29 2022-07-06 한국식품연구원 아밀로수크라아제를 발현하는 재조합 코리네박테리움 글루타미쿰 균주, 및 이의 제조방법
CN111549013A (zh) * 2020-06-09 2020-08-18 中国科学院天津工业生物技术研究所 一种atp依赖的甘露糖激酶及其在岩藻基乳糖合成中的应用
CN112342176A (zh) * 2020-10-15 2021-02-09 江南大学 产2’-岩藻糖基乳糖的基因工程菌及其应用
KR20220096752A (ko) * 2020-12-31 2022-07-07 주식회사 삼양사 푸코오스 전이효소를 발현하는 재조합 미생물 및 이를 이용한 2’-푸코실락토오스 제조방법
EP4043572A1 (en) 2021-02-11 2022-08-17 GALAB Laboratories GmbH Glycosyltransferase deficient corynebacterium for the production of fucosyllactose
EP4043571A1 (en) 2021-02-11 2022-08-17 GALAB Laboratories GmbH Genetically modified corynebacterium for the production of fucosyllactose
KR102462125B1 (ko) 2021-09-03 2022-11-03 국민대학교산학협력단 조효소 엔지니어링을 통한 모유올리고당의 생물학적 생산방법
CN115011535A (zh) * 2022-05-10 2022-09-06 南通励成生物工程有限公司 一种以葡萄糖为碳源合成2’-岩藻糖基乳糖的菌株及其构建方法和应用
WO2024123084A1 (ko) * 2022-12-06 2024-06-13 (주)에이피테크놀로지 베타-갈락토시다아제가 발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰을 이용한 푸코실락토오스의 생산방법
WO2024128827A1 (ko) * 2022-12-14 2024-06-20 (주)에이피테크놀로지 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062361A (ko) * 1999-12-21 2002-07-25 교와 핫꼬 고교 가부시끼가이샤 개변된 α1,2-푸코오스 전이효소 유전자 및α1,2-푸코오스 전이효소와 푸코오스 함유 당질의 제조법
KR101544184B1 (ko) 2014-12-19 2015-08-21 서울대학교산학협력단 2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법
KR101648352B1 (ko) * 2015-11-09 2016-08-16 서울대학교산학협력단 푸코실락토오스 생산용 재조합 대장균 및 이를 이용한 푸코실락토오스의 생산방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875591B1 (en) * 1999-08-10 2005-04-05 Kyowa, Hakko Kogyo Co., Ltd. Process for producing GDP-fucose
EP1275714A1 (en) * 2000-04-11 2003-01-15 Kyowa Hakko Kogyo Co., Ltd. Alpha 1,2-fucosyltransferase and process for producing fucose-containing complex carbohydrate
WO2010115935A1 (en) 2009-04-07 2010-10-14 Glycom A/S Synthesis of 2 ' -o-fucosyllactose
CA2827313C (en) 2011-02-16 2023-08-22 Glycosyn LLC Biosynthesis of human milk oligosaccharides in engineered bacteria
CA2830025A1 (en) 2011-03-18 2012-09-27 Glycom A/S Synthesis of new fucose-containing carbohydrate derivatives
KR20120122098A (ko) 2011-04-28 2012-11-07 주식회사 진켐 박테로이드 프라질리스 균주 유래 푸코실전이효소
CA2835986A1 (en) * 2011-05-13 2012-11-22 Glycom A/S Method for generating human milk oligosaccharides (hmos) or precursors thereof
ES2733307T3 (es) * 2011-12-16 2019-11-28 Inbiose Nv Microorganismos mutantes para sintetizar ácido colánico, oligosacáridos manosilados y/o fucosilados
EP2708147B1 (en) * 2012-09-14 2020-03-11 Abbott Laboratories Methods for increasing brain functionality using 2-fucosyl-lactose
US9944965B2 (en) * 2012-12-20 2018-04-17 The Board Of Trustees Of The University Of Illinois Biosynthesis of oligosaccharides
CN103667371B (zh) * 2013-11-11 2016-03-16 天津大学 一种丹参素的生物生产方法
EP3461890A1 (en) * 2014-03-31 2019-04-03 Jennewein Biotechnologie GmbH Total fermentation of oligosaccharides
KR101718681B1 (ko) * 2014-06-23 2017-03-22 서울대학교산학협력단 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
CN104531597B (zh) * 2014-09-22 2017-09-15 江南大学 一株产l‑苯丙氨酸的重组谷氨酸棒状杆菌及其构建与应用
RU2746410C2 (ru) * 2014-11-14 2021-04-13 Инбиос Н.В. Мутантные микроорганизмы, устойчивые к гибели под действием лактозы

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062361A (ko) * 1999-12-21 2002-07-25 교와 핫꼬 고교 가부시끼가이샤 개변된 α1,2-푸코오스 전이효소 유전자 및α1,2-푸코오스 전이효소와 푸코오스 함유 당질의 제조법
KR101544184B1 (ko) 2014-12-19 2015-08-21 서울대학교산학협력단 2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법
KR101648352B1 (ko) * 2015-11-09 2016-08-16 서울대학교산학협력단 푸코실락토오스 생산용 재조합 대장균 및 이를 이용한 푸코실락토오스의 생산방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIN ET AL.: "Enhanced Production of 2'-fucosyllactose in Engineered Escherichia Coli BL21star( DE 3) by Modulation of Lactose Metabolism and Fucosyltransferase", JOURNAL OF BIOTECHNOLOGY, vol. 210, 17 July 2015 (2015-07-17), pages 107 - 1 15, XP029261145 *
CHIN ET AL.: "Metabolic Engineering of Corynebacterium Glutamicum to Produce GDP-L-fucose from Glucose and Mannose", BIOPROCESS AND BIOSYSTEMS ENGINEERING, vol. 36, no. 6, 13 February 2013 (2013-02-13), pages 749 - 756, XP035365329 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613858A4 (en) * 2017-04-21 2021-01-06 Seoul National University R&DB Foundation PROCESS FOR THE PRODUCTION OF 3'-FUCOSYLLACTOSE USING CORYNEBACTERIUM GLUTAMICUM
US11512318B2 (en) 2017-04-21 2022-11-29 Seoul National University R&Db Foundation Method for producing 3-fucosyllactose using Corynebacterium glutamicum
JP2021514633A (ja) * 2018-04-04 2021-06-17 アドヴァンスド プロテイン テクノロジーズ コーポレーションAdvanced Protein Technologies Corp. シュードペドバクターサルタンス由来フコース転移酵素を用いた2’−フコシルラクトースの生産方法
EP3736336A4 (en) * 2018-04-04 2021-11-24 Advanced Protein Technologies Corp. METHOD FOR PRODUCING 2'-FUCOSYLLACTOSE BY USING FUCOSYL TRANSFERASE FROM PSEUDOPEDOBATER SALTANS
JP7075494B2 (ja) 2018-04-04 2022-05-25 アドヴァンスド プロテイン テクノロジーズ コーポレーション シュードペドバクターサルタンス由来フコース転移酵素を用いた2’-フコシルラクトースの生産方法
WO2021122708A1 (en) 2019-12-17 2021-06-24 Inbiose N.V. Lactose converting alpha-1,2-fucosyltransferase enzymes
KR20230065393A (ko) * 2021-11-03 2023-05-12 (주)에이피테크놀로지 배양 배지 조성 및 배양 방식 변화에 따른 2'-푸코실락토오스의 생산성 증대 방법
KR102577779B1 (ko) 2021-11-03 2023-09-14 (주)에이피테크놀로지 배양 배지 조성 및 배양 방식 변화에 따른 2'-푸코실락토오스의 생산성 증대 방법
KR102477273B1 (ko) * 2021-11-24 2022-12-16 (주)에이피테크놀로지 효소 처리를 통한 2'-푸코실락토오스의 생산성 증대 방법
US11753665B2 (en) 2021-11-24 2023-09-12 Advanced Protein Technologies Corp. Method for improving productivity of 2′-fucosyllactose through enzymatic treatment

Also Published As

Publication number Publication date
KR101731263B1 (ko) 2017-05-02
EP3450562C0 (en) 2023-07-19
AU2017256470B2 (en) 2021-01-28
US10570399B2 (en) 2020-02-25
JP6650950B2 (ja) 2020-02-19
CN107849577A (zh) 2018-03-27
US20180298389A1 (en) 2018-10-18
EP3450562A4 (en) 2019-12-04
CN107849577B (zh) 2021-11-26
EP3450562A1 (en) 2019-03-06
CA3020682C (en) 2021-08-10
JP2020022506A (ja) 2020-02-13
EP3450562B1 (en) 2023-07-19
US20200048640A1 (en) 2020-02-13
CA3020682A1 (en) 2017-11-02
JP2018515118A (ja) 2018-06-14
US10876122B2 (en) 2020-12-29
AU2017256470A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2017188684A1 (ko) 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법
US12060593B2 (en) Fucosyltransferases and their use in producing fucosylated oligosaccharides
KR102050522B1 (ko) 코리네박테리움 글루타미쿰을 이용한 3'-푸코실락토오스의 생산방법
KR102335067B1 (ko) 올리고당 생산
WO2016153300A1 (ko) 2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법
CN111094325A (zh) 用于制备人乳低聚糖的微生物
CN114774343B (zh) 一种生产2’-岩藻糖基乳糖的大肠杆菌工程菌株及应用
WO2019194410A1 (ko) 슈도페도박터 살탄스 유래 푸코오스 전이효소를 이용한 2'-푸코실락토오스의 생산방법
EP3724344A2 (en) Sialyltransferases and uses thereof
KR102154256B1 (ko) 코리네박테리움 글루타미쿰을 이용한 3'-푸코실락토오스의 생산방법
WO2018194411A1 (ko) 코리네박테리움 글루타미쿰을 이용한 3'-푸코실락토오스의 생산방법
WO2023096197A1 (ko) 효소 처리를 통한 2'-푸코실락토오스의 생산성 증대 방법
CN116426452A (zh) 合成2’-岩藻糖基乳糖的重组大肠杆菌菌株及其应用
CN116769808A (zh) 一种专一生产2′-岩藻糖基乳糖的菌株及应用
KR101794971B1 (ko) α-1,3-푸코실락토오즈의 대량 생산 방법
WO2023219437A1 (ko) 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법
DK181497B1 (en) ENHANCING FORMATION OF THE HMOS LNT AND/OR LNnT BY MODIFYING LACTOSE IMPORT IN THE CELL
KR101794972B1 (ko) α-1,3-푸코실락토오즈의 대량 생산 방법
CN118460581A (zh) 构建稳定遗传的水杨苷生物合成的基因工程菌株的方法及其应用
CN117015607A (zh) 用于生产岩藻糖基乳糖的遗传修饰的棒状杆菌
CN116802299A (zh) 用于生产岩藻糖基乳糖的糖基转移酶缺陷型棒状杆菌

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017560310

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574028

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3020682

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017256470

Country of ref document: AU

Date of ref document: 20170424

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789868

Country of ref document: EP

Kind code of ref document: A1