WO2023219437A1 - 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법 - Google Patents

코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법 Download PDF

Info

Publication number
WO2023219437A1
WO2023219437A1 PCT/KR2023/006403 KR2023006403W WO2023219437A1 WO 2023219437 A1 WO2023219437 A1 WO 2023219437A1 KR 2023006403 W KR2023006403 W KR 2023006403W WO 2023219437 A1 WO2023219437 A1 WO 2023219437A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene encoding
corynebacterium glutamicum
lacto
udp
glucose
Prior art date
Application number
PCT/KR2023/006403
Other languages
English (en)
French (fr)
Inventor
신철수
윤종원
송영하
유영선
강수진
최창윤
Original Assignee
(주)에이피테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230060393A external-priority patent/KR102645729B1/ko
Application filed by (주)에이피테크놀로지 filed Critical (주)에이피테크놀로지
Publication of WO2023219437A1 publication Critical patent/WO2023219437A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)

Definitions

  • the present invention relates to a method for producing lacto-N-tetraose (Lacto-N-tetraose, LNT) and lacto-N-neotetraose (LNnT) using Corynebacterium glutamicum.
  • LNT lacto-N-tetraose
  • LNnT lacto-N-neotetraose
  • genes introduced from outside are expressed within Corynebacterium glutamicum , and the genes that Corynebacterium glutamicum possesses are expressed. It relates to a recombinant Corynebacterium glutamicum transformed to overexpress and a method for producing LNT and LNnT using the same.
  • HMOs Human milk oligosaccharides
  • breast milk oligosaccharides are oligosaccharides contained in breast milk and are the third most abundant component in breast milk after lactose and fat. There are about 200 different types of breast milk oligosaccharides. Representative examples of breast milk oligosaccharides include 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL).
  • Lacto-N-triose II Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), Lacto-N-fucopentaose (LNFP), Lacto-N-neofucopentaose, Lacto-N-hexaose (LNH), lacto -N-neohexaose (Lacto-N-neohexaose, LNnH), 6'-galactosylactose, and 3'-galactosylactose.
  • breast milk oligosaccharides have various benefits, such as strengthening immune function or having a positive effect on the child's development and behavior, continuous research is needed on technologies for producing various breast milk oligosaccharides.
  • technology for producing human milk oligosaccharides using microorganisms has been studied, and among them, recombinant Escherichia coli has been used.
  • E. coli is not actually a pathogen, it is strongly recognized by consumers as a harmful bacterium, and because the cell membrane components of E. coli can act as endotoxin, it costs a lot of money to isolate and purify the produced human milk oligosaccharides, and in the case of E.
  • lactose permease lactose permease
  • lactose permease lactose permease
  • LNT lacto-N-tetraose
  • LNnT lacto-N-neotetraose
  • the present invention relates to a gene encoding lactose permease, a gene encoding beta-1,3-N-acetylglucosaminyltransferase, and a gene encoding beta-1,3-N-acetylglucosaminyltransferase.
  • the gene encoding galactosyltransferase ( ⁇ -1,3-galactosyltransferase) is introduced from outside and transformed to express the gene in Corynebacterium glutamicum, and the gene that Corynebacterium itself possesses Gene encoding glutamine-fructose-6-phosphate aminotransferase, gene encoding phosphoglucosamine mutase, glucosamine-1-phosphate N-acetyl Gene encoding transferase (glucosamine-1-phosphate N-acetyltransferase), gene encoding UDP-N-acetylglucosamine pyrophosphorylase, phosphoglucomutase A gene encoding, UTP-glucose-1-phosphate uridylyltransferase, a gene encoding UDP-glucose-4-epimerase Provided is a recombinant Corynebacterium glutamicum, characterized in
  • the present invention provides a method for producing lacto-N-tetraose, characterized in that the recombinant Corynebacterium glutamicum is cultured in a medium to which lactose is added. do.
  • the medium preferably further contains glucose.
  • the present invention relates to a gene encoding lactose permease, a gene encoding beta-1,3-N-acetylglucosaminyltransferase, beta-1,
  • a gene encoding 4-galactosyltransferase ( ⁇ -1,4-galactosyltransferase) is introduced from outside and transformed so that the genes are expressed in Corynebacterium glutamicum, and Corynebacterium possesses its own Genes encoding glutamine-fructose-6-phosphate aminotransferase, genes encoding phosphoglucosamine mutase, and glucosamine-1-phosphate N.
  • acetyltransferase (glucosamine-1-phosphate N-acetyltransferase), gene encoding UDP-N-acetylglucosamine pyrophosphorylase, phosphoglucomutase ( A gene encoding phosphoglucomutase, a gene encoding UTP-glucose-1-phosphate uridylyltransferase, and a gene encoding UDP-glucose-4-epimerase.
  • Corynebacterium glutamicum characterized in that it is transformed to overexpress one or more genes selected from genes encoding epimerase.
  • the present invention provides a method for producing lacto-N-neotetraose, characterized in that the recombinant Corynebacterium glutamicum is cultured in a medium to which lactose is added. to provide.
  • the medium preferably further contains glucose.
  • the present invention uses Corynebacterium glutamicum to produce lacto-N-tetraose (LNT) and lactobacillus with high concentration, high yield, and high productivity while being safer than conventional E. coli.
  • -N-neotetraose Lacto-N-neotetraose, LNnT
  • LNT lacto-N-tetraose
  • Figure 1 is a diagram showing the biosynthesis pathway of lacto-N-tetraose (LNT) in the recombinant Corynebacterium glutamicum strain of the present invention.
  • Figure 2 is a diagram showing the biosynthesis pathway of Lacto-N-neotetraose (LNnT) in the recombinant Corynebacterium glutamicum strain of the present invention.
  • Figure 3 shows Lacto-N-triose II ( This is a graph comparing the production of Lacto-N-trioseII, LNTII).
  • Figure 4 compares the LNT/LNnT production (final production amount) of a recombinant Corynebacterium glutamicum strain prepared to overexpress pgm, galU, and galE of the production pathway of UDP-galactose, a precursor material in the present invention. This is a graph of the results.
  • Figure 5 shows the results of confirming the LNT/LNnT production over time of a recombinant Corynebacterium glutamicum strain prepared to overexpress pgm, galU, and galE of the production pathway of UDP-galactose, a precursor material in the present invention. It's a graph.
  • breast milk oligosaccharides have various benefits, such as strengthening immune function or having a positive effect on the child's development and behavior
  • research is continuously being conducted on technologies for producing various breast milk oligosaccharides.
  • technology for producing human milk oligosaccharides using microorganisms has been studied, and there is a high need for producing various human milk oligosaccharides using new microorganisms.
  • Corynebacterium glutamicum is used as a host cell to produce Lacto-N-neotetraose (LNnT) and Lacto-N-tetraose (LNT). glutamicum ) was used. Unlike E. coli, which was mainly used in existing research, this is not only a strain recognized as GRAS (generally recognized as safe), but also a strain that is widely used in the industrial production of amino acids and nucleic acids, which are food additives. In addition, E. coli is strongly recognized by consumers as a harmful bacterium, and because the cell membrane components of E.
  • Corynebacterium glutamicum used in the present invention can be said to be a safe and suitable strain for the production of food and pharmaceutical materials.
  • the present invention provides a gene encoding lactose permease, a gene encoding beta-1,3-N-acetylglucosaminyltransferase, beta-1,3 -A gene encoding galactose transferase ( ⁇ -1,3-galactosyltransferase) is introduced from outside and transformed so that the genes are expressed in Corynebacterium glutamicum, and Corynebacterium possesses its own Gene encoding glutamine-fructose-6-phosphate aminotransferase, gene encoding phosphoglucosamine mutase, glucosamine-1-phosphate N- Gene encoding acetyltransferase (glucosamine-1-phosphate N-acetyltransferase), gene encoding UDP-N-acetylglucosamine pyrophosphorylase, phosphoglucomutase ), a gene encoding UTP-glucose
  • the present invention relates to a gene encoding lactose permease, a gene encoding beta-1,3-N-acetylglucosaminyltransferase, beta-1,
  • a gene encoding 4-galactosyltransferase ( ⁇ -1,4-galactosyltransferase) is introduced from outside and transformed so that the genes are expressed in Corynebacterium glutamicum, and Corynebacterium possesses its own Genes encoding glutamine-fructose-6-phosphate aminotransferase, genes encoding phosphoglucosamine mutase, and glucosamine-1-phosphate N.
  • acetyltransferase (glucosamine-1-phosphate N-acetyltransferase), gene encoding UDP-N-acetylglucosamine pyrophosphorylase, phosphoglucomutase ( A gene encoding phosphoglucomutase, a gene encoding UTP-glucose-1-phosphate uridylyltransferase, and a gene encoding UDP-glucose-4-epimerase.
  • Corynebacterium glutamicum characterized in that it is transformed to overexpress one or more genes selected from genes encoding epimerase.
  • the present invention provides a method for producing lacto-N-neotetraose, characterized in that the recombinant Corynebacterium glutamicum is cultured in a medium to which lactose is added. to provide.
  • LNTII meets another precursor material, UDP-galactose, and at this time, it is mediated by beta-1,3-galactosyltransferase ( ⁇ -1,3-galactosyltransferase, encoded by WbgO).
  • beta-1,3-galactosyltransferase ⁇ -1,3-galactosyltransferase, encoded by WbgO
  • LNT is produced ( Figure 1), and when beta-1,4-galactosyltransferase ( ⁇ -1,4-galactosyltransferase, encoded by lgtB) is mediated, LNnT is produced ( Figure 2).
  • the recombinant Corynebacterium glutamicum of the present invention is transformed to express a gene encoding lactose permease, which is an enzyme involved in transporting lactose present outside the strain into the strain. It is preferable to use one derived from E. coli. An example may be the use of LacY.
  • the recombinant Corynebacterium glutamicum of the present invention is transformed to express the gene encoding beta-1,3-N-acetylglucosaminyltransferase (lgtA),
  • lgtA beta-1,3-N-acetylglucosaminyltransferase
  • it may be from Neisseria meningitidis or Neisseria cinerea. More preferably, those derived from Neisseria meningitidis M98 or Neisseria cinerea ATCC 14685 are used.
  • the recombinant Corynebacterium glutamicum of the present invention is transformed to express the gene encoding beta-1,3-N-acetylglucosaminyltransferase for LNT production.
  • it may be lgtA, and preferably, it is derived from Neisseria cinerea .
  • it is transformed to express the gene encoding beta-1,3-galactosyltransferase.
  • it may be WbgO, and preferably, it may be derived from Lutiella nitroferrum . More preferably, it is good to use one derived from Lutiella nitroferrum ATCC BAA-1479.
  • the recombinant Corynebacterium glutamicum of the present invention is transformed to express the gene encoding beta-1,3-N-acetylglucosaminyltransferase to produce LNnT.
  • the gene encoding beta-1,3-N-acetylglucosaminyltransferase may be lgtA, and preferably, it is derived from Neisseria meningitidis .
  • it is transformed to express a gene encoding beta-1,4-galactosyltransferase, for example, it may be lgtB, preferably from Neisseria cinerea . It is good that it originated from
  • the recombinant Corynebacterium glutamicum of the present invention contains glutamine-fructose-6-phosphate aminotransferase, a gene possessed by Corynebacterium itself. aminotransferase), a gene encoding phosphoglucosamine mutase, a gene encoding glucosamine-1-phosphate N-acetyltransferase, UDP-N -Gene encoding acetylglucosamine pyrophosphorylase (UDP-N-acetylglucosamine pyrophosphorylase), gene encoding phosphoglucomutase, UTP-glucose-1-phosphate uridylyltransferase (UTP-glucose) It is better to be transformed to overexpress one or more genes selected from the genes encoding -1-phosphate uridylyltransferase and the genes encoding UDP-glucose-4-ep
  • the gene encoding the glutamine-fructose-6-phosphate aminotransferase is preferably glmS, and the gene encoding the phosphoglucosamine mutase The gene is preferably glmM.
  • the gene encoding the glucosamine-1-phosphate N-acetyltransferase and the UDP-N-acetylglucosamine pyrophosphorylase is preferably glmU, and in this case, glmU is UDP-N-acetylglucosamine pyrophosphorylase/glucosamine-1-phosphate N-acetyltransferase (glucosamine -1-phosphate N-acetyltransferase) is a gene that encodes a bifunctional enzyme (see Figures 1 and 2).
  • the gene encoding the phosphoglucomutase is preferably pgm
  • the gene encoding the UTP-glucose-1-phosphate uridylyltransferase is preferably galU
  • the gene encoding UDP-glucose-4-epimerase is preferably galE.
  • Corynebacterium glutamicum overexpresses its own genes to produce UDP-N-acetylglucosamine (UDP-N-GlcNAc), a precursor material for LNT and LNnT, and lacto-N-
  • Triose II Lacto-N-triose II, LNT II
  • the productivity of LNT and LNnT can be increased.
  • the term 'expression' used in the present invention refers to expression by introducing an external gene into the strain to artificially express an enzyme that the Corynebacterium glutamicum strain of the present invention cannot express on its own.
  • the term 'overexpression' refers to the fact that the Corynebacterium glutamicum strain of the present invention has its own gene encoding the enzyme and can express it on its own, but for the purpose of mass production, its expression level is This means overexpression by artificially increasing the expression level of the enzyme in question in order to increase it.
  • the medium further contains glucose. good night.
  • the growth of the strain becomes active, making it possible to produce Lacto-N-tetraose or Lacto-N-neotetraose with higher productivity.
  • the recombinant Corynebacterium glutamicum of the present invention contains glmS, glmM, and glmU in the production pathway of UDP-N-acetylglucosamine (UDP-N-GlcNAc), a precursor material.
  • UDP-N-GlcNAc UDP-N-acetylglucosamine
  • lacto-N-tetraose (Lacto-N-tetraose, LNT) is safer than conventional E. coli, and has high concentration, high yield, and high productivity. ) and lacto-N-neotetraose (LNnT) can be produced.
  • LNTII lacto-N-triose II
  • LNT lacto-N-tetraose
  • LNnT lacto-N-neotetraose
  • the gene (lgtA) encoding beta-1,3-N-acetylglucosaminyltransferase was generated through a PCR reaction using two DNA primers, 21RBS-lgtA F and lgtA R. amplified.
  • the lacY gene was amplified from the genomic DNA of E. coli K-12 MG1655 through a PCR reaction using two DNA primers RBS-lacY F and LacY R, and then overlapped using two DNA primers 21RBS-lgtA F and LacY R. (overlap) After synthesizing the lgtA-lacY DNA fragment through a PCR reaction, it was inserted into plasmid pCN013 treated with restriction enzyme EcoRI to construct the pAY plasmid.
  • Neisseria meningitidis The gene (lgtA) encoding beta-1,3-N-acetylglucosaminyltransferase was amplified from M98 through a PCR reaction using two DNA primers lgtA_t F and lgtA_20B R. , the gene encoding beta-1,4-galactosyltransferase ( ⁇ -1,4-galactosyltransferase) was identified from Neisseria cinerea ATCC 14685 through PCR reaction using two DNA primers, 20_B1 F and 15_B1 R.
  • lgtA-lgtB DNA fragments were synthesized through an overlap PCR reaction using two DNA primers lgtA_t F and 15_B1 R.
  • the lacY gene was amplified from the genomic DNA of E. coli K-12 MG1655 through a PCR reaction using two DNA primers lacY_B F and 20ABY R3, and then through an overlap PCR reaction using two DNA primers lgtA_t F and 20ABY R3.
  • synthesizing the lgtA-lgtB-lacY DNA fragment it was inserted into plasmid pCN013 treated with restriction enzyme EcoRI to construct the pABY plasmid.
  • the pgk promoter was amplified from Corynebacterium glutamicum ATCC 13032 through a PCR reaction using two DNA primers, pgk F and pgk R.
  • the gene encoding beta-1,3- N -acetylglucosaminyl transferase ( lgtA (i.e. NclgtA; where Nc means that lgtA is derived from Neisseria cinerea ) was amplified, and beta- was obtained from Lutiella nitroferrum ATCC BAA-1479 through a PCR reaction using two DNA primers, LnW F and LnW R.
  • the gene encoding 1,3-galactosyltransferase (WbgO, i.e. LnWbgO; Ln is (meaning that WbgO originated from Lutiella nitroferrum ) was amplified.
  • the lacY gene was amplified from the genomic DNA of E. coli K-12 MG1655 through a PCR reaction using two DNA primers 20ABY F3 and 20ABY R3, and then pgk-lgtA was amplified through an overlap PCR reaction using two DNA primers pgk F and 20ABY R3.
  • -WbgO-lacY i.e.
  • Nc means lgtA originated from Neisseria cinerea
  • Ln means After synthesizing the DNA fragment (meaning that WbgO originated from Lutiella nitroferrum ), it was inserted into pCN013 plasmid treated with restriction enzymes EcoRI and EcoRV to construct pAWY plasmid.
  • a strain overproducing the precursor material 'UDP-N-acetylglucosamine (UDP-N-GlcNAc)' was constructed.
  • UDP-N-GlcNAc UDP-N-GlcNAc
  • pK19mobsacB-tuf-glmS, pK19mobsacB-tuf-glmM, and pK19mobsacB-tuf-glmU were created to overexpress glmS, glmM, and glmU in the biosynthetic pathway as shown in Figures 1 and 2.
  • Plasmid construction Plasmid construction (plasmid construction for glmM overexpression)
  • a strain overproducing 'UDP-galactose' another precursor material for the biosynthesis of LNT and LNnT, was constructed.
  • a total of three integration plasmids pK19mobsacB-tuf-pgm, pK19mobsacB-tuf-galU1, and pK19mobsacB-tuf-galE, were created to overexpress pgm, galU1, and galE in the biosynthetic pathway as shown in Figures 1 and 2.
  • Three genes were amplified from the genomic DNA of Corynebacterium glutamicum through a PCR reaction using six DNA primers (pgm F1, pgm R1), (pgm F2, pgm R2), and (pgm F3, pgm R4). Afterwards, a DNA fragment was synthesized through an overlap PCR reaction using two DNA primers pgm F1 and pgm R4, and then inserted into the Xba I-treated plasmid pK19mobsacB to construct the pK19mobsacB-tuf-pgm plasmid.
  • primer primer name Sequence ('->3') 21RBS-lgtA F TCCAGGAGGACATACAACCGAGAAGGAGGGTTATTAGATGCCGTCTGAAGCCT lgtA R CCTTTATGCGCAACGTTAAATCTCCTGTTCTTTCCCTGCC RBS-lacY F AACAGGAGATTTAACGTTGCGCATAAAGGAGCATCTACAATGTACTATTTAAAAAACA LacY R TTGTCGACGGAGCTCGAATTCTTTAAGCGACTTCATTCACCCTGACG lgtA_tF TCCAGGAGGACATACAACCGAGAAGGAGGGTTATTAGtctagaGATGCAGCCCCTAGTCAGC lgtA_20B R CATTAATAATCCTCCTTCTGTCAACGGTTTTTCAACAACCGG 20_B1 F TGACAGAAGGAGGATTATTAATGGAAAACCGTATTATCAG 15_B1 R ATGCTCCTTTATGCGCAACGCCGCGGTTACCGGAACGGTATGATAA lacY
  • Example 2 Culture conditions and methods of recombinant Corynebacterium glutamicum
  • a glass test tube containing 4 mL BHI (Brain Heart Infusion) medium containing an appropriate antibiotic (kanamycin 25 ⁇ g/mL) was used, and the culture was maintained at 30°C and a stirring speed of 250 rpm for 12 hours.
  • This culture was performed in a flask, and 40 mL CGXII containing appropriate antibiotics (kanamycin 25 ⁇ g/mL) (Urea 5 g/L, MgSO4 0.25 g/L, MOPS 42 g/L, Potassium phosphate monobasic 1 g/L, Potassium phosphate dibasic 1 g/L, CaCl2 10 mg/L, Biotin 0.2 mg/L, Protocatechuic acid 30 mg/L, FeSO47H2O 10 mg/L, MnSO4H2O 10 mg/L, ZnSO47H2O 1 mg/L, CuSO4 0.2 mg/L , NiCl26H2O 0.02 mg/L, Glucose 20 g/L, Lactose 5 g/L, pH 7.0) medium was used, and the culture was cultured for 72 hours while maintaining the temperature at 25°C and the stirring speed at 200 rpm.
  • appropriate antibiotics kanamycin 25 ⁇ g/m
  • a glass test tube containing 4 mL BHI (Brain Heart Infusion) medium containing antibiotics (kanamycin 25 ⁇ g/mL) was used, and the temperature was 30°C and the stirring speed was 250 rpm. After culturing for 12 hours, the culture was inoculated into a shake flask containing 40 mL CGXII medium containing 25 ⁇ g/mL kanamycin at an initial OD (optical density) of 0.3. The culture temperature was maintained at 25°C and the stirring speed was maintained at 200 rpm and cultured for 72 hours.
  • the strain of Example 1 was prepared to overexpress glmS, glmM, and glmU in the production pathway of UDP-N-acetylglucosamine, a precursor material, to produce LNT/LNnT precursors using the productivity comparison test method.
  • the production volume of phosphorus LNTII was compared.
  • LNT/LNnT For the production of LNT/LNnT, the production of LNT/LNnT was compared using the above productivity comparison test method using the strain of Example 1 prepared to overexpress pgm, galU, and galE in the production pathway of UDP-galactose, a precursor material.
  • PU O/E pgm GalU O/E
  • PE O/E pgm GalE O/E
  • UE O/E GalU GalE O/E
  • PUE O/E pgm GalU GalE O/E

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 코리네박테리움 글루타미쿰을 이용한 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)의 생산 방법에 관한 것으로, 더욱 상세하게는 LNT 및 LNnT의 생산성을 높이기 위해 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 내에서 외부로부터 도입한 유전자들이 발현되고, 코리네박테리움 글루타미쿰이 자체적으로 보유하고 있는 유전자들을 과발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 및 이를 이용한 LNT 및 LNnT의 생산방법에 관한 것이다. 이를 통해 본 발명은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하여 종래의 대장균에 비해 안전하면서도, 고농도, 고수율, 고생산성으로 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 생산할 수 있다.

Description

코리네박테리움 글루타미쿰을 이용한 락토-N-테트라오스 및 락토-N-네오테트라오스의 생산 방법
본 발명은 코리네박테리움 글루타미쿰을 이용한 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)의 생산 방법에 관한 것으로, 더욱 상세하게는 LNT 및 LNnT의 생산성을 높이기 위해 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 내에서 외부로부터 도입한 유전자들이 발현되고, 코리네박테리움 글루타미쿰이 자체적으로 보유하고 있는 유전자들을 과발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 및 이를 이용한 LNT 및 LNnT의 생산방법에 관한 것이다.
모유올리고당 (Human milk oligosaccharides, HMOs)은 모유에 함유되어 있는 올리고당으로, 유당 및 지방 다음으로 모유에서 세 번째로 많은 성분이다. 모유올리고당의 종류는 약 200여종으로 다양하며, 대표적인 모유올리고당의 예로는, 2'-푸코실락토스(2'-fucosyllactose, 2'-FL), 3-푸코실락토스(3-fucosyllactose, 3-FL), 락토-N-트리오스(Lacto-N-triose) Ⅱ, 락토-N-테트라오스(Lacto-N-tetraose, LNT), 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT), 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP), 락토-N-네오푸코펜타오스(Lacto-N-neofucopentaose), 락토-N-헥사오스(Lacto-N-hexaose, LNH), 락토-N-네오헥사오스(Lacto-N-neohexaose, LNnH), 6’-갈락토실락토스(6’-galactosylactose) 및 3’-갈락토실락토스(3’-galactosylactose) 등이 있다.
모유올리고당은 면역 기능을 강화시키거나, 아이의 발달과 행동에 좋은 영향을 주는 등의 다양한 이점을 가지므로 다양한 모유올리고당을 생산하기 위한 기술에 대해서는 지속적으로 연구가 필요한 실정이다. 기존 연구에서 미생물을 이용하여 모유올리고당을 생산하는 기술에 대해 연구가 이루어져 왔으며, 그 중에서도 재조합 대장균을 사용해왔다. 하지만 대장균은 실제로 병원균이 아니지만 소비자들에게 해로운 균이라는 인식이 강하고, 대장균의 세포막 성분이 엔도톡신으로 작용할 수 있어 생산한 모유올리고당을 분리 및 정제하는데 비용이 많이 소요되며, 대장균 세포의 경우 유당투과효소(Lactose permease)의 작용에 의해 대장균 세포가 사멸되는 현상('락토오스 킬링')이 나타나므로 사용하는 것이 다소 제한적이다. 이에 새로운 미생물을 이용하여 모유올리고당을 생산해내는 기술에 대한 필요가 지속적으로 있는 실정이다.
본 발명에서는 식품 및 의약품 소재인 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 생산하는 숙주세포로서, 대장균보다 안전한 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하되, 고농도, 고수율, 고생산성으로 LNT 및 LNnT를 생산하는 방법을 개발하여 제공하고자 한다.
본 발명은 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자, 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자, 베타-1,3-갈락토오스전이효소 (β-1,3-galactosyltransferase)를 암호화하는 유전자를 외부로부터 도입하여 상기 유전자들이 코리네박테리움 글루타미쿰 내에서 발현되도록 형질전환되며, 코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 제공한다.
또한, 본 발명은 락토오스가 첨가된 배지에, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-테트라오스(Lacto-N-tetraose)의 생산방법을 제공한다.
한편, 본 발명의 락토-N-테트라오스(Lacto-N-tetraose)의 생산방법에 있어서, 상기 배지는, 글루코오스를 더 포함하고 있는 것이 좋다.
또한, 본 발명은 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자, 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자, 베타-1,4-갈락토오스전이효소 (β-1,4-galactosyltransferase)를 암호화하는 유전자를 외부로부터 도입하여 상기 유전자들이 코리네박테리움 글루타미쿰 내에서 발현되도록 형질전환되며, 코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 제공한다.
또한, 본 발명은 락토오스가 첨가된 배지에, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-네오테트라오스(Lacto-N-neotetraose)의 생산방법을 제공한다.
한편, 본 발명의 락토-N-네오테트라오스(Lacto-N-neotetraose)의 생산방법에 있어서, 상기 배지는, 글루코오스를 더 포함하고 있는 것이 좋다.
본 발명은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하여 종래의 대장균에 비해 안전하면서도, 고농도, 고수율, 고생산성으로 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 생산할 수 있다.
도 1은 본 발명 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주에서 락토-N-테트라오스(Lacto-N-tetraose, LNT)를 생합성하는 경로를 나타낸 그림이다.
도 2는 본 발명 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주에서 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 생합성하는 경로를 나타낸 그림이다.
도 3은 본 발명에서 전구체 물질인 UDP-N-acetylglucosamine의 생산 경로의 glmS, glmM, glmU를 과발현하도록 제조한 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주의 락토-N-트리오스Ⅱ(Lacto-N-trioseⅡ, LNTⅡ) 생산량을 비교한 결과 그래프이다.
도 4는 본 발명에서 전구체 물질인 UDP-galactose의 생산 경로의 pgm, galU, galE를 과발현하도록 제조한 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주의 LNT/LNnT 생산량(최종생산량)을 비교한 결과 그래프이다.
도 5는 본 발명에서 전구체 물질인 UDP-galactose의 생산 경로의 pgm, galU, galE를 과발현하도록 제조한 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주의 LNT/LNnT 생산량을 시간에 따라 확인한 결과 그래프이다.
모유올리고당은 면역 기능을 강화시키거나, 아이의 발달과 행동에 좋은 영향을 주는 등의 다양한 이점을 가지므로 여러 모유올리고당을 생산하기 위한 기술에 대해서는 지속적으로 연구가 이루어지고 있다. 기존 연구에서 미생물을 이용하여 모유올리고당을 생산하는 기술에 대해 연구가 이루어져 왔으며, 새로운 미생물을 이용하여 다양한 모유올리고당을 생산하는 것에 대한 필요성이 높다.
본 발명에서는 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT) 및 락토-N-테트라오스(Lacto-N-tetraose, LNT) 생산을 위해 숙주세포로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 사용하였다. 이는 기존 연구에서 주로 사용한 대장균과는 달리 GRAS (generally recognized as safe)로 인정된 균주일 뿐만 아니라, 식품첨가물인 아미노산 및 핵산의 산업적 생산에 널리 이용되고 있는 균주이다. 또한, 대장균은 소비자들에게 해로운 균이라는 인식이 강하며, 대장균의 세포막 성분이 엔도톡신으로 작용할 수 있어 생산한 모유올리고당을 분리 및 정제하는데 비용이 많이 소요된다는 한계가 있다. 또한, 대장균 세포의 경우 유당투과효소(Lactose permease)의 작용에 의해 대장균 세포가 사멸되는 현상('락토오스 킬링')이 나타나므로 사용하는 것이 다소 제한적이다. 따라서 본 발명에서 사용한 코리네박테리움 글루타미쿰은 식품 및 의약품 소재의 생산을 위해 안전하면서도 적합한 균주라 할 수 있다.
이에 본 발명은 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자, 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자, 베타-1,3-갈락토오스전이효소 (β-1,3-galactosyltransferase)를 암호화하는 유전자를 외부로부터 도입하여 상기 유전자들이 코리네박테리움 글루타미쿰 내에서 발현되도록 형질전환되며, 코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 제공한다. 또한, 본 발명은 락토오스가 첨가된 배지에, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-테트라오스(Lacto-N-tetraose)의 생산방법을 제공한다.
또한, 본 발명은 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자, 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자, 베타-1,4-갈락토오스전이효소 (β-1,4-galactosyltransferase)를 암호화하는 유전자를 외부로부터 도입하여 상기 유전자들이 코리네박테리움 글루타미쿰 내에서 발현되도록 형질전환되며, 코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 제공한다. 또한, 본 발명은 락토오스가 첨가된 배지에, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-네오테트라오스(Lacto-N-neotetraose)의 생산방법을 제공한다.
본 발명의 재조합 코리네박테리움 글루타미쿰을 이용하여 LNT 및 LNnT를 생산하는 과정은 도 1 및 도 2와 같다. 락토오스(Lactose)가 전구체 물질 중 하나인 UDP-N-아세틸글루코사민(UDP-N-acetylglucosamine, UDP-N-GlcNAc)과 만나면, 베타-1,3-N-아세틸글루코사민전이효소(β-1,3-N-acetylglucosaminyltransferase, lgtA가 이를 암호화함)가 매개하여 락토-N-트리오스Ⅱ(Lacto-N-trioseⅡ, LNTⅡ)가 생산된다. 생산된 LNTⅡ가 또다른 전구체 물질인 UDP-갈락토오스(UDP-galactose)와 만나게 되는데, 이때, 베타-1,3-갈락토오스전이효소 (β-1,3-galactosyltransferase, WbgO가 이를 암호화함)가 매개하게 되면 LNT가 생산되고(도 1), 베타-1,4-갈락토오스전이효소 (β-1,4-galactosyltransferase, lgtB가 이를 암호화함)가 매개하게 되면 LNnT가 생산된다(도 2).
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰은 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자가 발현되도록 형질전환되는데, 이는 균주 외부에 존재하는 락토오스를 균주 내부로 수송하는데 관여하는 효소이며 대장균으로부터 유래된 것을 사용하는 것이 바람직하다. 일 예로 LacY를 사용하는 것일 수 있다.
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰은 베타-1,3-N-아세틸글루코사민전이효소(β-1,3-N-acetylglucosaminyltransferase, lgtA)를 암호화하는 유전자가 발현되도록 형질전환되는데, 일 예로 네이세리아 메닌지티디스(Neisseria meningitidis) 또는 네이세리아 시네리아(Neisseria cinerea) 유래인 것일 수 있다. 더욱 바람직하게는 네이세리아 메닌지티디스(Neisseria meningitidis) M98 또는 네이세리아 시네리아(Neisseria cinerea) ATCC 14685 유래의 것을 사용하는 것이 좋다.
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰은 LNT 생산을 위해 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자가 발현되도록 형질전환되는데, 일 예로 lgtA인 것일 수 있으며 바람직하게는, 네이세리아 시네리아(Neisseria cinerea)로부터 유래한 것이 좋다. 또한, 베타-1,3-갈락토오스전이효소 (β-1,3-galactosyltransferase)를 암호화하는 유전자가 발현되도록 형질전환되는데, 일 예로 WbgO일 수 있으며 바람직하게는, 루티엘라 니트로페룸(Lutiella nitroferrum) 유래인 것일 수 있다. 더욱 바람직하게는 루티엘라 니트로페룸(Lutiella nitroferrum) ATCC BAA-1479 유래의 것을 사용하는 것이 좋다.
또한, 본 발명의 재조합 코리네박테리움 글루타미쿰은 LNnT 생산을 위해 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자가 발현되도록 형질전환되는데, 일 예로 lgtA인 것일 수 있으며 바람직하게는, 네이세리아 메닌지티디스(Neisseria meningitidis)부터 유래한 것이 좋다. 또한, 베타-1,4-갈락토오스전이효소 (β-1,4-galactosyltransferase)를 암호화하는 유전자가 발현되도록 형질전환되는데, 일 예로 lgtB일 수 있으며 바람직하게는, 네이세리아 시네리아(Neisseria cinerea)로부터 유래한 것이 좋다.
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은 코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것이 좋다.
이때, 상기 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자는 바람직하게 glmS인 것이 좋고, 상기 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자는 바람직하게 glmM인 것이 좋다. 또한, 상기 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자와 상기 UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자는 바람직하게 glmU인 것이 좋고, 이 때, 상기 glmU는 UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)/글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase) 활성을 동시에 갖는(bifunctional) 효소를 암호화하는 유전자이다(도 1 및 도 2 참고). 또한, 상기 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자는 바람직하게 pgm인 것이 좋고, 상기 UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자는 바람직하게 galU인 것이 좋으며, 상기 UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자는 바람직하게 galE인 것이 좋다. 이와 같이 코리네박테리움 글루타미쿰이 자체적으로 보유하고 있는 유전자들을 과발현시켜 LNT와 LNnT의 전구체 물질인 UDP-N-아세틸글루코사민(UDP-N-acetylglucosamine, UDP-N-GlcNAc), 락토-N-트리오스Ⅱ(Lacto-N-trioseⅡ, LNTⅡ)을 다량 생산함으로써 LNT와 LNnT의 생산성을 증대시킬 수 있게 된다.
한편, 본 발명에서 사용하는 '발현'이라는 용어는, 본 발명의 코리네박테리움 글루타미쿰 균주가 자체적으로 발현시킬 수 없는 효소를, 인위적으로 발현시키기 위해 외부 유래의 유전자를 균주 내로 도입하여 발현시키는 것을 의미하고, '과발현'이라는 용어는 본 발명의 코리네박테리움 글루타미쿰 균주가 자체적으로 해당 효소를 암호화하는 유전자를 가지고 있어, 스스로 발현시킬 수 있으나, 대량생산을 위한 목적으로 이의 발현량을 증대시키기 위해 인위적으로 해당 효소의 발현량을 증대시켜 과발현한 것을 의미한다.
한편, 본 발명의 락토-N-테트라오스(Lacto-N-tetraose) 또는 락토-N-네오테트라오스(Lacto-N-neotetraose)의 생산방법에 있어서, 상기 배지는, 글루코오스를 더 포함하고 있는 것이 좋다. 이와 같이 추가 배지 성분을 더함으로써 균주의 생육이 활발해져 더욱 높은 생산성으로 락토-N-테트라오스(Lacto-N-tetraose) 또는 락토-N-네오테트라오스(Lacto-N-neotetraose)를 생산할 수 있다.
한편, 하기 실험에 의하면, 본 발명의 재조합 코리네박테리움 글루타미쿰은 전구체 물질인 UDP-N-아세틸글루코사민(UDP-N-acetylglucosamine, UDP-N-GlcNAc)의 생산 경로의 glmS, glmM, glmU를 과발현하도록 제조함으로써, LNT/LNnT의 전구체인 LNTⅡ의 생산량을 탁월하게 증진시킬 수 있었고, 또다른 전구체물질인 UDP-갈락토오스(UDP-galactose)의 생산 경로의 pgm, galU, galE를 과발현하도록 제조함으로써, LNT/LNnT 생산량을 탁월하게 증진시킬 수 있었다. 이와 같이 본 발명의 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하여 종래의 대장균에 비해 안전하면서도, 고농도, 고수율, 고생산성으로 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 생산할 수 있다.
이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.
[실시예 1: 재조합 코리네박테리움 글루타미쿰 및 플라스미드 제작]
1. LNT와 LNnT의 생산 균주 구축
플라스미드 제작 및 락토-N-트리오스 Ⅱ(Lacto-N-triose, LNTⅡ), 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)의 생산을 위해 각각 대장균(Escherichia coli) TOP10과 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC 13032를 이용하였다.
(1) LNTⅡ 생산 플라스미드인 pAY 구축 (lgtA-lacY 발현을 위한 플라스미드 구축)
네이세리아 메닌지티디스(Neisseria meningitidis) M98로부터 두 개의 DNA 프라이머 21RBS-lgtA F, lgtA R를 이용한 PCR 반응을 통해 베타-1,3-N-아세틸글루코사민 전이효소(β-1,3-N-Acetylglucosaminyltransferase)를 암호화하는 유전자(lgtA)를 증폭하였다. 또한, 대장균 K-12 MG1655의 유전체 DNA로부터 두 개의 DNA 프라이머 RBS-lacY F, LacY R를 이용한 PCR 반응을 통해 lacY 유전자를 증폭한 후, 두 개의 DNA 프라이머 21RBS-lgtA F와 LacY R를 이용하여 오버랩 (overlap) PCR 반응을 통해 lgtA-lacY DNA 절편을 합성한 후 제한효소 EcoRI이 처리된 플라스미드 pCN013에 이를 삽입하여 pAY 플라스미드를 구축하였다.
(2) LNnT 생산 플라스미드인 pABY 구축 (lgtA-lgtB-lacY 발현을 위한 플라스미드 구축)
네이세리아 메닌지티디스(Neisseria meningitidis) M98로부터 두 개의 DNA 프라이머 lgtA_t F와 lgtA_20B R를 이용한 PCR 반응을 통해 베타-1,3-N-아세틸글루코사민 전이효소(β-1,3-N-Acetylglucosaminyltransferase)를 암호화하는 유전자(lgtA)를 증폭하였고, 네이세리아 시네리아 (Neisseria cinerea) ATCC 14685로부터 두 개의 DNA 프라이머 20_B1 F과 15_B1 R를 이용한 PCR 반응을 통해 베타-1,4-갈락토오스전이효소(β-1,4-galactosyltransferase)를 암호화하는 유전자(lgtB)를 증폭한 후, 두 개의 DNA 프라이머 lgtA_t F와 15_B1 R을 이용하여 오버랩 PCR 반응을 통해 lgtA-lgtB DNA 절편을 합성하였다. 이후, 대장균 K-12 MG1655의 유전체 DNA로부터 두 개의 DNA 프라이머 lacY_B F와 20ABY R3를 이용한 PCR 반응을 통해 lacY 유전자를 증폭한 후, 두 개의 DNA 프라이머 lgtA_t F와 20ABY R3를 이용하여 오버랩 PCR 반응을 통해 lgtA-lgtB-lacY DNA 절편을 합성한 후 제한효소 EcoRⅠ이 처리된 플라스미드 pCN013에 이를 삽입하여 pABY 플라스미드를 구축하였다.
(3) LNT 생산 플라스미드인 pAWY 구축 (lgtA-WbgO-lacY 발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC 13032로부터 두 개의 DNA 프라이머 pgk F와 pgk R을 이용한 PCR 반응을 통해 pgk 프로모터를 증폭하였다. 네이세리아 시네리아(Neisseria cinerea) ATCC 14685로부터 두 개의 DNA 프라이머 21NcA F와 NcA R을 이용한 PCR 반응을 통해 베타-1,3-N-아세틸글루코사민 전이효소(β-N-acetylglucosaminyl transferase를 암호화하는 유전자 (lgtA 즉 NclgtA; 여기서 Nc는 lgtA가 Neisseria cinerea에서 유래했음을 의미)를 증폭하였고, 루티엘라 니트로페룸(Lutiella nitroferrum) ATCC BAA-1479로부터 두 개의 DNA 프라이머 LnW F와 LnW R을 이용한 PCR 반응을 통해 베타-1,3-갈락토오스전이효소(β-1,3-galactosyltransferase)를 암호화하는 유전자(WbgO 즉 LnWbgO; Ln은 WbgO가 Lutiella nitroferrum에서 유래했음을 의미)를 증폭하였다. 대장균 K-12 MG1655의 유전체 DNA로부터 두 개의 DNA 프라이머 20ABY F3와 20ABY R3를 이용한 PCR 반응을 통해 lacY 유전자를 증폭한 후 두 개의 DNA 프라이머 pgk F와 20ABY R3을 이용하여 오버랩 PCR 반응을 통해 pgk-lgtA-WbgO-lacY (즉 pgk-NclgtA-LnWbgO-lacY; 여기서 Nc는 lgtA가 Neisseria cinerea에서 유래했음을 의미, Ln은 WbgO가 Lutiella nitroferrum에서 유래했음을 의미) DNA 절편을 합성한 후 제한효소 EcoRⅠ과 EcoRV가 처리된 pCN013 플라스미드에 이를 삽입하여 pAWY 플라스미드를 구축하였다.
2. LNT 및 LNnT의 전구체인 'UDP-N-아세틸글루코사민(UDP-N-acetylglucosamine, UDP-N-GlcNAc)' 과생산 균주 구축
LNT와 LNnT 생산 균주 구축을 위해, 전구체 물질인 'UDP-N-아세틸글루코사민(UDP-N-acetylglucosamine, UDP-N-GlcNAc)'를 과생산하는 균주를 구축하였다. 이를 위해 도 1 및 도 2와 같이 생합성 경로에 있는 glmS, glmM, glmU를 과발현시키기 위해, pK19mobsacB-tuf-glmS, pK19mobsacB-tuf-glmM, pK19mobsacB-tuf-glmU 총 3개의 integration 플라스미드를 제작하였다.
(1) pK19mobsacB-tuf-glmS 플라스미드 구축 (glmS 과발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰의 유전체 DNA로부터 3쌍의 프라이머(glmS F1, glmS R1) (glmS F2, glmS R2) (glmS F3, glmS R3)을 이용한 PCR반응을 통해 유전자 3개를 증폭한 후, 두 개의 DNA 프라이머 glmS F1, glmS R3를 이용하여 오버랩 PCR 반응을 통해 DNA절편을 합성한 후, XbaⅠ처리된 플라스미드 pK19mobsacB에 이를 삽입하여 pK19mobsacB-tuf-glmS 플라스미드를 구축하였다.
(2) pK19mobsacB-tuf-glmM 플라스미드 구축 (glmM 과발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰의 유전체 DNA로부터 3쌍의 프라이머(glmM F1, glmM R1) (glmM F2, glmM R2) (glmM F3, glmM R3)를 사용하여, 3개의 유전자를 증폭한 후, 두 개의 DNA 프라이머 glmM F1, glmM R3를 이용하여 오버랩 PCR 반응을 통해 DNA절편을 합성한 후 HindⅢ, EcoRⅠ처리된 플라스미드 pK19mobsacB에 이를 삽입하여 pK19mobsacB-tuf-glmM 플라스미드를 구축하였다.
(3) pK19mobsacB-tuf-glmU 플라스미드 구축 (glmU 과발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰의 유전체 DNA로부터 3쌍의 프라이머(glmU F1, glmU R1) (glmU F2, glmU R2) (glmU F3, glmU R3)를 사용하여, 유전자 3개를 증폭한 후, 두 개의 DNA 프라이머 glmU F1, glmU R3를 이용하여 오버랩 PCR 반응을 통해 DNA절편을 합성한 후, XbaⅠ처리된 플라스미드 pK19mobsacB에 이를 삽입하여 pK19mobsacB-tuf-glmU 플라스미드를 구축하였다.
3. LNT 및 LNnT의 전구체인 'UDP-갈락토오스(UDP-galactose)' 과생산 균주 구축
LNT 및 LNnT의 생합성을 위한 또 다른 전구체 물질인 'UDP-갈락토오스(UDP-galactose)'를 과생산하는 균주를 구축하였다. 이를 위해 도 1 및 도 2와 같이 생합성 경로에 있는 pgm, galU1, galE를 과발현시키기 위해, pK19mobsacB-tuf-pgm, pK19mobsacB-tuf-galU1, pK19mobsacB-tuf-galE 총 3개의 integration 플라스미드를 제작하였다.
(1) pK19mobsacB-tuf-pgm 플라스미드 구축 (pgm 과발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰의 유전체 DNA로부터 6개의 DNA 프라이머 (pgm F1, pgm R1), (pgm F2, pgm R2), (pgm F3, pgm R4)를 이용한 PCR 반응을 통해 유전자 3개를 증폭한 후, 두 개의 DNA 프라이머 pgm F1, pgm R4를 이용하여 오버랩 PCR 반응을 통해 DNA 절편을 합성한 후 Xba I이 처리된 플라스미드 pK19mobsacB에 이를 삽입하여 pK19mobsacB-tuf-pgm 플라스미드를 구축하였다.
(2) pK19mobsacB-tuf-galU1 플라스미드 구축 (galU 과발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰의 유전체 DNA로부터 6개의 DNA 프라이머 (galU1 F1, galU1 R1), (galU1 F2, galU1 R2), (galU1 F3, galU1 R3)를 이용한 PCR 반응을 통해 유전자 3개를 증폭한 후, 두 개의 DNA 프라이머 galU1 F1, galU1 R3를 이용하여 오버랩 PCR 반응을 통해 DNA 절편을 합성한 후 XbaⅠ이 처리된 플라스미드 pK19mobsacB에 이를 삽입하여 pK19mobsacB-tuf-galU1 플라스미드를 구축하였다.
(3) pK19mobsacB-tuf-galE 플라스미드 구축 (galE 과발현을 위한 플라스미드 구축)
코리네박테리움 글루타미쿰의 유전체 DNA로부터 6개의 DNA 프라이머 (galE F1, galE R1) (galE F2, galE R2), (galE F3, galE R3)를 이용한 PCR 반응을 통해 유전자 3개를 증폭한 후, 두 개의 DNA 프라이머 galE F1, galE R3를 이용하여 오버랩 PCR 반응을 통해 DNA 절편을 합성한 후 XbaⅠ이 처리된 플라스미드 pK19mobsacB에 이를 삽입하여 pK19mobsacB-tuf-galE 플라스미드를 구축하였다.
한편, 본 실시예에서 사용한 프라이머(primer), 균주(strain), 플라스미드(plasmid), 유전자 서열은 하기 표 1 내지 5에 기재하였다.
프라이머
프라이머 이름 서열 (5'->3')
21RBS-lgtA F TCCAGGAGGACATACAACCGAGAAGGAGGGTTATTAGATGCCGTCTGAAGCCT
lgtA R CCTTTATGCGCAACGTTAAATCTCCTGTTCTTTCCCTGCC
RBS-lacY F AACAGGAGATTTAACGTTGCGCATAAAGGAGCATCTACAATGTACTATTTAAAAAACA
LacY R TTGTCGACGGAGCTCGAATTCTTTAAGCGACTTCATTCACCTGACG
lgtA_t F TCCAGGAGGACATACAACCGAGAAGGAGGGTTATTAGtctagaGATGCAGCCCCTAGTCAGC
lgtA_20B R CATTAATAATCCTCCTTCTGTCAACGGTTTTTCAACAACCGG
20_B1 F TGACAGAAGGAGGATTATTAATGGAAAACCGTATTATCAG
15_B1 R ATGCTCCTTTATGCGCAACGCCGCGGTTACCGGAACGGTATGATAA
lacY_B F TTATCATACCGTTCCGGTAACCGCGGCGTTGCGCATAAAGGAGCATCTACAATGTACTATTTAAAAAACACAAACTTTTG
20ABY R3 AAGCTTGTCGACGGAGCTCGTTAAGCGACTTCATTCACCT
pgk F GCAAACTATGATGGGTCTTGTTGTTGGATTCTAGATAACGTGGGCGATCGATG
pgk R GGGGCTGCATCTAATAACCCTCCTTCTGATATCGCCGTACTCCTTGGAGAT
21NcA F ATCAGAAGGAGGGTTATTAGATGCAGCCCCTAGTCAG
NcA R ATGCTCCTTTCCGAAACTCCGTATACTCAACGGTTTTTCAACAACCG
LnW F TTCGGAAAGGAGCATCTAGGATGGATAAGATTAAACAAGGATCTGC
LnW R CTTTATGCGCAACGGGATCCTTACTTTCTCCATAGCGTCACC
20ABY F3 CGTTGCGCATAAAGGAGCATCTACAATGTACTATTTAAAAAACAC
프라이머
프라이머 이름 서열 (5'->3')
glmS F1 TGCATGCCTGCAGGTCGACTTCACGAGCCCCTCATTGCCT
glmS R1 CATTCGCAGGGTAACGGCCAGACTTTACAACAACTTTTTC
glmS F2 GAAAAAGTTGTTGTAAAGTCTGGCCGTTACCCTGCGAATG
glmS R2 ACAATTCCACACATGCGCATTGTATGTCCTCCTGGACTTC
glmS F3 GAAGTCCAGGAGGACATACAATGCGCATGTGTGGAATTGT
glmS R3 GCTCGGTACCCGGGGATCCTAAAGCACCCTCAAGGCGCTG
glmM F1 CTATGACCATGATTACGCCACTCCGGCGAGTTCAAG
glmM R1 CATTCGCAGGGTAACGGCCAGCGATTAATTATGCACGGC
glmM F2 AGGCCGTGCATAATTAATCGCTGGCCGTTACCCTGC
glmM R2 GTTCCAAATAGTCGAGTCATTGTATGTCCTCCTGGACTT
glmM F3 GAAGTCCAGGAGGACATACAATGACTCGACTATTTGGAACTG
glmM R3 TTGTAAAACGACGGCCAGTGTTCAGGTGCTCTAGGTAACGG
glmU F1 TGCATGCCTGCAGGTCGACTCTCTGGAATCTGGTCGGATC
glmU R1 CATTCGCAGGGTAACGGCCAGATTATCTCAAATCCTTAAA
glmU F2 TTTAAGGATTTGAGATAATCTGGCCGTTACCCTGCGAATG
glmU R2 GAGAAATCGCTTGCGCTCAATGTATGTCCTCCTGGACTTC
glmU F3 GAAGTCCAGGAGGACATACATTGAGCGCAAGCGATTTCTC
glmU R3 GCTCGGTACCCGGGGATCCTTGCTCAACGATGGCGGTGAC
pgm F1 TGCATGCCTGCAGGTCGACTACACGCCAGGGTATTCGCCG
pgm R1 CATTCGCAGGGTAACGGCCAGTTTGCTCCTTAAAACACCA
pgm F2 TGGTGTTTTAAGGAGCAAACTGGCCGTTACCCTGCGAATG
pgm R2 CCGGCGCGTTCATGTGCCATTGTATGTCCTCCTGGACTTC
pgm F3 GAAGTCCAGGAGGACATACAATGGCACATGAACGCGCCGG
pgm R4 GCTCGGTACCCGGGGATCCTTTGTATTTGAATCCGCCATC
galU1 F1 TGCATGCCTGCAGGTCGACTTCGTAGAAACCGCCACCTTT
galU1 R1 CATTCGCAGGGTAACGGCCAGGAACCAAGAGTACCTGCCC
galU1 F2 GGGCAGGTACTCTTGGTTCCTGGCCGTTACCCTGCGAATG
galu1 R2 TCATCGATAGGCAAACTCATTGTATGTCCTCCTGGACTTC
galU1 F3 GAAGTCCAGGAGGACATACAATGAGTTTGCCTATCGATGA
galU1 R3 GCTCGGTACCCGGGGATCCTCAAAGGACAGATCCACCG
galE F1 TGCATGCCTGCAGGTCGACTCTCCAGAGGGACGTTCCCTC
galE R1 CATTCGCAGGGTAACGGCCACGTGTGTTAGCCCTCAACCT
galE F2 AGGTTGAGGGCTAACACACGTGGCCGTTACCCTGCGAATG
galE R2 CCGGTAACCAGAAGCTTCATTGTATGTCCTCCTGGACTTC
galE F3 GAAGTCCAGGAGGACATACAATGAAGCTTCTGGTTACCGG
galE R3 GCTCGGTACCCGGGGATCCTAAGTAGCGCAAGCTGGTTGC
균주
균주 관련된 특징
E. coli TOP10 F, mrcA △(mrr-hsdRMS-mcrBC)φ80lacZ△M15
lacX74 recA1 araD139△(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG
E.Coli K-12 MG1655 F-, lambda-, rph-1
C. glutamicum Wild-type strain, ATCC13032
C. glutamicum P Ptuf-pgm
C. glutamicum U Ptuf-galU1
C. glutamicum E Ptuf-galE
C. glutamicum PU Ptuf-pgm, Ptuf-galU1
C. glutamicum PE Ptuf-pgm, Ptuf-galE
C. glutamicum UE Ptuf-galU1, Ptuf-galE
C. glutamicum PUE Ptuf-pgm, Ptuf-galU1, Ptuf-galE
C. glutamicum S ATCC13032 Ptuf-glmS
C. glutamicum M ATCC13032 Ptuf-glmM
C. glutamicum U ATCC13032 Ptuf-glmU
C. glutamicum SM ATCC13032 Ptuf-glmS Ptuf-glmM
C. glutamicum SU ATCC13032 Ptuf-glmS Ptuf-glmU
C. glutamicum MU ATCC13032 Ptuf-glmM Ptuf-glmU
C. glutamicum SMU ATCC13032 Ptuf-glmS Ptuf-glmM Ptuf-glmU
플라스미드
플라스미드 관련된 특징
pCN013 KanR, pUC origin of replication, Tuf(p), T7 terminator, 6xHis affinity tag
pAY pCN013 + 21RBS-lgtA-LacYA
pAWY pCN013 + lgtA-WbgO-lacY
pABY pCN013 + lgtA-lgtB-lacY
pKmobsacB KanR, mobilizable E.coli vector for the construction of insertion and deletion mutants of C.glutamicum (oriV, sacB, lacZ)
pK19mobsacB-tuf-glmS pKmobsacB + 500base pair upstream of glmS gene-Tuf(p) glmS 500base pair
pK19mobsacB-tuf-glmM pKmobsacB + 500base pair upstream of glmM gene-Tuf(p)-glmM 500base pair
pK19mobsacB-tuf-glmU pKmobsacB + 500base pair upstream of glmU gene-Tuf(p)-glmU 500base pair
pK19mobsacB-tuf-pgm pKmobsacB + 500base pair upstream of pgm gene-Tuf(p)-pgm 500base pair
pK19mobsacB-tuf-GalU1 pKmobsacB + 500base pair upstream of GalU1 gene-Tuf(p)-GalU1 500base pair
pK19mobsacB-tuf-GalE pKmobsacB + 500base pair upstream of GalE gene-Tuf(p)-GalE 500base pair
유전자 서열
유전자명 서열번호 코리네박테리움 글루타미쿰에서 발현되도록 코돈 최적화
lgtA (β-1,3-N-acetylglucosaminyltransferase)
- Neisseria cinerea ATCC 14685
서열번호 1 X
lgtA (β-1,3-N-acetylglucosaminyltransferase)
- Neisseria meningitidis M98
서열번호 2 X
lgtB (β-1,4-galactosyltransferase)
- Neisseria cinerea ATCC 14685
서열번호 3 X
WbgO(β-1,3-galactosyltransferase)
- Lutiella nitroferrum ATCC BAA-1479
서열번호 4 X
lacY (lactose permease) 서열번호 5 X
[실시예 2: 재조합 코리네박테리움 글루타미쿰의 배양조건 및 방법]
종균배양에는 적절한 항생제 (kanamycin 25 μg/mL)가 포함된 4 mL BHI(Brain Heart Infusion) 배지가 담긴 유리 실험관을 이용하였고, 온도는 30℃, 교반속도 250 rpm으로 유지하며 12시간 배양하였다.
본 배양은 플라스크 배양을 진행하였으며 적절한 항생제 (kanamycin 25 μg/mL)가 포함된 40 mL CGXII (Urea 5 g/L, MgSO4 0.25 g/L, MOPS 42 g/L, Potassium phosphate monobasic 1 g/L, Potassium phosphate dibasic 1 g/L, CaCl2 10 mg/L, Biotin 0.2 mg/L, Protocatechuic acid 30 mg/L, FeSO47H2O 10 mg/L, MnSO4H2O 10 mg/L, ZnSO47H2O 1 mg/L, CuSO4 0.2 mg/L, NiCl26H2O 0.02 mg/L, Glucose 20 g/L, Lactose 5 g/L, pH 7.0)배지를 사용하였고, 온도는 25℃, 교반속도는 200 rpm으로 유지하며 72시간 배양하였다.
[실험예 1: 세포, 대사산물의 농도 결정 및 생산성 비교]
1) 세포, 대사산물의 농도 결정 및 생산성 비교 실험방법
LNT, LNnT, LNTⅡ 생산성 비교를 실험하기 위해, 항생제 (kanamycin 25 μg/mL)가 포함된 4 mL BHI(Brain Heart Infusion) 배지가 담긴 유리 실험관을 이용하였고, 온도는 30℃, 교반속도 250 rpm으로 유지하며 12시간 배양 후, kanamycin 25 μg/mL가 포함된 40 mL CGXII 배지가 포함된 진탕 플라스크에, 초기 O.D(optical density) 0.3에 맞추어 접종하였다. 배양 온도는 25℃, 교반속도는 200 rpm으로 유지하며 72시간 배양하였다. 72시간 배양 후, 1 ml의 배양액을 1.7 ml 튜브에 분주 후 95℃에서 끓여 주었다. 끓인 배양액을 15,000 rpm , 1분 원심분리 후, 상등액을 100배 희석 한 후에 HPLC를 이용하여 농도를 분석하였다. LNT, LNnT, LNTⅡ, Lactose, Lactate, Glucose 및 Acetic acid의 농도는 'Carbohydrate Analysis column (Aminex HPX87H column, Bio-rad)' 및 'RI (refractive index)' 검출기가 장착된 HPLC (high performance liquid chromatography) (Agilent 1260, USA)를 이용하여 측정하였다. 60℃에서 가열된 컬럼을 적용하여 20 ㎕의 배양 배지를 분석하였다. 0.6 mL/min 유속으로 5 mM의 H2SO4 용액을 이동상으로 사용하였다.
2) LNTⅡ의 생산성 비교
LNT/LNnT 생산을 위해 전구체 물질인 UDP-N-acetylglucosamine의 생산 경로의 glmS, glmM, glmU를 과발현하도록 제조한 상기 실시예 1의 균주를 사용하여 상기 생산성 비교 실험 방법을 이용하여 LNT/ LNnT의 전구체인 LNTⅡ의 생산량을 비교하였다.
그 결과, 도 3과 같이 UDP-N-acetylglucosamine의 생산 경로의 glmS, glmM, glmU를 모두 과발현시킨 glmSMU O/E에서 LNTⅡ의 생산량이 탁월하게 증진된 것을 확인할 수 있었다.
3) LNT 및 LNnT의 생산성 비교
LNT/LNnT 생산을 위해 전구체 물질인 UDP-galactose의 생산 경로의 pgm, galU, galE를 과발현하도록 제조한 상기 실시예 1의 균주를 사용하여 상기 생산성 비교 실험 방법을 이용하여 LNT/ LNnT의 생산량을 비교하였다(PU O/E: pgm GalU O/E; PE O/E: pgm GalE O/E; UE O/E: GalU GalE O/E; PUE O/E: pgm GalU GalE O/E).
그 결과, 도 4와 같이 LNT의 생산량에 있어서, pgm, galU, galE를 모두 과발현시킬 때(PUE O/E) 그 생산량(최종생산량)이 가장 증진된 것을 확인할 수 있었고, LNnT의 생산량에 있어서, pgm, galU를 과발현시킨 것(PU O/E)이 pgm, galU, galE를 모두 과발현시킬 때(PUE O/E)보다도 그 생산량(최종생산량)이 가장 증진된 것을 확인할 수 있었다.
한편, 이를 시간에 따른 LNT, LNnT 생산량의 변화로 확인하였을 때도 도 5와 같이 LNT의 생산량에 있어서, pgm, galU, galE를 모두 과발현시킬 때(PUE O/E) 그 생산량이 가장 증진되는 양상임을 확인할 수 있었고, LNnT의 생산량에 있어서, pgm, galU를 과발현시킨 것(PU O/E)이 pgm, galU, galE를 모두 과발현시킬 때(PUE O/E)보다도 그 생산량이 가장 증진되는 양상임을 확인할 수 있었다.

Claims (6)

  1. 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자, 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자, 베타-1,3-갈락토오스전이효소 (β-1,3-galactosyltransferase)를 암호화하는 유전자를 외부로부터 도입하여 상기 유전자들이 코리네박테리움 글루타미쿰 내에서 발현되도록 형질전환되며,
    코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum).
  2. 락토오스 퍼미아제 (lactose permease)를 암호화하는 유전자, 베타-1,3-N-아세틸글루코사민전이효소 (β-1,3-N-acetylglucosaminyltransferase)를 암호화하는 유전자, 베타-1,4-갈락토오스전이효소 (β-1,4-galactosyltransferase)를 암호화하는 유전자를 외부로부터 도입하여 상기 유전자들이 코리네박테리움 글루타미쿰 내에서 발현되도록 형질전환되며,
    코리네박테리움이 자체적으로 보유하고 있는 유전자인 글루타민-프록토오스-6-포스페이트아미노트랜스퍼라제(Glutamine-fructose-6-phosphate aminotransferase)를 암호화하는 유전자, 포스포글루코사민 뮤타아제 (Phosphoglucosamine mutase)를 암호화하는 유전자, 글루코사민-1-포스페이트 N-아세틸트랜스퍼라아제(glucosamine-1-phosphate N-acetyltransferase)를 암호화하는 유전자, UDP-N-아세틸글루코사민 피로포스포릴라제(UDP-N-acetylglucosamine pyrophosphorylase)를 암호화하는 유전자, 포스포글루코뮤타아제(phosphoglucomutase)를 암호화하는 유전자, UTP-글루코스-1-포스페이트 우리딜릴트랜스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase)를 암호화하는 유전자, UDP-글루코스-4-에피메라아제(UDP-glucose-4-epimerase)를 암호화하는 유전자 중 선택되는 어느 하나 이상의 유전자가 과발현되도록 형질전환되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum).
  3. 락토오스가 첨가된 배지에, 제1항의 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-테트라오스(Lacto-N-tetraose)의 생산방법.
  4. 제3항에 있어서,
    상기 배지는,
    글루코오스를 더 포함하고 있는 것을 특징으로 하는 락토-N-테트라오스(Lacto-N-tetraose)의 생산방법.
  5. 락토오스가 첨가된 배지에, 제2항의 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-네오테트라오스(Lacto-N-neotetraose)의 생산방법.
  6. 제5항에 있어서,
    상기 배지는,
    글루코오스를 더 포함하고 있는 것을 특징으로 하는 락토-N-네오테트라오스(Lacto-N-neotetraose)의 생산방법.
PCT/KR2023/006403 2022-05-11 2023-05-11 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법 WO2023219437A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220057992 2022-05-11
KR10-2022-0057992 2022-05-11
KR1020230060393A KR102645729B1 (ko) 2022-05-11 2023-05-10 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법
KR10-2023-0060393 2023-05-10

Publications (1)

Publication Number Publication Date
WO2023219437A1 true WO2023219437A1 (ko) 2023-11-16

Family

ID=88730732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006403 WO2023219437A1 (ko) 2022-05-11 2023-05-11 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법

Country Status (2)

Country Link
KR (1) KR20230159686A (ko)
WO (1) WO2023219437A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170028438A (ko) * 2014-07-14 2017-03-13 바스프 에스이 Lnt, lnnt 및 이들의 푸코실화 유도체의 생명공학적 생산
KR20180043297A (ko) * 2015-09-12 2018-04-27 젠와인 바이오테크놀로지 게엠바하 조작된 내수송/외수송을 가진 미생물 숙주에서 모유 올리고당류의 생산
WO2021077580A1 (zh) * 2019-10-24 2021-04-29 华熙生物科技股份有限公司 一种高效合成高纯度透明质酸及其寡聚糖的重组谷氨酸棒状杆菌

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200096771A (ko) 2017-12-08 2020-08-13 젠와인 바이오테크놀로지 게엠바하 분무건조된 락토-n-푸코펜타오스

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170028438A (ko) * 2014-07-14 2017-03-13 바스프 에스이 Lnt, lnnt 및 이들의 푸코실화 유도체의 생명공학적 생산
KR20180043297A (ko) * 2015-09-12 2018-04-27 젠와인 바이오테크놀로지 게엠바하 조작된 내수송/외수송을 가진 미생물 숙주에서 모유 올리고당류의 생산
WO2021077580A1 (zh) * 2019-10-24 2021-04-29 华熙生物科技股份有限公司 一种高效合成高纯度透明质酸及其寡聚糖的重组谷氨酸棒状杆菌

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO GUOCONG, ZHU YINGYING, MENG JIAWEI, WAN LI, ZHANG WENLI, MU WANMENG: "A Novel β-1,4-Galactosyltransferase from Histophilus somni Enables Efficient Biosynthesis of Lacto- N -Neotetraose via Both Enzymatic and Cell Factory Approaches", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 69, no. 20, 26 May 2021 (2021-05-26), US , pages 5683 - 5690, XP093106777, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.1c01419 *
ZHU YINGYING, LI ZEYU, LUO GUOCONG, WU HAO, ZHANG WENLI, MU WANMENG: "Metabolic Engineering of Escherichia coli for Efficient Biosynthesis of Lacto- N -tetraose Using a Novel β-1,3-Galactosyltransferase from Pseudogulbenkiania ferrooxidans", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 69, no. 38, 29 September 2021 (2021-09-29), US , pages 11342 - 11349, XP093033459, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.1c04059 *

Also Published As

Publication number Publication date
KR20230159686A (ko) 2023-11-21

Similar Documents

Publication Publication Date Title
US20210277435A1 (en) Production of human milk oligosaccharides in microbial hosts with engineered import / export
AU2018296557B2 (en) Fucosyltransferases and their use in producing fucosylated oligosaccharides
EP2927316B1 (en) Total fermentation of oligosaccharides
WO2017188684A1 (ko) 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법
EP3575404B1 (en) Fermentative production of sialylated saccharides
JP2024010049A (ja) シアリルトランスフェラーゼ及びシアリル化オリゴ糖の生産におけるその使用
EP3702468A1 (en) Fermentative production of carbohydrates by microbial cells utilizing a mixed feedstock
WO2019194410A1 (ko) 슈도페도박터 살탄스 유래 푸코오스 전이효소를 이용한 2'-푸코실락토오스의 생산방법
KR20210057734A (ko) 혼합 공급원료를 사용하는 완전발효에 의한 올리고사카라이드의 발효생산
US20230304052A1 (en) Improved Export of Oligosaccharides From Bacterial Cells
WO2023219437A1 (ko) 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법
KR102645729B1 (ko) 코리네박테리움 글루타미쿰을 이용한 락토-n-테트라오스 및 락토-n-네오테트라오스의 생산 방법
WO2018194411A1 (ko) 코리네박테리움 글루타미쿰을 이용한 3'-푸코실락토오스의 생산방법
JP2023554526A (ja) 6’-シアリルラクトースの生産のためのシアリルトランスフェラーゼ
EP3772539A1 (en) Sialyltransferases for the production of 6'-sialyllactose
WO2024128827A1 (ko) 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법
RU2809122C2 (ru) Ферментативная продукция углеводов микробными клетками с использованием смешанного сырья
RU2818835C2 (ru) Фукозилтрансферазы и их применение для получения фукозилированных олигосахаридов
DK202200591A1 (en) New sialyltransferases for in vivo synthesis of lst-c
CN115803443A (zh) 寡糖的制造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803860

Country of ref document: EP

Kind code of ref document: A1