WO2024128827A1 - 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법 - Google Patents

코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법 Download PDF

Info

Publication number
WO2024128827A1
WO2024128827A1 PCT/KR2023/020649 KR2023020649W WO2024128827A1 WO 2024128827 A1 WO2024128827 A1 WO 2024128827A1 KR 2023020649 W KR2023020649 W KR 2023020649W WO 2024128827 A1 WO2024128827 A1 WO 2024128827A1
Authority
WO
WIPO (PCT)
Prior art keywords
corynebacterium glutamicum
lnfp
lacto
fucopentaose
lnt
Prior art date
Application number
PCT/KR2023/020649
Other languages
English (en)
French (fr)
Inventor
신철수
윤종원
송영하
유영선
강수진
최창윤
Original Assignee
(주)에이피테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230180990A external-priority patent/KR20240095037A/ko
Application filed by (주)에이피테크놀로지 filed Critical (주)에이피테크놀로지
Publication of WO2024128827A1 publication Critical patent/WO2024128827A1/ko

Links

Images

Definitions

  • the present invention relates to a method for producing Lacto-N-fucopentaose (LNFP) using Corynebacterium glutamicum, and more specifically, to increase the productivity of LNFP using Corynebacterium glue.
  • LNFP Lacto-N-fucopentaose
  • Genes introduced from outside are expressed within Corynebacterium glutamicum , and recombinant Corynebacterium glutamicum that has been transformed to overexpress genes possessed by Corynebacterium glutamicum is used, but lactochemical -N-tetraose (Lacto-N-tetraose, LNT) or Lacto-N-neotetraose (LNnT) is used as a substrate to react with fucosylation transferase such as lactose in the culture medium to produce by-products.
  • This relates to a method of producing high-purity LNFP while increasing the efficiency of LNFP production by reducing
  • HMOs Human milk oligosaccharides
  • human milk oligosaccharides are oligosaccharides contained in breast milk and are the third most abundant component in breast milk after lactose and fat. There are about 200 different types of HMO, and representative examples of human milk oligosaccharides include 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL).
  • Lacto-N-triose II Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), lacto -N-fucopentaose (Lacto-N-fucopentaose, LNFP), Lacto-N-neofucopentaose, Lacto-N-hexaose (LNH), Lacto- These include Lacto-N-neohexaose (LNnH), 6'-galactosylactose, and 3'-galactosylactose.
  • HMO is essential for newborn intestinal development and early microbiome formation and growth, and forms a healthy microbiome by inhibiting the growth of harmful bacteria. In addition, it activates the immune system, reduces allergic reactions, childhood obesity, diabetes, and atopy, strengthens intestinal health, reduces the incidence of infectious diarrhea and respiratory infectious diseases, helps with brain development, and improves learning and memory. It has many different healthy benefits, including:
  • HMOs Depending on the benefits of HMOs, interest in technologies for producing various HMOs is increasing. They can be extracted from human breast milk or cow milk, but this has the problem of being unethical, difficult to obtain in large quantities, and difficult to obtain satisfactory purity. There is. In addition, it can be synthesized through enzymatic or chemical methods, but has limitations such as the use of toxic solvents and high unit cost. Accordingly, research has recently been conducted on producing HMO using microorganisms as a safe method at low cost, but most of the methods are using recombinant E. coli.
  • E. coli is not actually a pathogen, it is strongly recognized by consumers as a harmful bacteria, and the cell membrane components of E. coli can act as endotoxin, so it costs a lot to separate and purify the produced human milk oligosaccharides, so there is a problem that their use is somewhat limited. there is. Accordingly, there is a continued need for technologies using new microorganisms to produce various HMOs safely and with high efficiency.
  • the present invention uses Corynebacterium glutamicum ( Corynebacterium glutamicum ), which is safer than E. coli, as a host cell to produce Lacto-N-fucopentaose (LNFP), one of the types of breast milk oligosaccharides. , we seek to develop and provide a method for producing LNFP at high concentration, high yield, and high productivity.
  • Corynebacterium glutamicum Corynebacterium glutamicum
  • LNFP Lacto-N-fucopentaose
  • the present invention is transformed to express fucosyltransferase and to express GDP-D-mannose-4,6-dehydratase. Transformed to express GDP-L-fucose synthase, and transformed to express Lacto-N-tetraose (LNT) transporter. Lacto-N-fucopentaose is characterized by possessing phosphomannomutase and GTP-mannose-1-phosphate guanylyltransferase. -N-fucopentaose, LNFP) recombinant Corynebacterium glutamicum ( Corynebacterium glutamicum ) production is provided.
  • the recombinant Corynebacterium glutamicum of the present invention is preferably transformed to overexpress phosphomannomutase. It may have been transformed to overexpress GTP-mannose-1-phosphate guanylyltransferase.
  • the present invention is a method of culturing the recombinant Corynebacterium glutamicum in a medium supplemented with lacto-N-tetraose (LNT).
  • LNT lacto-N-tetraose
  • LNFP lacto-N-fucopentaose
  • the medium preferably further contains glucose.
  • the present invention uses Corynebacterium glutamicum as a host cell to produce lacto-N-fucopentaose (LNFP) at high concentration, high yield, and high productivity while being safer than E. coli. You can.
  • LNFP lacto-N-fucopentaose
  • Figure 1 shows the recombinant Corynebacterium glutamicum expressing lacto-N-tetraose (Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) of the present invention.
  • Lacto-N-fucopentaose This is a schematic diagram showing the biosynthesis pathway of lacto-N-fucopentaose (Lacto-N-fucopentaose, LNFP).
  • FIG. 2 is a diagram showing LNFP (LNFP I, LNFP V, LNFP VI) that can be biosynthesized by fucosylation of LNT and LNnT of the present invention by fucosyltransferase.
  • Figure 3 is a chromatogram of LNFP standard material analyzed using HPAEC-PAD/ICS-6000.
  • Figure 4 is a chromatogram analyzing LNFP in the culture of recombinant Corynebacterium glutamicum into which the LNT transporter of the present invention was introduced and fucosyltransferase was transformed ((a): Recombinant Corynebacterium glutamicum Analysis of culture broth of Bacterium glutamicum (b): LNFP V standard).
  • HMOs Human milk oligosaccharides
  • Bifidobacterium longum subsp. infantis Bifidobacterium longum subsp. infantis
  • a metabolic pathway was introduced to produce intracellular GDP-L-fucose, and a fucose transferase capable of delivering GDP-L-fucose to LNT or LNnT was introduced from the outside.
  • the present invention is transformed to express fucosyltransferase, and GDP-D-mannose-4,6-dehydratase (GDP-D-mannose-4,6-dehydratase, also known as 'Gmd') is transformed to express GDP-L-fucose synthase (GDP-L-fucose synthase, also called 'WcaG', hereinafter the same), and is transformed to express lacto-N-tetraose (Lacto-N-tetraose) -N-tetraose, LNT) transporter is transformed to express, phosphomannomutase (Phosphomannomutase, also called 'ManB', hereinafter the same) and GTP-mannose-1-phosphate guanyltransferase (GTP) Recombinant Corynebacterium glutamicum for producing lacto-N-fucopentaose (LNFP), characterized by possess
  • LNFP I can be produced by using ⁇ -1,2-fucosyltransferase as the fucose transferase, and ⁇ -1,3-fucose transferase LNFP V can be produced using ( ⁇ -1,3-fucosyltransferase).
  • recombinant Corynebacterium was constructed by introducing an LNT influx transporter and an LNnT influx transporter, respectively, through the following examples and experimental examples, and then LNT or LNnT was used as a substrate to produce LNFPs (LNFP I, The production of LNFP V or LNFP VI) was attempted.
  • LNFP VI was not produced.
  • LNFP VI was not produced in both cases where the LNnT transporter genes hmoABC or hmoABC2 were introduced, respectively. It was inferred that this was caused by the failure of LNnT to enter the bacterial cell despite the introduction of the transporter gene hmoABC or hmoABC2.
  • the LNT influx transporter is not limited to any one known in the art, but gltABC derived from Bifidobacterium longum infantis is preferably used.
  • the recombinant Corynebacterium glutamicum of the present invention is preferably transformed to overexpress phosphomannomutase. It may have been transformed to overexpress GTP-mannose-1-phosphate guanylyltransferase.
  • the term 'expression' used in the present invention refers to expression by introducing an external gene into the strain to artificially express an enzyme that the Corynebacterium glutamicum strain of the present invention cannot express on its own.
  • the term 'overexpression' refers to the fact that the Corynebacterium glutamicum strain of the present invention has its own gene encoding the enzyme and can express it on its own, but for the purpose of mass production, its expression level is This means that the enzyme is overexpressed by artificially increasing its expression level in order to increase .
  • the present invention is a method of culturing the recombinant Corynebacterium glutamicum in a medium supplemented with lacto-N-tetraose (LNT).
  • LNT lacto-N-tetraose
  • LNFP lacto-N-fucopentaose
  • the medium preferably further contains glucose.
  • the growth of the strain becomes more active and LNFP can be produced with higher productivity.
  • cell growth can be further increased and LNFP can be produced with high purity, high yield, and high productivity.
  • Detailed local techniques related to fed-batch culture can be made using known techniques in the art, so description thereof will be omitted.
  • the recombinant Corynebacterium glutamicum for producing lacto-N-fucopentaose (LNFP) of the present invention is a recombinant strain into which an LNT transporter has been introduced. It was produced, and it was confirmed that LNFP (LNFP I, LNFP V) was produced.
  • Tables 1 to 3 below show the strains, plasmids, primers, and gene information used in the examples and experimental examples of the present invention.
  • Example 1 Recombinant Corynebacterium glutamicum (Lacto-N-tetraose (LNT))-specific transporter introduced Corynebacterium glutamicum ) produce
  • the genome of Bifidobacterium longum infantis ATCC15697 (Blon_2175, Blon_2176, Blon_2177 (gltC, gltB, gltA) from the genome was combined with the Corynebacterium glutamicum promoter, Ptuf, and the gene expression cassette was amplified by PCR to A recombinant Corynebacterium glutamicum introduced with a transporter capable of transporting LNT into Corynebacterium glutamicum by expressing it in Corynebacterium glutamicum was produced.
  • the tuf promoter (Ptuf) from Corynebacterium glutamicum, gltABC from Bifidobacterium longum infantis ATCC 15697, and his6-T7 terminator were cloned from three sets of primers (F_linker_tuf, R_tuf-gltA; F_glt, R_glt; F_3033, After amplifying each gene with (F_T7ter), the first overlap PCR was performed with primers 'F_linker_tuf' and 'R_glt' using the amplified promoter (Ptuf) and glt template, and the first amplification and his-T7 terminator and 'F_linker_tuf' were obtained. A second overlap PCR was performed with ' and 'R_T7ter'.
  • the amplified Ptuf-gltABC-his6 T7terminator DNA template was designed to introduce NCgl2911 from Corynebacterium glutamicum ATCC 13032 into the knock-out position at the NCgl2392 N-terminal and C-terminus.
  • primers 'F-pK19-NCgl2911-1' and 'R-pK19-NCgl2911-2' primers 'F-pK19-NCgl2911-1' and 'R-pK19-NCgl2911-4'
  • primers 'F-pK19-NCgl2911-1' and 'R-pK19-NCgl2911-' were used using the two amplified templates.
  • 4' overlap PCR was performed to construct the 'pK19mobsacB-NCgl2911' vector.
  • the amplified Ptuf-glt-his6 T7terminator DNA template was inserted into the pk19mobsacB-NCgl2911 vector cut with the restriction enzyme NotI to construct the pk19mobsacB-Ptuf-gltABC plasmid, and the plasmid was transformed into Corynebacterium glutamicum ATCC 13032. After a second crossover process, the Ptuf-gltABC-his6 T7terminator gene cassette was inserted into the chromosome.
  • Example 2 Recombinant Corynebacterium glutamicum (Lacto-N-neotetraose (LNnT)-specific transporter introduced Corynebacterium glutamicum ) produce]
  • the tuf promoter (Ptuf) from Corynebacterium glutamicum, hmoABC from Bifidobacterium longum infantis ATCC 15697, and his6-T7 terminator were prepared using three sets of primers (F_linker_tuf, R_tuf-gltA; F_hmo, R_hmo; F_3033, After amplifying each gene with (F_T7ter), the first overlap PCR was performed with primers 'F_linker_tuf' and 'R_hmo' using the amplified promoter (Ptuf) and hmo template, and the first amplification was obtained using the his-T7 terminator and 'F_linker_tuf'. A second overlap PCR was performed with ' and 'R_T7ter'.
  • the amplified Ptuf-hmoABC-his6 T7terminator DNA template was designed to introduce NCgl2610 from Corynebacterium glutamicum ATCC 13032 into the knock-out position at the NCgl2610 N-terminal and C-terminus.
  • primers 'F-pK19-NCgl2610-1' and 'R-pK19-NCgl2610-2' primers 'F-pK19-NCgl2610-1' and 'R-pK19-NCgl2610-2'
  • primers 'F-pK19-NCgl2610-1' and 'R-pK19-NCgl2610-' were used using the two amplified templates.
  • 4' overlap PCR was performed to construct the 'pK19mobsacB-NCgl2610' vector.
  • the amplified Ptuf-hmoABC-his6 T7terminator DNA template was inserted into the pk19mobsacB_deletion_NCgl2610 vector cut with the restriction enzyme NotI to construct the pk19mobsacB-Ptuf-hmoABC plasmid.
  • the plasmid was transformed into Corynebacterium glutamicum ATCC 13032, and the second Through a crossover process, the Ptuf-hmo ABC -his6 T7terminator gene cassette was inserted into the chromosome.
  • the tuf promoter (Ptuf) from Corynebacterium glutamicum, hmoABC2 from Bifidobacterium longum infantis ATCC 15697, and the his6-T7 terminator were synthesized using three sets of primers (F_linker_tuf, R_tuf-gltA; F_hmo, R_hmo; F_3033, After amplifying each gene with (F_T7ter), the first overlap PCR was performed with primers 'F_linker_tuf' and 'R_hmo2' using the amplified promoter (Ptuf) and hmo2 template, and the first amplification was performed using the his-T7 terminator and 'F_linker_tuf'. A second overlap PCR was performed with ' and 'R_T7ter'.
  • the amplified Ptuf-hmoABC2-his6 T7terminator DNA template was designed to introduce NCgl2610 from Corynebacterium glutamicum ATCC 13032 into the knock-out position at the NCgl2610 N-terminal and C-terminus.
  • primers 'F-pK19-NCgl2610-1' and 'R-pK19-NCgl2610-2' primers 'F-pK19-NCgl2610-1' and 'R-pK19-NCgl2610-2'
  • primers 'F-pK19-NCgl2610-1' and 'R-pK19-NCgl2610-' were used using the two amplified templates.
  • 4' overlap PCR was performed to construct the 'pK19mobsacB-NCgl2610' vector.
  • the amplified Ptuf-hmoABC2-his6 T7terminator DNA template was inserted into the pk19mobsacB_deletion_NCgl2610 vector cut with the restriction enzyme NotI to construct the pk19mobsacB-Ptuf-hmoABC2 plasmid.
  • the plasmid was transformed into Corynebacterium glutamicum ATCC 13032, and the second Through a crossover process, the Ptuf-hmoABC2-his6 T7terminator gene cassette was inserted into the chromosome.
  • the production pathway of GDP-L-fucose was introduced into recombinant Corynebacterium glutamicum into which the LNT and LNnT transporters prepared in Examples 1 and 2 were introduced, respectively, and fucose transferase (fucosyltransferase) was introduced.
  • Example 3-1 strain the strain into which ⁇ -1,2-fucosyltransferase was introduced is referred to as Example 3-1 strain, and the strain into which ⁇ -1,3-fucosyltransferase was introduced is referred to as Example 3-2 strain.
  • LNFP I To confirm the production of LNFP I, it was transformed with the pFGW(Ps) vector into which ⁇ -1,2-fucosyltransferase was introduced, and to confirm the production of LNFP V, ⁇ -1, It was transformed with pFGW(Ab) vector into which 3-fucose transferase ( ⁇ -1,3-fucosyltransferase) was introduced.
  • the pFGW(Ps) vector was used in Patent No. 10-2014925, and pFGW(Ab) was used to transfer ⁇ -1,2-fucose from Pseudopedobacter saltans (Ps) by treating the pFGW(Ps) vector with bglII and XbaI restriction enzymes. After removing the enzyme, PCR was performed using primers F_tuf_bglII and R_tuf_azoT using pFGW (Ps) as a template, and PCR was performed on azoT from Azospirillum brasilense synthesized using F-tuf-azoT and R-azoT, followed by PCR of F-tuf-azoT and R.
  • pFGW(Ab) was produced by inserting the amplicon obtained by overlap PCR with -azoT into pFGW(Ps) transferred with restriction enzymes.
  • Batch culture uses minimal medium ((NH 4 ) 2 SO 4 20 g/L, Urea 5 g/L, KH 2 PO 4 1 g/L, K 2 HPO 4 1 g/L, MgSO 4 7H 2 O 0.25 g/ L, MOPS 42 g/L, CaCl 2 10 mg/L, Biotin 0.2 mg/L, Protocatechuic acid 30 mg/L, FeSO 4 7H 2 O 10 mg/L, MnSO 4 H 2 O 10 mg/L, ZnSO 4 Use a 250 mL flask containing 50 mL of 7H 2 O 1 mg/L, CuSO 4 0.2 mg/L, NiCl 2 6H 2 O 0.02 mg/L, Glucose 40 g/L, Lactose 10 g/L, pH 7.0) did. An additional 5 g/L of LNT or LNnT was added to the medium to produce LNFP.
  • Figure 4 is a chromatogram analyzing lacto-N-fuco pentaose in the culture of recombinant Corynebacterium glutamicum into which the lacto-N-tetraose transporter of the present invention was introduced and the fucosylation transferase was transformed ( (a): Analysis of culture broth of recombinant Corynebacterium glutamicum (b): LNFP V standard).
  • LNFP I and LNFP V were biosynthesized, respectively, in a recombinant Corynebacterium glutamicum strain (Example 3-1, Example 3-2) into which the LNT transporter gene gltABC was introduced.
  • gltABC an LNT transporter gene derived from Bifidobacterium longum infantis ATCC15697, is transformed and expressed in Corynebacterium glutamicum and is active, and as a result, the LNT introduced into the cell is LNFT I or This means switching to LNFT V.
  • the production concentration of LNFP I was relatively lower than that of LNFP V, which could be interpreted as being due to the substrate specificity or expression rate of the fucosylation transferase.
  • LNFP VI was not produced in recombinant Corynebacterium glutamicum (Examples 4-1 and 4-2) into which the LNnT transporter genes hmoABC or hmoABC2 were introduced, respectively. It was inferred that this was caused by the failure of LNnT to enter the bacterial cell despite the introduction of the transporter gene hmoABC or hmoABC2.

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 코리네박테리움 글루타미쿰을 이용한 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산 방법에 관한 것으로, 숙주세포로서 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하여 대장균보다 안전하면서도 고농도, 고수율, 고생산성으로 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)를 생산할 수 있다.

Description

코리네박테리움 글루타미쿰을 이용한 락토-N-푸코펜타오스의 생산 방법
본 발명은 코리네박테리움 글루타미쿰을 이용한 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산 방법에 관한 것으로, 더욱 상세하게는 LNFP의 생산성을 높이기 위해 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 내에서 외부로부터 도입한 유전자들이 발현되고, 코리네박테리움 글루타미쿰이 자체적으로 보유하고 있는 유전자들을 과발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰을 이용하되, 락토-N-테트라오스(Lacto-N-tetraose, LNT) 또는 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 기질로 사용하여 배양액 내 락토오스 등의 푸코실화 전이효소와 반응하여 부산물을 생산할 수 있는 기질이 적거나 없게 되어 LNFP 생산의 효율을 높이면서 고순도의 LNFP를 생산하는 방법에 관한 것이다.
모유올리고당 (Human milk oligosaccharides, HMOs)은 모유에 함유되어 있는 올리고당으로, 유당 및 지방 다음으로 모유에서 세 번째로 많은 성분이다. HMO의 종류는 약 200여종으로 다양하며, 대표적인 모유올리고당의 예로는, 2'-푸코실락토스(2'-fucosyllactose, 2'-FL), 3-푸코실락토스(3-fucosyllactose, 3-FL), 락토-N-트리오스(Lacto-N-triose) Ⅱ, 락토-N-테트라오스(Lacto-N-tetraose, LNT), 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT), 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP), 락토-N-네오푸코펜타오스(Lacto-N-neofucopentaose), 락토-N-헥사오스(Lacto-N-hexaose, LNH), 락토-N-네오헥사오스(Lacto-N-neohexaose, LNnH), 6'-갈락토실락토스(6'-galactosylactose) 및 3'-갈락토실락토스(3'-galactosylactose) 등이 있다.
HMO는 신생아의 장 발달 및 초기 마이크로바이옴 형성과 성장에 필수적이며, 유해한 박테리아의 성장을 저해함으로써 건강한 마이크로바이옴을 형성한다. 또한, 면역체계를 활성화시키고 알레르기 반응, 소아 비만, 당뇨병 및 아토피 등을 감소하며, 장 건강을 강화해 감염성 설사와 호흡기 감염질환의 발생률을 낮추고, 두뇌 발달에 도움을 주고, 학습과 기억력 향상에 도움을 주는 등 여러 다양한 건강한 이점이 있다.
HMO의 유익성에 따라 다양한 HMO를 생산하기 위한 기술에 대해서 관심이 높아지고 있으며, 이는 인간 모유 또는 소 우유로부터 추출할 수 있으나 이는 비윤리적이라는 문제와, 대량 수득하기에는 어려우면서 만족할만한 순도를 얻는 것도 어렵다는 한계가 있다. 또한, 효소적 방법 또는 화학적 방법을 통해 합성할 수 있지만 독성 용매의 사용, 높은 단가 등의 한계가 있다. 이에 최근에는 적은 비용으로 안전한 방법을 사용하기 위한 방법으로 미생물을 이용하여 HMO를 생산하는 것에 대해서 연구가 진행되고 있으나 이는 재조합 대장균을 이용한 방법이 대부분이다.
한편, 대장균은 실제로 병원균이 아니지만 소비자들에게 해로운 균이라는 인식이 강하고, 대장균의 세포막 성분이 엔도톡신으로 작용할 수 있어 생산한 모유올리고당을 분리 및 정제하는데 비용이 많이 소요되므로 사용하는 것이 다소 제한적이라는 문제가 있다. 이에 지속적으로 안전하면서도 높은 효율로 다양한 HMO를 생산하기 위한 새로운 미생물을 이용한 기술에 대해서는 지속적인 필요가 있는 실정이다.
본 발명은 모유올리고당의 종류 중 하나인 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)를 생산하고자, 숙주세포로서 대장균보다 안전한 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하되, 고농도, 고수율, 고생산성으로 LNFP를 생산하는 방법을 개발하여 제공하고자 한다.
본 발명은 푸코오스 전이효소 (fucosyltransferase)가 발현되도록 형질전환되고, GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase)가 발현되도록 형질전환되며, GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase)가 발현되도록 형질전환되고, 락토-N-테트라오스(Lacto-N-tetraose, LNT) 트랜스포터(trasnpoter)가 발현되도록 형질전환되며, 포스포만노뮤타아제 (Phosphomannomutase) 및 GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)를 보유하고 있는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP) 생산용 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 제공한다.
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)에 있어서, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은, 바람직하게 포스포만노뮤타아제 (Phosphomannomutase)가 과발현되도록 형질전환되며, GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)가 과발현되도록 형질전환된 것일 수 있다.
또한, 본 발명은 락토-N-테트라오스(Lacto-N-tetraose, LNT)가 첨가된 배지에, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산방법을 제공한다.
한편, 본 발명의 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산방법에 있어서, 상기 배지는, 바람직하게 글루코오스를 더 포함하고 있는 것이 좋다.
본 발명은 숙주세포로서 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 이용하여 대장균보다 안전하면서도 고농도, 고수율, 고생산성으로 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)를 생산할 수 있다.
도 1은 본 발명의 락토-N-테트라오스(Lacto-N-tetraose, LNT) 및 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)가 발현된 재조합 코리네박테리움 글루타미쿰에서 락토-N-푸코펜타오스락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)가 생합성되는 경로를 나타낸 모식도 이다.
도 2는 본 발명의 LNT 및 LNnT가 푸코실트랜스퍼라아제(fucosyltransferase)에 의해 푸코실화되어 생합성될 수 있는 LNFP(LNFP I, LNFP V, LNFP VI)를 나타낸 그림이다.
도 3은 LNFP 표준 물질을 HPAEC-PAD/ICS-6000을 이용하여 분석한 크로마토그램이다.
도 4는 본 발명의 LNT 트랜스포터가 도입되고 푸코실트랜스퍼라아제(fucosyltransferase)가 형질전환된 재조합 코리네박테리움 글루타미쿰의 배양에서 LNFP를 분석한 크로마토그램이다((a): 재조합 코리네박테리움 글루타미쿰의 배양액을 분석 (b): LNFP V 표준품).
모유올리고당 (Human milk oligosaccharides, HMOs)은 신생아의 장 발달, 유해한 박테리아의 성장 저해 및 건강한 마이크로바이옴 형성, 면역체계 활성화, 알레르기 반응, 소아 비만, 당뇨병 및 아토피 등의 감소, 장 건강 강화. 감염성 설사와 호흡기 감염질환의 낮은 발생률, 두뇌 발달 등 여러 다양한 건강한 이점이 있어 다양한 HMO를 생산하기 위한 기술에 대해서 관심이 높아지고 있다.
본 발명에서는 모유올리고당의 종류 중 하나인 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)를 생산하기 위해 기존 연구에서 주로 재조합 대장균을 이용하여 모유올리고당을 생산하였을 시 발생하는 여러 한계를 극복하기 위한 방안으로 숙주세포로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 선택하여 사용하였다. 대장균은 실제로 병원균이 아니지만 소비자들에게 해로운 균이라는 인식이 강하고, 대장균의 세포막 성분이 엔도톡신으로 작용할 수 있어 생산한 모유올리고당을 분리 및 정제하는데 비용이 많이 소요되므로 사용하는 것이 다소 제한적이라는 문제가 있는데 코리네박테리움 글루타미쿰은 이러한 제한점을 극복할 수 있으면서 식품 및 의약품 소재의 생산을 위해 안전하면서도 적합한 균주라 할 수 있다
기존 연구에서 글루코오스(포도당)와 락토오스(유당)를 이용하여 락토-N-테트라오스(Lacto-N-tetraose, LNT) 또는 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT)를 거쳐 LNFP를 생산하기 위한 재조합 미생물을 생산하는 방법에 대해서는 시도된적이 있으나, 이경우 LNT 또는 LNnT를 생산하기 위한 배양 단계에서 글루코오스와 락토오스가 LNTⅡ가 부산물로 남아 있게 되고, LNT 또는 LNnT가 합성된 후, 갈락토오스 또는 N-아세틸글루코사민 사슬이 연장된 형태의 부산물이 함께 생산될 수 있다는 한계가 있었다.
이에 이를 해결하기 위해 이와 같은 재조합 미생물에 추가적으로 GDP-L-푸코오스(GDP-L-fucose)를 생산하는 생합성 경로를 도입하고 푸코오스 전이효소를 함께 발현시키게 될 경우, 상기 언급된 부산물 외에 2'-푸코실락토오스, 3-푸코실락토오스 등의 추가적인 부산물이 함께 합성되므로 LNFP류만 효율적으로 합성하는 것이 어렵고 고순도의 LNFP를 포함한 배양액을 얻는 것이 어려워져 LNFP의 생산 효율이 저하되게 되고, 이를 분리 정제하는 과정도 어렵고 복잡해질 수 있다는 여러 문제가 있다.
따라서, 본 발명에서는 고순도의 LNT 또는 LNnT를 기질로 사용함으로써 배양액 내 푸코오스 전이효소와 반응하여 부산물을 생산할 수 있는 락토오스 등과 같은 기질이 적거나 없게 되어 LNFP의 생산 효율을 높일 수 있고 고순도의 LNFP를 얻을 수 있는 새로운 생산방법을 고안해낸 것이다. 다만, 대부분의 미생물은 LNT 또는 LNnT를 탄소원으로 사용하지 못하고 LNT 또는 LNnT를 세포내로 전달할 수 있는 트랜스포터(transpoter)가 없기에 LNFP를 합성하기 위해서는 이러한 트랜스포터를 외부로부터 도입하는 것이 필수적이다.
이에 본 발명에서는 비피도박테리움 롱검 인판티스(Bifidobacterium longum subsp. infantis)에 LNT 또는 LNnT를 세포내로 전달할 수 있는 트랜스포터(transpoter)가 특이적으로 존재함에 따라 이를 채택하여 사용하였다. 또한, 세포 내 GDP-L-푸코오스를 생산하기 위한 대사 경로의 도입과, GDP-L-푸코오스를 LNT 또는 LNnT에 전달시켜줄 수 있는 푸코오스 전이효소를 외부로부터 도입하였다.
이에 본 발명은 푸코오스 전이효소 (fucosyltransferase)가 발현되도록 형질전환되고, GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase, 'Gmd'로도 불리며 이하 동일)가 발현되도록 형질전환되며, GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase, 'WcaG'로도 불리며 이하 동일)가 발현되도록 형질전환되고, 락토-N-테트라오스(Lacto-N-tetraose, LNT) 트랜스포터(trasnpoter)가 발현되도록 형질전환되며, 포스포만노뮤타아제 (Phosphomannomutase, 'ManB'로도 불리며 이하 동일) 및 GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase, 'ManC'로도 불리며 이하 동일)를 보유하고 있는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP) 생산용 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 제공한다. 이때, 상기 푸코오스 전이효소로는, α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)를 사용하면, LNFP I를 생산할 수 있고, α-1,3-푸코오스 전이효소 (α-1,3-fucosyltransferase)를 사용하면 LNFP V를 생산할 수 있다.
본 발명에서는, 하기 실시예 및 실험예를 통해 LNT 유입 트랜스포터와 LNnT 유입 트랜스포터를 각각 도입하여 재조합 코리네박테리움을 구축한 후, LNT 또는 LNnT를 기질로 사용하여, LNFP류(LNFP I, LNFP V 또는 LNFP VI)의 생산을 시도하여 보았다.
LNT 유입 트랜스포터를 도입한 경우는 예상대로 LNT의 유입이 원활히 이루어져 LNFP I, LNFP V의 생산이 이루어졌다. 하지만, LNnT 유입 트랜스포터를 도입한 경우는 예상과 다르게 LNFP VI의 생산이 이루어지지 않았다. 특히나, LNnT의 트랜스포터 유전자인 hmoABC 또는 hmoABC2가 각각 도입된 두가지 모두에서 LNFP VI가 생산되지 않았다. 이는 트랜스포터 유전자인 hmoABC 또는 hmoABC2를 도입했음에도 불구하고 LNnT가 균체 내로 유입되지 못하여 발생한 것으로 추론되었다.
동일한 호스트 유래의 LNT 트랜스포터 유전자를 도입한 재조합 코리네박테리움 글루타미쿰 균주에서는 원활한 LNT의 유입이 이루어졌음을 고려할 때, 본 발명에서 호스트로 사용한 코리네박테리움 글루타미쿰은, 통상의 예상과 달리, LNT와 LNnT의 유입에 대해 특이성(specificity)을 가지고 있다는 중요한 점을 확인할 수 있었다. LNT 또는 LNnT 트랜스포터와 같은 막단백질의 경우 트랜스맴브레인을 포함하는 막단백질과 세포 외부로 발현되어 특이적인 기질과 결합하는 solute binding protein (SBP)가 함께 작용을 하게되어 이 중 하나라도 작동하지 않으면 세포 내 기질 전달이 원활하지 못하게 되어 활성형 발현을 위해 이종 균주에서 활성을 나타 낼 수 있도록 서열의 변경 등 유전자 조작이 요구된다.
한편, 본 발명에서 상기 LNT 유입 트랜스포터는 당 업계에 공지된 것이라면 어느 것에든 제한되지는 않으나, 바람직하게는 비피도박테리움 롱검 인판티스로부터 유래한 gltABC를 사용하는 것이 좋다.
한편, 본 발명의 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)에 있어서, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은, 바람직하게 포스포만노뮤타아제 (Phosphomannomutase)가 과발현되도록 형질전환되며, GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)가 과발현되도록 형질전환된 것일 수 있다.
한편, 본 발명에서 사용하는 '발현'이라는 용어는, 본 발명의 코리네박테리움 글루타미쿰 균주가 자체적으로 발현시킬 수 없는 효소를, 인위적으로 발현시키기 위해 외부 유래의 유전자를 균주 내로 도입하여 발현시키는 것을 의미하고, '과발현'이라는 용어는 본 발명의 코리네박테리움 글루타미쿰 균주가 자체적으로 해당 효소를 암호화하는 유전자를 가지고 있어, 스스로 발현시킬 수 있으나, 대량생산을 위한 목적으로 이의 발현량을 증대시키기 위해 인위적으로 해당 효소의 발현량을 증대시켜 과발현한 것을 의미한다.
또한, 본 발명은 락토-N-테트라오스(Lacto-N-tetraose, LNT)가 첨가된 배지에, 상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산방법을 제공한다.
한편, 본 발명의 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산방법에 있어서, 상기 배지는, 바람직하게 글루코오스를 더 포함하고 있는 것이 좋다. 이와 같이 추가 배지 성분을 더함으로써 균주의 생육이 활발해져 더욱 높은 생산성으로 LNFP를 생산할 수 있다. 또한, 이를 위해서는 유가식 배양을 통해 글루토오스를 지속적으로 공급하면, 세포의 성장을 더욱 증대시키고, 고순도, 고수율, 고생산성으로 LNFP를 생산할 수 있다. 유가식 배양에 관한 세부 지엽적 기술들은 당업계의 공지 기술을 사용할 수 있으므로, 이에 대해서는 그 기재를 생략하기로 한다.
한편, 하기 실험에 의하면, 본 발명의 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP) 생산용 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)은 LNT 트랜스포터가 도입된 재조합 균주로 제작되었으며, 이로부터 LNFP(LNFP I, LNFP V)를 생산함을 확인하였다.
이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.
하기 표 1 내지 표 3은 하기 본 발명의 실시예 및 실험예에서 사용한 균주, 플라스미드, 프라이머 및 유전자 정보이다.
사용한 균주 및 플라스미드
균주명 균주정보 출처
Corynebacterium glutamicum Wild-type strain, ATCC13032 ATCC
플라스미드명 관련 특징 출처
pK19mobsacB-NCgl2911 본 발명
pK19mobsacB-NCgl2610 본 발명
pk19mobsacB-Ptuf-gltABC pK19mobsacB ΔNCgl2911 ::
Ptuf-gltABC
본 발명
pk19mobsacB-Ptuf-hmoABC pK19mobsacB ΔNCgl2610 ::
Ptuf-hmoABC
본 발명
pk19mobsacB-Ptuf-hmoABC2 pK19mobsacB ΔNCgl2610 ::
Ptuf-hmoABC2
본 발명
pFGW(Ps) pCES208 + Tuf-FT(Ps) +
Sod-gmd-wcaG
특허 제10-2014925호
pFGW(Ab) pCES208 + Tuf-FT(Ab) +
Sod-gmd-wcaG
본 발명
사용한 프라이머
프라이머명 서열(5'→3') 서열정보
F_linker_tuf ACTTCCCGGGAAGCTATGGCTGGCCGTTACCCTGCG 서열번호1
R_tuf-gltA CGCTTATTATGCGATACCATTGTATGTCCTCCTGGACTTCG 서열번호2
F_glt GAAGTCCAGGAGGACATACAATGGTATCGCATAATAAGCGC 서열번호3
R_glt CGACGGAGCTCGAATTCGGTTTAGCCCTTGACGGCAC 서열번호4
F_3033 ACCGAATTCGAGCTCCGTCG 서열번호5
R_T7ter AGCTAGCTCTAGATCAGCGCCAAAAAACCCCTCAAGACC 서열번호6
F-pK19-NCgl2911-1 CTATGACCATGATTACGCCAAGCTTTGGGGAGGATCGAGTGGATTCCCGT 서열번호7
F-pK19-NCgl2911-2 GATCAGCGCGGCCGCCATAGCTTCCCGGGAAGTACTTTCGATCCCACTTCCTGATTTCCC 서열번호8
F-pK19-NCgl2911-3 CTATGGCGGCCGCGCTGATCTAGAGCTAGCTTCATCTTTGGCGCCTAGTTGGCGACG 서열번호9
F-pK19-NCgl2911-4 ATTCGAGCTCGGTACCCGGGGATCCGGCAGGGTGACCATGATGCAGGATG 서열번호10
R_tuf-hmo AGTGCGGTTCTTCTTCTCATTGTATGTCCTCCTGGACTTC 서열번호11
F_hmo GAAGTCCAGGAGGACATACAATGAGAAGAAGAACCGCACT 서열번호12
R_hmo CGACGGAGCTCGAATTCGGTTCAGCCCTTCACGGCA 서열번호13
R_tuf-hmo2 TCATCGCGGTTCTTCTCATTGTATGTCCTCCTGGACTTC 서열번호14
F_hmo2 GAAGTCCAGGAGGACATACAATGAGAAGAACCGCGATGA 서열번호15
R_hmo2 CGACGGAGCTCGAATTCGGTTCAGCCCTTCACGGCA 서열번호16
F-pK19-NCgl2610-1 CTATGACCATGATTACGCCAAGCTTGATCAGAAAGAGACCACCGCTGATA 서열번호17
F-pK19-NCgl2610-2 GATCAGCGCGGCCGCCATAGCTTCCCGGGAAGTACCTGAACTCCTCAACGTTATGGCTAT 서열번호18
F-pK19-NCgl2610-3 CTATGGCGGCCGCGCTGATCTAGAGCTAGCTTCTGATTGATACACCTGCTGTTCTCA 서열번호19
F-pK19-NCgl2610-4 ATTCGAGCTCGGTACCCGGGGATCCCGCTGGACGCTGTTGTTTAGAGCCT 서열번호20
F_tuf_bglII GGCACATTTTGTAATGCGCTAGATCTGTGTGCTCAGTCTT 서열번호21
R_tuf_azoT CCGCTGATCGAGCATTGTATGTCCTCCTGGACTTC 서열번호22
F-tuf-azoT GAAGTCCAGGAGGACATACAATGCTCGATCAGCGG 서열번호23
R-azoT GGCCTCTAGATTACAGCCGGCTCTCGATCCAGTCG 서열번호24
[실시예 1: 락토-N-테트라오스(Lacto-N-tetraose, LNT) 특이적인 트랜스포터(transporter)를 도입한 재조합 코리네박테리움 글루타미쿰( Corynebacterium glutamicum ) 제작]
본 실시예에서는 락토-N-테트라오스(Lacto-N-tetraose, LNT) 특이적인 트랜스포터(transporter)를 도입한 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 제작하였다. LNT를 세포 내로 수송하기 위해서는 특이적인 수송채널인 트랜스포터가 필요하다. 본 발명에서는 이러한 수송 채널이 비피도박테리움 롱검 인판티스(Bifidobacterium longum subsp. infantis)에 특이적으로 존재함에 따라 이를 채택하여 사용하였다.
비피도박테리움 롱검 인판티스 ATCC15697의 게놈(genome으로부터 Blon_2175, Blon_2176, Blon_2177 (gltC, gltB, gltA)를 코리네박테리움 글루타미쿰 프로모터인 Ptuf와 조합하여 유전자 발현 카세트를 PCR로 증폭하여 코리네박테리움 글루타미쿰에 발현시켜 LNT를 코리네박테리움 글루타미쿰 내부로 수송할 수 있는 트랜스포터가 도입된 재조합 코리네박테리움 글루타미쿰을 제작하였다.
코리네박테리움 글루타미쿰으로부터 tuf 프로모터(Ptuf)를, 비피도박테리움 롱검 인판티스 ATCC 15697로부터 gltABC를 그리고 his6-T7 terminator를 프라이머 3개 세트(F_linker_tuf, R_tuf-gltA; F_glt, R_glt; F_3033, F_T7ter)로 각각 유전자를 증폭한 후, 증폭된 프로모터(Ptuf), glt 주형을 이용하여 프라이머 'F_linker_tuf'와 'R_glt'로 1차 overlap PCR을 수행한 1차 증폭물과 his-T7 terminator와 'F_linker_tuf'와 'R_T7ter'로 2차 overlap PCR을 수행하였다.
증폭한 Ptuf-gltABC-his6 T7terminator DNA 주형은 코리네박테리움 글루타미쿰 ATCC 13032 유래의 NCgl2911를 Knock-out한 위치에 도입하기 위해 NCgl2392 N-말단(N-terminal)과 C-말단(C-terminal) 부분으로부터 500bps의 유전자를 프라이머 'F-pK19-NCgl2911-1'와 'R-pK19-NCgl2911-2'; 'F-pK19-NCgl2911-3'와 'R-pK19-NCgl2911-4'로 증폭한 후, 증폭된 2개의 주형을 이용하여 프라이머 'F-pK19-NCgl2911-1'와 'R-pK19-NCgl2911-4'로 overlap PCR을 수행하여 'pK19mobsacB-NCgl2911' 벡터를 제작하였다.
증폭한 Ptuf-glt-his6 T7terminator DNA 주형은 제한효소 NotI에 의해 절단된 pk19mobsacB-NCgl2911 벡터에 삽입하여 pk19mobsacB-Ptuf-gltABC 플라스미드를 구축하였고 플라스미드를 코리네박테리움 글루타미쿰 ATCC 13032에 형질전환하고, 2차 교차 과정을 거쳐 염색체에 Ptuf-gltABC-his6 T7terminator 유전자 카세트를 삽입하였다.
[실시예 2: 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT) 특이적인 트랜스포터(transporter)를 도입한 재조합 코리네박테리움 글루타미쿰( Corynebacterium glutamicum ) 제작]
(1) 개요
본 실시예에서는 락토-N-네오테트라오스(Lacto-N-neotetraose, LNnT) 특이적인 트랜스포터(transporter)를 도입한 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 제작하였다. LNnT를 세포 내로 수송하기 위해서는 특이적인 수송채널인 트랜스포터가 필요하다. 본 발명에서는 이러한 수송 채널이 비피도박테리움 롱검 인판티스(Bifidobacterium longum subsp. infantis)에 특이적으로 존재함에 따라 이를 채택하여 사용하였다.
비피도박테리움 롱검 인판티스 ATCC15697의 게놈(genome으로부터 Blon_2342, Blon_2343, Blon_2344 (hmoC2, hmoB2, hmoA2) 또는 Blon_2345, Blon_2346, Blon_2347 (hmoC, hmoB, hmoA)을 포함하는 유전자 카세트를 PCR로 증폭하여 코리네박테리움 글루타미쿰에 발현시켜 LNnT를 코리네박테리움 글루타미쿰 내부로 수송할 수 있는 채널을 각각 만들어 주어 2개의 재조합 코리네박테리움 글루타미쿰을 각각 제조하였다. hmoA, hmoB, hmoC가 도입된 균주를 실시예 2-1로, hmoA2, hmoB2, hmoC2가 도입된 균주를 실시예 2-2로 명명하였다.
(2) 실시예 2-1 균주 구축
코리네박테리움 글루타미쿰으로부터 tuf 프로모터(Ptuf)를, 비피도박테리움 롱검 인판티스 ATCC 15697로부터 hmoABC를 그리고 his6-T7 terminator를 프라이머 3개 세트(F_linker_tuf, R_tuf-gltA; F_hmo, R_hmo; F_3033, F_T7ter)로 각각 유전자를 증폭한 후, 증폭된 프로모터(Ptuf), hmo 주형을 이용하여 프라이머 'F_linker_tuf'와 'R_hmo'로 1차 overlap PCR을 수행한 1차 증폭물과 his-T7 terminator와 'F_linker_tuf'와 'R_T7ter'로 2차 overlap PCR을 수행하였다.
증폭한 Ptuf-hmoABC-his6 T7terminator DNA 주형은 코리네박테리움 글루타미쿰 ATCC 13032 유래의 NCgl2610를 Knock-out한 위치에 도입하기 위해 NCgl2610 N-말단(N-terminal)과 C-말단(C-terminal) 부분으로부터 500bps의 유전자를 프라이머 'F-pK19-NCgl2610-1'와 'R-pK19-NCgl2610-2'; 'F-pK19-NCgl2610-3'와 'R-pK19-NCgl2610-4'로 증폭한 후, 증폭된 2개의 주형을 이용하여 프라이머 'F-pK19-NCgl2610-1'와 'R-pK19-NCgl2610-4'로 overlap PCR을 수행하여 'pK19mobsacB-NCgl2610' 벡터를 제작하였다.
증폭한 Ptuf-hmoABC-his6 T7terminator DNA 주형은 제한효소 NotI에 의해 절단된 pk19mobsacB_deletion_NCgl2610 벡터에 삽입하여 pk19mobsacB-Ptuf-hmoABC 플라스미드를 구축하였고 플라스미드를 코리네박테리움 글루타미쿰 ATCC 13032에 형질전환하고, 2차 교차 과정을 거쳐 염색체에 Ptuf-hmoABC-his6 T7terminator 유전자 카세트를 삽입하였다.
(2) 실시예 2-2 균주 구축
코리네박테리움 글루타미쿰으로부터 tuf 프로모터(Ptuf)를, 비피도박테리움 롱검 인판티스 ATCC 15697로부터 hmoABC2를 그리고 his6-T7 terminator를 프라이머 3개 세트(F_linker_tuf, R_tuf-gltA; F_hmo, R_hmo; F_3033, F_T7ter)로 각각 유전자를 증폭한 후, 증폭된 프로모터(Ptuf), hmo2 주형을 이용하여 프라이머 'F_linker_tuf'와 'R_hmo2'로 1차 overlap PCR을 수행한 1차 증폭물과 his-T7 terminator와 'F_linker_tuf'와 'R_T7ter'로 2차 overlap PCR을 수행하였다.
증폭한 Ptuf-hmoABC2-his6 T7terminator DNA 주형은 코리네박테리움 글루타미쿰 ATCC 13032 유래의 NCgl2610를 Knock-out한 위치에 도입하기 위해 NCgl2610 N-말단(N-terminal)과 C-말단(C-terminal) 부분으로부터 500bps의 유전자를 프라이머 'F-pK19-NCgl2610-1'와 'R-pK19-NCgl2610-2'; 'F-pK19-NCgl2610-3'와 'R-pK19-NCgl2610-4'로 증폭한 후, 증폭된 2개의 주형을 이용하여 프라이머 'F-pK19-NCgl2610-1'와 'R-pK19-NCgl2610-4'로 overlap PCR을 수행하여 'pK19mobsacB-NCgl2610' 벡터를 제작하였다.
증폭한 Ptuf-hmoABC2-his6 T7terminator DNA 주형은 제한효소 NotI에 의해 절단된 pk19mobsacB_deletion_NCgl2610 벡터에 삽입하여 pk19mobsacB-Ptuf-hmoABC2 플라스미드를 구축하였고 플라스미드를 코리네박테리움 글루타미쿰 ATCC 13032에 형질전환하고, 2차 교차 과정을 거쳐 염색체에 Ptuf-hmoABC2-his6 T7terminator 유전자 카세트를 삽입하였다.
[실시예 3 및 4: 락토-N-푸코펜타오스(Lacto-N-fucopentaose) 생산용 재조합 코리네박테리움 글루타미쿰 제작]
본 실시예에서는 상기 실시예 1 및 2에서 각각 제작된 LNT와 LNnT 트랜스포터가 도입된 재조합 코리네박테리움 글루타미쿰에 GDP-L-fucose의 생산경로가 도입되고 푸코오스 전이효소(fucosyltransferase)가 도입된 벡터를 형질전환하여 락토-N-푸코펜타오스 생산용 재조합 코리네박테리움 글루타미쿰을 제작하고자 하였다.
1) LNT 트랜스포터 발현 균주를 이용한 락토-N-푸코펜타오스(Lacto-N-fucopentaose) 생산용 재조합 코리네박테리움 글루타미쿰 제작 (실시예 3-1 및 실시예 3-2)
상기 실시예 1에서 제작된 LNT를 세포 내로 전달할 수 있는, gltABC가 도입된 재조합 코리네박테리움 글루타미쿰을 생산할 수 있도록 푸코오스 전이효소(α-1,2-fucosyltransferase 또는 α-1,3-fucosyltransferase), GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase), GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase)를 발현시키도록 형질전환한 재조합 코리네박테리움 글루타미쿰을 각각 제작하였다. 이중 α-1,2-fucosyltransferase가 도입된 것을 실시예 3-1 균주, α-1,3-fucosyltransferase가 도입된 것을 실시예 3-2 균주로 지칭한다.
LNFP I 생산을 확인하기 위해 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)가 도입된 pFGW(Ps) 벡터로 형질전환하였고, LNFP V 생산을 확인하기 위해 α-1,3-푸코오스 전이효소(α-1,3-fucosyltransferase)가 도입된 pFGW(Ab) 벡터로 형질전환하였다.
pFGW(Ps) 벡터는 특허 제10-2014925호에서 사용었으며, pFGW(Ab)는 pFGW(Ps) 벡터를 bglII와 XbaI 제한효소 처리하여 Pseudopedobacter saltans (Ps) 유래의 α-1,2-푸코오스 전이효소를 제거하고 pFGW(Ps)를 주형으로 F_tuf_bglII 와 R_tuf_azoT 프라이머를 이용하여 PCR 하고 F-tuf-azoT와 R-azoT를 이용하여 합성된 Azospirillum brasilense 유래의 azoT를 PCR한 후 F-tuf-azoT와 R-azoT로 overlap PCR 하여 얻은 증폭물을 제한효소로 전달된 pFGW(Ps)에 삽입하여 pFGW(Ab)를 제작한 것이다.
2) LNnT 트랜스포터 발현 균주를 이용한 락토-N-푸코펜타오스(Lacto-N-fucopentaose) 생산용 재조합 코리네박테리움 글루타미쿰 제작 (실시예 4-1 및 실시예 4-2)
상기 실시예 2에서 제작된 것으로, LNnT를 세포 내로 전달할 수 있는, hmoABC 또는 hmoABC2가 각각 도입된 재조합 코리네박테리움 글루타미쿰 (실시예 2-1 및 실시예 2-2)이, 락토-N-푸코펜타오스를 생산할 수 있도록, α-1,3-푸코오스 전이효소(α-1,3-fucosyltransferase), GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase), GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase)를 발현시키도록 형질전환하여 실시예 4-1 및 실시예 4-2의 재조합 코리네박테리움 글루타미쿰을 제작하였다. LNFP VI 생산을 확인하기 위해 α-1,3-푸코오스 전이효소(α-1,3-fucosyltransferase)가 도입된 pFGW(Ab) 벡터로 형질전환하였다.
본 발명에서 구축한 재조합 코리네박테리움을 이용하고 LNT 또는 LNnT를 기질로 사용하여 LNFP를 생산하는 경로에 대해서는 도 1에 모식도로 나타내었다.
[실험예 1: 재조합 코리네박테리움 글루타미쿰( Corynebacterium glutamicum )의 배양조건 및 방법]
본 실험예에서는 상기 실시예 1에서 제작한 gltABC가 도입된 재조합 코리네박테리움 글루타미쿰에 α-1,2-푸코오스 전이효소 (α-1,2-fucosyltransferase)를 발현하는 pFGW(Ps) 벡터가 도입되거나 α-1,3-푸코오스 전이효소(α-1,3-fucosyltransferase)를 발현하는 pFGW(Ab) 벡터가 도입된 코리네박테리움 글루타미쿰 (실시예 3-1 및 실시예 3-2)을 이용하여 LNT로부터 LNFP I, LNFP V의 생합성 여부를 확인하고자 하였다.
한편, 상기 실시예 2에서 제작한, hmoABC 또는 hmoABC2가 각각 도입된 재조합 코리네박테리움 글루타미쿰에 α-1,3-푸코오스 전이효소(α-1,3-fucosyltransferase)를 발현하는 pFGW(Ab) 벡터가 도입된 코리네박테리움 글루타미쿰 (실시예 4-1 및 실시예 4-2)을 이용하여 LNnT로부터의 LNFP VI의 생합성을 확인하였다.
회분식 배양은 최소배지 ((NH4)2SO4 20 g/L, Urea 5 g/L, KH2PO4 1 g/L, K2HPO4 1 g/L, MgSO47H2O 0.25 g/L, MOPS 42 g/L, CaCl2 10 mg/L, Biotin 0.2 mg/L, Protocatechuic acid 30 mg/L, FeSO47H2O 10 mg/L, MnSO4H2O 10 mg/L, ZnSO47H2O 1 mg/L, CuSO4 0.2 mg/L, NiCl26H2O 0.02 mg/L, Glucose 40 g/L, Lactose 10 g/L, pH7.0) 50 mL가 담긴 250 mL 플라스크를 이용하였다. LNFP를 생산할 수 있도록 배지에 추가적으로 5 g/L의 LNT 또는 LNnT를 추가하였다.
배양은 25℃에서 150 rpm으로 진행하였으며 배양 시작인 0시간, 24시간, 48시간, 72시간에 각각 배양액을 취하여 LNFP의 생산을 확인하였다. LNFP의 생산을 확인하기 위해 분석은 HPAEC-PAD/ICS-6000와 PA200 컬럼을 이용하여 분석하였다. 표준품은 carbosynth사의 제품 LNFP I (cat.OL05676), LNFP V (cat.OL06817), LNFP VI (cat.OL5846)제품을 사용하여 분석하였다(도 3).
도 4는 본 발명의 락토-N-테트라오스 트랜스포터가 도입되고 푸코실화 전이효소가 형질전환된 재조합 코리네박테리움 글루타미쿰의 배양에서 락토-N-푸코 펜타오스를 분석한 크로마토그램이다((a): 재조합 코리네박테리움 글루타미쿰의 배양액을 분석 (b): LNFP V 표준품).
그 결과, 표 3과 같이 LNT 트랜스포터 유전자인 gltABC가 도입된 재조합 코리네박테리움 글루타미쿰 균주(실시예 3-1, 실시예 3-2)에서 LNFP I과 LNFP V가 각각 생합성되었다. 이러한 결과는 비피도박테리움 롱검 인판티스 ATCC15697 유래 LNT 트랜스포터 유전자인 gltABC가 형질전환되어 코리네박테리움 글루타미쿰에서 발현되어 활성을 갖는 것을 의미하며, 이로 인해 세포 내로 유입된 LNT가 LNFT I 또는 LNFT V로 전환 것을 의미한다. 다만, LNFP I의 생산 농도가 LNFP V의 생산 농도에 비해 상대적으로 적게 나타났는데, 이것은 푸코실화 전이효소의 기질 특이성이나 발현율에 기인한 것으로 해석할 수 있었다.
한편, LNnT의 트랜스포터 유전자인 hmoABC 또는 hmoABC2가 각각 도입된 재조합 코리네박테리움 글루타미쿰 (실시예 4-1, 실시예 4-2)에서는 LNFP VI가 생산되지 않았다. 이는 트랜스포터 유전자인 hmoABC 또는 hmoABC2를 도입했음에도 불구하고 LNnT가 균체 내로 유입되지 못하여 발생한 것으로 추론되었다. 동일한 호스트 유래의 LNT 트랜스포터 유전자인 gltABC를 도입한 실시예 3-1 및 3-2 균주에서는 원활한 LNT의 유입이 이루어졌음을 고려할 때, 본 발명에서 호스트로 사용한 코리네박테리움 글루타미쿰은 통상의 예상과 달리, LNT와 LNnT의 유입에 대해 특이성(specificity)이 있는 것을 알 수 있었다.
(단위: mg/L)
0시간 24시간 48시간 72시간
LNFP I
(실시예 3-1)
0 0 <LOQ 56.2
LNFP V
(실시예 3-2)
0 0 143.3±32.1 203.3±55.1
LNFP VI
(hmoABC,
실시예 4-1)
0 0 0 0
LNFP VI (hmoABC2,
(실시예 4-2)
0 0 0 0

Claims (4)

  1. 푸코오스 전이효소 (fucosyltransferase)가 발현되도록 형질전환되고, GDP-D-만노오스-4,6-데하이드라타아제 (GDP-D-mannose-4,6-dehydratase)가 발현되도록 형질전환되며, GDP-L-푸코오스 신타아제 (GDP-L-fucose synthase)가 발현되도록 형질전환되고, 락토-N-테트라오스(Lacto-N-tetraose, LNT) 트랜스포터(trasnpoter)가 발현되도록 형질전환되며,
    포스포만노뮤타아제 (Phosphomannomutase) 및 GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)를 보유하고 있는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP) 생산용 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum).
  2. 제1항에 있어서,
    상기 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은,
    포스포만노뮤타아제 (Phosphomannomutase)가 과발현되도록 형질전환되며, GTP-만노오스-1-포스페이트 구아닐트랜스퍼라아제 (GTP-mannose-1-phosphate guanylyltransferase)가 과발현되도록 형질전환된 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum).
  3. 락토-N-테트라오스(Lacto-N-tetraose, LNT)가 첨가된 배지에, 제1항의 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 배양하는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산방법.
  4. 제3항에 있어서,
    상기 배지는,
    글루코오스를 더 포함하고 있는 것을 특징으로 하는 락토-N-푸코펜타오스(Lacto-N-fucopentaose, LNFP)의 생산방법.
PCT/KR2023/020649 2022-12-14 2023-12-14 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법 WO2024128827A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220175052 2022-12-14
KR10-2022-0175052 2022-12-14
KR10-2023-0180990 2023-12-13
KR1020230180990A KR20240095037A (ko) 2022-12-14 2023-12-13 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법

Publications (1)

Publication Number Publication Date
WO2024128827A1 true WO2024128827A1 (ko) 2024-06-20

Family

ID=91486118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/020649 WO2024128827A1 (ko) 2022-12-14 2023-12-14 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법

Country Status (1)

Country Link
WO (1) WO2024128827A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101731263B1 (ko) * 2016-04-25 2017-05-02 서울대학교 산학협력단 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법
KR20180043297A (ko) * 2015-09-12 2018-04-27 젠와인 바이오테크놀로지 게엠바하 조작된 내수송/외수송을 가진 미생물 숙주에서 모유 올리고당류의 생산
CN113832092A (zh) * 2021-10-20 2021-12-24 江南大学 一种提高乳酰-n-岩藻五糖产量的基因工程菌及其生产方法
CN114450417A (zh) * 2019-08-13 2022-05-06 阿米瑞斯公司 酵母中提高的寡糖产生

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043297A (ko) * 2015-09-12 2018-04-27 젠와인 바이오테크놀로지 게엠바하 조작된 내수송/외수송을 가진 미생물 숙주에서 모유 올리고당류의 생산
KR101731263B1 (ko) * 2016-04-25 2017-05-02 서울대학교 산학협력단 코리네박테리움 글루타미쿰을 이용한 2'-푸코실락토오스의 생산방법
CN114450417A (zh) * 2019-08-13 2022-05-06 阿米瑞斯公司 酵母中提高的寡糖产生
CN113832092A (zh) * 2021-10-20 2021-12-24 江南大学 一种提高乳酰-n-岩藻五糖产量的基因工程菌及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARZAMASOV ALEKSANDR A., NAKAJIMA ARUTO, SAKANAKA MIKIYASU, OJIMA MIRIAM N., KATAYAMA TAKANE, RODIONOV DMITRY A., OSTERMAN ANDREI L: "Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR", MSYSTEMS, HIGHWIRE PRESS (FREE ACCESS), vol. 7, no. 5, 26 October 2022 (2022-10-26), XP093181395, ISSN: 2379-5077, DOI: 10.1128/msystems.00343-22 *

Similar Documents

Publication Publication Date Title
US20240200112A1 (en) Process for the Production of Fucosylated Oligosaccharides
CN106190937B9 (zh) 一种构建重组大肠杆菌生物合成2’-岩藻乳糖的方法
EP2927316A1 (en) Total fermentation of oligosaccharides
CN111094325A (zh) 用于制备人乳低聚糖的微生物
CN114774343B (zh) 一种生产2’-岩藻糖基乳糖的大肠杆菌工程菌株及应用
US11278610B2 (en) Glycosylation method
WO2019194410A1 (ko) 슈도페도박터 살탄스 유래 푸코오스 전이효소를 이용한 2&#39;-푸코실락토오스의 생산방법
CN113136357A (zh) 一种产乳酰-n-新四糖的基因工程菌及生产方法
WO2022145945A1 (ko) 푸코오스 전이효소를 발현하는 재조합 미생물 및 이를 이용한 2&#39;-푸코실락토오스 제조방법
CN113337554A (zh) 一种体外多酶级联催化合成岩藻糖基化乳糖的方法
WO2022124671A1 (ko) 쉬와넬라 오네이덴시스 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
WO2024128827A1 (ko) 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법
WO2023096197A1 (ko) 효소 처리를 통한 2&#39;-푸코실락토오스의 생산성 증대 방법
WO2023216685A1 (zh) 一种以葡萄糖为碳源合成2&#39;-岩藻糖基乳糖的菌株及其构建方法和应用
WO2022145944A1 (ko) 재조합 바실러스 속 미생물 및 이를 이용한 모유올리고당 제조방법
WO2024123084A1 (ko) 베타-갈락토시다아제가 발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰을 이용한 푸코실락토오스의 생산방법
KR20240095037A (ko) 코리네박테리움 글루타미쿰을 이용한 락토-n-푸코펜타오스의 생산 방법
WO2023080576A1 (ko) 배양 배지 조성 및 배양 방식 변화에 따른 2&#39;-푸코실락토오스의 생산성 증대 방법
WO2018194411A1 (ko) 코리네박테리움 글루타미쿰을 이용한 3&#39;-푸코실락토오스의 생산방법
CN112592878B (zh) 增强正调控蛋白基因表达以提高阿卡波糖发酵水平的方法
KR20240088585A (ko) 베타-갈락토시다아제가 발현되도록 형질전환된 재조합 코리네박테리움 글루타미쿰을 이용한 푸코실락토오스의 생산방법
CN116426452A (zh) 合成2’-岩藻糖基乳糖的重组大肠杆菌菌株及其应用
WO2022124670A1 (ko) 쉬와넬라 아틀란티카 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
CN115466707A (zh) 一种生产2′-岩藻糖基乳糖的乳酸乳球菌及其应用
DK202200591A1 (en) New sialyltransferases for in vivo synthesis of lst-c