WO2017188161A1 - 風味改良材 - Google Patents
風味改良材 Download PDFInfo
- Publication number
- WO2017188161A1 WO2017188161A1 PCT/JP2017/016094 JP2017016094W WO2017188161A1 WO 2017188161 A1 WO2017188161 A1 WO 2017188161A1 JP 2017016094 W JP2017016094 W JP 2017016094W WO 2017188161 A1 WO2017188161 A1 WO 2017188161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fats
- oils
- animal
- flavor
- partial hydrolyzate
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/88—Taste or flavour enhancing agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/007—Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/02—Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/70—Fixation, conservation, or encapsulation of flavouring agents
- A23L27/77—Use of inorganic solid carriers, e.g. silica
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
Definitions
- the present invention relates to a flavor improving material capable of imparting a rich taste to food and drink.
- the partial hydrolyzate of animal and vegetable oils and fats is obtained by allowing alkali and lipolytic enzymes to act on edible animal and vegetable oils and fats, and in addition to fatty acids and glycerin, it contains a variety of flavor components derived from these. It is.
- the technology of using a partial hydrolyzate of animal and vegetable oils and fats as an effective flavor component of flavor improvers is to provide animal foods and fats for the purpose of imparting a rich and rich flavor to foods and drinks. Regardless of the type of vegetable oils and fats, it has been studied conventionally.
- Patent Document 1 proposes a dairy flavor in which a lipolytic enzyme produced by a specific microorganism is allowed to act.
- the flavor improving material of the food / beverage products which uses a whey protein degradation product and a milk fat degradation product as an active ingredient is proposed.
- the flavor modifier which uses the alkaline hydrolysis product of milk fat as an active ingredient is proposed.
- Patent Document 4 proposes an enzyme hydrolyzate of vegetable oil containing abundant oleic acid as a constituent fatty acid.
- the impact material of food-drinks and the improvement material of mouthfeel which use the diglyceride fraction of the hydrolyzate of animal and vegetable fats and oils as an active ingredient are proposed.
- the protein contained in the enzyme-treated product is heated by the heating at the time of deactivation of the enzyme after the milk fat-containing food material is treated with the enzyme, and it is easy to impart a taste.
- the production efficiency is low because it is necessary to separately prepare and mix the whey protein decomposed product and the milk fat decomposed product, and further, the foreign matter derived from both the whey protein decomposed product and the milk fat decomposed product.
- a good flavor would be imparted to the added food or drink.
- the method of Patent Document 3 there is a problem that neutralization treatment with an acid is required, the purification process becomes complicated, and more facilities are required.
- the disclosed decomposition rate is low, and it is necessary to add a large amount in order to exhibit a sufficient effect, and there is a possibility that the texture of the food or drink will be changed if an amount that exhibits the effect is added. there were.
- a rich and creamy texture is imparted, but this method improves mouthfeel and mouthfeel called mouthfeel, that is, the physical characteristics of the added food and drink. Because it is a change, it did not improve the taste itself of food and drink.
- Patent Document 6 proposes a composition in which a branched cyclodextrin is blended with a processed product obtained by treating a milk fat-containing food material with a lipolytic enzyme or with a lipolytic enzyme.
- a method for producing a milk fat decomposition product has been proposed in which milk fat hydrolyzed is irradiated with ultraviolet rays to enhance the flavor and suppress an irritating decomposition odor.
- Patent Document 7 shows that it is necessary to further irradiate with ultraviolet rays for 24 to 100 hours after long-time enzymatic degradation, and there is a problem that the production efficiency is high and the production efficiency is very low. It was. Moreover, since strong milk system flavor and oxidation odor coexisted as a result, it could not be said to give a favorable flavor to food and drink.
- the object of the present invention is to provide a flavor improving material comprising a partial hydrolyzate of animal and vegetable oils and fats, which can impart a sufficient rich taste to foods and drinks without imparting an off-flavor or pungent taste, and its It is to provide a manufacturing method.
- the present invention has been made on the basis of the above findings, and provides a flavor improving material comprising a partial hydrolyzate of animal and vegetable oils and fats brought into contact with an adsorbent as an active ingredient, and a method for producing the same.
- the reaction system of hydrolysis is inhomogeneous because the animal and vegetable oils and fats that are the substrate of the lipolytic enzyme are insoluble in water. Therefore, reaction kinetic analysis was difficult. Although the present inventors tried diligently, it was difficult to grasp the actual behavior of the enzyme, and as a result, the partial hydrolyzate of animal and vegetable oils and fats could not be directly identified by the structure or characteristics.
- animal and vegetable oils and fats may be simply referred to as fats and oils
- animal and vegetable oils and fats may be simply referred to as partial hydrolysates
- the partial hydrolyzate of animal and vegetable fats and oils in the present invention is not limited to animal fats and oils and vegetable fats and oils, and acts on any edible fats and oils by causing alkali or lipolytic enzyme to act on them to partially hydrolyze the fats and oils (hereinafter simply referred to as “fat hydrolysates”).
- Fatty components derived from fats and oils such as fatty acids, glycerin, monoglycerides, diglycerides, and triglycerides, and organic acids, hydrocarbons, and alcohols that are secondarily produced during the decomposition process. , Aldehydes, esters, sulfur-containing compounds, ketones, fatty acids, fatty acid esters, aromatic compounds, lactones and the like.
- the partial hydrolysis of animal and vegetable fats and oils can be carried out by conventional methods.
- As the partial hydrolyzate of animal and vegetable fats and oils used in the present invention commercially available products can be used, or those produced by the production method described below. Although it can also be used, in the present invention, in order to obtain a flavor improving material with less off-flavor odor and pungent taste, it is preferable to use one produced by the production method described below.
- the preferable manufacturing method of the partial hydrolyzate of the animal and vegetable fats and oils in this invention is described below.
- the fats and oils used as a substrate are not particularly limited as long as they are edible, and any edible fats and oils can be used.
- animal fats such as pork fat, beef tallow and milk fat, or processed fats and oils obtained by subjecting these animal fats to one or more of the above treatments in the substrate It is preferable to include. Even when the vegetable oil or fat or the processed oil or fat obtained by subjecting the vegetable oil or fat to the above-described one or more treatments is used, it is possible to impart a rich taste and a richer feeling than those of conventional products.
- animal fats and oils are often more complex in composition of fatty acids that constitute fats and oils than vegetable fats and oils, and the hydrolysis described later yields partial hydrolysates having a very complex composition of aroma components. As a result, the effect of imparting a rich taste and richness to the food and drink is increased, which is preferable.
- the fats and oils used as a substrate can be changed according to the food or drink targeted for flavor improvement.
- an antioxidant such as tocopherol can be contained in advance in an amount of 50 to 1000 ppm with respect to the substrate in order to prevent oxidative degradation of the animal and vegetable fats and oils that are the substrate during the hydrolysis reaction.
- the hydrolysis method for obtaining the partial hydrolyzate is not particularly limited, and examples thereof include a hydrolysis method using an alkali treatment and a hydrolysis method using a lipolytic enzyme (hereinafter sometimes simply referred to as an enzyme). However, since a partial hydrolyzate can be produced under mild conditions, a hydrolysis method using a lipolytic enzyme is preferably selected.
- any of lipolytic enzymes derived from animals and lipolytic enzymes derived from microorganisms can be used without particular limitation, for example, derived from Candida, Aspergillus, Mucor, Chromobacterium genus, Penicillium genus, Rhizopus sp., Rhizomucor sp.
- Lipolytic enzyme produced by microorganisms derived from origin, Arthrobacter genus, Achromobacter genus, lipolytic enzyme obtained from the pancreas of livestock animals, lipolysis obtained from oral secretory glands such as goats, sheep and calves An enzyme etc. are mentioned.
- any of a random enzyme and a 1,3-position specific enzyme can be used.
- the above lipolytic enzymes can be used alone or in any combination.
- enzymes derived from Mucor, Rhizopus, Rhizomucor, and Candida are used. It is preferable to use it from the viewpoint that a partial hydrolyzate with suppressed stimulating flavor derived from lower fatty acids can be obtained.
- Examples of the method for containing the lipolytic enzyme in the animal or vegetable oil or fat as a substrate include a method of containing the lipolytic enzyme itself in the form of a powder or an aqueous solution, and a method using an immobilized lipolytic enzyme (an immobilized enzyme).
- an immobilized enzyme an immobilized enzyme
- microorganisms such as molds and yeasts capable of producing lipolytic enzymes can also be used, but they can be easily separated from the reaction solution, and the enzyme activity in the resulting flavor improving material remains.
- a method using an immobilized enzyme is preferable because it is difficult to perform recovery and is easy to recover from the system.
- the method for immobilizing the enzyme is not particularly limited, and any of a carrier binding method, a crosslinking method, and a comprehensive method is possible, but there are two methods of reducing residual enzyme activity and maintaining enzyme activity. From the viewpoint, it is preferable to select a carrier binding method.
- the carrier used for the immobilized enzyme regardless of organic or inorganic, celite, diatomaceous earth, kaolinite, pentonite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics, hydroxyapatite and the like,
- examples thereof include organic polymers such as polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption resin, chelate resin, and synthetic adsorption resin.
- an ion exchange resin is preferably selected because high enzyme activity and production efficiency are obtained, and among these ion exchange resins, a nonion exchange resin can be selected because of its high ability to retain lipolytic enzymes. preferable.
- the particle size of the carrier is preferably 150 to 1000 ⁇ m, more preferably 200 to 800 ⁇ m, and most preferably 200 to 600 ⁇ m.
- the particle size of the carrier is less than 150 ⁇ m, pressure loss may occur or the separation process may be difficult.
- it exceeds 1000 micrometers there exists a possibility that the contact surface of a substrate and an immobilized enzyme may decrease, and it may take time for decomposition
- the carrier particles having a particle size of 200 to 600 ⁇ m are preferably 90% or more on a volume basis.
- the enzymatic reaction process for obtaining a partial hydrolyzate of animal and vegetable fats and oils using a lipolytic enzyme can be a batch type in which the lipolytic enzyme is directly added to the animal and vegetable fats and oils to be subjected to hydrolysis. It is possible to use a column type in which a lipolytic enzyme is packed into a cylindrical container (column) and the animal and vegetable oils and fats to be hydrolyzed are passed through in a liquid state. From the point that adjustment of the reaction rate of the hydrolysis reaction and termination of the hydrolysis reaction can be easily performed by adjusting the amount of liquid fed, and that these operations can be continuously performed by circulation or the like.
- the column method is preferably selected as the enzymatic decomposition method.
- the oil is preferably contained in an amount of 500 to 30000 ppm, more preferably 650 to 15000 ppm, and most preferably 800 to 4000 ppm.
- the moisture content in the fats and oils used as a substrate is less than 500 ppm, the transesterification reaction of fats and oils in equilibrium with the fats and oils decomposition reaction tends to proceed more predominately than the target animal and plant fats and oils decomposition reaction.
- the effect as a flavor improving material may be difficult to obtain.
- the water content in fats and oils is more than 30000 ppm, it takes time for the dehydration process to be described later, so that there is a risk that many flavor components that are easily volatilized in the partial hydrolyzate are lost.
- the agitation of animal and vegetable oils and fats is preferably carried out using an agitating blade or the like at an arbitrary stirring speed of preferably 300 rpm or less, more preferably 5 to 150 rpm.
- the water content is adjusted to 10000 ppm or less when the measured value of the acid value of the oil phase is less than 50, and 20000 ppm or less when the measured value is 50 or more. It is preferable.
- the amount of the above-mentioned lipolytic enzyme varies depending on the amount of fats and oils to be hydrolyzed as a substrate, the titer and type of the lipolytic enzyme, and is appropriately set in each system.
- the fats and oils are 0.01 to 10.0% by weight, preferably the fats and oils are 0.01 to 5% by weight, more preferably the fats and oils 0.01 to 1.0% by mass of enzyme is contained.
- an immobilized enzyme as the enzyme packed in the column.
- the amount of the immobilized enzyme charged is set based on the weight of the oil and fat. It is preferable to use 1 to 10% by mass, particularly 0.5 to 5% by mass with respect to fats and oils in order to efficiently produce a partial hydrolyzate of animal and vegetable fats and oils.
- the flow rate of the fats and oils flowing through the column is preferably set appropriately from the relationship with the enzyme amount. Specifically, the ratio of the flow rate of the animal and vegetable oils and fat to the immobilized enzyme (the flow rate of animal and vegetable oils and fats / Adjust immobilized enzyme weight, unit [/ hour]).
- the reaction temperature at the time of enzymatic degradation of fats and oils is appropriately set according to the optimum temperature at which the activity of the selected enzyme is maximized, but as an example, it is preferably 35 to 75 ° C., 40 More preferably, it is -70 ° C, and most preferably 45-65 ° C.
- the oil temperature is less than 35 ° C., the activity of the enzyme may not be sufficient, and oils and fats selected as a substrate, such as oils and fats exhibiting solid properties at room temperature, may not have fluidity. It may be difficult to disassemble.
- the protein constituting the enzyme may be denatured and the flavor of the resulting flavor improving material may be impaired due to thermal degradation of the fats and oils of the substrate.
- the acid value is less than 10
- the flavor improving material itself obtained has a weak flavor, and at the same time, the flavor improving effect tends to be poor.
- the acid value is more than 120
- the flavor of the resulting flavor improving material itself has a strong taste such as acidity or metal taste, and gives an off-flavor to the contained food or drink. There is a fear.
- the method for the dehydration treatment is not particularly limited, but for example, only the obtained partial hydrolyzate is taken out from the system by a conventional method, and then the pressure is reduced to 0.01 MPa or less and 70 to 100 ° C., preferably 80 to 100 ° C. By heating at about 0.degree. C. for about 0.5 to 1.0 hour, the dehydration treatment in the partial hydrolyzate of animal and vegetable fats and oils can be performed.
- the activity of the adsorbent is reduced in the contact step with the adsorbent described below, and the flavor and richness imparting effect of the partial hydrolyzate of the obtained animal and plant oil / fat itself may be reduced. is there.
- the enzyme deactivation condition is not particularly limited as long as the protein constituting the enzyme is denatured, and a method such as heating or changing the pH can be adopted, but preferably a deactivation treatment by heating is selected,
- the enzyme added to the system can be inactivated by treating at 90 ° C. for 30 minutes with stirring.
- the lipolytic enzyme is supported on the surface of the carrier and can be removed by filtration.
- the deactivation treatment and the removal treatment by filtration can be performed together.
- the enzyme deactivation / removal step can be performed before or after the contact treatment with the adsorbent described later.
- the process of contacting the partial hydrolyzate of animal and vegetable fats and oils with an adsorbent will be described.
- the principle is unknown at this stage, it is possible to reduce and remove the off-flavor and pungent taste of the partial hydrolyzate of animal and vegetable oils and fats immediately after decomposition by the step of contacting with the adsorbent, and a preferable aroma. Is granted.
- adsorbent used in the present invention examples include adsorbents that are also used as food additives, such as silicates such as zeolite, silica gel, talc, and kaolin, activated alumina, anhydrous calcium carbonate, and anhydrous sodium sulfate.
- silicates such as zeolite, silica gel, talc, and kaolin
- activated alumina anhydrous calcium carbonate
- anhydrous sodium sulfate anhydrous sodium sulfate.
- silicate is preferably selected
- silica gel and zeolite are more preferably selected
- silica gel is most preferably selected.
- the adsorbent used is preferably in the form of fine particles in order to improve the contact efficiency, and the shape may be powder or spherical, but the effect of reducing the pungent odor and off-flavor of the decomposition products is particularly high. Therefore, it is preferably in a powder form.
- the average particle size of the adsorbent used is preferably 3 to 60 ⁇ m, and more preferably 10 to 40 ⁇ m.
- the average particle size is less than 3 ⁇ m, the eyes are easily clogged at the time of filtration, and the filtration efficiency tends to decrease.
- the average particle diameter is larger than 60 ⁇ m, the particle surface area becomes small, so that the effect of reducing the pungent odor and off-flavor of the decomposed product tends to be low, and the effect of the flavor improving material obtained by the present invention is hardly obtained. There is a fear.
- the specific surface area of the adsorbent used is preferably 250 m 2 / g or more, more preferably 300 m 2 / g or more, and most preferably 400 to 800 m 2 / g.
- the specific surface area of the adsorbent used is less than 250 m 2 / g, the contact efficiency between the partial hydrolyzate of animal and vegetable fats and oils and the adsorbent is low, and the flavor improving material of the present invention is contained in food and drink. There is a risk that the richness obtained when the potato is used is poor.
- silica gel When silica gel is used as an adsorbent that is brought into contact with a partial hydrolyzate of animal or vegetable fats and oils, it is possible to use either unmodified or chemically modified silica gel. Those subjected to physical and physical modification can also be used.
- the silica gel used preferably has a pH of 3.0 to 8.0, more preferably 5.0 to 8.0, and most preferably 6.5 to 8.0. Even if the pH of the silica gel is more acidic than 3.0, the off-flavor odor can be sufficiently reduced, but the flavor components are decomposed due to the acidity of the silica gel, which is the purpose of the present invention. There exists a possibility that the provision effect and the flavor improvement effect may become weak.
- examples of silica gel having a pH of more than 8.0 include aminated silica gel and the like. However, these silica gels themselves are expensive and particularly attract aldehydes, ketones, and fatty acids that contribute to flavor. The flavor improving effect of the partial hydrolyzate of animal and vegetable oils and fats may be poor.
- the step of bringing the partial hydrolyzate of animal and vegetable oils and fats into contact with the adsorbent can be carried out in a batch manner or by a method in which the adsorbent is packed into the column and passed through. Is preferable because the amount of the partial hydrolyzate of animal and vegetable fats and oils that can be purified at a time increases. Compared with before and after hydrolysis of fats and oils, the viscosity is likely to increase after the hydrolysis of fats and oils, and accordingly, the column type also tends to increase the pressure, so it is difficult to perform contact treatment efficiently because of the batch type. Is preferred.
- the amount of the adsorbent to be brought into contact with the partial hydrolyzate of animal and vegetable oils and fats is appropriately selected according to the type of adsorbent and the flavor strength required for the flavor improving material, but 100 parts by mass of the partial hydrolyzate of animal and vegetable oils and fats. Is preferably 1 to 20 parts by mass, more preferably 1 to 18 parts by mass, and most preferably 3 to 10 parts by mass. When the amount of the adsorbent is less than 1 part by mass with respect to 100 parts by mass of the partial hydrolyzate, there is a possibility that the pungent taste and off-flavor that the partial hydrolyzate has cannot be reduced.
- the amount of the adsorbent is more than 20 parts by mass with respect to 100 parts by mass of the partially hydrolyzed product, there is a possibility that a strong taste and miscellaneous taste may occur. Moreover, it is preferable to use the adsorbent after releasing moisture by heating or the like before the contacting step to enhance its activity.
- the property of the partial hydrolyzate must be fluid to liquid. It is preferable that it is liquid. For this reason, when the adsorbent and the partial hydrolyzate are brought into contact with each other, it is necessary to adjust the temperature of the partial hydrolyzate to a temperature at which the partial hydrolyzate becomes fluid to liquid, but in order to prevent the loss and alteration of preferable flavor components. It is preferable to adjust the temperature to less than 100 ° C.
- the adsorbent may be settled, and therefore, for example, it is preferable to stir at about 350 rpm using a stirring blade.
- the partial hydrolyzate and the adsorbent are preferably contacted in a reduced pressure state, more preferably 0.01 MPa or less. Thereby, the off-flavor and odor of the obtained flavor modifier are particularly reduced.
- the end point of the contact step with the adsorbent can be determined as an end point at which the effect of the present invention can be obtained, but “(1) contact time with the adsorbent” or “(2) described below”.
- a flavor improving material is obtained in which the off-flavor odor and gummy taste are sufficiently reduced and the effect of imparting a rich taste is high. Therefore, it is preferable.
- the contact time is preferably 5 minutes to 5 hours, more preferably 15 minutes to 2 hours.
- the contact time is less than 5 minutes, the effect of reducing off-flavors and irritation caused by contact with the adsorbent may not be obtained.
- contact time exceeds 5 hours, there exists a possibility that an undesirable flavor change may arise by excessive heating.
- the partial hydrolyzate is analyzed by a conventional method as appropriate. It is preferable from the viewpoint of obtaining a flavor improving material with reduced off-flavor and odor to be judged based on either or both of (i) monoglyceride (MG) content and (ii) moisture content of the partial hydrolyzate. .
- the MG content of the partial hydrolyzate after the contact step is 75% or less, particularly It is preferable to determine a point in the range of 30 to 70% as an end point in order to obtain a flavor improving material with reduced off-flavor and odor.
- the MG content is more than 75%, the off-flavor and savory taste are not sufficiently reduced, and the flavor of the added food or drink may be deteriorated.
- the moisture content in the partially hydrolyzed product after the contact step is 1500 ppm or less as an end point, and is 50 to 300 ppm. Is more preferably determined as the end point.
- the water content in the partial hydrolyzate is higher than 1500 ppm, the off-flavor and odor of the obtained flavor improving material is not sufficiently reduced, and the deterioration of the flavor over time may be promoted during storage.
- moisture content in the partial hydrolyzate which passed through the contact process is fully reduced within the range with which the effect of this invention is acquired from the said viewpoint.
- the adsorbent is removed by filtration after a contact step with the adsorbent.
- a filtration method natural filtration, suction filtration, pressure filtration, centrifugal separation, or the like can be used, and a filter press using a membrane filter or a filter cloth is preferably selected.
- the flavor improving material of the present invention is obtained by using the partial hydrolyzate of animal and vegetable oils and fats obtained as described above in contact with the adsorbent as an active ingredient, and this is used as it is as the flavor improving material of the present invention.
- water, edible animal and vegetable oils, emulsifiers, antioxidants, sugars and sugar alcohols, thickeners, starch, flour, inorganic salts and organic acid salts, gelling agents, dairy products , Egg products, flavorings, seasonings, colorants, preservatives, pH adjusters, and other food materials can be mixed to provide the flavor improving material of the present invention.
- the content of other food materials is particularly limited as long as it is in a range that does not impair the richness imparting effect and flavor improving effect of the partial hydrolyzate of animal and vegetable oils and fats brought into contact with the adsorbent. However, it is usually 20 parts by mass or less with respect to 100 parts by mass of the partially hydrolyzed product.
- the flavor improving material of the present invention obtained as described above is blended into a food or drink, compared with the case where a flavor improving material containing a conventional oil / fat decomposed product is blended into a food or drink, the occurrence of off-flavor odor is suppressed, And it has the characteristics that the richness imparting effect and the flavor improving effect are good. Therefore, it is excellent as a food material that imparts a rich taste to food and drink.
- the effect of imparting the richness and richness of the flavor improving material having the active ingredient of the partial hydrolyzate of animal and vegetable oils and fats brought into contact with the adsorbent obtained by the above method is preferably enhanced.
- the material and the method of obtaining it are described. Specifically, before the partial hydrolyzate of animal and vegetable fats and oils comes into contact with the adsorbent, or after contact with the adsorbent, the effect of imparting richness and richness by applying the following step (A) It becomes possible to obtain a flavor improving material preferably enhanced.
- the partial hydrolyzate of the animal and vegetable fats and oils which passed through the process (A) performs the following process (B), and can obtain the flavor improving material in which the effect which provides a more rich taste and a rich feeling was reinforced. It becomes possible.
- the partially hydrolyzed product brought into contact with the adsorbent may be described as an adsorption-treated product.
- Oxidation treatment to be described later preferably by performing reduction treatment after oxidation treatment, so that not only animal fats and processed fats and oils are used as a substrate, but also vegetable oils and processed fats and oils that are relatively weak in flavor are used as substrates. Even in the case of an adsorption-treated product, it is possible to obtain a flavor improving material having a rich taste and richness with a preferable strength.
- the type is not particularly limited, but by using liquid oil or palm oils and fats, an oily feeling is imparted. This is preferable because a rich taste and richness can be imparted to the food and drink without having to.
- the partly hydrolyzed product of animal and vegetable oils and fats that have been passed may be described as an oxidized product).
- the oxidation treatment method and its conditions are not particularly limited, and known methods and conditions can be employed. Specifically, the oxidation treatment can be performed by thermal oxidation, photooxidation, or the like. Moreover, the partial hydrolyzate of the said animal and vegetable fats and oils may be oxidized naturally and may be oxidized artificially.
- the heating conditions for the thermal oxidation are not particularly limited as long as the peroxide value of the oxidized product can satisfy the following range, but the heating temperature is preferably 80 to 180 ° C., more preferably 80 to 160. ° C, more preferably 80 to 140 ° C.
- the heating time varies depending on the heating temperature and may be appropriately selected. For example, the heating temperature is preferably in the range of 5 minutes to 30 minutes at 180 ° C. and 6 to 48 hours at 80 ° C.
- the peroxide value of the oxidation-treated product becomes 10 to 40, and it is more preferable to oxidize until the peroxide value becomes 20 to 35.
- the value of the peroxide value of the oxidized product exceeds 60, when the obtained flavor improving material is used in a food or drink, the effect of imparting a rich taste and a rich feeling can be obtained. In addition, there is a possibility that the off-taste accompanying oxidation is strongly expressed.
- the peroxide value of fats and oils can be measured in accordance with, for example, [Japan Oil Chemical Society established standard oil analysis method 2.5.2.1-2013].
- the anisidine value is preferably 35 or less, more preferably 30 or less, and most preferably 25 or less.
- the lower limit of the anisidine value is preferably 10 or more, more preferably 15 or more, and most preferably 18 or more. If the anisidine value of the oxidized product is more than 35, an off-flavor tends to occur in the flavor of the food or drink using the obtained flavor improving material. Moreover, when the anisidine value of the oxidation-treated product is less than 10, the oxidation treatment is not sufficient, and there is a fear that the enhancement of the effect of imparting the rich taste and the effect of providing a rich feeling may be insufficient.
- the anisidine value of fats and oils can be measured, for example, according to [Japan Oil Chemical Society established standard fat and oil analysis test method 2.5.3-2013].
- an antioxidant such as tocopherol
- the antioxidant when subjecting the partial hydrolyzate of animal and vegetable fats and oils to contact with the adsorbent, the antioxidant may be contained in the partial hydrolyzate before contacting with the adsorbent. It may be contained in the partial hydrolyzate after contact with the agent.
- an antioxidant when performing the reduction process (process (B)) by the hydrogen mentioned later with respect to an oxidation treatment product, an antioxidant can be contained at the following timing.
- the antioxidant when the steps (A) and (B) are applied to the partial hydrolyzate of animal and vegetable oils and fats that have been brought into contact with the adsorbent, the antioxidant is applied after the step (A) and before the step (B).
- An agent may be contained, and an antioxidant may be contained after performing the step (A) and the step (B).
- the antioxidant is applied after the step (A) and before the step (B).
- An antioxidant may be added after the steps (A) and (B) and before contacting with the adsorbent, and the steps (A) and (B) may be added.
- An antioxidant may be added after application and after contact with the adsorbent.
- the step (A) Prior to contacting with the adsorbent, the step (A) was applied to the partial hydrolyzate of animal and vegetable fats and oils, and the partial hydrolyzate subjected to the step (A) was brought into contact with the adsorbent and contacted with the adsorbent.
- an antioxidant may be contained before contacting with the adsorbent, and the antioxidant is added before the subsequent step (B) after contacting with the adsorbent. In some cases, an antioxidant may be added after the step (B).
- the content of the antioxidant in the oxidation-treated product may be 50 ppm or more, preferably 100 ppm or more, but is preferably 1000 ppm or less in the oxidation-treated product, more preferably 700 ppm or less, and 500 ppm or less. Most preferred.
- the step (A) may be applied before the contact between the partial hydrolyzate of animal and vegetable fats and oils and the adsorbent, and the partial hydrolyzate contacted with the adsorbent is subjected to the step (A). May be applied.
- Whether to perform the step (A) before contacting with the adsorbent or to perform the step (A) after contacting with the adsorbent depends on the strength and quality of the desired flavor, In particular, when it is desired to enhance the aftertaste, it is preferable to perform the step (A) before contacting with the adsorbent. In particular, when it is desired to enhance the taste, it is preferable to perform the step (A) after contacting with the adsorbent.
- step (B) a step of reducing the contained peroxide with hydrogen (hereinafter sometimes referred to as a reduction treatment, and after undergoing the reduction treatment may be referred to as a reduction treatment product) will be described.
- a reduction treatment a step of reducing the contained peroxide with hydrogen
- the step (A) to the partial hydrolyzate of animal and vegetable fats and oils, the effect of imparting the rich taste and richness of the obtained flavor improving material is strengthened, but the oxidized product obtained through the step (A)
- a process (B) it becomes possible to obtain the flavor improving material in which the effect which provides a richer taste and a rich feeling was further reinforced.
- a process (B) may be performed before adsorbent processing, and a process is performed after adsorbent processing. (B) may be applied. It is preferable to perform the step (B) prior to the adsorbent treatment because the effect of imparting richness and richness can be more easily obtained.
- the reduction treatment in the present invention is performed by heating the oxidation-treated product together with a hydrogenation catalyst at 60 to 130 ° C. in the presence of hydrogen gas.
- the purpose of the reduction treatment in the present invention is to reduce the peroxide produced in the partial hydrolyzate through the step (A) without fluctuation in iodine value, and to preferably obtain a flavor component.
- “with no change in iodine value” means that the iodine value before the reduction step is compared with the iodine value after the reduction step, and the change rate of the iodine value is preferably 5% or less, more preferably It indicates 3% or less.
- the hydrogenation catalyst used for the reduction treatment is not particularly limited as long as the peroxide in the oxidation-treated product can be reduced by hydrogen, and a nickel catalyst, a platinum catalyst, a palladium catalyst, or the like can be selected. .
- a nickel catalyst it is particularly preferable to select a nickel catalyst because it is inexpensive and can stably reduce the peroxide even in a low temperature range.
- the nickel catalyst may be a nickel catalyst having selectivity or a nickel catalyst having non-selectivity.
- the shape of the hydrogenation catalyst may be in the form of powder and may be in the form of flakes, but the flake form is preferred because it can be added to the oil without scattering.
- the addition amount of the hydrogenation catalyst is preferably 0.01 to 0.5% by mass, more preferably 0.05 to 0.3% by mass, based on the oil / fat decomposed product after the step (A). More preferred. If the hydrogenation catalyst is added in an amount of less than 0.01% by mass, the peroxide contained in the oxidation-treated product may not be efficiently reduced. Moreover, when a hydrogenation catalyst exceeds 0.5 mass%, the multiple bond of the fatty acid which comprises the glycerol fatty acid ester contained in an oxidation process goods will be reduced, and it will become easy to produce trans fatty acid.
- the reduction step is performed in the presence of hydrogen gas.
- hydrogen gas is pressurized and injected in a pressure range of 0.5 to 2.5 kg / cm 2. It is preferable because the fluctuation of the value is minimized and only the peroxide in the oxidized product is easily reduced.
- the hydrogen gas is more preferably pressurized and injected in a pressure range of 0.5 to 1.7 kg / cm 2 , most preferably 0.6 to 1.5 kg / cm 2 .
- the temperature of the oxidation-treated product is preferably heated to a temperature range of 60 to 130 ° C., preferably 70 to 120 ° C., and preferably 80 to 115 ° C. It is more preferable to heat so that it may become a temperature range.
- the temperature of the oxidized product is less than 60 ° C., the peroxide and carbonyl compound in the oxidized product cannot be sufficiently reduced, and depending on the type of oil selected as the raw material for the adsorption-treated product, fat crystals are formed. There is a risk that. If the temperature of the oxidized product exceeds 130 ° C., the peroxide or carbonyl compound may not be reduced while controlling the iodine value so as not to fluctuate.
- stirring is preferably performed at a speed of 100 to 750 rpm, more preferably at a speed of 150 to 600 rpm, and stirring at a speed of 200 to 500 rpm using a stirring blade or the like. Is most preferred.
- the stirring speed at the time of heating is less than 100 rpm, hydrogen gas is not sufficiently contained in the oxidized product, and the progress of the reduction reaction of the peroxide or the carbonyl compound may be extremely slow.
- the stirring speed at the time of heating exceeds 750 rpm, hydrogen gas will be included excessively and it may become difficult to control a reductive reaction.
- the end point of the reduction step is based on the iodine value of the oxidized product before the reduction step, and preferably the peroxide value is within a range where the fluctuation rate of the iodine value is 5% or less, more preferably 3% or less.
- a point that is 15 or less is preferably the end point, a point that is 10 or less is more preferably the end point, and a point that is 1 or less is most preferably the end point.
- the end point is a range in which the fluctuation rate of iodine value exceeds 5%, the physical properties of the obtained reduction-treated product and further the flavor improving material may be changed and may be easily solidified. For this reason, when added to food or drink, there is a risk of localization.
- the anisidine value is preferably 20 or less, more preferably 15 or less, at the end point of the reduction process determined by the peroxide value.
- the peroxide value and the anisidine value of the partially hydrolyzed product that has undergone the reduction process are the peroxide value and the anisidine value of the partially hydrolyzed product that has been subjected to the adsorption process when the adsorption process is performed after the reduction process.
- the method for removing the hydrogenation catalyst is not particularly limited, and may be filtered off with a filter cloth or the like as it is, or a filter aid such as silica gel, celite, or activated carbon may be used.
- a filter aid such as silica gel, celite, activated carbon or the like to remove the hydrogenation catalyst
- the amount used is not particularly limited as long as the hydrogenation catalyst is removed.
- the adsorption-treated product, oxidation-treated product, and reduction-treated product thus obtained may be further subjected to one or more of purification such as decolorization and deodorization and processing such as fractionation and transesterification. .
- purification such as decolorization and deodorization and processing such as fractionation and transesterification.
- These treatments can be performed according to a conventional method.
- decolorization and deodorization are preferably performed under mild temperature conditions from the viewpoint of preventing the dissipation of flavor components and aroma components. Specifically, decolorization is performed so that the measurement temperature is 80 to 100 ° C. The deodorization is preferably performed so that the measurement temperature is 180 to 220 ° C.
- Example 1 After 3000 g of melted purified milk fat was weighed into a 5000 mL four-necked flask, 300 g of ion-exchanged water was added, separated into two phases, an oil phase and an aqueous phase, and allowed to stand until the oil / water interface settled. Next, an anchor type stirring blade was placed slightly floating from the interface so as not to disturb the oil / water interface, stirred at 100 rpm for 90 minutes, and the oil / fat was allowed to contain water at 1000 ppm. During this time, heating was continued so that the temperature of the oil and fat was about 60 ° C.
- the fat portion in the four-necked flask A line was connected so that only the oil passed through the column and then returned to the flask, and was circulated with a pump. All the lines through which the fats and oils passed were treated so that the temperature of the fats and oils could be maintained at about 60 ° C.
- the immobilized enzyme was a lipolytic enzyme derived from the genus Rhizomucor (Rhizomucor meihei).
- the stirring speed is 350 rpm and the fat temperature is 90 ° C.
- Made contact While making contact, the monoglyceride content in the partial hydrolyzate is appropriately measured, and the monoglyceride content of the partial hydrolyzate after the contacting step is 60% or less based on the monoglyceride content of the partial hydrolyzate before contact. At that time, the end point was reached, the decompression was released, and the silica gel (adsorbent) was filtered off as it was without lowering the temperature. In this way, a partial hydrolyzate (hereinafter referred to as milk fat decomposed product) obtained by partially enzymatically degrading milk fat was obtained.
- milk fat decomposed product a partial hydrolyzate obtained by partially enzymatically degrading milk fat was obtained.
- Example 1-2 The milk fat degradation product produced in Example 1 was weighed into a four-necked flask with a capacity of 5000 mL, and 2000 g was weighed, and the fat temperature was 90 ° C. with a mantle heater while blowing dry air at 3.0 L / min without closing the mouth. Then, the mixture was further stirred using an anchor type stirring blade at 300 rpm and oxidized until the peroxide value reached 6. 300 ppm of tocopherol as an antioxidant was added to the oxidized milk fat decomposition product to obtain a milk fat decomposition product (Ox).
- the milk fat decomposed product (Ox) had an iodine value of 35.5, a peroxide value of 6.3, an anisidine value of 3.1, and a trans fatty acid content of 2.5% by mass.
- Example 2 Using 3000 g of purified tallow, the same operation as in Example 1 was performed to obtain a partial hydrolyzate (hereinafter referred to as tallow decomposed product) obtained by partially enzymatically degrading tallow.
- tallow decomposed product a partial hydrolyzate obtained by partially enzymatically degrading tallow.
- Example 2-2 The pork fat decomposition product produced in Example 2 was oxidized by the same method as in Example 1-2 until the peroxide value reached 6, to obtain pork fat decomposition product (Ox).
- the iodine value of the pork fat decomposition product (Ox) was 65.0, the peroxide value was 6.5, the anisidine value was 2.5, and the trans fatty acid content was 2.1% by mass.
- Example 3-2 2000 g of the mixed fat / oil decomposition product A (untreated) produced in the same manner as in the method of Comparative Example 3 described below was weighed into a four-necked flask having a volume of 5000 mL. The liquid temperature in the flask was adjusted to 90 ° C. while reducing the pressure to be 01 MPa or less, and the mixture was stirred at 250 rpm and dehydrated for 60 minutes. Then, while blowing dry air at 3.0 L / min without closing the mouth, it was heated with a mantle heater so that the oil temperature became 120 ° C. and oxidized until the peroxide value reached 25. During this time, stirring was performed at 300 rpm using an anchor type stirring blade.
- silica gel 150 g was added, the pressure was reduced to 0.01 MPa or less, and the monoglyceride content was appropriately measured while contacting with silica gel (Fuji Silysia Silopup 130) at a stirring speed of 350 rpm and an oil temperature of 90 ° C. Based on the monoglyceride content of the previous partial hydrolyzate, based on the monoglyceride content of the milk fat hydrolyzate (untreated) before contact, the point where the monoglyceride content after the contacting step is 50% or less is the end point, and the vacuum is reduced.
- the silica gel (adsorbent) was filtered off as it was without releasing the temperature, and 300 ppm of tocopherol was added as an antioxidant to obtain a mixed fat and oil decomposition product A ( ⁇ 1).
- the mixed fat / oil decomposition product A ( ⁇ 1) had an iodine value of 35.5, a peroxide value of 24.5, an anisidine value of 17.4, and a trans fatty acid content of 2.5% by mass.
- Example 3-3 In a four-necked flask with a capacity of 5000 mL, 2000 g of the mixed fat / oil decomposition product A produced in Example 3 was weighed, and the oil temperature was 90 ° C. with a mantle heater while blowing dry air at 3.0 L / min without closing the mouth. Then, the mixture was further stirred using an anchor type stirring blade at 300 rpm and oxidized until the peroxide value reached 25. 300 ppm of tocopherol as an antioxidant was added to the oxidized mixed fat / oil decomposition product A to obtain a mixed fat / oil decomposition product A ( ⁇ 2).
- the mixed oil and fat decomposition product A ( ⁇ 2) had an iodine value of 35.7, a peroxide value of 27.3, an anisidine value of 18.1, and a trans fatty acid content of 2.7% by mass.
- Example 3-4 In a four-necked flask with a capacity of 5000 mL, 2000 g of the mixed fat / oil decomposition product A (untreated) produced in the same manner as in the method of Comparative Example 3 described below was weighed. The liquid temperature in the flask was adjusted to 90 ° C. while reducing the pressure to be 01 MPa or less, and the mixture was stirred at 250 rpm and dehydrated for 60 minutes. Then, while blowing dry air at 3.0 L / min without closing the mouth, heat the oil and fat temperature to 120 ° C. with a mantle heater, and further stir at 300 rpm using an anchor-type stirring blade, and peroxidize It was oxidized until the price reached 25.
- the oxidized mixed oil decomposition product A (untreated) had an iodine value of 35.5, a peroxide value of 25.6, an anisidine value of 16.8, and a trans fatty acid content of 2.5% by mass. .
- 1000 g of the oxidized mixed fat / oil decomposition product A (untreated) was transferred to a pressure vessel, 0.1 mass% of a curing nickel catalyst (manufactured by Sakai Chemical) was added as a hydrogenation catalyst, and the headspace portion was hydrogen gas. After sufficient substitution, the mixture was heated to 90 ° C., and the hydrogen pressure in the pressure vessel was 1.0 kg / cm 2 and stirred at 300 rpm using an anchor type stirring blade.
- the peroxide value was analyzed, and the hydrogenation catalyst was filtered off when the peroxide value became 10 or less for the first time.
- the filtrate was transferred to a 3000 ml four-necked flask, decompressed to 0.01 MPa or less, and the monoglyceride content was appropriately measured while contacting with silica gel at a stirring speed of 350 rpm and an oil temperature of 90 ° C.
- the monoglyceride content of the partial hydrolyzate as the standard, the monoglyceride content of the milk fat decomposed product (untreated) before contact is the standard, and the point where the monoglyceride content after the contact process is 50% or less is the end point, and the decompression is released.
- the mixed fat / oil decomposition product A ( ⁇ 1) had an iodine value of 33.2, a peroxide value of 4.5, an anisidine value of 11.1, and a trans fatty acid content of 3.0% by mass.
- Example 3-5 Weigh 1000 g of the mixed fat and oil decomposition product A ( ⁇ 2) produced in Example 3-3 into a pressure vessel, add 0.1% by mass of a curing nickel catalyst (manufactured by Sakai Chemical) as a hydrogenation catalyst, and replace the headspace portion with hydrogen. After sufficiently substituting with gas, the mixture was heated to 90 ° C., and the hydrogen pressure in the pressure vessel was 1.0 kg / cm 2 and stirred at 300 rpm using an anchor type stirring blade.
- a curing nickel catalyst manufactured by Sakai Chemical
- the obtained mixed fat and oil decomposition product A ( ⁇ 2) had an iodine value of 34.5, a peroxide value of 4.2, an anisidine value of 10.0, and a trans fatty acid content of 3.0% by mass.
- Example 4 The same operation as in Example 1 was performed on the mixed fat obtained by uniformly mixing 900 g of soybean hardened oil having an iodine value of 5 or less and 2100 g of milk fat, and then partially hydrolyzed (hereinafter referred to as mixed fat and oil decomposed substance B). )
- Example 5 The same operation as in Example 1 was performed on 3000 g of sweet butter (no salt used) manufactured by Yotsuba Dairy Co., Ltd. to obtain a partially hydrolyzed product (hereinafter referred to as butter decomposed product).
- Example 6 The same operation as in Example 1 was performed on 3000 g of palm oil having an iodine value of 51.0 to obtain a partially hydrolyzed product (hereinafter, palm oil decomposed product).
- Example 6-2 Palm oil degradation product (untreated) produced by the same method as in Comparative Example 6 described below is subjected to the same operation as in Example 3-2, subjected to an oxidation treatment after being decomposed by an immobilized enzyme, A palm oil decomposition product ( ⁇ 1) brought into contact with the adsorbent was obtained.
- the palm oil decomposed product ( ⁇ 1) had an iodine value of 51.0, a peroxide value of 25.3, an anisidine value of 17.5, and a trans fatty acid content of 0.8% by mass.
- Example 6-3 Palm oil produced by the same method as in Example 6 was subjected to the same operation as in Example 3-3, decomposed by an immobilized enzyme, contacted with an adsorbent, and subjected to oxidation treatment. An oil breakdown product ( ⁇ 2) was obtained.
- the palm oil decomposition product ( ⁇ 2) had an iodine value of 51.0, a peroxide value of 26.8, an anisidine value of 18.3, and a trans fatty acid content of 0.8% by mass.
- Palm oil degradation product (untreated) produced by the same method as in Comparative Example 6 described below is subjected to the same operations as in Example 3-4, and is subjected to degradation with an immobilized enzyme and oxidation treatment.
- the peroxide generated by the oxidation treatment was reduced with hydrogen and then contacted with an adsorbent to obtain a palm oil decomposition product ( ⁇ 1).
- the oxidized palm oil decomposed product (untreated) had an iodine value of 51.0, a peroxide value of 25.3, an anisidine value of 17.5, and a trans fatty acid content of 0.8% by mass. It was.
- the palm oil decomposed product ( ⁇ 1) had an iodine value of 49.8, a peroxide value of 5.8, an anisidine value of 12.1, and a trans fatty acid content of 1.3% by mass.
- Example 6-5 The palm oil decomposition product ( ⁇ 2) produced in Example 6-3 was subjected to the same operation as in Example 3-5, and the peroxide produced by the oxidation treatment was reduced with hydrogen. A product ( ⁇ 2) was obtained.
- the palm oil decomposition product ( ⁇ 2) had an iodine value of 50.1, a peroxide value of 6.2, an anisidine value of 13.3, and a trans fatty acid content of 1.2% by mass.
- whipped cream D was obtained by whipping only the above compound whipped cream without containing a milk fat decomposition product.
- the obtained whipped creams A to D were each put in a squeezed bag equipped with a star-shaped mouthpiece, squeezed into a polycup, and evaluated for flavor.
- a rich milk flavor was sufficiently felt, and the richness of milk remaining from the middle to the last was enhanced.
- the whipped cream B has an unpleasant taste because it has an irritating taste and taste from the top to the last after eating, and the effect of enhancing the milk flavor and richness is poor.
- the whipped cream C had a stronger milk flavor at the top than the whipped cream A, and the richness was further increased.
- the obtained meat dough was baked in a fixed oven (set temperature 190 ° C.) for 10 minutes to obtain hamburger A.
- hamburger B containing pork fat decomposition product (untreated) and hamburger C containing pork fat decomposition product (Ox) were obtained.
- the pork fat decomposition product was replaced with pork fat, and hamburger D containing 10 parts by mass of pork fat and not containing pork fat decomposition product was obtained.
- the hamburger A containing the pork fat decomposition product had a taste thickness from middle to last compared to the hamburger C containing no pork fat decomposition product. It was confirmed that the spread was further felt and the aftertaste had a rich feeling and richness, and had a flavor improving effect.
- the thickness of the middle to the last and the rich feeling of the aftertaste similar to the hamburger A are felt, and the taste is preferably enhanced.
- the roll bread was manufactured by the same manufacturing method without including a partial hydrolyzate in the main body dough mixing
- the evaluation items are three items, “degree of off-season taste”, “degree of taste”, and “degree of richness”.
- a taste means the preferable flavor with the swelling which can be felt immediately after eating.
- the rich taste means a rich flavor that is preferably felt in the oral cavity and nasal cavity immediately after swallowing during chewing.
- Evaluation criteria degree of off-season miscellaneous taste 5 points Very good with no nuisance and miscellaneous taste. 3 points There is almost no off-taste and miscellaneous taste, and it is good. 1 point. 0 points The taste and taste are strong and poor. (Degree of taste) 5 points An excellent taste compared to the control was felt. A 3-point feel was felt compared to the control. One point was the same as the control. 0 points The taste is not felt compared to the control. (Degree of richness) 5 points Excellent body taste compared to the control. 3 points A rich taste was felt compared to the control. 1 point The taste was the same as the control. 0 point The taste is not felt compared to the control.
- ⁇ Sablet manufacturing method 70 parts of margarine (Socielle, ADEKA) and 5 parts of butter in advance and the partial hydrolyzate obtained in Comparative Example 1, Examples 3 to 3-5, or Comparative Example 3 were used as flavor improvers.
- a dough was obtained by adding and mixing 100 parts of the soft flour that had been sieved to the resulting mixture. The obtained dough was rested overnight in a refrigerator, rolled to 2.5 mm, punched out and baked at 160 ° C. for about 15 minutes to obtain sables A to J.
- the sable using the mixed fat and oil decomposed product A ( ⁇ 2) subjected to oxidation treatment at the end of the process is different from the sable using the mixed fat and oil decomposed product A ( ⁇ 1) subjected to silica gel treatment after oxidation.
- the score for miscellaneous tastes has dropped slightly. This suggests that, with the oxidation treatment, components preferable for imparting a taste and richness increase, and a component that is perceived as having an off-taste or a miscellaneous taste is slightly generated.
- the mixed oil / fat decomposed product A ( ⁇ 1) and the mixed oil / fat decomposed product A ( ⁇ 2) subjected to both the oxidation treatment and the reduction treatment with hydrogen gas are mixed oil / fat decomposed products subjected to only the oxidation treatment.
- the taste of taste was almost unnoticeable, and the degree of taste and richness were further enhanced. This is considered to be because the mixed fat / oil decomposition product A ( ⁇ 1) and the mixed fat / oil decomposition product A ( ⁇ 2) have a complex aroma component composition and the flavor is preferably enhanced by the reduction treatment with hydrogen gas.
- the sable using the mixed fat / oil decomposition product A ( ⁇ 2) obtained by subjecting the partial hydrolyzate treated with silica gel to both the oxidation treatment and the reduction treatment is applied to the partial hydrolyzate subjected to the combination of the oxidation treatment and the reduction treatment.
- a slightly different taste was produced. This suggests that the amount of a substance that can cause an unpleasant taste can be reduced by applying silica gel treatment.
- Sable D, Sable F, Sable H and Sable J were prepared by reducing the amount of flavor improver added compared to Sable C, Sable E, Sable G and Sable I, respectively.
- a good taste and richness are obtained. This suggests that the flavor intensity is further increased by performing oxidation treatment or a combination of oxidation treatment and reduction treatment.
- the flavor improving material of the present invention can provide a rich taste and richness without imparting a nasty smell or pungent taste to foods and drinks.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nutrition Science (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Seasonings (AREA)
- Edible Oils And Fats (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Fats And Perfumes (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
動植物油脂の部分的加水分解物は、アルカリや脂肪分解酵素を食用の動植物油脂に作用させて得られるものであり、脂肪酸やグリセリンのほか、これらから誘導される多種多様な風味成分を含有する混合物である。
動植物油脂の部分的加水分解物を、風味改良材の有効な風味成分として利用する技術は、食品業界では、飲食品に対してコク味や濃厚な風味を付与することを目的として、動物油脂や植物油脂の種類を問わず、従来より検討されてきた。
また特許文献2の方法では、乳清蛋白質分解物と乳脂分解物をそれぞれ別途調製した後混合する必要があるため生産効率が低く、更に、乳清蛋白質分解物と乳脂分解物双方に由来する異質な風味が、添加した飲食品に付与されてしまうという問題もあった。
特許文献3の方法では、酸による中和処理が必要となり精製工程が煩雑になる上、必要とする設備が多くなってしまうという問題があった。
特許文献5の方法では、コク味があってクリーミーなキメが付与されるが、この方法は、マウスフィールと呼ばれる舌触りや口当たりが改良されるもの、すなわち、添加された飲食品の物理的特性を変化させるものであるため、飲食品のもつ味質そのものを改良するものではなかった。
したがって、動植物油脂の部分的加水分解物を風味改良材の有効成分として利用することを考える場合、部分的加水分解後に、動植物油脂の部分的加水分解物から異味異臭につながる成分や刺激味を呈しやすい成分を低減・除去し又は変性させ、動植物油脂の部分的加水分解物の風味を好ましい風味へと調整する必要があった。
本発明における動植物油脂の部分的加水分解物とは、動物油脂や植物油脂を問わず、任意の食用油脂に対してアルカリや脂肪分解酵素を作用させ、油脂を部分的に加水分解(以下、単に分解という場合もある)して得られる、脂肪酸、グリセリン、モノグリセリド、ジグリセリド、トリグリセリド等の油脂由来の風味成分や、分解工程中に二次的に産生される、有機酸類、炭化水素類、アルコール類、アルデヒド類、エステル類、含硫化合物、ケトン類、脂肪酸類、脂肪酸エステル類、芳香族化合物、ラクトン類等の風味成分の混合物を指す。
動植物油脂の部分的加水分解物の製造において、基質として用いられる油脂としては、食用であれば特に限定されず、任意の食用油脂を使用することが可能である。例えば、パーム油、パーム核油、ヤシ油、微細藻類油、コーン油、綿実油、大豆油、ナタネ油、米油、ヒマワリ油、サフラワー油、オリーブ油、キャノーラ油、牛脂、乳脂、豚脂、羊脂、カカオ脂、シア脂、マンゴー核油、サル脂、イリッペ脂、魚油、鯨油、リン脂質等の各種植物油脂及び動物油脂、並びにこれらに水素添加、分別及びエステル交換から選択される1又は2以上の処理を施した加工油脂から選ばれた1種又は2種以上からなる食用油脂、並びに、クリーム、バター、チーズ、マーガリン、ショートニング等の上記食用油脂を原料の一部として加工してなる食品等が、本発明において用いる基質として挙げられる。
基質となる油脂中の水分含有量が500ppm未満である場合、油脂の分解反応と平衡の関係にある油脂のエステル交換反応が、目的の動植物油脂の分解反応よりも優位に進む傾向が見出されており、風味改良材としての効果が得られにくくなるおそれがある。油脂中の水分含有量が30000ppm超である場合、後述する脱水処理の際に時間を要するため、部分的加水分解物中の揮発し易い風味成分が多く失われてしまうおそれがある。
動植物油脂の撹拌は、撹拌羽根等を用いて好ましくは300rpm以下、より好ましくは5~150rpmの任意の撹拌速度で行うことが好ましい。
風味に大きく影響する動植物油脂の分解の度合をコントロールする点や、固定化酵素量に対して油脂流量が多すぎると反応が十分に進まず時間を要する上に反応が不完全なものとなってしまいやすい点、及び長時間の加温状況下での劣化を避ける点から、15~150/時間であることが好ましく、40~125/時間であることがより好ましい。
油脂温度が35℃未満では、酵素の活性が十分にあがらないおそれがある上、常温で固体の性状を示す油脂等、基質として選択される油脂によっては流動性を有しないおそれがあり、酵素により分解することが困難となる場合がある。また75℃超では、酵素を構成する蛋白質が変性を起こすおそれがある上、基質の油脂が熱劣化することにより、得られる風味改良材の風味を損ねるおそれがある。
酸価が10未満の場合、得られる風味改良材そのものの風味が弱く、同時に風味改良効果が乏しくなりやすい。また酸価が120超の場合、得られる風味改良材そのものの風味が酸味や金属味のようなえぐ味の強いものとなってしまい、含有させた飲食品に対して異味異臭を付与してしまうおそれがある。
脱水処理を経ない場合、下述する吸着剤との接触工程において、吸着剤の活性が低下し、得られた動植物油脂の部分的加水分解物自体の風味やコク味付与効果が低下するおそれがある。
本発明においては、以上に詳述した動植物油脂の部分的加水分解物を、吸着剤と接触させて、風味改良材の有効成分として用いるのが好ましい。
原理は現段階で不明であるが、吸着剤と接触させる工程を経ることにより、分解直後の動植物油脂の部分的加水分解物が有する異味異臭や刺激味を低減除去することができ、且つ好ましい香気が付与される。
平均粒子径が3μm未満である場合、濾過時に目が詰まり易く濾過効率が低下しやすい。また平均粒子径が60μmよりも大きい場合、粒子表面積が小さくなるために、分解物の刺激臭や異味の軽減効果が低くなりやすく、本発明により得られる風味改良材の効果を得にくくなってしまうおそれがある。
用いる吸着剤の比表面積が250m2/g未満である場合には、動植物油脂の部分的加水分解物と吸着剤との接触効率が低く、本発明の風味改良材を飲食品に対して含有させた際に得られるコク味が乏しくなるおそれがある。
シリカゲルのpHが3.0よりも酸性側であっても異味異臭の低減は十分に図られるが、シリカゲルの酸性に起因して風味成分の分解が生じてしまい、本発明の目的であるコク味付与効果や風味改良効果が弱くなってしまうおそれがある。
また、pHが8.0超のシリカゲルとしてはアミノ化シリカゲル等が挙げられるが、それらのシリカゲル自体が高価である上に、風味に寄与するアルデヒド類、ケトン類及び脂肪酸類を特に強く引き付けてしまい、動植物油脂の部分的加水分解物の風味改良効果が乏しくなってしまうおそれがある。
吸着剤の量が部分的加水分解物100質量部に対して1質量部未満である場合、部分的加水分解物が有する刺激味や異味異臭を低減できないおそれがある。また吸着剤の量が部分的加水分解物100質量部に対して20質量部超であると、強いえぐ味や雑味が生じるおそれがある。
また、吸着剤は、接触工程の前に加熱等により水分を放出させ、その活性を高めてから使用することが好ましい。
このため、吸着剤と部分的加水分解物を接触させる際、部分的加水分解物の性状が流動状~液状となる温度に調温する必要があるが、好ましい風味成分の逸失・変質を防ぐために100℃未満に調温することが好ましい。
接触時間については、5分~5時間が好ましく、15分~2時間がより好ましい。接触時間が5分未満である場合、吸着剤との接触による異味異臭や刺激味を低減する効果が得られないおそれがある。また接触時間が5時間超の場合、過度な加熱により好ましくない風味変化が生じるおそれがある。
吸着剤との接触による分析値の変化量を終点の基準として判断する場合には、適宜、部分的加水分解物を常法により分析し、部分的加水分解物の(i)モノグリセリド(MG)含量及び(ii)水分含量のいずれか一方、又は両方を基準として判断することが、異味異臭がより低減された風味改良材を得る観点から好ましい。
具体的には、動植物油脂の部分的加水分解物が吸着剤と接触する前、又は、吸着剤と接触した後に、下記の工程(A)を施すことによって、コク味や濃厚感を付与する効果が好ましく強化された風味改良材を得ることが可能になる。
また、工程(A)を経た動植物油脂の部分的加水分解物が下記の工程(B)を施すことで、より一層コク味や濃厚感を付与する効果が強化された風味改良材を得ることが可能になる。
尚、以下、吸着剤と接触させた部分的加水分解物のことを吸着処理品として記載する場合がある。
(A)上記動植物油脂の部分的加水分解物の過酸化物価が5~60となるよう酸化処理を行う工程
(B)上記工程(A)を経た動植物油脂の部分的加水分解物が含有する過酸化物を水素で還元する工程
尚、植物油脂を本発明の風味改良剤の基質として選択する際、上述のとおり、その種類については特に限定されるものではないが、液状油又はパーム系油脂を用いることで、油性感を付与することなくコク味や濃厚感を飲食品に付与することができるため好ましい。
本発明において酸化処理の方法及びその条件については特に限定されず公知の方法及び条件を採用することができる。具体的には、酸化処理は、熱酸化や光酸化等により行うごとができる。また、上記動植物油脂の部分的加水分解物は、自然に酸化される場合があり、人為的に酸化される場合がある。
尚、上記動植物油脂の部分的加水分解物を人為的に酸化させる場合においては、その油脂を酸化処理する方法には特に制限はないが、効率よく酸化させることができる上、過酸化物価の値を下述する特定範囲に調整することが容易である点から、加熱処理による熱酸化を行うことが好ましい。
尚、いずれの方法においても、均一に酸化処理が施されるように、撹拌を行いながら酸化処理を行うことが望ましい。
ここで、酸化処理品の過酸化物価が10~40となるまで酸化させることが好ましく、20~35となるまで酸化させることがより好ましい。
酸化処理品の過酸化物価の値が60超となるまで酸化させた場合、得られる風味改良材を飲食品に使用した際に、コク味付与効果や濃厚感を付与する効果が得られる一方で、酸化に伴う異味が強く発現するおそれがある。
また、酸化処理品の過酸化物価の値が5未満となるように酸化させた場合、得られる風味改良材を飲食品に使用した際に、酸化処理前後を比較して、得られるコク味付与効果や濃厚感を付与する効果に差異がみられにくく、有意な効果が得られないおそれがある。
本発明において油脂の過酸化物価は、例えば、[日本油化学会制定 基準油脂分析試験法2.5.2.1-2013]に準拠して測定することができる。
酸化処理品のアニシジン価が35超であった場合、得られる風味改良材を用いた飲食品の風味に、異味が生じやすくなってしまう。また、酸化処理品のアニシジン価が10未満であった場合、酸化処理が十分でなく、コク味付与効果や濃厚感を付与する効果の強化が乏しくなる恐れがある。
本発明において油脂のアニシジン価は、例えば、[日本油化学会制定 基準油脂分析試験法2.5.3-2013]に準拠して測定することができる。
酸化処理品中の抗酸化剤の含有量は50ppm以上、好ましくは100ppm以上であればよいが、酸化処理品中1000ppm以下であることが好ましく、700ppm以下であることがより好ましく、500ppm以下であることが最も好ましい。
動植物油脂の部分的加水分解物に工程(A)を施すことで、得られる風味改良材が有するコク味や濃厚感を付与する効果が強化されるが、工程(A)を経た酸化処理品が工程(B)を経ることで、より一層コク味や濃厚感を付与する効果が強化された風味改良材を得ることが可能になる。
尚、吸着剤処理の前の動植物油脂の部分的加水分解物に工程(A)を施す場合には、吸着剤処理よりも前に工程(B)を施す場合があり、吸着剤処理の後に工程(B)を施す場合がある。吸着剤処理よりも前に工程(B)を施すことが、コク味や濃厚感を付与する効果が一層得られ易くなるため好ましい。
尚、本発明において、「沃素価の変動なく」とは還元工程前の沃素価と、還元工程後の沃素価とを比較して、沃素価の変動率が好ましくは5%以下、より好ましくは3%以下であることを指す。
本発明に用いられる水素化触媒は、酸化処理品中の過酸化物を水素によって還元することができるものであれば特に限定されず、ニッケル触媒やプラチナ触媒、パラジウム触媒等を選択することができる。これらの水素化触媒の中でも特に、安価であり、且つ低温域においても安定的に過酸化物の還元を行うことができるため、ニッケル触媒を選択することが好ましい。尚、ニッケル触媒は、選択性を有するニッケル触媒である場合があり、非選択性を有するニッケル触媒である場合もある。
また、水素化触媒の形状は、粉末状である場合があり、フレーク状である場合があるが、フレーク状であると、油脂に対して飛散することなく添加できるため好ましい。
尚、還元反応を行う容器内のヘッドスペースの空気を水素ガスで十分置換し、上記圧力範囲とした後で加熱を開始することが、還元処理前後の沃素価の変動を抑制する観点から好ましい。
還元工程の加熱時の撹拌については、撹拌羽根等を用い、100~750rpmの速度で撹拌することが好ましく、150~600rpmの速度で撹拌することがより好ましく、200~500rpmの速度で撹拌することが最も好ましい。加熱時の撹拌速度が100rpmを下回ると、酸化処理品中に水素ガスが十分に包含されず、過酸化物やカルボニル化合物の還元反応の進行が極めて遅くなるおそれがある。また、加熱時の撹拌速度が750rpmを上回ると、水素ガスが過剰に包含され、還元反応を制御することが困難になるおそれがある。
尚、好ましい還元処理品を得る観点から、過酸化物価によって判断される還元工程の終点において、アニシジン価は20以下となっていることが好ましく、15以下となっていることが、より好ましい。尚、沃素価の変動率は、還元工程後に吸着処理が行われる場合、吸着処理された部分的加水分解物の沃素価に基づいて算出する。同様に、還元工程を経た部分的加水分解物の過酸化物価及びアニシジン価は、還元工程後に吸着処理が行われる場合、吸着処理された部分的加水分解物の過酸化物価及びアニシジン価である。
尚、水素化触媒を除去するためにシリカゲルやセライト、活性炭等の濾過助剤を用いる場合、その使用量は、水素化触媒が除去されるのであれば特に限定されるものではないが、例えば、還元処理品に対して0.5~5質量%を用いることにより、水素化触媒を系中から十分好ましく除くことができる。
特に、脱色や脱臭については、風味成分や香気成分の散逸を防ぐ観点から、温和な温度条件下で行われることが好ましく、具体的には脱色については測定温度が80~100℃となるように行われ、脱臭については測定温度が180~220℃となるように行われることが好ましい。
融解した精製乳脂3000gを容量5000mLの四つ口フラスコに秤量した後、イオン交換水を300g加え、油相と水相の二相に分離し油水界面が落ち着くまで静置した。次に、アンカー型の撹拌羽根を、油水界面を乱さぬように界面から僅かに浮かせて設置し、100rpmで90分間撹拌し、油脂に1000ppmとなるように水分を含有させた。この間、油脂の温度が60℃程度となるように加熱を続けた。
次に部分的加水分解物を入れたフラスコ内の気圧が0.01MPa以下となるように減圧しながらフラスコ内の液温度を90℃に調整し、250rpmで撹拌し、60分間脱水処理を施した。
この後、一旦常圧に戻し、吸着剤としてpH7.5のシリカゲル(富士シリシア製サイロピュート130)を250g加え、再度0.01MPa以下になるまで減圧し、撹拌速度350rpm、油脂温度90℃でシリカゲルとの接触を行った。接触を行いながら、部分的加水分解物中のモノグリセリド含量を適宜測定し、接触前の部分的加水分解物のモノグリセリド含量を基準として、接触工程を経た部分的加水分解物のモノグリセリド含量が60%以下となった時点で終点とし、減圧を解除し降温せずにそのままシリカゲル(吸着剤)を濾別した。このようにして、乳脂を部分的に酵素分解した部分的加水分解物(以下、乳脂分解物)を得た。
実施例1で製造した乳脂分解物を、容量5000mLの四つ口フラスコに、2000g量りとり、口を閉じずに乾燥空気を3.0L/minで吹き込みながら、マントルヒーターで油脂温度が90℃になるように加熱し、更にアンカー型撹拌羽根を用いて、300rpmで撹拌し、過酸化物価が6に到達するまで酸化させた。酸化させた乳脂分解物に抗酸化剤としてトコフェロールを300ppm加え、乳脂分解物(Ox)を得た。
尚、乳脂分解物(Ox)の沃素価は35.5、過酸化物価は6.3、アニシジン価は3.1、トランス脂肪酸含量は2.5質量%であった。
精製した豚脂3000gを用いて、実施例1と同様の操作を行い、豚脂を部分的に酵素分解した部分的加水分解物(以下、豚脂分解物)を得た。
実施例2で製造した豚脂分解物を、実施例1-2と同様の手法で、過酸化物価が6に到達するまで酸化させ、豚脂分解物(Ox)を得た。
尚、豚脂分解物(Ox)の沃素価は65.0、過酸化物価は6.5、アニシジン価は2.5、トランス脂肪酸含量は2.1質量%であった。
IV=57.0のパーム分別軟部油(パームオレイン)をランダムエステル交換した油脂900gと乳脂2100gを均一に混合した後に精製した混合油脂に対して、実施例1と同様の操作を行い部分的加水分解物(以下、混合油脂分解物A)を得た。
下述する比較例3の方法と同様にして製造した混合油脂分解物A(未処理)を、容量5000mLの四つ口フラスコに2000g量りとり、実施例1と同様にフラスコ内の気圧が0.01MPa以下となるように減圧しながらフラスコ内の液温度を90℃に調整し、250rpmで撹拌し、60分間脱水処理を施した。その後、口を閉じずに乾燥空気を3.0L/minで吹き込みながら、マントルヒーターで油脂温度が120℃になるように加熱し過酸化物価が25に到達するまで酸化させた。尚、この間、アンカー型撹拌羽根を用いて、300rpmで撹拌した。
更に、シリカゲル150gを添加し、0.01MPa以下になるまで減圧し、撹拌速度350rpm、油脂温度90℃でシリカゲル(富士シリシア製サイロピュート130)との接触を行いながら、モノグリセリド含量を適宜測定し、接触前の部分的加水分解物のモノグリセリド含量を基準として、接触前の乳脂分解物(未処理)のモノグリセリド含量を基準として、接触工程後のモノグリセリド含量が50%以下となる点を終点とし、減圧を解除し降温せずにそのままシリカゲル(吸着剤)を濾別し、抗酸化剤としてトコフェロールを300ppm加えて、混合油脂分解物A(α1)を得た。
尚、混合油脂分解物A(α1)の沃素価は35.5、過酸化物価は24.5、アニシジン価は17.4、トランス脂肪酸含量は2.5質量%であった。
容量5000mLの四つ口フラスコに、実施例3で製造した混合油脂分解物Aを2000g量りとり、口を閉じずに乾燥空気を3.0L/minで吹き込みながら、マントルヒーターで油脂温度が90℃になるように加熱し、更にアンカー型撹拌羽根を用いて、300rpmで撹拌し、過酸化物価が25に到達するまで酸化させた。酸化させた混合油脂分解物Aに抗酸化剤としてトコフェロールを300ppm加え、混合油脂分解物A(α2)を得た。
尚、混合油脂分解物A(α2)の沃素価は35.7、過酸化物価は27.3、アニシジン価は18.1、トランス脂肪酸含量は2.7質量%であった。
容量5000mLの四つ口フラスコに、下述の比較例3の方法と同様にして製造した混合油脂分解物A(未処理)を2000g量りとり、実施例3と同様にフラスコ内の気圧が0.01MPa以下となるように減圧しながらフラスコ内の液温度を90℃に調整し、250rpmで撹拌し、60分間脱水処理を施した。その後、口を閉じずに乾燥空気を3.0L/minで吹き込みながら、マントルヒーターで油脂温度が120℃になるように加熱し、更にアンカー型撹拌羽根を用いて、300rpmで撹拌し、過酸化物価が25に到達するまで酸化させた。ここで、酸化させた混合油脂分解物A(未処理)の沃素価は35.5、過酸化物価は25.6、アニシジン価は16.8、トランス脂肪酸含量は2.5質量%であった。
次いで、酸化させた混合油脂分解物A(未処理)を1000gを耐圧容器に移し、水素化触媒として硬化用ニッケル触媒(堺化学製)を0.1質量%加え、ヘッドスペース部分を水素ガスで十分置換した後、90℃に加熱し、耐圧容器内の水素圧が1.0kg/cm2で、アンカー型撹拌羽根を用いて300rpmで撹拌した。途中、サンプリングを行い、過酸化物価を分析し、初めて過酸化物価が10以下となった点で、水素化触媒をろ別した。ろ液を3000mlの四つ口フラスコに移して、0.01MPa以下になるまで減圧し、撹拌速度350rpm、油脂温度90℃でシリカゲルとの接触を行いながら、モノグリセリド含量を適宜測定し、接触前の部分的加水分解物のモノグリセリド含量を基準として、接触前の乳脂分解物(未処理)のモノグリセリド含量を基準として、接触工程後のモノグリセリド含量が50%以下となる点を終点とし、減圧を解除し降温せずにそのままシリカゲル(吸着剤)を濾別し、抗酸化剤としてトコフェロールを300ppm加えて、混合油脂分解物A(β1)を得た。尚、混合油脂分解物A(β1)の沃素価は33.2、過酸化物価は4.5、アニシジン価は11.1、トランス脂肪酸含量は3.0質量%であった。
耐圧容器に実施例3-3で製造した混合油脂分解物A(α2)を1000g量り取り、水素化触媒として硬化用ニッケル触媒(堺化学製)を0.1質量%加え、ヘッドスペース部分を水素ガスで十分置換した後、90℃に加熱し、耐圧容器内の水素圧が1.0kg/cm2で、アンカー型撹拌羽根を用いて300rpmで撹拌した。途中、サンプリングを行い、過酸化物価を分析し、初めて過酸化物価が10以下となった点で、水素化触媒を濾別して取り除き、抗酸化剤としてトコフェロールを300ppm加えて混合油脂分解物A(β2)を得た。尚、得られた混合油脂分解物A(β2)の沃素価は34.5、過酸化物価4.2、アニシジン価10.0、トランス脂肪酸含量は3.0質量%であった。
ヨウ素価が5以下の大豆硬化油を900gと乳脂2100gを均一に混合した後に精製した混合油脂に対して実施例1と同様の操作を行い、部分的加水分解物(以下、混合油脂分解物B)を得た。
よつ葉乳業製のスイートバター(食塩不使用)3000gに対して、実施例1と同様の操作を行い、部分的加水分解物(以下、バター分解物)を得た。
ヨウ素価が51.0のパーム油3000gに対して、実施例1と同様の操作を行い、部分的加水分解物(以下、パーム油分解物)を得た。
下述する比較例6と同様の方法で製造したパーム油分解物(未処理)に対して、実施例3-2と同様の操作を行い、固定化酵素による分解の後、酸化処理を行い、吸着剤と接触させたパーム油分解物(α1)を得た。
尚、パーム油分解物(α1)の沃素価は51.0、過酸化物価は25.3、アニシジン価は17.5、トランス脂肪酸含量は0.8質量%であった。
実施例6と同様の方法で製造したパーム油分解物に対して、実施例3-3と同様の操作を行い、固定化酵素による分解の後、吸着剤と接触させ、酸化処理を施したパーム油分解物(α2)を得た。
尚、パーム油分解物(α2)の沃素価は51.0、過酸化物価は26.8、アニシジン価は18.3、トランス脂肪酸含量は0.8質量%であった。
下述する比較例6と同様の方法で製造したパーム油分解物(未処理)に対して、実施例3-4と同様の操作を行い、固定化酵素による分解、酸化処理を行い、更に、酸化処理を行って生じた過酸化物を水素で還元した後、吸着剤と接触させてパーム油分解物(β1)を得た。
尚、酸化処理が施されたパーム油分解物(未処理)の沃素価は51.0、過酸化物価は25.3、アニシジン価は17.5、トランス脂肪酸含量は0.8質量%であった。また、パーム油分解物(β1)の沃素価は49.8、過酸化物価は5.8、アニシジン価は12.1、トランス脂肪酸含量は1.3質量%であった。
実施例6-3で製造したパーム油分解物(α2)に対して、実施例3-5と同様の操作を行い、酸化処理を行って生じた過酸化物を水素で還元した、パーム油分解物(β2)を得た。
尚、パーム油分解物(β2)の沃素価は50.1、過酸化物価は6.2、アニシジン価は13.3、トランス脂肪酸含量は1.2質量%であった。
実施例1と同様の操作で精製乳脂の部分的加水分解を行ったが、シリカゲルとの接触処理を行わなかった部分的加水分解物を、乳脂分解物(未処理)とした。
実施例1と同様の操作で精製豚脂の部分的加水分解を行ったが、シリカゲルとの接触処理を行わなかった部分的加水分解物を、豚脂分解物(未処理)とした。
実施例1と同様の操作で、実施例3と同じ配合の混合油脂の部分的加水分解を行ったが、シリカゲルとの接触処理を行わなかった部分的加水分解物を、混合油脂分解物A(未処理)とした。
実施例1と同様の操作で、実施例4と同じ配合の混合油脂の部分的加水分解を行ったが、シリカゲルとの接触処理を行わなかった部分的加水分解物を、混合油脂分解物B(未処理)とした。
実施例1と同様の操作でバターの加水分解を行ったが、シリカゲルとの接触処理を行わなかった部分的加水分解物を、バター分解物(未処理)とした。
実施例1と同様の操作でパーム油の加水分解を行ったが、シリカゲルとの接触処理を行わなかった部分的加水分解物を、パーム油分解物(未処理)とした。
ミキサーボウルにコンパウンドホイップクリーム(株式会社ADEKA製「ピュアブレンドホイップ20」、乳脂含量20質量%)100質量部及び上白糖7質量部を投入し、ここに実施例1で調製した乳脂分解物を本発明の風味改良材として0.03質量部加えた後、卓上ミキサーにセットし高速で6分ホイップし、乳脂分解物を含有するホイップドクリームAを得た。
同様にして乳脂分解物(未処理)を含有するホイップドクリームB、乳脂分解物(Ox)を含有するホイップドクリームCを得た。
一方、乳脂分解物を含有させず、上記コンパウンドホイップクリームのみでホイップし、ホイップドクリームDを得た。
得られたホイップドクリームA~Dを、それぞれ星型口金を装着した絞り袋に入れ、ポリカップに絞り、風味評価を行った。その結果、特にホイップドクリームAにおいて、ホイップドクリームDと比較して、濃厚な乳風味が十分に感じられ、またミドルからラストに残る乳のコク味が増強されていた。また、ホイップドクリームBでは、喫食後トップからラストに至るまで、刺激的な異味雑味が感じられ不快な風味となっており、また乳風味やコク味の増強効果も乏しかった。また、ホイップドクリームCではホイップドクリームAよりもトップに強い乳風味が感じられ、更にコク味も増していた。
合挽き肉(牛豚比7:3)39.0質量部、塩コショウ0.7質量部、ナツメグ0.1質量部、ソテーオニオン30.8質量部、卵5.1質量部、水6.1質量部、牛乳3.1質量部、パン粉5.1質量部、及び豚脂9.8質量部をミキサーボウルに投入し、卓上ミキサーを使用して低速で1分混合した後、実施例2で調製した豚脂分解物を、本発明の風味改良材として0.2質量部投入し、更に低速で1分混合して畜肉生地を得た。得られた畜肉生地を固定オーブン(設定温度190℃)で10分間焼成し、ハンバーグAを得た。
同様にして、豚脂分解物(未処理)を含有するハンバーグB、豚脂分解物(Ox)を含有するハンバーグCを得た。
一方、豚脂分解物を豚脂で置換し、豚脂を合計10質量部含有し、豚脂分解物を含まないハンバーグDを得た。
得られたハンバーグA~Dについて風味評価を行ったところ、豚脂分解物を含有するハンバーグAでは、豚脂分解物を含有していないハンバーグCと比較して、ミドルからラストにかけて味の厚みや広がりが更に感じられ、後味に濃厚感やコク味が残り、風味改善効果があることを確認した。ハンバーグBにおいては、特にえぐ味が感じられ、コク味の増強効果も乏しかった。ハンバーグCにおいては、ハンバーグA同様のミドルからラストにかけての味の厚みや後味の濃厚感が感じられる上、先味が好ましく強められていた。
実施例3~5及び比較例3~5で得られた部分的加水分解物を風味改良材として用いて、表1に示す配合と下記製法でロールパン(バターロール成型)を製造した。得られたロールパンについて、下記方法で風味評価を行った。評価結果を表2に示す。
上記の中種生地配合の全原料を、縦型ミキサーにて低速で3分、中速で2分ミキシングし、中種生地(捏ね上げ温度26℃)を得た。得られた中種生地は、28℃、相対湿度80%にて120分の中種発酵を取った。
上記中種生地並びに本捏生地配合の強力粉、砂糖、食塩、脱脂粉乳、全卵及び水を、縦型ミキサーにて低速で3分、中速で3分ミキシングした後、本捏生地配合のマーガリンに予め各種部分的加水分解物を混合したものを含有させ、更に低速で3分、中速で4分ミキシングし、本捏生地(捏ね上げ温度28℃)を得た。尚、使用したマーガリンは、バターコンパウンド率10%であった。
得られた本捏生地は、30分フロアタイムをとり、分割(45g)、丸めし、30分ベンチタイムを取った後、バターロール成型した。これを天板に乗せ、38℃、相対湿度80%、50分のホイロを取った後、190℃のオーブンで13分焼成して、ロールパンA~Fを得た。
尚、本捏生地配合中に部分的加水分解物を含有させずに同様の製法でロールパンを製造し、コントロールとした。
評価項目を「異味雑味の程度」「先味の程度」「コク味の程度」の3項目とし、8名のパネラーにより、上記配合・製法で製造されたロールパンについて下記評価基準に則って評価を実施した。得られた得点の平均値を比較した。先味の程度とコク味の程度については、コントロールとした部分的加水分解物無配合品との比較で評価を行った。
尚、先味とは、喫食後すぐに感じられるふくらみのある好ましい風味を意味する。また、コク味とは、咀嚼途中から嚥下直後に口腔・鼻腔内に好ましく感じられる濃厚な風味を意味する。
(異味雑味の程度)
5点 異味、雑味がなく非常に良好である。
3点 異味、雑味が殆どなく、良好である。
1点 異味、雑味が感じられる。
0点 異味、雑味が強く、不良である。
(先味の程度)
5点 コントロールに比べ優れた先味が感じられた。
3点 コントロールに比べ先味が感じられた。
1点 コントロールと同等の先味であった。
0点 コントロールに比べ先味が感じられない。
(コク味の程度)
5点 コントロールに比べ優れたコク味が感じられた。
3点 コントロールに比べコク味が感じられた。
1点 コントロールと同等のコク味であった。
0点 コントロールに比べコク味が感じられない。
評価例1~3の風味評価から分かるとおり、吸着剤と接触させた動植物油脂の部分的加水分解物を有効成分とする風味改良材を用いることで、濃厚感やコク味が飲食品に付与される。また、吸着剤との接触処理により、異味異臭の低減が認められると同時に、本発明の風味改良材の濃厚感やコク味の付与効果が増強されることが分かった。
実施例3~3-5及び比較例3で得られた部分的加水分解物、及びその処理品を風味改良材として用いて、表3に示す配合と下記製法でサブレA~Jを製造した。得られたサブレA~Jについて、上記評価基準に則り8名のパネラーで風味評価を行い、得られた得点の平均値を比較した。先味の程度とコク味の程度については、コントロールとした部分的加水分解物無配合品との比較で評価を行った。評価結果を表4に示す。
マーガリン(ソシエル、(株)ADEKA)70部に予めバター5部、及び比較例1、実施例3~3-5、又は比較例3で得られた部分的加水分解物を風味改良剤として、表3に示す量を加えて均質に混ぜたものと粉糖40部とをビーターで比重0.8程度まで撹拌し、卵黄10部を加えて混合し、混合物を得た。得られた混合物にふるった薄力粉100部を加え混合し生地を得た。得られた生地を一晩冷蔵庫で休ませ、2.5mmに圧延、型抜きし160℃で約15分焼成し、サブレA~Jを得た。
次に、酸化処理と水素ガスによる還元処理が併せて施された混合油脂分解物A(β1)と混合油脂分解物A(β2)を用いたサブレは、酸化処理のみを施した混合油脂分解物を用いたサブレと比較して、異味雑味は殆ど感じられなくなり、先味の程度やコク味の程度がより強化されていた。これは、水素ガスによる還元処理によって混合油脂分解物A(β1)及び混合油脂分解物A(β2)が複雑な香気成分組成となり、風味が好ましく強められたためであると考えられる。
シリカゲル処理された部分的加水分解物に酸化処理と還元処理を併せて施した混合油脂分解物A(β2)を用いたサブレは、酸化処理と還元処理を併せて施した部分的加水分解物にシリカゲル処理を施した混合油脂分解物A(β1)を用いたサブレと比較して、やや異味雑味が生じる結果となった。これは、シリカゲル処理を施すことで、異味雑味の原因となりうる物質の量を低減することができることを示唆している。
また、サブレD、サブレF、サブレH及びサブレJはそれぞれ、サブレC、サブレE、サブレG及びサブレIよりも風味改良材の添加量を減じてサブレを作成したが、コントロールやサブレBと比較し、良好な先味やコク味が得られている。これは、酸化処理や、酸化処理と還元処理とを組合せて行うことによって、風味強度がより高まることを示唆している。
パーム分別軟部油(沃素価56、(株)ADEKA製)に対して、実施例6~6-5及び比較例6で製造したパーム油分解物を風味改良剤として、それぞれ加え、これをフライ油とした。(表5参照)
得られたフライ油1kgをそれぞれ鍋に入れ、180℃に加熱し、冷凍フライドポテト(オレアイダ 細切りフライドポテト(シューストリング)、ハインツジャパン)100gを3分間フライした。
得られたフライドポテトについて、上記評価基準に則り8名のパネラーで風味評価を行い、得られた得点の平均値を比較した。コク味の程度については、コントロールとした部分的加水分解物無配合品との比較で評価を行った。評価結果を表6に示す。
また油種を問わず、酸化処理や、酸化処理と還元処理とを組合せて行うことによって、風味強度が一層高まることが明らかになった。
Claims (8)
- 吸着剤と接触させた、動植物油脂の部分的加水分解物を有効成分とする、風味改良材。
- 上記吸着剤のpHが3.0~8.0である請求項1記載の風味改良材。
- 上記吸着剤がシリカゲルである請求項1又は2記載の風味改良材。
- 上記動植物油脂の部分的加水分解物が、カラム式の酵素分解法により得られたものである請求項1~3のいずれか一項に記載の風味改良材。
- 上記酵素分解法が、イオン交換樹脂を担体とする固定化酵素を用いたものである請求項4の風味改良材。
- 上記動植物油脂の部分的加水分解物が、上記吸着剤と接触する前又は接触した後に下記工程(A)を経る、請求項1~5のいずれか一項に記載の風味改良材。
(A)上記動植物油脂の部分的加水分解物の過酸化物価が5~60となるよう酸化処理を行う工程 - 上記工程(A)を経た動植物油脂の部分的加水分解物が下記工程(B)を経る、請求項6記載の風味改良材。
(B)上記工程(A)を経た動植物油脂の部分的加水分解物が含有する過酸化物を水素で還元する工程 - 動植物油脂の部分的加水分解物を吸着剤と接触させる工程を含む、風味改良材の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2018703809A MY192787A (en) | 2016-04-27 | 2017-04-21 | Flavor improving material |
CN201780022006.0A CN108882735B (zh) | 2016-04-27 | 2017-04-21 | 风味改善材料 |
KR1020187029835A KR20180134904A (ko) | 2016-04-27 | 2017-04-21 | 풍미 개량재 |
SG11201808694UA SG11201808694UA (en) | 2016-04-27 | 2017-04-21 | Flavor improving material |
JP2018514571A JP7015236B2 (ja) | 2016-04-27 | 2017-04-21 | 風味改良材 |
PH12018502164A PH12018502164A1 (en) | 2016-04-27 | 2018-10-08 | Flavor improving material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016089215 | 2016-04-27 | ||
JP2016-089215 | 2016-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017188161A1 true WO2017188161A1 (ja) | 2017-11-02 |
Family
ID=60160432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016094 WO2017188161A1 (ja) | 2016-04-27 | 2017-04-21 | 風味改良材 |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP7015236B2 (ja) |
KR (1) | KR20180134904A (ja) |
CN (1) | CN108882735B (ja) |
MY (1) | MY192787A (ja) |
PH (1) | PH12018502164A1 (ja) |
SG (1) | SG11201808694UA (ja) |
WO (1) | WO2017188161A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3501294A4 (en) * | 2016-08-22 | 2019-09-11 | J-Oil Mills, Inc. | SUCROSITY AND / OR SALINITY REINFORCING AGENT |
JP2020174588A (ja) * | 2019-04-18 | 2020-10-29 | 株式会社Adeka | 油脂分解物 |
EP3708008A4 (en) * | 2017-11-09 | 2021-05-05 | Takasago International Corporation | COMPOSITION BASED ON OIL AND FAT AND ASSOCIATED MANUFACTURING PROCESS |
WO2023038008A1 (ja) * | 2021-09-13 | 2023-03-16 | 株式会社J-オイルミルズ | コク増強剤およびコク増強方法 |
WO2023112790A1 (ja) * | 2021-12-16 | 2023-06-22 | 株式会社J-オイルミルズ | 動物脂感付与剤、動物脂感付与用油脂組成物、動物脂感付与方法、動物脂感付与剤の製造方法、及び動物脂感が付与された食品 |
WO2023233967A1 (ja) * | 2022-05-30 | 2023-12-07 | 株式会社J-オイルミルズ | フライ食品のコク向上剤、フライ調理用油脂組成物およびフライ食品のコク向上方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113717788A (zh) * | 2021-08-25 | 2021-11-30 | 内蒙古淳点生物科技有限公司 | 一种沙棘籽油及其萃取工艺 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60251891A (ja) * | 1984-05-30 | 1985-12-12 | Kao Corp | 油脂のエステル交換反応方法 |
JPS63240755A (ja) * | 1986-08-19 | 1988-10-06 | Snow Brand Milk Prod Co Ltd | 強い芳香を有するバタ−フレ−バ−の製造方法 |
JPH04261497A (ja) * | 1991-02-15 | 1992-09-17 | Kao Corp | ジグリセリドに富む油脂の脱臭工程における不均化反応を抑制する方法 |
JPH07135972A (ja) * | 1993-09-22 | 1995-05-30 | Ajinomoto Co Inc | リパーゼ酵素剤及び該リパーゼ酵素剤を用いる油脂の改質法 |
JPH09502103A (ja) * | 1994-06-16 | 1997-03-04 | フイルメニツヒ ソシエテ アノニム | フレーバリング組成物および方法 |
JP2006136258A (ja) * | 2004-11-12 | 2006-06-01 | Kao Corp | 固定化酵素の製造方法 |
JP2011213856A (ja) * | 2010-03-31 | 2011-10-27 | Kao Corp | 油脂組成物 |
JP2011223942A (ja) * | 2010-04-21 | 2011-11-10 | T Hasegawa Co Ltd | 風味改善剤 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4940845A (en) * | 1984-05-30 | 1990-07-10 | Kao Corporation | Esterification process of fats and oils and enzymatic preparation to use therein |
JPS6170942A (ja) * | 1984-09-13 | 1986-04-11 | Fuji Oil Co Ltd | ラウリン系油脂使用食品の品質劣化防止法 |
US5124166A (en) * | 1987-08-13 | 1992-06-23 | Nabisco, Inc. | Carboxy/carboxylate disubstituted esters as edible fat mimetics |
WO1990004033A1 (en) * | 1988-10-04 | 1990-04-19 | Enzytech, Inc. | Production of monoglycerides by enzymatic transesterification |
JP3362092B2 (ja) * | 1995-09-29 | 2003-01-07 | 雪印乳業株式会社 | バターフレーバーの製造法 |
JPH09205999A (ja) * | 1996-02-05 | 1997-08-12 | Kagome Co Ltd | 食品の香味の改良方法 |
JPH1036879A (ja) * | 1996-07-29 | 1998-02-10 | Asahi Chem Ind Co Ltd | 高度不飽和脂肪酸トリグリセライドの製造方法 |
US6660491B2 (en) * | 2000-11-24 | 2003-12-09 | Ikeda Food Research Co., Ltd. | Process for producing dietary sterol fatty acid esters |
BR0303436A (pt) * | 2002-09-06 | 2004-09-08 | Kao Corp | Processo de regenaração de enzima imobilizada |
CN1949983B (zh) * | 2004-04-28 | 2011-01-05 | 花王株式会社 | 油脂组合物 |
CN1884564B (zh) * | 2006-05-31 | 2010-09-08 | 东莞新宝精化有限公司 | 全酶法生产甘油二酯的方法 |
JP2008280311A (ja) * | 2007-04-11 | 2008-11-20 | Oriza Yuka Kk | 高脂血症予防・治療剤 |
JP5101206B2 (ja) * | 2007-08-08 | 2012-12-19 | 花王株式会社 | ジアシルグリセロール高含有油脂の製造方法 |
JP2011144343A (ja) * | 2009-12-15 | 2011-07-28 | Kao Corp | 精製油脂の製造方法 |
TWI572290B (zh) * | 2009-12-15 | 2017-03-01 | Kao Corp | Grease composition |
JP5717351B2 (ja) * | 2010-03-17 | 2015-05-13 | 花王株式会社 | 精製油脂の製造方法 |
PL2401923T3 (pl) * | 2010-06-30 | 2013-08-30 | Loders Croklaan Bv | Przetwarzanie olejów roślinnych |
CN102742815B (zh) * | 2011-04-19 | 2014-01-08 | 丰益(上海)生物技术研发中心有限公司 | 一种获得奶酪风味物质的新方法 |
JP6008596B2 (ja) * | 2011-06-15 | 2016-10-19 | 花王株式会社 | 精製油脂の製造方法 |
KR101905226B1 (ko) * | 2011-08-24 | 2018-10-05 | 제이-오일 밀스, 인코포레이티드 | 산화 부분 수소 첨가 유지 |
JP6166984B2 (ja) * | 2012-09-04 | 2017-07-19 | 花王株式会社 | 油脂組成物 |
JP5765477B2 (ja) * | 2013-11-13 | 2015-08-19 | 不二製油株式会社 | 高度多価不飽和脂肪酸含有油脂およびそれを含有する食品ならびにその製造法 |
JP2015097495A (ja) * | 2013-11-19 | 2015-05-28 | 長谷川香料株式会社 | 乳風味付与用水中油型乳化組成物、および飲食品に乳風味を付与する方法 |
JP5947931B2 (ja) * | 2015-02-09 | 2016-07-06 | 花王株式会社 | 油脂組成物 |
-
2017
- 2017-04-21 CN CN201780022006.0A patent/CN108882735B/zh active Active
- 2017-04-21 JP JP2018514571A patent/JP7015236B2/ja active Active
- 2017-04-21 MY MYPI2018703809A patent/MY192787A/en unknown
- 2017-04-21 WO PCT/JP2017/016094 patent/WO2017188161A1/ja active Application Filing
- 2017-04-21 KR KR1020187029835A patent/KR20180134904A/ko unknown
- 2017-04-21 SG SG11201808694UA patent/SG11201808694UA/en unknown
-
2018
- 2018-10-08 PH PH12018502164A patent/PH12018502164A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60251891A (ja) * | 1984-05-30 | 1985-12-12 | Kao Corp | 油脂のエステル交換反応方法 |
JPS63240755A (ja) * | 1986-08-19 | 1988-10-06 | Snow Brand Milk Prod Co Ltd | 強い芳香を有するバタ−フレ−バ−の製造方法 |
JPH04261497A (ja) * | 1991-02-15 | 1992-09-17 | Kao Corp | ジグリセリドに富む油脂の脱臭工程における不均化反応を抑制する方法 |
JPH07135972A (ja) * | 1993-09-22 | 1995-05-30 | Ajinomoto Co Inc | リパーゼ酵素剤及び該リパーゼ酵素剤を用いる油脂の改質法 |
JPH09502103A (ja) * | 1994-06-16 | 1997-03-04 | フイルメニツヒ ソシエテ アノニム | フレーバリング組成物および方法 |
JP2006136258A (ja) * | 2004-11-12 | 2006-06-01 | Kao Corp | 固定化酵素の製造方法 |
JP2011213856A (ja) * | 2010-03-31 | 2011-10-27 | Kao Corp | 油脂組成物 |
JP2011223942A (ja) * | 2010-04-21 | 2011-11-10 | T Hasegawa Co Ltd | 風味改善剤 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3501294A4 (en) * | 2016-08-22 | 2019-09-11 | J-Oil Mills, Inc. | SUCROSITY AND / OR SALINITY REINFORCING AGENT |
EP3708008A4 (en) * | 2017-11-09 | 2021-05-05 | Takasago International Corporation | COMPOSITION BASED ON OIL AND FAT AND ASSOCIATED MANUFACTURING PROCESS |
JP2020174588A (ja) * | 2019-04-18 | 2020-10-29 | 株式会社Adeka | 油脂分解物 |
JP7358067B2 (ja) | 2019-04-18 | 2023-10-10 | 株式会社Adeka | 油脂分解物 |
WO2023038008A1 (ja) * | 2021-09-13 | 2023-03-16 | 株式会社J-オイルミルズ | コク増強剤およびコク増強方法 |
WO2023112790A1 (ja) * | 2021-12-16 | 2023-06-22 | 株式会社J-オイルミルズ | 動物脂感付与剤、動物脂感付与用油脂組成物、動物脂感付与方法、動物脂感付与剤の製造方法、及び動物脂感が付与された食品 |
WO2023233967A1 (ja) * | 2022-05-30 | 2023-12-07 | 株式会社J-オイルミルズ | フライ食品のコク向上剤、フライ調理用油脂組成物およびフライ食品のコク向上方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108882735A (zh) | 2018-11-23 |
KR20180134904A (ko) | 2018-12-19 |
JP7015236B2 (ja) | 2022-02-02 |
MY192787A (en) | 2022-09-08 |
SG11201808694UA (en) | 2018-11-29 |
JPWO2017188161A1 (ja) | 2019-02-28 |
PH12018502164A1 (en) | 2019-08-19 |
CN108882735B (zh) | 2023-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7015236B2 (ja) | 風味改良材 | |
JP5636398B2 (ja) | 油脂組成物 | |
KR100450065B1 (ko) | 무수성 동물성 지방에서 유리지방산과 콜레스테롤을 줄이는 방법 | |
KR100913850B1 (ko) | 고소하고 풍부한 버터향을 가지며 트랜스 지방산 함량이 낮은 가공 식용유의 제조방법 및 이 방법에 의해 제조된 가공 식용유 | |
JP5100974B2 (ja) | 油脂組成物 | |
JP5306757B2 (ja) | 起泡性水中油型乳化油脂組成物 | |
JP4911815B2 (ja) | 植物ステロール含有油脂組成物 | |
JP2008263790A (ja) | 水中油型乳化物用油脂組成物及び該水中油型乳化物用油脂組成物を含有する水中油型乳化物 | |
JP4197222B2 (ja) | 水中油型乳化物 | |
JP4745290B2 (ja) | シュー用油脂組成物及びシューケース | |
JP2018130052A (ja) | 風味増強油脂の製造方法 | |
JP5544096B2 (ja) | 香味組成物 | |
WO2013031335A1 (ja) | 油中水型油脂組成物及びその製造方法 | |
JP6507736B2 (ja) | 新規なパン生地及び練り込み用油中水型乳化油脂組成物 | |
JP6507739B2 (ja) | 新規な菓子生地及び練り込み用油中水型乳化油脂組成物 | |
JP4273741B2 (ja) | 魚油臭のマスキング方法 | |
JP2017216894A (ja) | 焼菓子練り込み用油脂組成物 | |
JP2015089351A (ja) | 気泡含有チョコレート用油脂組成物 | |
JP7140620B2 (ja) | 食感改良材 | |
JP2004002601A (ja) | ステロール脂肪酸エステル組成物及びそれを含有する食品 | |
JP2016082881A (ja) | 可塑性油脂組成物 | |
Gandhi et al. | Modified milk fat and its applications in food products | |
CN116210770B (zh) | 一种含有酯交换油脂的动植物混合搅打奶油及其制备方法 | |
JP6812596B1 (ja) | コーティング用油脂組成物、コーティング用油性食品およびこれを用いた食品 | |
JP7376226B2 (ja) | 焼菓子用油脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018514571 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187029835 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17789444 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17789444 Country of ref document: EP Kind code of ref document: A1 |