WO2017175377A1 - 車両制御システム、車両制御方法、および車両制御プログラム - Google Patents

車両制御システム、車両制御方法、および車両制御プログラム Download PDF

Info

Publication number
WO2017175377A1
WO2017175377A1 PCT/JP2016/061534 JP2016061534W WO2017175377A1 WO 2017175377 A1 WO2017175377 A1 WO 2017175377A1 JP 2016061534 W JP2016061534 W JP 2016061534W WO 2017175377 A1 WO2017175377 A1 WO 2017175377A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicle control
mode
switching
unit
Prior art date
Application number
PCT/JP2016/061534
Other languages
English (en)
French (fr)
Inventor
正明 阿部
邦道 波多野
正彦 朝倉
尚人 千
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201680084122.0A priority Critical patent/CN108883765B/zh
Priority to PCT/JP2016/061534 priority patent/WO2017175377A1/ja
Priority to JP2018510207A priority patent/JP6745334B2/ja
Priority to US16/090,294 priority patent/US10691123B2/en
Publication of WO2017175377A1 publication Critical patent/WO2017175377A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0051Handover processes from occupants to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/202Steering torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/55External transmission of data to or from the vehicle using telemetry

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, and a vehicle control program.
  • a target control amount for automatically controlling at least one of the steering angle of the steered wheel and the braking / driving force of the vehicle is calculated according to the traveling state of the vehicle, and the steered wheel of the steered wheel is calculated based on the target control amount.
  • An automatic driving control method for a vehicle that automatically controls at least one of a steering angle and a braking / driving force of the vehicle is disclosed (for example, see Patent Document 1).
  • the present invention has been made in view of such circumstances, and an object thereof is to suppress unnecessary switching of vehicle control.
  • the invention according to claim 1 refers to an acquisition unit that acquires a traffic situation in a traveling direction of the host vehicle, and a traffic situation acquired by the acquisition unit, and determines a future state related to the host vehicle or the periphery of the host vehicle.
  • a predicting unit that performs prediction and a control unit that performs vehicle control, and after switching or canceling the vehicle control, before the switching or canceling by the prediction unit within a predetermined period or within a predetermined travel distance.
  • a control unit that suppresses switching or canceling of the vehicle control when it is predicted to return to this state.
  • the control unit selectively performs any one of a plurality of automatic driving modes having different degrees of automatic driving, and switches the automatic driving mode.
  • the prediction unit predicts that the state before the switching or cancellation is performed within a predetermined period or within a predetermined mileage, the switching or cancellation of the automatic operation mode is performed. It is to suppress.
  • the control unit automatically performs a lane change, and the prediction unit performs the lane change within a predetermined period or When it is predicted that the vehicle will return to the lane before the lane change within the predetermined travel distance, the lane change is not performed.
  • the control unit performs vehicle control in which control is switched or canceled based on a speed condition,
  • the prediction unit predicts that the vehicle control is switched or returned to the state before being canceled within a predetermined period or within a predetermined mileage, the speed change that satisfies the speed condition is suppressed. It is.
  • the control unit automatically controls at least one of acceleration / deceleration and steering of the host vehicle.
  • control is performed to stop the automatic operation and switch to the manual operation in a predetermined scene, and the prediction unit switches the manual operation to the automatic operation, and then again performs the predetermined operation within a predetermined period.
  • a sixth aspect of the present invention is the vehicle control system according to any one of the first to fifth aspects, further comprising an output unit that outputs information, wherein the control unit suppresses switching or canceling of the vehicle control. If it is, information indicating that the state is being suppressed is output to the output unit.
  • the invention according to claim 7 is the vehicle control system according to any one of claims 1 to 6, further comprising a communication unit that communicates with the outside of the vehicle, wherein the prediction unit is received by the communication unit. Based on the above, it is predicted whether or not to return to the state before the switching or release.
  • the in-vehicle computer refers to the traffic situation ahead of the traveling direction of the host vehicle, predicts the future state of the host vehicle or the periphery of the host vehicle, and switches or cancels the vehicle control. Thereafter, the vehicle control method suppresses switching or canceling of the vehicle control when it is predicted to return to a state before the switching or canceling is performed within a predetermined period or within a predetermined travel distance.
  • the in-vehicle computer is caused to refer to the traffic situation ahead of the traveling direction of the host vehicle, predict the future state of the host vehicle or the vicinity of the host vehicle, and switch or cancel the vehicle control. Thereafter, when it is predicted that the state before the switching or cancellation is performed within a predetermined period or within a predetermined travel distance, the vehicle control program for suppressing the switching or cancellation of the vehicle control.
  • FIG. 2 is a diagram illustrating components of a host vehicle M.
  • FIG. 1 is a functional configuration diagram centering on a vehicle control system 100.
  • FIG. 2 is a functional configuration diagram of a host vehicle M.
  • FIG. 2 is a configuration diagram of an HMI 70.
  • FIG. It is a figure which shows a mode that the relative position of the own vehicle M with respect to the driving lane L1 is recognized by the own vehicle position recognition part 140.
  • 3 is a diagram illustrating an example of a configuration of a trajectory generation unit 146.
  • FIG. It is a figure which shows an example of the track
  • trajectory candidates generated by a trajectory candidate generation unit 146B are expressed by trajectory points K. It is a figure which shows lane change target position TA. It is a figure which shows the speed production
  • 16 is a flowchart illustrating an example of a flow of processing performed by the vehicle control system 100 in the scene illustrated in FIG. It is a figure which shows the other example of the suppression alerting
  • FIG. 1 is a diagram illustrating components of a vehicle (hereinafter referred to as a host vehicle M) on which the vehicle control system 100 of the embodiment is mounted.
  • the vehicle on which the vehicle control system 100 is mounted is, for example, a motor vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a vehicle using an internal combustion engine such as a diesel engine or a gasoline engine as a power source, or an electric vehicle using a motor as a power source.
  • a hybrid vehicle having an internal combustion engine and an electric motor.
  • An electric vehicle is driven using electric power discharged by a battery such as a secondary battery, a hydrogen fuel cell, a metal fuel cell, or an alcohol fuel cell.
  • the host vehicle M includes sensors such as a finder 20-1 to 20-7, radars 30-1 to 30-6, and a camera 40, a navigation device 50, and a vehicle control system 100. Installed.
  • the finders 20-1 to 20-7 are, for example, LIDARs (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measure the scattered light with respect to the irradiation light and measure the distance to the target.
  • LIDARs Light Detection and Ranging or Laser Imaging Detection and Ranging
  • the finder 20-1 is attached to a front grill or the like
  • the finders 20-2 and 20-3 are attached to a side surface of a vehicle body, a door mirror, the inside of a headlamp, a side lamp, and the like.
  • the finder 20-4 is attached to a trunk lid or the like
  • the finders 20-5 and 20-6 are attached to the side surface of the vehicle body, the interior of the taillight, or the like.
  • the above-described viewfinders 20-1 to 20-6 have a detection area of about 150 degrees in the horizontal direction, for example.
  • the finder 20-7 is attached to a roof or the like.
  • the finder 20-7 has a detection area of 360 degrees in the horizontal direction, for example.
  • Radars 30-1 and 30-4 are, for example, long-distance millimeter-wave radars that have a wider detection area in the depth direction than other radars.
  • Radars 30-2, 30-3, 30-5, and 30-6 are medium-range millimeter-wave radars that have a narrower detection area in the depth direction than radars 30-1 and 30-4.
  • finders 20-1 to 20-7 are not particularly distinguished, they are simply referred to as “finder 20”, and when the radars 30-1 to 30-6 are not particularly distinguished, they are simply referred to as “radar 30”.
  • the radar 30 detects an object by, for example, FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the camera 40 is a digital camera using an individual image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 40 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like. For example, the camera 40 periodically images the front of the host vehicle M repeatedly.
  • the camera 40 may be a stereo camera including a plurality of cameras.
  • FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
  • FIG. 2 is a functional configuration diagram centering on the vehicle control system 100 according to the embodiment.
  • the host vehicle M includes a detection device DD including a finder 20, a radar 30, a camera 40, a navigation device 50, a communication device 55, a vehicle sensor 60, an HMI (Human Machine Interface) 70, and a vehicle control system. 100, a driving force output device 200, a steering device 210, and a brake device 220 are mounted. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • serial communication line a wireless communication network
  • the navigation device 50 includes a GNSS (Global Navigation Satellite System) receiver, map information (navigation map), a touch panel display device that functions as a user interface, a speaker, a microphone, and the like.
  • the navigation device 50 identifies the position of the host vehicle M using the GNSS receiver, and derives a route from the position to the destination specified by the user.
  • the route derived by the navigation device 50 is provided to the target lane determining unit 110 of the vehicle control system 100.
  • the position of the host vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 60.
  • the navigation device 50 provides guidance on the route to the destination by voice or navigation display when the vehicle control system 100 is executing the manual operation mode.
  • the configuration for specifying the position of the host vehicle M may be provided independently of the navigation device 50.
  • the navigation apparatus 50 may be implement
  • information is transmitted and received between the terminal device and the vehicle control system 100 by wireless or wired communication.
  • the communication device 55 performs wireless communication using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like.
  • the communication device 55 performs wireless communication with an information providing server of a system that monitors traffic conditions of a road such as VICS (registered trademark) (Vehicle Information and Communication System), for example, a road on which the vehicle M is traveling, Information (hereinafter referred to as traffic information) indicating the traffic situation of the road to be traveled is acquired.
  • Traffic information includes traffic jam information ahead, time required for traffic jam points, accident / malfunction vehicle / construction information, speed regulation / lane regulation information, parking location, parking / service / parking area full / empty information, etc. Information is included.
  • the communication device 55 acquires the traffic information by communicating with a wireless beacon provided in a side band of the road or by performing inter-vehicle communication with other vehicles traveling around the host vehicle M. It's okay.
  • the communication device 55 is an example of an “acquisition unit”.
  • the vehicle sensor 60 includes a vehicle speed sensor that detects a vehicle speed, an acceleration sensor that detects acceleration, a yaw rate sensor that detects an angular velocity around a vertical axis, a direction sensor that detects the direction of the host vehicle M, and the like.
  • FIG. 3 is a configuration diagram of the HMI 70.
  • the HMI 70 includes, for example, a driving operation system configuration and a non-driving operation system configuration. These boundaries are not clear, and the configuration of the driving operation system may have a function of a non-driving operation system (or vice versa).
  • the navigation device 50 and the HMI 70 described above are examples of “output unit”.
  • the HMI 70 includes, for example, an accelerator pedal 71, an accelerator opening sensor 72, an accelerator pedal reaction force output device 73, a brake pedal 74, a brake pedal amount sensor (or a master pressure sensor, etc.) 75, a shift, etc.
  • a lever 76, a shift position sensor 77, a steering wheel 78, a steering angle sensor 79, a steering torque sensor 80, and other driving operation devices 81 are included.
  • Accelerator pedal 71 is an operator for receiving an acceleration instruction from a vehicle occupant (or a deceleration instruction by a return operation).
  • the accelerator opening sensor 72 detects the depression amount of the accelerator pedal 71 and outputs an accelerator opening signal indicating the depression amount to the vehicle control system 100. Instead of outputting to the vehicle control system 100, the output may be directly output to the travel driving force output device 200, the steering device 210, or the brake device 220. The same applies to the configurations of other driving operation systems described below.
  • the accelerator pedal reaction force output device 73 outputs a force (operation reaction force) in a direction opposite to the operation direction to the accelerator pedal 71 in response to an instruction from the vehicle control system 100, for example.
  • the brake pedal 74 is an operator for receiving a deceleration instruction from the vehicle occupant.
  • the brake depression amount sensor 75 detects the depression amount (or depression force) of the brake pedal 74 and outputs a brake signal indicating the detection result to the vehicle control system 100.
  • the shift lever 76 is an operator for receiving a shift stage change instruction from a vehicle occupant.
  • the shift position sensor 77 detects the shift stage instructed by the vehicle occupant and outputs a shift position signal indicating the detection result to the vehicle control system 100.
  • the steering wheel 78 is an operator for receiving a turning instruction from a vehicle occupant.
  • the steering angle sensor 79 detects the operation angle of the steering wheel 78 and outputs a steering angle signal indicating the detection result to the vehicle control system 100.
  • the steering torque sensor 80 detects the torque applied to the steering wheel 78 and outputs a steering torque signal indicating the detection result to the vehicle control system 100.
  • Other operation device 81 is, for example, a joystick, a button, a dial switch, a GUI (Graphical User Interface) switch, or the like.
  • the other driving operation device 81 receives an acceleration instruction, a deceleration instruction, a turning instruction, and the like, and outputs them to the vehicle control system 100.
  • the HMI 70 has, for example, a display device 82, a speaker 83, a contact operation detection device 84 and a content reproduction device 85, various operation switches 86, a sheet 88 and a sheet driving device 89, and a window glass 90. And a window driving device 91.
  • the display device 82 is, for example, an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence) display device that is attached to each part of the instrument panel, an arbitrary position facing the passenger seat or the rear seat.
  • the display device 82 may be a HUD (Head-Up-Display) that projects an image on a front windshield or other window.
  • the speaker 83 outputs sound.
  • the contact operation detection device 84 detects a contact position (touch position) on the display screen of the display device 82 and outputs it to the vehicle control system 100.
  • the contact operation detection device 84 may be omitted.
  • the content playback device 85 includes, for example, a DVD (Digital Versatile Disc) playback device, a CD (Compact Disc) playback device, a television receiver, and various guide image generation devices.
  • the display device 82, the speaker 83, the contact operation detection device 84, and the content playback device 85 may have a configuration in which a part or all of them are common to the navigation device 50.
  • the various operation switches 86 are arranged at arbitrary locations in the passenger compartment.
  • the various operation switches 86 include an automatic operation changeover switch 87 for instructing start (or future start) and stop of automatic operation.
  • the automatic operation changeover switch 87 may be either a GUI (Graphical User Interface) switch or a mechanical switch.
  • the various operation switches 86 may include switches for driving the sheet driving device 89 and the window driving device 91.
  • the seat 88 is a seat on which a vehicle occupant is seated.
  • the seat driving device 89 freely drives the reclining angle, the front-rear direction position, the yaw angle, and the like of the seat 88.
  • the window glass 90 is provided at each door, for example.
  • the window driving device 91 drives the window glass 90 to open and close.
  • the vehicle interior camera 95 is a digital camera using an individual image sensor such as a CCD or CMOS.
  • the vehicle interior camera 95 is attached at a position where at least the head of a vehicle occupant performing a driving operation can be imaged, such as a rearview mirror, a steering boss, and an instrument panel.
  • the camera 40 periodically and repeatedly images the vehicle occupant.
  • the driving force output device 200 the steering device 210, and the brake device 220 will be described.
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • a driving force for driving the vehicle to driving wheels.
  • the traveling driving force output device 200 includes an engine, a transmission, and an engine ECU (Electronic Control Unit) that controls the engine.
  • the vehicle includes a driving motor and a motor ECU that controls the driving motor.
  • the host vehicle M is a hybrid vehicle, the engine, the transmission, and the engine ECU and the driving motor A motor ECU.
  • the engine ECU adjusts the throttle opening, the shift stage, and the like of the engine according to information input from the travel control unit 160 described later.
  • traveling driving force output device 200 includes only the traveling motor
  • motor ECU adjusts the duty ratio of the PWM signal applied to the traveling motor according to the information input from traveling control unit 160.
  • travel drive force output device 200 includes an engine and a travel motor
  • engine ECU and motor ECU control travel drive force in cooperation with each other in accordance with information input from travel control unit 160.
  • the steering device 210 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor in accordance with information input from the vehicle control system 100 or information of the input steering steering angle or steering torque, and changes the direction of the steered wheels.
  • the brake device 220 is, for example, an electric servo brake device that includes a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a braking control unit.
  • the braking control unit of the electric servo brake device controls the electric motor according to the information input from the travel control unit 160 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the electric servo brake device may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal to the cylinder via the master cylinder.
  • the brake device 220 is not limited to the electric servo brake device described above, but may be an electronically controlled hydraulic brake device.
  • the electronically controlled hydraulic brake device controls the actuator in accordance with information input from the travel control unit 160 and transmits the hydraulic pressure of the master cylinder to the cylinder.
  • the brake device 220 may include a regenerative brake by a traveling motor that can be included in the traveling driving force output device 200.
  • the vehicle control system 100 is realized by, for example, one or more processors or hardware having an equivalent function.
  • the vehicle control system 100 includes a combination of a processor such as a CPU (Central Processing Unit), a storage device, and an ECU (Electronic Control Unit) in which a communication interface is connected by an internal bus, or an MPU (Micro-Processing Unit). It may be.
  • a processor such as a CPU (Central Processing Unit), a storage device, and an ECU (Electronic Control Unit) in which a communication interface is connected by an internal bus, or an MPU (Micro-Processing Unit). It may be.
  • the vehicle control system 100 includes, for example, a target lane determination unit 110, an automatic driving control unit 120, a travel control unit 160, and a storage unit 180.
  • the automatic driving control unit 120 includes, for example, an automatic driving mode control unit 130, an own vehicle position recognition unit 140, an external environment recognition unit 142, an action plan generation unit 144, a track generation unit 146, a switching control unit 150, A future state prediction unit 152.
  • a combination of the automatic operation mode control unit 130, the action plan generation unit 144, the trajectory generation unit 146, and the switching control unit 150 is an example of a “control unit”.
  • Part or all of the target lane determining unit 110, the automatic operation control unit 120, and the travel control unit 160 are realized by a processor executing a program (software). Some or all of these may be realized by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit), or may be realized by a combination of software and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • the storage unit 180 stores, for example, high-accuracy map information 182, target lane information 184, action plan information 186, mode-specific operation availability information 188, and the like.
  • the storage unit 180 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like.
  • the program executed by the processor may be stored in the storage unit 180 in advance, or may be downloaded from an external device via an in-vehicle Internet facility or the like.
  • the program may be installed in the storage unit 180 by mounting a portable storage medium storing the program on a drive device (not shown).
  • the vehicle control system 100 may be distributed by a plurality of computer devices.
  • the target lane determining unit 110 is realized by an MPU, for example.
  • the target lane determination unit 110 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the high-precision map information 182 for each block.
  • the target lane determination unit 110 performs determination such as how many lanes from the left are to be traveled.
  • the target lane determination unit 110 determines the target lane so that the host vehicle M can travel on a reasonable travel route for proceeding to the branch destination when there is a branch point or a merge point in the route.
  • the target lane determined by the target lane determining unit 110 is stored in the storage unit 180 as target lane information 184.
  • the high-precision map information 182 is map information with higher accuracy than the navigation map that the navigation device 50 has.
  • the high-precision map information 182 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the high-precision map information 182 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). Information including 3D coordinates), curvature of lane curves, lane merging and branch point positions, signs provided on roads, and the like.
  • the traffic regulation information includes information that the lane is blocked due to construction, traffic accidents, traffic jams, or the like.
  • the automatic operation mode control unit 130 determines an automatic operation mode performed by the automatic operation control unit 120.
  • the modes of automatic operation in the present embodiment include the following modes. The following is merely an example, and the number of modes of automatic operation may be arbitrarily determined.
  • Mode A is the mode with the highest degree of automatic driving. When mode A is implemented, all vehicle control such as complicated merge control is automatically performed, so the vehicle occupant does not need to monitor the surroundings and state of the own vehicle M (no obligation to monitor the surroundings). ).
  • Mode A there is a traffic jam tracking mode (low speed tracking mode; TJP (Traffic Jam Pilot)) that follows the preceding vehicle when there is a traffic jam.
  • TJP Traffic Jam Pilot
  • safe automatic driving can be realized by following the preceding vehicle on a crowded highway.
  • the traffic jam tracking mode is canceled when, for example, the traveling speed of the host vehicle M becomes a predetermined speed or higher (for example, 60 km / h or higher).
  • the mode A may be switched to another travel mode at the timing when the traffic jam tracking mode ends, but the mode may be switched to another travel mode that can be selected in the mode A.
  • Mode B is a mode in which the degree of automatic driving is the second highest after Mode A.
  • Mode C is a mode in which the degree of automatic driving is the second highest after mode B.
  • mode C the vehicle occupant needs to perform confirmation operation according to the scene with respect to HMI70.
  • mode C for example, when the vehicle occupant is notified of the lane change timing and the vehicle occupant performs an operation to instruct the HMI 70 to change the lane, the automatic lane change is performed. For this reason, the vehicle occupant needs to monitor the periphery and state of the own vehicle M.
  • the automatic driving mode control unit 130 determines the mode of automatic driving based on the operation of the vehicle occupant with respect to the HMI 70, the event determined by the action plan generation unit 144, the travel mode determined by the trajectory generation unit 146, and the like.
  • the automatic operation mode is notified to the HMI control unit 170.
  • the limit according to the performance etc. of the detection device DD of the own vehicle M may be set to the mode of automatic driving. For example, when the performance of the detection device DD is low, the mode A may not be performed.
  • any automatic operation mode it is possible to switch to the manual operation mode (override) by an operation on the configuration of the operation system in the HMI 70.
  • a predetermined operation change amount for example, accelerator opening of the accelerator pedal 71, brake depression amount of the brake pedal 74, This is started when the steering angle of the steering wheel 78 is greater than or equal to or greater than a predetermined number of operations on the driving operation system.
  • the vehicle position recognition unit 140 of the automatic driving control unit 120 includes high-precision map information 182 stored in the storage unit 180 and information input from the finder 20, the radar 30, the camera 40, the navigation device 50, or the vehicle sensor 60. Based on the above, the lane (traveling lane) in which the host vehicle M is traveling and the relative position of the host vehicle M with respect to the traveling lane are recognized.
  • the own vehicle position recognition unit 140 is, for example, a road lane line pattern recognized from the high-precision map information 182 (for example, an arrangement of solid lines and broken lines) and the periphery of the own vehicle M recognized from an image captured by the camera 40.
  • the road lane is recognized by comparing the road lane marking pattern. In this recognition, the position of the host vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into account.
  • FIG. 4 is a diagram showing how the vehicle position recognition unit 140 recognizes the relative position of the vehicle M with respect to the traveling lane L1.
  • the own vehicle position recognition unit 140 makes a deviation OS of the reference point (for example, the center of gravity) of the own vehicle M from the travel lane center CL and a line connecting the travel lane center CL in the traveling direction of the own vehicle M.
  • the angle ⁇ is recognized as a relative position of the host vehicle M with respect to the traveling lane L1.
  • the host vehicle position recognition unit 140 recognizes the position of the reference point of the host vehicle M with respect to any side end of the host lane L1 as the relative position of the host vehicle M with respect to the traveling lane. Also good.
  • the relative position of the host vehicle M recognized by the host vehicle position recognition unit 140 is provided to the target lane determination unit 110.
  • the external environment recognition unit 142 recognizes the position, speed, acceleration, and other states of surrounding vehicles based on information input from the finder 20, the radar 30, the camera 40, and the like.
  • the peripheral vehicle is, for example, a vehicle that travels around the host vehicle M and travels in the same direction as the host vehicle M.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the other vehicle, or may be represented by a region expressed by the contour of the other vehicle.
  • the “state” of the surrounding vehicle may include the acceleration of the surrounding vehicle, whether the lane is changed (or whether the lane is going to be changed), which is grasped based on the information of the various devices.
  • the external environment recognition unit 142 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, and other objects.
  • the action plan generation unit 144 sets a starting point of automatic driving and / or a destination of automatic driving.
  • the starting point of the automatic driving may be the current position of the host vehicle M or a point where an operation for instructing automatic driving is performed.
  • the action plan generation unit 144 generates an action plan in a section between the start point and the destination for automatic driving. In addition, not only this but the action plan production
  • the action plan is composed of a plurality of events that are executed sequentially, for example.
  • Examples of the event include a deceleration event for decelerating the host vehicle M, an acceleration event for accelerating the host vehicle M, a lane keeping event for driving the host vehicle M so as not to deviate from the traveling lane, and a lane change event for changing the traveling lane.
  • the branch event in which the own vehicle M is driven so as not to deviate from the current traveling lane, or the main line Accelerates and decelerates the own vehicle M in the merging lane of the vehicle a merging event that changes the driving lane, shifts from the manual driving mode to the automatic driving mode at the start point of the automatic driving, or manually from the automatic driving mode at the scheduled end point of the automatic driving.
  • a handover event or the like for shifting to the operation mode is included.
  • the action plan generation unit 144 sets a lane change event, a branch event, or a merge event at a location where the target lane determined by the target lane determination unit 110 is switched.
  • Information indicating the action plan generated by the action plan generation unit 144 is stored in the storage unit 180 as action plan information 186.
  • FIG. 5 is a diagram showing an example of an action plan generated for a certain section.
  • the action plan generation unit 144 generates an action plan necessary for the host vehicle M to travel on the target lane indicated by the target lane information 184.
  • the action plan generation unit 144 may dynamically change the action plan regardless of the target lane information 184 according to a change in the situation of the host vehicle M.
  • the action plan generation unit 144 may determine that the speed of the surrounding vehicle recognized by the external recognition unit 142 exceeds the threshold while the vehicle travels, or the movement direction of the surrounding vehicle traveling in the lane adjacent to the own lane is the own lane direction.
  • the event set in the driving section where the host vehicle M is scheduled to travel is changed.
  • the vehicle from the rear of the lane to which the lane is changed becomes greater than the threshold during the lane keep event according to the recognition result of the external recognition unit 142.
  • the action plan generation unit 144 may change the event next to the lane keep event from a lane change event to a deceleration event, a lane keep event, or the like. As a result, the vehicle control system 100 can automatically drive the host vehicle M safely even when a change occurs in the external environment.
  • FIG. 6 is a diagram illustrating an example of the configuration of the trajectory generation unit 146.
  • the track generation unit 146 includes, for example, a travel mode determination unit 146A, a track candidate generation unit 146B, and an evaluation / selection unit 146C.
  • the traveling mode determination unit 146A determines one of the traveling modes such as constant speed traveling, following traveling, low speed following traveling, deceleration traveling, curve traveling, and obstacle avoidance traveling when the lane keeping event is performed. For example, when there is no other vehicle ahead of the host vehicle M, the travel mode determination unit 146A determines the travel mode to be constant speed travel. In addition, the traveling mode determination unit 146A determines the traveling mode to follow running when traveling following the preceding vehicle. In addition, the traveling mode determination unit 146A determines the traveling mode as low-speed following traveling in a traffic jam scene or the like.
  • the travel mode determination unit 146A determines the travel mode to be decelerated when the outside recognition unit 142 recognizes the deceleration of the preceding vehicle or when an event such as stopping or parking is performed. In addition, when the outside recognition unit 142 recognizes that the host vehicle M has reached a curved road, the travel mode determination unit 146A determines the travel mode to be curved travel. In addition, the travel mode determination unit 146A determines the travel mode to be obstacle avoidance travel when the external environment recognition unit 142 recognizes an obstacle in front of the host vehicle M.
  • the trajectory candidate generation unit 146B generates trajectory candidates based on the travel mode determined by the travel mode determination unit 146A.
  • FIG. 7 is a diagram illustrating an example of trajectory candidates generated by the trajectory candidate generation unit 146B.
  • FIG. 7 shows candidate tracks generated when the host vehicle M changes lanes from the lane L1 to the lane L2.
  • the trajectory candidate generation unit 146B follows a trajectory as shown in FIG. 7, for example, at a target position (orbit point K) at which a reference position (for example, the center of gravity or the center of the rear wheel axis) of the host vehicle M should arrive at a predetermined time in the future. Determine as a gathering of.
  • FIG. 8 is a diagram in which trajectory candidates generated by the trajectory candidate generation unit 146B are expressed by trajectory points K. As the distance between the track points K increases, the speed of the host vehicle M increases. As the distance between the track points K decreases, the speed of the host vehicle M decreases. Therefore, the trajectory candidate generation unit 146B gradually widens the distance between the trajectory points K when it wants to accelerate and gradually narrows the distance between the trajectory points when it wants to decelerate.
  • the trajectory candidate generation unit 146B needs to give a target speed to each of the trajectory points K.
  • the target speed is determined according to the travel mode determined by the travel mode determination unit 146A.
  • the track candidate generation unit 146B first sets a lane change target position (or a merge target position).
  • the lane change target position is set as a relative position with respect to the surrounding vehicles, and determines “with which surrounding vehicle the lane is to be changed”.
  • the trajectory candidate generation unit 146B pays attention to three surrounding vehicles with the lane change target position as a reference, and determines a target speed when the lane change is performed.
  • FIG. 9 is a diagram illustrating the lane change target position TA. In the figure, L1 represents the own lane and L2 represents the adjacent lane.
  • the preceding vehicle mA is set as the surrounding vehicle that runs immediately before the own vehicle M
  • the front reference vehicle mB and the lane change target position TA is set as the surrounding vehicle that runs immediately before the lane changing target position TA.
  • a surrounding vehicle traveling immediately after is defined as a rear reference vehicle mC.
  • the host vehicle M needs to perform acceleration / deceleration in order to move to the side of the lane change target position TA.
  • the trajectory candidate generation unit 146B predicts the future state of the three neighboring vehicles and determines the target speed so as not to interfere with each neighboring vehicle.
  • FIG. 10 is a diagram showing a speed generation model when the speeds of the three surrounding vehicles are assumed to be constant.
  • straight lines extending from mA, mB, and mC indicate displacements in the traveling direction when it is assumed that the respective surrounding vehicles have traveled at a constant speed.
  • the own vehicle M must be between the front reference vehicle mB and the rear reference vehicle mC at the point CP at which the lane change is completed, and must be behind the preceding vehicle mA before that.
  • the track candidate generation unit 146B derives a plurality of time-series patterns of the target speed until the lane change is completed. Then, a plurality of trajectory candidates as shown in FIG.
  • the motion patterns of the three surrounding vehicles are not limited to the constant speed as shown in FIG. 10, and may be predicted on the assumption of a constant acceleration and a constant jerk (jumping degree).
  • the evaluation / selection unit 146C evaluates the track candidates generated by the track candidate generation unit 146B from, for example, two viewpoints of planability and safety, and selects a track to be output to the travel control unit 160. .
  • the viewpoint of planability for example, the track is highly evaluated when the followability with respect to an already generated plan (for example, an action plan) is high and the total length of the track is short.
  • an already generated plan for example, an action plan
  • a trajectory in which the lane is once changed in the left direction and returned is evaluated as low.
  • viewpoint of safety for example, at each track point, the distance between the host vehicle M and the object (peripheral vehicle or the like) is longer, and the higher the acceleration / deceleration or the change in the steering angle, the higher the evaluation.
  • the switching control unit 150 switches between the automatic operation mode and the manual operation mode based on the signal input from the automatic operation switch 87 and others. Further, the switching control unit 150 switches from the automatic operation mode to the manual operation mode based on an operation instructing acceleration, deceleration, or steering for the configuration of the driving operation system in the HMI 70. For example, the switching control unit 150 switches from the automatic operation mode to the manual operation mode when the operation amount indicated by the signal input from the configuration of the driving operation system in the HMI 70 exceeds the threshold for a reference time or longer ( override). Further, the switching control unit 150 may return to the automatic operation mode when an operation for the configuration of the driving operation system in the HMI 70 is not detected for a predetermined time after switching to the manual operation mode by the override. .
  • the switching control unit 150 notifies the vehicle occupant in advance of a handover request when performing handover control for shifting from the automatic operation mode to the manual operation mode at a scheduled end point of automatic operation, for example.
  • the information is output to the HMI control unit 170.
  • the traveling control unit 160 controls the traveling driving force output device 200, the steering device 210, and the brake device 220 so that the host vehicle M passes the track generated by the track generating unit 146 at a scheduled time.
  • the HMI control unit 170 refers to the mode-specific operation availability information 188 and controls the HMI 70 according to the type of the automatic driving mode.
  • FIG. 11 is a diagram illustrating an example of the operation permission / inhibition information 188 for each mode.
  • the mode-specific operation availability information 188 shown in FIG. 11 includes “manual operation mode” and “automatic operation mode” as operation mode items. Further, the “automatic operation mode” includes the above-mentioned “mode A”, “mode B”, “mode C”, and the like.
  • the mode-specific operation propriety information 188 includes “navigation operation” that is an operation on the navigation device 50, “content reproduction operation” that is an operation on the content reproduction device 85, and an operation on the display device 82 as non-driving operation items. It has a certain "instrument panel operation” etc. In the example of the mode-by-mode operation availability information 188 shown in FIG. 11, whether or not the vehicle occupant can operate the non-driving operation system is set for each operation mode described above, but the target interface device is limited to this. is not.
  • the HMI control unit 170 refers to the mode-specific operation availability information 188 based on the mode information acquired from the automatic driving control unit 120, and is permitted to be used (a part or all of the navigation device 50 and the HMI 70). And a device that is not permitted to be used. Further, the HMI control unit 170 controls whether or not to accept an operation from the vehicle occupant for the non-driving operation type HMI 70 or the navigation device 50 based on the determination result.
  • the vehicle occupant when the driving mode executed by the vehicle control system 100 is the manual driving mode, the vehicle occupant operates the driving operation system of the HMI 70 (for example, the accelerator pedal 71, the brake pedal 74, the shift lever 76, the steering wheel 78, etc.). To do. Further, when the operation mode executed by the vehicle control system 100 is the mode B, the mode C, or the like of the automatic operation mode, the vehicle occupant is obliged to monitor the periphery of the own vehicle M. In such a case, in order to prevent distraction (driver distraction) due to actions other than driving of the vehicle occupant (for example, operation of the HMI 70), the HMI control unit 170 is one of the non-driving operation systems of the HMI 70.
  • the HMI control unit 170 in order to prevent distraction (driver distraction) due to actions other than driving of the vehicle occupant (for example, operation of the HMI 70), the HMI control unit 170 is one of the non-driving operation systems of the HMI 70.
  • the HMI control unit 170 displays on the display device 82 the presence of the surrounding vehicle of the own vehicle M recognized by the external recognition unit 142 and the state of the surrounding vehicle in order to perform the surrounding monitoring of the own vehicle M.
  • the confirmation operation according to the scene when the host vehicle M is traveling may be received by the HMI 70.
  • the HMI control unit 170 relaxes the restriction of the driver distraction and performs control for receiving the operation of the vehicle occupant for the non-driving operation system that has not received the operation.
  • the HMI control unit 170 causes the display device 82 to display video, causes the speaker 83 to output sound, and causes the content reproduction device 85 to reproduce content from a DVD or the like.
  • the content played back by the content playback device 85 may include, for example, various contents related to entertainment and entertainment such as a TV program in addition to the content stored on the DVD or the like.
  • the above-described “content reproduction operation” shown in FIG. 11 may mean such a content operation related to entertainment and entertainment.
  • the HMI control unit 170 performs the future state prediction unit 152 described later.
  • the navigation device 50 or the non-driving operation type HMI 70 outputs predetermined information.
  • the predetermined information is information indicating that the periphery monitoring duty increases, or information indicating that the operation tolerance for the navigation device 50 or the non-driving operation system HMI 70 is reduced (operation is limited).
  • the predetermined information is not limited to these, and may be information that prompts preparation for handover control, for example.
  • the HMI control unit 170 warns the vehicle occupant, for example, for a predetermined time before the operation mode transitions from the mode A to the mode B or the mode C described above or before the host vehicle M reaches the predetermined speed.
  • the vehicle occupant can be notified at an appropriate timing that the duty to monitor the periphery of the host vehicle M is imposed on the vehicle occupant.
  • it is possible to give a vehicle occupant a preparation period for switching to automatic driving.
  • the future state prediction unit 152 refers to the traffic information acquired by the communication device 55, for example, and predicts the future state regarding the host vehicle M or the surroundings of the host vehicle M.
  • the future state prediction unit 152 refers to the traffic information, and there is a specific point where it is necessary to switch from the automatic operation mode to the manual operation mode in front of the own vehicle M with respect to the current traveling direction of the own vehicle M. Whether or not there is a specific point that needs to be changed to a mode in which the peripheral monitoring duty increases more, such as a transition from mode A to mode B, for example, under the automatic operation mode To do.
  • the specific points include, for example, an area where a traffic accident occurs (hereinafter referred to as an accident area), a construction site, an inspection point, a junction point, a branch point, a toll gate, and the like.
  • the future state prediction unit 152 predicts whether or not the operation mode switched or canceled at the specific point will return to the original state after this specific point.
  • the future state prediction unit 152 specifies these specific points by referring to the high-precision map information 182 for places where the positions such as junction points, branch points, and toll gates are fixed among the specific points. You may predict the future state regarding the own vehicle M or the surroundings of the own vehicle M.
  • FIG. 12 is a diagram schematically showing an example of a future state predicted based on traffic information.
  • the direction of the destination exists on the traveling direction side of the adjacent lane L2 adjacent to the own lane L1, it is necessary to change the lane to the adjacent lane L2.
  • the future state prediction unit 152 predicts that it is necessary to bypass the accident area AC after changing the lane to the adjacent lane L2. If the lane is immediately changed to the adjacent lane L2 in such a situation, the lane change is again made to the adjacent lane L2 after returning to the original lane L1 immediately, which gives the vehicle occupant a sense of incongruity. Moreover, it is not preferable from the viewpoint of safety if the host vehicle M performs an extra behavior.
  • the future state prediction unit 152 notifies the prediction result to one or both of the action plan generation unit 144 and the track generation unit 146, and causes the action plan generation unit 144 to change the lane change event, By changing the track for lane change to 146, the implementation of the lane change event is suppressed. Thereby, the vehicle control system 100 can suppress unnecessary switching of the vehicle control.
  • FIG. 13 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100 in the scene shown in FIG.
  • the future state prediction unit 152 refers to the action plan information 186 and waits until the timing at which the lane change event is performed (step S100). Is acquired (step S102).
  • the future state prediction unit 152 refers to the acquired traffic information and determines whether or not a specific point such as an accident area exists in the lane to which the lane is changed (step S104). When the specific point does not exist in the lane to which the lane is changed, the future state prediction unit 152 notifies the prediction result to, for example, the track generation unit 146 to generate a track for changing the lane, and makes the vehicle M the lane. It is changed (step S106).
  • the future state prediction unit 152 determines whether or not to return to the original lane within a predetermined period or within a predetermined travel distance (step S108). If the vehicle lane does not return to the original lane within a predetermined period or within a predetermined travel distance, the vehicle control system 100 performs the process of step S106 described above.
  • the future state prediction unit 152 performs the lane change event by notifying the action plan generation unit 144 and the track generation unit 146 of the prediction result. (Step S110) and a lane keep event is performed instead of the lane change event (step S112).
  • the HMI control unit 170 outputs information (suppression notification information in the figure) indicating that execution of the lane change event is suppressed to the navigation device 50 and the HMI 70 until the accident area is exceeded (step S114). (Step S116). When the accident area is exceeded, the vehicle control system 100 performs the process of step S106 described above.
  • FIG. 14 is a diagram illustrating an example of the suppression notification information output from the navigation device 50 or the HMI 70.
  • the HMI control unit 170 controls the navigation device 50 or the HMI 70 to notify the vehicle occupant with an image or sound that the switching from the lane keeping event to the lane change event is suppressed. To do.
  • FIG. 15 is a diagram schematically illustrating another example of a future state predicted based on traffic information.
  • the example of FIG. 15 represents a situation in which traffic jams continue intermittently in front of the host vehicle M.
  • An intermittent traffic jam is, for example, a situation in which there is another traffic jam location (BU2 in the diagram) at a location that is a distance L away from the traffic jam location (BU1 in the diagram). is there.
  • the automatic driving control unit 120 sets the traveling mode of the automatic driving mode to the traffic jam tracking mode in the mode A at the traffic jam point BU1, and sets the traffic jam points BU1 and BU2.
  • the driving mode in the automatic driving mode is set to, for example, the constant speed driving mode in the mode B, and the driving mode in the automatic driving mode is set to the traffic jam tracking mode in the mode A at the traffic jam point BU2. .
  • unnecessary switching of the vehicle control may occur in a short period from the traffic jam point BU1 to BU2.
  • the content reproduction device 85 can reproduce various contents related to entertainment and entertainment.
  • the traffic congestion points BU1 and BU2 are set to the mode A, the content reproduction device 85 can reproduce various contents related to entertainment and entertainment.
  • the video displayed on the display device 82, the content reproduced by the content reproduction device 85, and the like are stopped.
  • the vehicle occupant must temporarily stop viewing the television program that is being viewed, which may cause discomfort.
  • the future state predicting unit 152 can predict that the vehicle will reach the next traffic congestion point BU2 within a predetermined period or within a predetermined travel distance after passing through the traffic congestion point BU1 by referring to the traffic information.
  • the prediction result is notified to the automatic driving mode control unit 130, and the mode A setting is maintained in the section between the traffic congestion points BU1 and BU2.
  • the vehicle control system 100 can improve the convenience of the vehicle occupant and can suppress unnecessary switching of the vehicle control.
  • FIG. 16 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100 in the scene shown in FIG. The process of this flowchart is performed, for example, in a state where the automatic driving mode is set to the mode A in which the traveling mode is set to the traffic jam tracking mode.
  • the future state prediction unit 152 acquires traffic information from the communication device 55 (step S200).
  • the future state prediction unit 152 refers to the acquired traffic information and determines whether or not traffic jams occur intermittently in front of the host vehicle M (step S202).
  • the automatic operation mode control unit 130 cancels the mode A in which the travel mode is set to the traffic jam tracking mode (step S204).
  • the mode is changed to mode B (step S206).
  • the mode changed from mode A is not limited to mode B, and may be other modes such as mode C and manual operation mode.
  • the HMI control unit 170 outputs information indicating that the switching of the operation mode has occurred to the navigation device 50 and the HMI 70, and notifies the vehicle occupant that the duty of surrounding monitoring is necessary (step S208). At this time, if the content reproduction device 85 is reproducing content such as DVD content or a television program, the HMI control unit 170 stops this.
  • the future state prediction unit 152 may reach another traffic jam point within a predetermined period or within a predetermined travel distance after passing through the traffic jam point closest to the host vehicle M. Determine whether or not. That is, the future state predicting unit 152 determines whether the mode B changed from the mode A is changed to the original mode A within a predetermined period or within a predetermined travel distance after passing through a traffic jam point closest to the host vehicle M. It is determined whether or not (step S210).
  • the vehicle control system 100 moves the process to the above-described step S204.
  • the future state predicting unit 152 determines that the mode B set after passing the traffic jam point is within the predetermined period or predetermined.
  • the prediction result that the mode is changed to the original mode A within the travel distance is notified to the automatic operation mode control unit 130, the action plan generation unit 144, the trajectory generation unit 146, and the like.
  • the automatic driving mode control unit 130 maintains the mode A in which the traveling mode is set to the traffic jam tracking mode even in a section where the traffic jam is temporarily eliminated (step S212).
  • the track generation unit 146 that has received the notification of the prediction result monitors the change in the speed of the host vehicle M so that the mode A (traffic jam follow-up mode) is maintained in a section where the traffic jam is temporarily resolved. . Then, the track generation unit 146 controls the speed of the host vehicle M to be lower than the predetermined speed by adjusting the interval between the track points K so that the traveling speed of the host vehicle M is lower than the predetermined speed (step S214). That is, the track generation unit 146 suppresses the speed of the host vehicle M below a predetermined speed, suppresses the determination that the traffic jam is resolved by the automatic driving mode control unit 130, and sets the mode A of the traffic jam tracking mode. To maintain.
  • the HMI control unit 170 causes the navigation device 50 and the HMI 70 to output suppression notification information indicating that switching of the operation mode is suppressed (step S216).
  • a mode other than the traffic jam tracking mode can be selected. You may employ
  • FIG. 17 is a diagram illustrating another example of the suppression notification information output from the navigation device 50 or the HMI 70.
  • the HMI control unit 170 controls the navigation device 50 or the HMI 70 to indicate that mode switching such as switching from mode A to mode B is suppressed by an image or sound. To inform.
  • the content reproduction device 85 reproduces a content such as a DVD content or a television program, the HMI control unit 170 continues this.
  • FIG. 18 is a diagram schematically showing another example of a future state predicted from traffic information.
  • the example of FIG. 18 represents a situation where the host vehicle M merges from the branch line L3 to the main lane L1. Further, in the illustrated example, the distance between vehicles traveling on the main lane L1 is narrow and crowded, and it is impossible (or difficult) to join in automatic driving. Therefore, this joining point is treated as a specific point that requires switching from the automatic operation mode to the manual operation mode.
  • a scene that travels at a specific point in FIG. 18 is an example of a “predetermined scene”.
  • the automatic operation control unit 120 starts the automatic operation mode from the point ST where the automatic operation can be started, and cancels the automatic operation mode at a specific point (joining point), for example. Will do. As a result, unnecessary switching of vehicle control may occur in a short period before joining.
  • the future state prediction unit 152 refers to one or both of the traffic information and the high-accuracy map information 182, for example, after passing through the point ST where the automatic driving can be started, within a predetermined period or within a predetermined travel
  • the prediction result is notified to both the switching control unit 150 and the HMI control unit 170.
  • the action plan generation unit 144 receives the notification of the prediction result, even if it is a section in which various events are planned in the main body automatic operation mode, the event in this section is changed to a handover event, and the manual operation mode To migrate. Further, when the switching control unit 150 receives the notification of the prediction result, the operation mode to be performed is switched from the automatic operation mode to the manual operation mode. Thereby, the vehicle control system 100 can suppress unnecessary switching of the vehicle control. As a result, frequent changes in the driving mode are suppressed, and the vehicle occupant can concentrate on driving the host vehicle M.
  • FIG. 19 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100 in the scene shown in FIG. The process of this flowchart is performed in the manual operation mode.
  • the future state prediction unit 152 acquires traffic information from the communication device 55 (step S300).
  • the future state prediction unit 152 refers to one or both of the traffic information and the high-accuracy map information 182 to detect a point ST where the automatic driving can be started in front of the host vehicle M, and automatically drive from the manual driving mode. It is determined whether or not the mode can be switched (step S302). When switching from the manual operation mode to the automatic operation mode is not possible, the switching control unit 150 continues the manual operation mode (step S304).
  • the future state prediction unit 152 determines whether or not there is a specific point ahead of the point ST where the automatic operation can be started (step S306).
  • the switching control unit 150 switches the operation mode to be executed from the manual operation mode to the automatic operation mode (step S308).
  • the future state prediction unit 152 determines whether or not the host vehicle M reaches the specific point within a predetermined period or within a predetermined travel distance. That is, the future state prediction unit 152 determines whether the automatic operation mode changed from the manual operation mode after passing through the point ST is changed to the original manual operation mode within a predetermined period or within a predetermined travel distance. Determination is made (step S310).
  • the vehicle control system 100 moves the process to S308 described above.
  • the future state prediction unit 152 notifies the switching control unit 150 and the HMI control unit 170 of the prediction result.
  • the HMI control unit 170 that has received the notification causes the navigation device 50 and the HMI 70 to output suppression notification information indicating that switching to the automatic operation mode is suppressed (step S312).
  • the switching control unit 150 moves the process to step S304 described above.
  • FIG. 20 is a diagram illustrating another example of the suppression notification information output by the navigation device 50 or the HMI 70.
  • the HMI control unit 170 controls the navigation device 50 or the HMI 70 to notify the vehicle occupant by image or voice that the switching from the manual operation mode to the automatic operation mode is suppressed. To do.
  • the traffic situation in the traveling direction of the own vehicle M is acquired, the acquired traffic situation is referred to, the future state related to the own vehicle M or the surrounding of the own vehicle M is predicted, and the vehicle control After switching or canceling, when it is predicted to return to a state before switching or canceling within a predetermined period or within a predetermined travel distance, vehicle control is suppressed by suppressing switching or canceling of vehicle control. Unnecessary switching can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

自車両の進行方向先の交通状況を取得する取得部と、取得部により取得された交通状況を参照し、自車両または自車両の周辺に関する将来状態を予測する予測部と、車両制御を行う制御部であって、車両制御の切替または解除を行った後、予測部により、所定期間以内または所定走行距離以内に切替または解除が行われる前の状態に戻ることが予測された場合に、車両制御の切替または解除を抑制する制御部と、を備える車両制御システム。

Description

車両制御システム、車両制御方法、および車両制御プログラム
 本発明は、車両制御システム、車両制御方法、および車両制御プログラムに関する。
 自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転について研究が進められている。これに関連し、車両の走行状況に応じて操舵輪の舵角及び車両の制駆動力の少なくとも一方を自動的に制御するための目標制御量を演算し、目標制御量に基づいて操舵輪の舵角及び車両の制駆動力の少なくとも一方を自動的に制御する車両の自動運転制御方法が開示されている(例えば、特許文献1参照)。
特開2015-157513号公報
 しかしながら、従来の技術では、車両制御の切り替わりが頻繁に行われる結果、利便性が低下したり、車両乗員が違和感を覚えたりする場合があった。
 本発明は、このような事情を考慮してなされたものであり、車両制御の不要な切り替わりを抑制することを目的の一つとする。
 請求項1記載の発明は、自車両の進行方向先の交通状況を取得する取得部と、前記取得部により取得された交通状況を参照し、前記自車両または前記自車両の周辺に関する将来状態を予測する予測部と、車両制御を行う制御部であって、前記車両制御の切替または解除を行った後、前記予測部により、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記車両制御の切替または解除を抑制する制御部と、を備える車両制御システムである。
 請求項2記載の発明は、請求項1記載の車両制御システムにおいて、前記制御部が、自動運転の度合が異なる複数の自動運転モードのいずれかを選択的に実施し、前記自動運転モードの切替または解除を行った後、前記予測部により、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記自動運転モードの切替または解除を抑制するものである。
 請求項1記載の車両制御システム。
 請求項3記載の発明は、請求項1または2記載の車両制御システムにおいて、前記制御部が、車線変更を自動的に行い、前記予測部により、前記車線変更を行った後、所定期間以内または所定走行距離以内に車線変更前の車線に戻ることが予測された場合に、前記車線変更を行わないものである。
 請求項4記載の発明は、請求項1から3のうちいずれか1項記載の車両制御システムにおいて、前記制御部が、速度条件に基づいて制御が切り替わり、または解除される車両制御を行い、前記予測部により、所定期間以内または所定走行距離以内に前記車両制御が切り替わり、または解除される前の状態に戻ることが予測された場合に、前記速度条件を満たすことになる速度変化を抑制するものである。
 請求項5記載の発明は、請求項1から4のうちいずれか1項記載の車両制御システムにおいて、前記制御部が、前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施すると共に、所定の場面において前記自動運転を停止して手動運転に切り替える制御を行い、前記予測部により、前記手動運転から前記自動運転に切り替えた後、所定期間内に再度前記所定の場面が到来することが予測された場合に、前記手動運転から前記自動運転に切り替えることを抑制するものである。
 請求項6記載の発明は、請求項1から5のうちいずれか1項記載の車両制御システムにおいて、情報を出力する出力部を備え、前記制御部が、前記車両制御の切替または解除を抑制している場合、前記抑制している状態であることを示す情報を、前記出力部に出力させるものである。
 請求項7記載の発明は、請求項1から6のうちいずれか1項記載の車両制御システムにおいて、車両の外部と通信する通信部を備え、前記予測部が、前記通信部により受信された情報に基づいて、前記切替または解除が行われる前の状態に戻るか否かを予測するものである。
 請求項8記載の発明は、車載コンピュータが、自車両の進行方向先の交通状況を参照し、前記自車両または前記自車両の周辺に関する将来状態を予測し、車両制御の切替または解除を行った後、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記車両制御の切替または解除を抑制する車両制御方法である。
 請求項9記載の発明は、車載コンピュータに、自車両の進行方向先の交通状況を参照させ、前記自車両または前記自車両の周辺に関する将来状態を予測させ、車両制御の切替または解除を行った後、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記車両制御の切替または解除を抑制させる車両制御プログラムである。
 各請求項に記載の発明によれば、車両制御の不要な切り替わりを抑制することができる。
自車両Mの構成要素を示す図である。 車両制御システム100を中心とした機能構成図である。自車両Mの機能構成図である。 HMI70の構成図である。 自車位置認識部140により走行車線L1に対する自車両Mの相対位置が認識される様子を示す図である。 ある区間について生成された行動計画の一例を示す図である。 軌道生成部146の構成の一例を示す図である。 軌道候補生成部146Bにより生成される軌道の候補の一例を示す図である。 軌道候補生成部146Bにより生成される軌道の候補を軌道点Kで表現した図である。 車線変更ターゲット位置TAを示す図である。 3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。 HMI70から出力される情報の一例を示す図である。 交通情報に基づいて予測される将来状態の一例を模式的に示す図である。 図12に示す場面において車両制御システム100により行われる処理の流れの一例を示すフローチャートである。 ナビゲーション装置50或いはHMI70が出力する抑制報知情報の一例を示す図である。 交通情報に基づいて予測される将来状態の他の例を模式的に示す図である。 図15に示す場面において車両制御システム100により行われる処理の流れの一例を示すフローチャートである。 ナビゲーション装置50或いはHMI70が出力する抑制報知情報の他の例を示す図である。 交通情報に基づいて予測される将来状態の他の例を模式的に示す図である。 図18に示す場面において車両制御システム100により行われる処理の流れの一例を示すフローチャートである。 ナビゲーション装置50或いはHMI70が出力する抑制報知情報の他の例を示す図である。
 以下、図面を参照し、本発明の車両制御システム、車両制御方法、および車両制御プログラムの実施形態について説明する。
 図1は、実施形態の車両制御システム100が搭載される車両(以下、自車両Mと称する)の構成要素を示す図である。車両制御システム100が搭載される車両は、例えば、二輪や三輪、四輪等の自動車であり、ディーゼルエンジンやガソリンエンジン等の内燃機関を動力源とした自動車や、電動機を動力源とした電気自動車、内燃機関および電動機を兼ね備えたハイブリッド自動車等を含む。電気自動車は、例えば、二次電池、水素燃料電池、金属燃料電池、アルコール燃料電池等の電池により放電される電力を使用して駆動される。
 図1に示すように、自車両Mには、ファインダ20-1から20-7、レーダ30-1から30-6、およびカメラ40等のセンサと、ナビゲーション装置50と、車両制御システム100とが搭載される。
 ファインダ20-1から20-7は、例えば、照射光に対する散乱光を測定し、対象までの距離を測定するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。例えば、ファインダ20-1は、フロントグリル等に取り付けられ、ファインダ20-2および20-3は、車体の側面やドアミラー、前照灯内部、側方灯付近等に取り付けられる。ファインダ20-4は、トランクリッド等に取り付けられ、ファインダ20-5および20-6は、車体の側面や尾灯内部等に取り付けられる。上述したファインダ20-1から20-6は、例えば、水平方向に関して150度程度の検出領域を有している。また、ファインダ20-7は、ルーフ等に取り付けられる。ファインダ20-7は、例えば、水平方向に関して360度の検出領域を有している。
 レーダ30-1および30-4は、例えば、奥行き方向の検出領域が他のレーダよりも広い長距離ミリ波レーダである。また、レーダ30-2、30-3、30-5、30-6は、レーダ30-1および30-4よりも奥行き方向の検出領域が狭い中距離ミリ波レーダである。
 以下、ファインダ20-1から20-7を特段区別しない場合は、単に「ファインダ20」と記載し、レーダ30-1から30-6を特段区別しない場合は、単に「レーダ30」と記載する。レーダ30は、例えば、FM-CW(Frequency Modulated Continuous Wave)方式によって物体を検出する。
 カメラ40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の個体撮像素子を利用したデジタルカメラである。カメラ40は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ40は、例えば、周期的に繰り返し自車両Mの前方を撮像する。カメラ40は、複数のカメラを含むステレオカメラであってもよい。
 なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 図2は、実施形態に係る車両制御システム100を中心とした機能構成図である。自車両Mには、ファインダ20、レーダ30、およびカメラ40などを含む検知デバイスDDと、ナビゲーション装置50と、通信装置55と、車両センサ60と、HMI(Human Machine Interface)70と、車両制御システム100と、走行駆動力出力装置200と、ステアリング装置210と、ブレーキ装置220とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、特許請求の範囲における車両制御システムは、「車両制御システム100」のみを指しているのではなく、車両制御システム100以外の構成(検知デバイスDDやHMI70など)を含んでもよい。
 ナビゲーション装置50は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置50は、GNSS受信機によって自車両Mの位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置50により導出された経路は、車両制御システム100の目標車線決定部110に提供される。自車両Mの位置は、車両センサ60の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。また、ナビゲーション装置50は、車両制御システム100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。なお、自車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。また、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。この場合、端末装置と車両制御システム100との間で、無線または有線による通信によって情報の送受信が行われる。
 通信装置55は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用した無線通信を行う。通信装置55は、例えば、VICS(登録商標)(Vehicle Information and Communication System)などの道路の交通状況を監視するシステムの情報提供用サーバと無線通信を行い、自車両Mが走行している道路や走行予定の道路の交通状況を示す情報(以下、交通情報と称する)を取得する。交通情報には、前方の渋滞情報、渋滞地点の所要時間、事故・故障車・工事情報、速度規制・車線規制情報、駐車場の位置、駐車場・サービスエリア・パーキングエリアの満車・空車情報などの情報が含まれる。また、通信装置55は、道路の側帯などに設けられた無線ビーコンと通信を行ったり、自車両Mの周囲を走行する他車両と車車間通信を行ったりすることで、上記交通情報を取得してよい。通信装置55は、「取得部」の一例である。
 車両センサ60は、車速を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
 図3は、HMI70の構成図である。HMI70は、例えば、運転操作系の構成と、非運転操作系の構成とを備える。これらの境界は明確なものでは無く、運転操作系の構成が非運転操作系の機能を備える(或いはその逆)ことがあってもよい。上述したナビゲーション装置50およびHMI70は、「出力部」の一例である。
 HMI70は、運転操作系の構成として、例えば、アクセルペダル71、アクセル開度センサ72およびアクセルペダル反力出力装置73と、ブレーキペダル74およびブレーキ踏量センサ(或いはマスター圧センサなど)75と、シフトレバー76およびシフト位置センサ77と、ステアリングホイール78、ステアリング操舵角センサ79およびステアリングトルクセンサ80と、その他運転操作デバイス81とを含む。
 アクセルペダル71は、車両乗員による加速指示(或いは戻し操作による減速指示)を受け付けるための操作子である。アクセル開度センサ72は、アクセルペダル71の踏み込み量を検出し、踏み込み量を示すアクセル開度信号を車両制御システム100に出力する。なお、車両制御システム100に出力するのに代えて、走行駆動力出力装置200、ステアリング装置210、またはブレーキ装置220に直接出力することがあってもよい。以下に説明する他の運転操作系の構成についても同様である。アクセルペダル反力出力装置73は、例えば車両制御システム100からの指示に応じて、アクセルペダル71に対して操作方向と反対向きの力(操作反力)を出力する。
 ブレーキペダル74は、車両乗員による減速指示を受け付けるための操作子である。ブレーキ踏量センサ75は、ブレーキペダル74の踏み込み量(或いは踏み込み力)を検出し、検出結果を示すブレーキ信号を車両制御システム100に出力する。
 シフトレバー76は、車両乗員によるシフト段の変更指示を受け付けるための操作子である。シフト位置センサ77は、車両乗員により指示されたシフト段を検出し、検出結果を示すシフト位置信号を車両制御システム100に出力する。
 ステアリングホイール78は、車両乗員による旋回指示を受け付けるための操作子である。ステアリング操舵角センサ79は、ステアリングホイール78の操作角を検出し、検出結果を示すステアリング操舵角信号を車両制御システム100に出力する。ステアリングトルクセンサ80は、ステアリングホイール78に加えられたトルクを検出し、検出結果を示すステアリングトルク信号を車両制御システム100に出力する。
 その他運転操作デバイス81は、例えば、ジョイスティック、ボタン、ダイヤルスイッチ、GUI(Graphical User Interface)スイッチなどである。その他運転操作デバイス81は、加速指示、減速指示、旋回指示などを受け付け、車両制御システム100に出力する。
 HMI70は、非運転操作系の構成として、例えば、表示装置82、スピーカ83、接触操作検出装置84およびコンテンツ再生装置85と、各種操作スイッチ86と、シート88およびシート駆動装置89と、ウインドウガラス90およびウインドウ駆動装置91とを含む。
 表示装置82は、例えば、インストルメントパネルの各部、助手席や後部座席に対向する任意の箇所などに取り付けられる、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)表示装置などである。また、表示装置82は、フロントウインドシールドやその他のウインドウに画像を投影するHUD(Head Up Display)であってもよい。スピーカ83は、音声を出力する。接触操作検出装置84は、表示装置82がタッチパネルである場合に、表示装置82の表示画面における接触位置(タッチ位置)を検出して、車両制御システム100に出力する。なお、表示装置82がタッチパネルでない場合、接触操作検出装置84は省略されてよい。
 コンテンツ再生装置85は、例えば、DVD(Digital Versatile Disc)再生装置、CD(Compact Disc)再生装置、テレビジョン受信機、各種案内画像の生成装置などを含む。表示装置82、スピーカ83、接触操作検出装置84およびコンテンツ再生装置85は、一部または全部がナビゲーション装置50と共通する構成であってもよい。
 各種操作スイッチ86は、車室内の任意の箇所に配置される。各種操作スイッチ86には、自動運転の開始(或いは将来の開始)および停止を指示する自動運転切替スイッチ87を含む。自動運転切替スイッチ87は、GUI(Graphical User Interface)スイッチ、機械式スイッチのいずれであってもよい。また、各種操作スイッチ86は、シート駆動装置89やウインドウ駆動装置91を駆動するためのスイッチを含んでもよい。
 シート88は、車両乗員が着座するシートである。シート駆動装置89は、シート88のリクライニング角、前後方向位置、ヨー角などを自在に駆動する。ウインドウガラス90は、例えば各ドアに設けられる。ウインドウ駆動装置91は、ウインドウガラス90を開閉駆動する。
 車室内カメラ95は、CCDやCMOS等の個体撮像素子を利用したデジタルカメラである。車室内カメラ95は、バックミラーやステアリングボス部、インストルメントパネルなど、運転操作を行う車両乗員の少なくとも頭部を撮像可能な位置に取り付けられる。カメラ40は、例えば、周期的に繰り返し車両乗員を撮像する。
 車両制御システム100の説明に先立って、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220について説明する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、自車両Mが内燃機関を動力源とした自動車である場合、エンジン、変速機、およびエンジンを制御するエンジンECU(Electronic Control Unit)を備え、自車両Mが電動機を動力源とした電気自動車である場合、走行用モータおよび走行用モータを制御するモータECUを備え、自車両Mがハイブリッド自動車である場合、エンジン、変速機、およびエンジンECUと走行用モータおよびモータECUとを備える。走行駆動力出力装置200がエンジンのみを含む場合、エンジンECUは、後述する走行制御部160から入力される情報に従って、エンジンのスロットル開度やシフト段等を調整する。走行駆動力出力装置200が走行用モータのみを含む場合、モータECUは、走行制御部160から入力される情報に従って、走行用モータに与えるPWM信号のデューティ比を調整する。走行駆動力出力装置200がエンジンおよび走行用モータを含む場合、エンジンECUおよびモータECUは、走行制御部160から入力される情報に従って、互いに協調して走行駆動力を制御する。
 ステアリング装置210は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、車両制御システム100から入力される情報、或いは入力されるステアリング操舵角またはステアリングトルクの情報に従って電動モータを駆動し、転舵輪の向きを変更させる。
 ブレーキ装置220は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、制動制御部とを備える電動サーボブレーキ装置である。電動サーボブレーキ装置の制動制御部は、走行制御部160から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。電動サーボブレーキ装置は、ブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置220は、上記説明した電動サーボブレーキ装置に限らず、電子制御式油圧ブレーキ装置であってもよい。電子制御式油圧ブレーキ装置は、走行制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する。また、ブレーキ装置220は、走行駆動力出力装置200に含まれ得る走行用モータによる回生ブレーキを含んでもよい。
 [車両制御システム]
 以下、車両制御システム100について説明する。車両制御システム100は、例えば、一以上のプロセッサまたは同等の機能を有するハードウェアにより実現される。車両制御システム100は、CPU(Central Processing Unit)などのプロセッサ、記憶装置、および通信インターフェースが内部バスによって接続されたECU(Electronic Control Unit)、或いはMPU(Micro-Processing Unit)などが組み合わされた構成であってよい。
 図2に戻り、車両制御システム100は、例えば、目標車線決定部110と、自動運転制御部120と、走行制御部160と、記憶部180とを備える。自動運転制御部120は、例えば、自動運転モード制御部130と、自車位置認識部140と、外界認識部142と、行動計画生成部144と、軌道生成部146と、切替制御部150と、将来状態予測部152とを備える。自動運転モード制御部130、行動計画生成部144、軌道生成部146、および切替制御部150を合わせたものは、「制御部」の一例である。
 目標車線決定部110、自動運転制御部120の各部、および走行制御部160のうち一部または全部は、プロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの組み合わせによって実現されてもよい。
 記憶部180には、例えば、高精度地図情報182、目標車線情報184、行動計画情報186、モード別操作可否情報188などの情報が格納される。記憶部180は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プロセッサが実行するプログラムは、予め記憶部180に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムは、そのプログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部180にインストールされてもよい。また、車両制御システム100は、複数のコンピュータ装置によって分散化されたものであってもよい。
 目標車線決定部110は、例えば、MPUにより実現される。目標車線決定部110は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、高精度地図情報182を参照してブロックごとに目標車線を決定する。目標車線決定部110は、例えば、左から何番目の車線を走行するといった決定を行う。目標車線決定部110は、例えば、経路において分岐箇所や合流箇所などが存在する場合、自車両Mが、分岐先に進行するための合理的な走行経路を走行できるように、目標車線を決定する。目標車線決定部110により決定された目標車線は、目標車線情報184として記憶部180に記憶される。
 高精度地図情報182は、ナビゲーション装置50が有するナビ地図よりも高精度な地図情報である。高精度地図情報182は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、高精度地図情報182には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。交通規制情報には、工事や交通事故、渋滞等によって車線が封鎖されているといった情報が含まれる。
 自動運転モード制御部130は、自動運転制御部120が実施する自動運転のモードを決定する。本実施形態における自動運転のモードには、以下のモードが含まれる。なお、以下はあくまで一例であり、自動運転のモード数は任意に決定されてよい。
 [モードA]
 モードAは、最も自動運転の度合が高いモードである。モードAが実施されている場合、複雑な合流制御など、全ての車両制御が自動的に行われるため、車両乗員は自車両Mの周辺や状態を監視する必要が無い(周辺監視義務が生じない)。
 ここで、モードAで選択される走行態様の一例としては、渋滞時に前走車両に追従する渋滞追従モード(低速追従モード;TJP(Traffic Jam Pilot))がある。渋滞追従モードでは、混雑した高速道路上で前走車両に追従することで安全な自動運転を実現することができる。渋滞追従モードは、例えば自車両Mの走行速度が所定速度以上(例えば、60km/h以上)になった場合に解除される。また、渋滞追従モードの終了するタイミングでモードAから他の走行態様に切り替わる場合もあるが、モードAにおいて選択可能な他の走行態様に切り替わってもよい。
 [モードB]
 モードBは、モードAの次に自動運転の度合が高いモードである。モードBが実施されている場合、原則として全ての車両制御が自動的に行われるが、場面に応じて自車両Mの運転操作が車両乗員に委ねられる。このため、車両乗員は自車両Mの周辺や状態を監視している必要がある(モードAと比べて周辺監視義務が増加する)。
 [モードC]
 モードCは、モードBの次に自動運転の度合が高いモードである。モードCが実施されている場合、車両乗員は、場面に応じた確認操作をHMI70に対して行う必要がある。モードCでは、例えば、車線変更のタイミングが車両乗員に通知され、車両乗員がHMI70に対して車線変更を指示する操作を行った場合に、自動的な車線変更が行われる。このため、車両乗員は自車両Mの周辺や状態を監視している必要がある。
 自動運転モード制御部130は、HMI70に対する車両乗員の操作、行動計画生成部144により決定されたイベント、軌道生成部146により決定された走行態様などに基づいて、自動運転のモードを決定する。自動運転のモードは、HMI制御部170に通知される。また、自動運転のモードには、自車両Mの検知デバイスDDの性能等に応じた限界が設定されてもよい。例えば、検知デバイスDDの性能が低い場合には、モードAは実施されないものとしてよい。
 何れの自動運転のモードにおいても、HMI70における運転操作系の構成に対する操作によって、手動運転モードに切り替えること(オーバーライド)は可能である。オーバーライドは、例えば自車両Mの車両乗員によるHMI70の運転操作系に対する操作が、所定時間以上継続した場合、所定の操作変化量(例えばアクセルペダル71のアクセル開度、ブレーキペダル74のブレーキ踏量、ステアリングホイール78のステアリング操舵角)以上の場合、または運転操作系に対する操作を所定回数以上行った場合に開始される。
 自動運転制御部120の自車位置認識部140は、記憶部180に格納された高精度地図情報182と、ファインダ20、レーダ30、カメラ40、ナビゲーション装置50、または車両センサ60から入力される情報とに基づいて、自車両Mが走行している車線(走行車線)、および、走行車線に対する自車両Mの相対位置を認識する。
 自車位置認識部140は、例えば、高精度地図情報182から認識される道路区画線のパターン(例えば実線と破線の配列)と、カメラ40によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。
 図4は、自車位置認識部140により走行車線L1に対する自車両Mの相対位置が認識される様子を示す図である。自車位置認識部140は、例えば、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置として認識する。なお、これに代えて、自車位置認識部140は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。自車位置認識部140により認識される自車両Mの相対位置は、目標車線決定部110に提供される。
 外界認識部142は、ファインダ20、レーダ30、カメラ40等から入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。周辺車両とは、例えば、自車両Mの周辺を走行する車両であって、自車両Mと同じ方向に走行する車両である。周辺車両の位置は、他車両の重心やコーナー等の代表点で表されてもよいし、他車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、上記各種機器の情報に基づいて把握される、周辺車両の加速度、車線変更をしているか否か(あるいは車線変更をしようとしているか否か)を含んでもよい。また、外界認識部142は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。
 行動計画生成部144は、自動運転のスタート地点、および/または自動運転の目的地を設定する。自動運転のスタート地点は、自車両Mの現在位置であってもよいし、自動運転を指示する操作がなされた地点でもよい。行動計画生成部144は、そのスタート地点と自動運転の目的地との間の区間において、行動計画を生成する。なお、これに限らず、行動計画生成部144は、任意の区間について行動計画を生成してもよい。
 行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、自車両Mを減速させる減速イベントや、自車両Mを加速させる加速イベント、走行車線を逸脱しないように自車両Mを走行させるレーンキープイベント、走行車線を変更させる車線変更イベント、自車両Mに前走車両を追い越させる追い越しイベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように自車両Mを走行させたりする分岐イベント、本線に合流するための合流車線において自車両Mを加減速させ、走行車線を変更させる合流イベント、自動運転の開始地点で手動運転モードから自動運転モードに移行させたり、自動運転の終了予定地点で自動運転モードから手動運転モードに移行させたりするハンドオーバイベント等が含まれる。行動計画生成部144は、目標車線決定部110により決定された目標車線が切り替わる箇所において、車線変更イベント、分岐イベント、または合流イベントを設定する。行動計画生成部144によって生成された行動計画を示す情報は、行動計画情報186として記憶部180に格納される。
 図5は、ある区間について生成された行動計画の一例を示す図である。図示するように、行動計画生成部144は、目標車線情報184が示す目標車線上を自車両Mが走行するために必要な行動計画を生成する。なお、行動計画生成部144は、自車両Mの状況変化に応じて、目標車線情報184に拘わらず、動的に行動計画を変更してもよい。例えば、行動計画生成部144は、車両走行中に外界認識部142によって認識された周辺車両の速度が閾値を超えたり、自車線に隣接する車線を走行する周辺車両の移動方向が自車線方向に向いたりした場合に、自車両Mが走行予定の運転区間に設定されたイベントを変更する。例えば、レーンキープイベントの後に車線変更イベントが実行されるようにイベントが設定されている場合において、外界認識部142の認識結果によって当該レーンキープイベント中に車線変更先の車線後方から車両が閾値以上の速度で進行してきたことが判明した場合、行動計画生成部144は、レーンキープイベントの次のイベントを、車線変更イベントから減速イベントやレーンキープイベント等に変更してよい。この結果、車両制御システム100は、外界の状態に変化が生じた場合においても、安全に自車両Mを自動走行させることができる。
 図6は、軌道生成部146の構成の一例を示す図である。軌道生成部146は、例えば、走行態様決定部146Aと、軌道候補生成部146Bと、評価・選択部146Cとを備える。
 走行態様決定部146Aは、レーンキープイベントを実施する際に、定速走行、追従走行、低速追従走行、減速走行、カーブ走行、障害物回避走行などのうちいずれかの走行態様を決定する。例えば、走行態様決定部146Aは、自車両Mの前方に他車両が存在しない場合に、走行態様を定速走行に決定する。また、走行態様決定部146Aは、前走車両に対して追従走行するような場合に、走行態様を追従走行に決定する。また、走行態様決定部146Aは、渋滞場面などにおいて、走行態様を低速追従走行に決定する。また、走行態様決定部146Aは、外界認識部142により前走車両の減速が認識された場合や、停車や駐車などのイベントを実施する場合に、走行態様を減速走行に決定する。また、走行態様決定部146Aは、外界認識部142により自車両Mがカーブ路に差し掛かったことが認識された場合に、走行態様をカーブ走行に決定する。また、走行態様決定部146Aは、外界認識部142により自車両Mの前方に障害物が認識された場合に、走行態様を障害物回避走行に決定する。
 軌道候補生成部146Bは、走行態様決定部146Aにより決定された走行態様に基づいて、軌道の候補を生成する。図7は、軌道候補生成部146Bにより生成される軌道の候補の一例を示す図である。図7は、自車両Mが車線L1から車線L2に車線変更する場合に生成される軌道の候補を示している。
 軌道候補生成部146Bは、図7に示すような軌道を、例えば、将来の所定時間ごとに、自車両Mの基準位置(例えば重心や後輪軸中心)が到達すべき目標位置(軌道点K)の集まりとして決定する。図8は、軌道候補生成部146Bにより生成される軌道の候補を軌道点Kで表現した図である。軌道点Kの間隔が広いほど、自車両Mの速度は速くなり、軌道点Kの間隔が狭いほど、自車両Mの速度は遅くなる。従って、軌道候補生成部146Bは、加速したい場合には軌道点Kの間隔を徐々に広くし、減速したい場合は軌道点の間隔を徐々に狭くする。
 このように、軌道点Kは速度成分を含むものであるため、軌道候補生成部146Bは、軌道点Kのそれぞれに対して目標速度を与える必要がある。目標速度は、走行態様決定部146Aにより決定された走行態様に応じて決定される。
 ここで、車線変更(分岐を含む)を行う場合の目標速度の決定手法について説明する。軌道候補生成部146Bは、まず、車線変更ターゲット位置(或いは合流ターゲット位置)を設定する。車線変更ターゲット位置は、周辺車両との相対位置として設定されるものであり、「どの周辺車両の間に車線変更するか」を決定するものである。軌道候補生成部146Bは、車線変更ターゲット位置を基準として3台の周辺車両に着目し、車線変更を行う場合の目標速度を決定する。図9は、車線変更ターゲット位置TAを示す図である。図中、L1は自車線を表し、L2は隣接車線を表している。ここで、自車両Mと同じ車線で、自車両Mの直前を走行する周辺車両を前走車両mA、車線変更ターゲット位置TAの直前を走行する周辺車両を前方基準車両mB、車線変更ターゲット位置TAの直後を走行する周辺車両を後方基準車両mCと定義する。自車両Mは、車線変更ターゲット位置TAの側方まで移動するために加減速を行う必要があるが、この際に前走車両mAに追いついてしまうことを回避しなければならない。このため、軌道候補生成部146Bは、3台の周辺車両の将来の状態を予測し、各周辺車両と干渉しないように目標速度を決定する。
 図10は、3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。図中、mA、mBおよびmCから延出する直線は、それぞれの周辺車両が定速走行したと仮定した場合の進行方向における変位を示している。自車両Mは、車線変更が完了するポイントCPにおいて、前方基準車両mBと後方基準車両mCとの間にあり、且つ、それ以前において前走車両mAよりも後ろにいなければならない。このような制約の下、軌道候補生成部146Bは、車線変更が完了するまでの目標速度の時系列パターンを、複数導出する。そして、目標速度の時系列パターンをスプライン曲線等のモデルに適用することで、図8に示すような軌道の候補を複数導出する。なお、3台の周辺車両の運動パターンは、図10に示すような定速度に限らず、定加速度、定ジャーク(躍度)を前提として予測されてもよい。
 評価・選択部146Cは、軌道候補生成部146Bにより生成された軌道の候補に対して、例えば、計画性と安全性の二つの観点で評価を行い、走行制御部160に出力する軌道を選択する。計画性の観点からは、例えば、既に生成されたプラン(例えば行動計画)に対する追従性が高く、軌道の全長が短い場合に軌道が高く評価される。例えば、右方向に車線変更することが望まれる場合に、一旦左方向に車線変更して戻るといった軌道は、低い評価となる。安全性の観点からは、例えば、それぞれの軌道点において、自車両Mと物体(周辺車両等)との距離が遠く、加減速度や操舵角の変化量などが小さいほど高く評価される。
 切替制御部150は、自動運転切替スイッチ87から入力される信号、その他に基づいて自動運転モードと手動運転モードとを相互に切り替える。また、切替制御部150は、HMI70における運転操作系の構成に対する加速、減速または操舵を指示する操作に基づいて、自動運転モードから手動運転モードに切り替える。例えば、切替制御部150は、HMI70における運転操作系の構成から入力された信号の示す操作量が閾値を超えた状態が、基準時間以上継続した場合に、自動運転モードから手動運転モードに切り替える(オーバーライド)。また、切替制御部150は、オーバーライドによる手動運転モードへの切り替えの後、所定時間の間、HMI70における運転操作系の構成に対する操作が検出されなかった場合に、自動運転モードに復帰させてもよい。また、切替制御部150は、例えば自動運転の終了予定地点で自動運転モードから手動運転モードに移行するハンドオーバ制御を行う場合に、車両乗員に対して事前にハンドオーバリクエストを通知するため、その旨の情報を、HMI制御部170に出力する。
 走行制御部160は、軌道生成部146によって生成された軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220を制御する。
 HMI制御部170は、自動運転制御部120により自動運転のモードの情報が通知されると、モード別操作可否情報188を参照して、自動運転のモードの種別に応じてHMI70を制御する。
 図11は、モード別操作可否情報188の一例を示す図である。図11に示すモード別操作可否情報188は、運転モードの項目として「手動運転モード」、「自動運転モード」とを有する。また、「自動運転モード」として、上述した「モードA」、「モードB」、および「モードC」等を有する。また、モード別操作可否情報188は、非運転操作系の項目として、ナビゲーション装置50に対する操作である「ナビゲーション操作」、コンテンツ再生装置85に対する操作である「コンテンツ再生操作」、表示装置82に対する操作である「インストルメントパネル操作」等を有する。図11に示すモード別操作可否情報188の例では、上述した運転モードごとに非運転操作系に対する車両乗員の操作の可否が設定されているが、対象のインターフェース装置は、これに限定されるものではない。
 HMI制御部170は、自動運転制御部120から取得したモードの情報に基づいてモード別操作可否情報188を参照することで、使用が許可される装置(ナビゲーション装置50およびHMI70の一部または全部)と、使用が許可されない装置とを判定する。また、HMI制御部170は、判定結果に基づいて、非運転操作系のHMI70、またはナビゲーション装置50に対する車両乗員からの操作の受け付けの可否を制御する。
 例えば、車両制御システム100が実行する運転モードが手動運転モードの場合、車両乗員は、HMI70の運転操作系(例えば、アクセルペダル71、ブレーキペダル74、シフトレバー76、およびステアリングホイール78等)を操作する。また、車両制御システム100が実行する運転モードが自動運転モードのモードB、モードC等である場合、車両乗員には、自車両Mの周辺監視義務が生じる。このような場合、車両乗員の運転以外の行動(例えばHMI70の操作等)により注意が散漫になること(ドライバーディストラクション)を防止するため、HMI制御部170は、HMI70の非運転操作系の一部または全部に対する操作を受け付けないように制御を行う。この際、HMI制御部170は、自車両Mの周辺監視を行わせるために、外界認識部142により認識された自車両Mの周辺車両の存在やその周辺車両の状態を、表示装置82に画像などで表示させると共に、自車両Mの走行時の場面に応じた確認操作をHMI70に受け付けさせてよい。
 また、HMI制御部170は、運転モードが自動運転のモードAである場合、ドライバーディストラクションの規制を緩和し、操作を受け付けていなかった非運転操作系に対する車両乗員の操作を受け付ける制御を行う。例えば、HMI制御部170は、表示装置82に映像を表示させたり、スピーカ83に音声を出力させたり、コンテンツ再生装置85にDVDなどからコンテンツを再生させたりする。なお、コンテンツ再生装置85が再生するコンテンツには、DVDなどに格納されたコンテンツの他、例えば、テレビ番組等の娯楽、エンターテイメントに関する各種コンテンツが含まれてよい。また、上述した図11に示す「コンテンツ再生操作」は、このような娯楽、エンターテイメントに関するコンテンツ操作を意味するものであってよい。
 また、モードAからモードBまたはモードCに遷移される場合、すなわち車両乗員の周辺監視義務が増加する自動運転のモードの変更が行われる場合、HMI制御部170は、後述する将来状態予測部152からの通知を受けて、ナビゲーション装置50または非運転操作系のHMI70に所定の情報を出力させる。所定の情報とは、周辺監視義務が増加すること示す情報や、ナビゲーション装置50または非運転操作系のHMI70に対する操作許容度が低くなる(操作が制限される)ことを示す情報である。なお、所定の情報は、これらに限定されるものではなく、例えばハンドオーバ制御への準備を促すような情報であってもよい。
 上述したように、HMI制御部170は、例えば運転モードが上述したモードAからモードBまたはモードCへ遷移する所定時間前や自車両Mが所定速度に至る前に車両乗員に対して警告等を報知することで、自車両Mの周辺監視義務が車両乗員に課されることを、適切なタイミングで車両乗員に通知することができる。この結果、自動運転の切り替わりへの準備期間を車両乗員に与えることができる。
 [将来状態予測に基づく制御]
 以下、将来状態予測部152による予測結果に基づく制御について説明する。将来状態予測部152は、例えば通信装置55により取得された交通情報を参照し、自車両Mまたは自車両Mの周辺に関する将来状態を予測する。
 例えば、将来状態予測部152は、交通情報を参照し、現在の自車両Mの進行方向に関して、自車両Mの前方において、自動運転モードから手動運転モードに切り替える必要が生じる特定地点が存在しているか否か、または自動運転モード下において、例えば、モードAからモードBへの遷移のように、周辺監視義務がより増加するモードへ変更する必要が生じる特定地点が存在しているか否かを予測する。特定地点は、例えば、交通事故が生じているエリア(以下、事故エリアと称する)や工事現場、検問地点、合流地点、分岐地点、料金所などを含む。
 このような特定地点が存在する場合、将来状態予測部152は、この特定地点以降において、特定地点において切り替わったり解除されたりした運転モードが元の状態に戻ることになるかどうかを予測する。
 なお、将来状態予測部152は、特定地点のうち、合流地点、分岐地点、料金所などの位置が固定である場所については、高精度地図情報182を参照することでこれら特定地点を特定し、自車両Mまたは自車両Mの周辺に関する将来状態を予測してもよい。
 図12は、交通情報に基づいて予測される将来状態の一例を模式的に示す図である。図12の例では、目的地の方向が自車線L1に対して隣接する隣接車線L2の進行方向側に存在しているため、隣接車線L2に車線変更する必要がある。
 この場合において、隣接車線L2上において事故エリアACが存在している場合、将来状態予測部152は、隣接車線L2に車線変更した後、事故エリアACを迂回する必要があることを予測する。このような状況で直ちに隣接車線L2に車線変更を行うと、すぐに元の車線L1に戻ってから再度、隣接車線L2に車線変更を行うことになり、車両乗員に違和感を与えてしまう。また、自車両Mが余計な挙動を行うと、安全の観点からも好ましくない。このため、将来状態予測部152は、行動計画生成部144および軌道生成部146のいずれか一方または双方に予測結果を通知し、行動計画生成部144に車線変更イベントを変更させたり、軌道生成部146に車線変更のための軌道を変更させたりすることで、車線変更イベントの実施を抑制する。これによって、車両制御システム100は、車両制御の不要な切り替わりを抑制することができる。
 図13は、図12に示す場面において車両制御システム100により行われる処理の流れの一例を示すフローチャートである。まず、将来状態予測部152は、行動計画情報186を参照して、車線変更イベントが実施されるタイミングまで待機し(ステップS100)、車線変更イベントの実施タイミングが到来すると、通信装置55から交通情報を取得する(ステップS102)。
 次に、将来状態予測部152は、取得した交通情報を参照して、車線変更先の車線に事故エリアなどの特定地点が存在するか否かを判定する(ステップS104)。車線変更先の車線に特定地点が存在しない場合、将来状態予測部152は、この予測結果を、例えば軌道生成部146に通知することで車線変更のための軌道を生成させ、自車両Mを車線変更させる(ステップS106)。
 一方、車線変更先の車線に特定地点が存在する場合、将来状態予測部152は、所定期間内、或いは所定走行距離以内に元の車線に戻るか否かを判定する(ステップS108)。所定期間内、或いは所定走行距離以内に元の車線に戻らない場合、車両制御システム100は、上述したステップS106の処理を行う。
 一方、所定期間内、或いは所定走行距離以内に元の車線に戻る場合、将来状態予測部152は、予測結果を、行動計画生成部144や軌道生成部146に通知することで車線変更イベントの実施を中止させると共に(ステップS110)、車線変更イベントの代わりにレーンキープイベントを実施させる(ステップS112)。
 次に、HMI制御部170は、事故エリアを越えるまでの間(ステップS114)、車線変更イベントの実施を抑制していることを示す情報(図中抑制報知情報)をナビゲーション装置50やHMI70に出力させる(ステップS116)。事故エリアを越えると、車両制御システム100は、上述したステップS106の処理を行う。
 図14は、ナビゲーション装置50或いはHMI70が出力する抑制報知情報の一例を示す図である。図示のように、例えば、HMI制御部170は、ナビゲーション装置50或いはHMI70を制御することで、レーンキープイベントから車線変更イベントへの切替を抑制していることを画像や音声などで車両乗員に報知する。
 図15は、交通情報に基づいて予測される将来状態の他の例を模式的に示す図である。図15の例では、自車両Mの前方において渋滞が断続的に続いている状況を表している。断続的な渋滞とは、例えば、渋滞が発生している地点(図中BU1)から距離L離れた地点において、別の渋滞が発生している地点(図中BU2)が存在するような状況である。
 このような場合、将来状態を考慮しないのであれば、自動運転制御部120は、渋滞地点BU1において、自動運転モードの走行態様を、モードAにおける渋滞追従モードに設定し、渋滞地点BU1およびBU2の間の区間において、自動運転モードの走行態様を、モードBにおける例えば定速走行モードに設定し、渋滞地点BU2において、自動運転モードの走行態様を、モードAにおける渋滞追従モードに設定することになる。この結果、渋滞地点BU1からBU2に至るまでの短期間に車両制御の不要な切り替わりが生じる可能がある。
 また、渋滞地点BU1およびBU2では、モードAに設定されているため、コンテンツ再生装置85が娯楽、エンターテイメントに関する各種コンテンツを再生することができる。しかしながら、渋滞の間の区間では、車両乗員による周辺監視の必要性が生じるため、表示装置82に表示された映像やコンテンツ再生装置85により再生されたコンテンツなどが停止される。この結果、車両乗員は、例えば視聴中のテレビジョン番組の視聴を一時中断しなければならず、不快感を覚える可能性がある。
 これに対して、将来状態予測部152は、交通情報を参照することで、渋滞地点BU1を通過した後、所定期間以内または所定走行距離以内に次の渋滞地点BU2に到達することが予測できた場合、この予測結果を自動運転モード制御部130に通知して、渋滞地点BU1およびBU2の間の区間においてモードAの設定を維持させる。これによって、車両制御システム100は、車両乗員の利便性を向上させると共に、車両制御の不要な切り替わりを抑制することができる。
 図16は、図15に示す場面において車両制御システム100により行われる処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、自動運転モードが、走行態様が渋滞追従モードに設定されたモードAに設定された状態で行われる。
 まず、将来状態予測部152は、通信装置55から交通情報を取得する(ステップS200)。次に、将来状態予測部152は、取得した交通情報を参照して、自車両Mの前方において、渋滞が断続的に発生しているか否かを判定する(ステップS202)。渋滞が断続的に発生していない場合、自動運転モード制御部130は、走行態様が渋滞追従モードに設定されたモードAを解除し(ステップS204)、例えば、走行態様が定速走行モードなどのモードBに変更する(ステップS206)。なお、モードAから変更されるモードは、モードBに限られず、モードCや手動運転モードなどの他のモードであってもよい。
 次に、HMI制御部170は、運転モードの切替が生じたことを示す情報をナビゲーション装置50やHMI70に出力させ、車両乗員に周辺監視の義務が必要な旨を報知する(ステップS208)。この際、HMI制御部170は、コンテンツ再生装置85がDVDのコンテンツやテレビジョン番組などのコンテンツを再生している場合、これを停止させる。
 一方、渋滞が断続的に発生している場合、将来状態予測部152は、最も自車両Mに近い渋滞地点を通過後に、所定期間内、或いは所定走行距離以内に他の渋滞地点に到達するか否かを判定する。すなわち、将来状態予測部152は、最も自車両Mに近い渋滞地点を通過後に、モードAから変更されたモードBが、所定期間内、或いは所定走行距離以内に元のモードAに変更されるか否かを判定する(ステップS210)。
 モードBが、所定期間内、或いは所定走行距離以内に元のモードAに変更されない場合、車両制御システム100は、上述したステップS204に処理を移す。一方、モードBが、所定期間内、或いは所定走行距離以内に元のモードAに変更される場合、将来状態予測部152は、渋滞地点通過後に設定されるモードBが、所定期間内、或いは所定走行距離以内に元のモードAに変更されるという予測結果を自動運転モード制御部130や行動計画生成部144、軌道生成部146などに通知する。予測結果の通知を受けた自動運転モード制御部130は、例えば、一時的に渋滞が解消される区間においても、走行態様が渋滞追従モードに設定されたモードAを維持する(ステップS212)。
 次に、予測結果の通知を受けた軌道生成部146は、一時的に渋滞が解消される区間において、モードA(渋滞追従モード)が維持されるように、自車両Mの速度変化を監視する。そして、軌道生成部146は、自車両Mの走行速度を所定速度未満になるように軌道点Kの間隔を調整することで、自車両Mの速度を所定速度未満に抑制する(ステップS214)。すなわち、軌道生成部146は、自車両Mの速度を所定速度未満に抑制して、自動運転モード制御部130により渋滞が解消されたと判定されるのを抑制し、渋滞追従モードのモードAの設定を維持させる。
 次に、HMI制御部170は、運転モードの切替が抑制されていることを示す抑制報知情報をナビゲーション装置50やHMI70に出力させる(ステップS216)。
 なお、図16で示す処理の流れに代えて、渋滞が解消され、自車両Mの前方が開けた状態となることで、渋滞追従モード以外のモードが選択可能になったタイミングで、ステップS210の判定を行うような処理の流れを採用してよい。
 図17は、ナビゲーション装置50或いはHMI70が出力する抑制報知情報の他の例を示す図である。図示のように、例えば、HMI制御部170は、ナビゲーション装置50或いはHMI70を制御することで、モードAからモードBへの切替といったモードの切替が抑制されていることを画像や音声などで車両乗員に報知する。この際、HMI制御部170は、コンテンツ再生装置85がDVDのコンテンツやテレビジョン番組などのコンテンツを再生している場合、これを継続させる。
 図18は、交通情報から予測される将来状態の他の例を模式的に示す図である。図18の例では、自車両Mが支線L3から本線の車線L1に合流する状況を表している。また、図示の例では、本線の車線L1を走行する車両同士の間隔が狭く混雑しており、自動運転での合流が不可能(或いは困難)な状況を示している。従って、この合流地点は、自動運転モードから手動運転モードに切り替える必要が生じる特定地点として扱われる。図18における特定地点を走行するような場面は、「所定場面」の一例である。
 このような場合、将来状態を考慮しないのであれば、自動運転制御部120は、例えば、自動運転開始可能な地点STから自動運転モードを開始し、特定地点(合流地点)において自動運転モードを解除することになる。この結果、合流前の短期間に車両制御の不要な切り替わりが生しる可能がある。
 これに対して、将来状態予測部152は、例えば、交通情報および高精度地図情報182の一方または双方を参照することで、自動運転開始可能な地点STを通過した後、所定期間以内または所定走行距離以内に特定地点に到達することが予測できた場合、この予測結果を切替制御部150およびHMI制御部170の双方に通知する。
 例えば、行動計画生成部144が予測結果の通知を受けると、本体自動運転モード下において種々のイベントが計画された区間であっても、この区間のイベントをハンドオーバイベントに変更して、手動運転モードに移行させる。また、切替制御部150が予測結果の通知を受けると、実施する運転モードを自動運転モードから手動運転モードに切り替える。これによって、車両制御システム100は、車両制御の不要な切り替わりを抑制することができる。この結果、運転モードが頻繁に変更されることが抑制され、車両乗員は自車両Mの運転に集中することができる。
 図19は、図18に示す場面において車両制御システム100により行われる処理の流れの一例を示すフローチャートである。本フローチャートの処理は、手動運転モード下において行われる。
 まず、将来状態予測部152は、通信装置55から交通情報を取得する(ステップS300)。次に、将来状態予測部152は、交通情報および高精度地図情報182の一方または双方を参照して、自車両Mの前方に自動運転開始可能な地点STを検出し、手動運転モードから自動運転モードに切替可能であるか否かを判定する(ステップS302)。手動運転モードから自動運転モードに切替可能でない場合、切替制御部150は、手動運転モードを継続する(ステップS304)。
 一方、手動運転モードから自動運転モードに切替可能である場合、将来状態予測部152は、自動運転開始可能な地点STの前方に特定地点が存在するか否かを判定する(ステップS306)。地点STの前方に特定地点が存在しない場合、切替制御部150は、実行する運転モードを手動運転モードから自動運転モードに切り替える(ステップS308)。
 一方、地点STの前方に特定地点が存在する場合、将来状態予測部152は、所定期間以内または所定走行距離以内に自車両Mが特定地点に到達するか否かを判定する。すなわち、将来状態予測部152は、地点STを通過後に、手動運転モードから変更された自動運転モードが、所定期間内、或いは所定走行距離以内に元の手動運転モードに変更されるか否かを判定する(ステップS310)。
 自動運転モードが、所定期間内、或いは所定走行距離以内に元の手動運転モードに変更されない場合、車両制御システム100は、上述したS308に処理を移す。一方、自動運転モードが、所定期間内、或いは所定走行距離以内に元の手動運転モードに変更される場合、将来状態予測部152は、切替制御部150およびHMI制御部170に予測結果を通知する。通知を受けたHMI制御部170は、自動運転モードへの切替が抑制されていることを示す抑制報知情報をナビゲーション装置50やHMI70に出力させる(ステップS312)。そして、通知を受けた切替制御部150は、上述したステップS304に処理を移す。
 図20は、ナビゲーション装置50或いはHMI70が出力する抑制報知情報の他の例を示す図である。図示のように、例えば、HMI制御部170は、ナビゲーション装置50或いはHMI70を制御することで、手動運転モードから自動運転モードへの切替が抑制されていることを画像や音声などで車両乗員に報知する。
 以上説明した実施形態によれば、自車両Mの進行方向先の交通状況を取得し、取得した交通状況を参照し、自車両Mまたは自車両Mの周辺に関する将来状態を予測し、車両制御の切替または解除を行った後、所定期間以内または所定走行距離以内に切替または解除が行われる前の状態に戻ることが予測された場合に、車両制御の切替または解除を抑制することにより、車両制御の不要な切り替わりを抑制することができる。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
 20…ファインダ、30…レーダ、40…カメラ、DD…検知デバイス、50…ナビゲーション装置、60…車両センサ、70…HMI、100…車両制御システム、110…目標車線決定部、120…自動運転制御部、130…自動運転モード制御部、140…自車位置認識部、142…外界認識部、144…行動計画生成部、146…軌道生成部、146A…走行態様決定部、146B…軌道候補生成部、146C…評価・選択部、150…切替制御部、152…将来状態予測部、160…走行制御部、170…HMI制御部、180…記憶部、200…走行駆動力出力装置、210…ステアリング装置、220…ブレーキ装置、M…自車両

Claims (9)

  1.  自車両の進行方向先の交通状況を取得する取得部と、
     前記取得部により取得された交通状況を参照し、前記自車両または前記自車両の周辺に関する将来状態を予測する予測部と、
     車両制御を行う制御部であって、前記車両制御の切替または解除を行った後、前記予測部により、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記車両制御の切替または解除を抑制する制御部と、
     を備える車両制御システム。
  2.  前記制御部は、
     自動運転の度合が異なる複数の自動運転モードのいずれかを選択的に実施し、
     前記自動運転モードの切替または解除を行った後、前記予測部により、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記自動運転モードの切替または解除を抑制する、
     請求項1記載の車両制御システム。
  3.  前記制御部は、車線変更を自動的に行い、
     前記予測部により、前記車線変更を行った後、所定期間以内または所定走行距離以内に車線変更前の車線に戻ることが予測された場合に、前記車線変更を行わない、
     請求項1または2記載の車両制御システム。
  4.  前記制御部は、
     速度条件に基づいて制御が切り替わり、または解除される車両制御を行い、
     前記予測部により、所定期間以内または所定走行距離以内に前記車両制御が切り替わり、または解除される前の状態に戻ることが予測された場合に、前記速度条件を満たすことになる速度変化を抑制する、
     請求項1から3のうちいずれか1項記載の車両制御システム。
  5.  前記制御部は、
     前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施すると共に、所定の場面において前記自動運転を停止して手動運転に切り替える制御を行い、
     前記予測部により、前記手動運転から前記自動運転に切り替えた後、所定期間内に再度前記所定の場面が到来することが予測された場合に、前記手動運転から前記自動運転に切り替えることを抑制する、
     請求項1から4のうちいずれか1項記載の車両制御システム。
  6.  情報を出力する出力部を備え、
     前記制御部は、前記車両制御の切替または解除を抑制している場合、前記抑制している状態であることを示す情報を、前記出力部に出力させる、
     請求項1から5のうちいずれか1項記載の車両制御システム。
  7.  車両の外部と通信する通信部を備え、
     前記予測部は、前記通信部により受信された情報に基づいて、前記切替または解除が行われる前の状態に戻るか否かを予測する、
     請求項1から6のうちいずれか1項記載の車両制御システム。
  8.  車載コンピュータが、
     自車両の進行方向先の交通状況を参照し、
     前記自車両または前記自車両の周辺に関する将来状態を予測し、
     車両制御の切替または解除を行った後、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記車両制御の切替または解除を抑制する、
     車両制御方法。
  9.  車載コンピュータに、
     自車両の進行方向先の交通状況を参照させ、
     前記自車両または前記自車両の周辺に関する将来状態を予測させ、
     車両制御の切替または解除を行った後、所定期間以内または所定走行距離以内に前記切替または解除が行われる前の状態に戻ることが予測された場合に、前記車両制御の切替または解除を抑制させる、
     車両制御プログラム。
PCT/JP2016/061534 2016-04-08 2016-04-08 車両制御システム、車両制御方法、および車両制御プログラム WO2017175377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680084122.0A CN108883765B (zh) 2016-04-08 2016-04-08 车辆控制系统、车辆控制方法以及存储介质
PCT/JP2016/061534 WO2017175377A1 (ja) 2016-04-08 2016-04-08 車両制御システム、車両制御方法、および車両制御プログラム
JP2018510207A JP6745334B2 (ja) 2016-04-08 2016-04-08 車両制御システム、車両制御方法、および車両制御プログラム
US16/090,294 US10691123B2 (en) 2016-04-08 2016-04-08 Vehicle control system, vehicle control method, and vehicle control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061534 WO2017175377A1 (ja) 2016-04-08 2016-04-08 車両制御システム、車両制御方法、および車両制御プログラム

Publications (1)

Publication Number Publication Date
WO2017175377A1 true WO2017175377A1 (ja) 2017-10-12

Family

ID=60001080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061534 WO2017175377A1 (ja) 2016-04-08 2016-04-08 車両制御システム、車両制御方法、および車両制御プログラム

Country Status (4)

Country Link
US (1) US10691123B2 (ja)
JP (1) JP6745334B2 (ja)
CN (1) CN108883765B (ja)
WO (1) WO2017175377A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074067A1 (ja) * 2017-10-13 2019-04-18 株式会社デンソー 自動運転提案装置及び自動運転提案方法
JP2019109666A (ja) * 2017-12-18 2019-07-04 日産自動車株式会社 運転支援方法及び運転支援装置
CN110171415A (zh) * 2018-02-16 2019-08-27 本田技研工业株式会社 车辆控制装置
JP2022017105A (ja) * 2020-07-13 2022-01-25 トヨタ自動車株式会社 車両制御装置
US11597387B2 (en) 2019-03-27 2023-03-07 Honda Motor Co., Ltd. Vehicle controller, vehicle, and vehicle control method
JP7494974B2 (ja) 2020-02-18 2024-06-04 株式会社デンソー Hmi制御装置およびhmi制御プログラム
WO2024122302A1 (ja) * 2022-12-09 2024-06-13 株式会社デンソー 通知制御装置、通知制御方法
JP7509103B2 (ja) 2021-08-31 2024-07-02 トヨタ自動車株式会社 車両走行制御装置及び方法並びにコンピュータプログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10807594B2 (en) * 2016-03-07 2020-10-20 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and vehicle control program
CN108883765B (zh) * 2016-04-08 2021-11-16 本田技研工业株式会社 车辆控制系统、车辆控制方法以及存储介质
WO2017179151A1 (ja) * 2016-04-13 2017-10-19 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2018097047A1 (ja) * 2016-11-25 2019-10-17 日本電気株式会社 交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体
CN110325423B (zh) 2017-02-23 2023-05-02 本田技研工业株式会社 车辆用控制系统及控制方法
JP6889241B2 (ja) 2017-02-23 2021-06-18 本田技研工業株式会社 車両用制御システム
JP6817410B2 (ja) * 2017-02-23 2021-01-20 本田技研工業株式会社 車両用制御システムおよび制御方法
JP7212702B2 (ja) * 2019-01-21 2023-01-25 日立Astemo株式会社 車両制御装置、車両制御方法、及び車両制御システム
CN111959499B (zh) * 2019-05-20 2022-02-18 上海汽车集团股份有限公司 一种车辆控制方法及装置
CN112572320B (zh) * 2019-09-30 2023-02-07 比亚迪股份有限公司 车辆控制方法、装置、计算机设备及存储介质
US11733960B1 (en) * 2019-11-15 2023-08-22 Zoox, Inc. Vehicle warning signal emission
JP7464454B2 (ja) * 2020-06-15 2024-04-09 トヨタ自動車株式会社 車両制御装置及び車両制御方法
CN111959521B (zh) * 2020-08-25 2021-11-12 厦门理工学院 一种无人车控制系统
CN117537828A (zh) * 2022-08-01 2024-02-09 腾讯科技(深圳)有限公司 基于自动驾驶的车辆导航方法、装置、设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205000A (ja) * 1999-01-13 2000-07-25 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2001273588A (ja) * 2000-03-28 2001-10-05 Mazda Motor Corp 隊列走行制御装置
JP2004347470A (ja) * 2003-05-22 2004-12-09 Nissan Motor Co Ltd 制限速度情報提供装置および制限速度情報提供用プログラム
JP2006111170A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd 先行車追従走行制御装置
WO2008068953A1 (ja) * 2006-12-04 2008-06-12 Mitsubishi Electric Corporation ナビゲーション装置
JP2009029386A (ja) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2015141051A (ja) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
JP2015168406A (ja) * 2014-03-11 2015-09-28 トヨタ自動車株式会社 車線変更支援装置
WO2015190212A1 (ja) * 2014-06-10 2015-12-17 クラリオン株式会社 車線選択装置、車両制御システム及び車線選択方法
JP2015230573A (ja) * 2014-06-05 2015-12-21 アルパイン株式会社 車両運転支援装置、方法およびプログラム
JP2016095627A (ja) * 2014-11-13 2016-05-26 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530651A (en) * 1992-08-03 1996-06-25 Mazda Motor Corporation Running-safety system for an automotive vehicle
US7629899B2 (en) * 1997-10-22 2009-12-08 Intelligent Technologies International, Inc. Vehicular communication arrangement and method
JP2000020500A (ja) 1998-07-03 2000-01-21 Nippon Signal Co Ltd:The 休日判定装置
US7375728B2 (en) * 2001-10-01 2008-05-20 University Of Minnesota Virtual mirror
WO2003006291A1 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zum auslösen und durchführen einer verzögerung eines fahrzeugs
JP4043276B2 (ja) * 2002-04-24 2008-02-06 株式会社日立製作所 レーダ装置
JP4019897B2 (ja) * 2002-11-06 2007-12-12 日産自動車株式会社 車両用推奨操作量生成装置
JP2005067483A (ja) 2003-08-26 2005-03-17 Fuji Heavy Ind Ltd 車両の走行制御装置
DE102005033087A1 (de) * 2005-07-15 2007-01-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Vermeidung von Auffahrunfällen
US7983828B2 (en) * 2005-08-24 2011-07-19 Hino Motors Ltd. Automatic brake control device
JP4645598B2 (ja) * 2006-05-23 2011-03-09 株式会社デンソー 車両用ブレーキ制御装置
JP2008170404A (ja) 2007-01-15 2008-07-24 Fuji Heavy Ind Ltd 車両の走行制御装置
JP4576445B2 (ja) * 2007-04-12 2010-11-10 パナソニック株式会社 自律移動型装置および自律移動型装置用プログラム
JP4366419B2 (ja) * 2007-09-27 2009-11-18 株式会社日立製作所 走行支援装置
US8244458B1 (en) * 2008-06-23 2012-08-14 The United States Of America As Represented By The Secretary Of The Navy Host-centric method for automobile collision avoidance decisions
JP4973687B2 (ja) * 2009-05-13 2012-07-11 トヨタ自動車株式会社 走行支援装置
CN102666240B (zh) * 2009-11-27 2014-04-16 丰田自动车株式会社 碰撞防止装置
DE102010007252A1 (de) * 2010-02-09 2011-08-11 Bayerische Motoren Werke Aktiengesellschaft, 80809 Verfahren zum automatischen Abbremsen eines Fahrzeugs zur Kollisionsvermeidung oder Kollisionsfolgenminderung
JP5715454B2 (ja) * 2011-03-15 2015-05-07 富士重工業株式会社 車両の運転支援装置
JP5796632B2 (ja) * 2011-09-26 2015-10-21 トヨタ自動車株式会社 車両の運転支援システム
MX2015000832A (es) 2012-07-17 2015-04-08 Nissan Motor Sistema de asistencia a la conduccion y metodo de asistencia a la conduccion.
JP6205947B2 (ja) 2013-07-26 2017-10-04 日産自動車株式会社 自動運転制御装置
JP2015089801A (ja) 2013-11-07 2015-05-11 株式会社デンソー 運転制御装置
JP6217412B2 (ja) * 2014-01-29 2017-10-25 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム
JP6119634B2 (ja) 2014-02-21 2017-04-26 トヨタ自動車株式会社 車両の自動運転制御方法
JP6180968B2 (ja) * 2014-03-10 2017-08-16 日立オートモティブシステムズ株式会社 車両制御装置
JP6269210B2 (ja) 2014-03-18 2018-01-31 アイシン・エィ・ダブリュ株式会社 経路探索システム、経路探索方法及びコンピュータプログラム
JP6349833B2 (ja) * 2014-03-25 2018-07-04 日産自動車株式会社 情報表示装置
JP6201927B2 (ja) * 2014-08-01 2017-09-27 トヨタ自動車株式会社 車両制御装置
JP6453586B2 (ja) 2014-08-26 2019-01-16 株式会社ゼンリン 自動運転システム
JP6432948B2 (ja) * 2014-09-30 2018-12-05 エイディシーテクノロジー株式会社 自動運転制御装置
US9666079B2 (en) * 2015-08-20 2017-05-30 Harman International Industries, Incorporated Systems and methods for driver assistance
JP6425825B2 (ja) * 2015-09-25 2018-11-21 三菱電機株式会社 運転支援装置および運転支援方法
CN108698609A (zh) * 2016-02-18 2018-10-23 本田技研工业株式会社 车辆控制装置、车辆控制方法及车辆控制程序
CN108883765B (zh) * 2016-04-08 2021-11-16 本田技研工业株式会社 车辆控制系统、车辆控制方法以及存储介质
JP6450980B2 (ja) * 2016-05-02 2019-01-16 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP7103753B2 (ja) * 2017-03-16 2022-07-20 トヨタ自動車株式会社 衝突回避装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205000A (ja) * 1999-01-13 2000-07-25 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2001273588A (ja) * 2000-03-28 2001-10-05 Mazda Motor Corp 隊列走行制御装置
JP2004347470A (ja) * 2003-05-22 2004-12-09 Nissan Motor Co Ltd 制限速度情報提供装置および制限速度情報提供用プログラム
JP2006111170A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd 先行車追従走行制御装置
WO2008068953A1 (ja) * 2006-12-04 2008-06-12 Mitsubishi Electric Corporation ナビゲーション装置
JP2009029386A (ja) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2015141051A (ja) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
JP2015168406A (ja) * 2014-03-11 2015-09-28 トヨタ自動車株式会社 車線変更支援装置
JP2015230573A (ja) * 2014-06-05 2015-12-21 アルパイン株式会社 車両運転支援装置、方法およびプログラム
WO2015190212A1 (ja) * 2014-06-10 2015-12-17 クラリオン株式会社 車線選択装置、車両制御システム及び車線選択方法
JP2016095627A (ja) * 2014-11-13 2016-05-26 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074067A1 (ja) * 2017-10-13 2019-04-18 株式会社デンソー 自動運転提案装置及び自動運転提案方法
JP2019073107A (ja) * 2017-10-13 2019-05-16 株式会社デンソー 自動運転提案装置及び自動運転提案方法
JP2019109666A (ja) * 2017-12-18 2019-07-04 日産自動車株式会社 運転支援方法及び運転支援装置
CN110171415A (zh) * 2018-02-16 2019-08-27 本田技研工业株式会社 车辆控制装置
US11597387B2 (en) 2019-03-27 2023-03-07 Honda Motor Co., Ltd. Vehicle controller, vehicle, and vehicle control method
JP7494974B2 (ja) 2020-02-18 2024-06-04 株式会社デンソー Hmi制御装置およびhmi制御プログラム
JP2022017105A (ja) * 2020-07-13 2022-01-25 トヨタ自動車株式会社 車両制御装置
JP7327307B2 (ja) 2020-07-13 2023-08-16 トヨタ自動車株式会社 車両制御装置
JP7509103B2 (ja) 2021-08-31 2024-07-02 トヨタ自動車株式会社 車両走行制御装置及び方法並びにコンピュータプログラム
WO2024122302A1 (ja) * 2022-12-09 2024-06-13 株式会社デンソー 通知制御装置、通知制御方法

Also Published As

Publication number Publication date
CN108883765B (zh) 2021-11-16
CN108883765A (zh) 2018-11-23
JPWO2017175377A1 (ja) 2018-11-22
US10691123B2 (en) 2020-06-23
US20190113914A1 (en) 2019-04-18
JP6745334B2 (ja) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6745334B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6275187B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
CN107415830B (zh) 车辆控制系统、车辆控制方法和车辆控制程序
JP6354085B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6337382B2 (ja) 車両制御システム、交通情報共有システム、車両制御方法、および車両制御プログラム
JP6652417B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6387548B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6722756B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6692898B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6540983B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
CN108701414B (zh) 车辆控制装置、车辆控制方法及存储介质
CN108883776B (zh) 车辆控制系统、车辆控制方法及存储介质
JPWO2017179193A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2017158768A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017168738A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6572506B2 (ja) 車両制御システム
JP6650331B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017199775A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017158764A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017214035A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017200785A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017199317A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017214036A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017207964A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017179172A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018510207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897933

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897933

Country of ref document: EP

Kind code of ref document: A1