WO2017171187A1 - 다층 구조를 가지는 이차전지용 복합 전해질 - Google Patents

다층 구조를 가지는 이차전지용 복합 전해질 Download PDF

Info

Publication number
WO2017171187A1
WO2017171187A1 PCT/KR2016/013063 KR2016013063W WO2017171187A1 WO 2017171187 A1 WO2017171187 A1 WO 2017171187A1 KR 2016013063 W KR2016013063 W KR 2016013063W WO 2017171187 A1 WO2017171187 A1 WO 2017171187A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte layer
secondary battery
layer
composite electrolyte
Prior art date
Application number
PCT/KR2016/013063
Other languages
English (en)
French (fr)
Inventor
김재광
Original Assignee
주식회사 세븐킹 에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세븐킹 에너지 filed Critical 주식회사 세븐킹 에너지
Priority to SI201631756T priority Critical patent/SI3439096T1/sl
Priority to LTEPPCT/KR2016/013063T priority patent/LT3439096T/lt
Priority to US16/087,830 priority patent/US11322740B2/en
Priority to JP2018550591A priority patent/JP6884796B2/ja
Priority to CN201680083921.6A priority patent/CN108886164B/zh
Priority to FIEP16897207.3T priority patent/FI3439096T3/fi
Priority to DK16897207.3T priority patent/DK3439096T3/da
Priority to EP16897207.3A priority patent/EP3439096B1/en
Priority to PL16897207.3T priority patent/PL3439096T3/pl
Publication of WO2017171187A1 publication Critical patent/WO2017171187A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite electrolyte for a secondary battery, and more particularly to a composite electrolyte for a secondary battery having a multi-layered structure to improve the stability and electrochemical properties by forming a composite electrolyte of two or more layers.
  • the secondary battery includes a cathode, an anode, and a separator between an electrolyte and a polymer disposed therebetween.
  • the ceramic solid electrolyte and the polymer electrolyte have low ionic conductivity at room temperature and have high interface resistance with the electrode, thereby degrading the electrochemical characteristics of the secondary battery.
  • the composite electrolyte thus prepared also increases thermal stability but decreases interfacial resistance and contains lithium ion activated ceramics, thereby increasing the electrochemical properties by improving the movement of lithium ions.
  • the ceramics and polymers used in the composite electrolyte have different characteristics in the positive and negative portions of the secondary battery according to the type, and thus there is a limit in improving stability and electrochemical properties.
  • Prior art related to the present invention is Republic of Korea Patent Publication No. 10-2013-0111833 (October 11, 2013), the prior art discloses a multi-layer electrolyte for a lithium ion secondary battery comprising a positive electrode and a negative electrode have.
  • the composite electrolyte for secondary batteries having a multilayer structure is a composite electrolyte for secondary batteries, and includes a first electrolyte layer positioned toward the positive electrode portion and a second electrolyte layer positioned toward the negative electrode portion, wherein the first electrolyte layer and the Each of the second electrolyte layers includes a polymer substrate and ceramic particles, and the first electrolyte layer and the second electrolyte layer are formed of different materials from each other.
  • the secondary battery composite electrolyte having a multilayer structure includes a third electrolyte layer positioned between the first electrolyte layer and the second electrolyte layer, the third electrolyte layer is a polymer substrate and ceramic particles It is characterized by including.
  • the secondary electrolyte composite electrolyte according to the present invention is characterized in that it further comprises a liquid electrolyte.
  • the first electrolyte layer according to the present invention is superior in electrical stability at the positive electrode portion relative to the second electrolyte layer, and the second electrolyte layer is relatively at the negative electrode portion relative to the first electrolyte layer. It is characterized by excellent electrical stability.
  • each of the first electrolyte layer and the second electrolyte layer according to the present invention is characterized in that it comprises a different polymer substrate.
  • the polymer substrate according to the present invention is polyvinylidene fluoride (Polyvinylidene fluoride), polyethylene glycol (polyethylene glycol), polyacrylonitrile (Polyacrylonitrile), polymethylmethacrylate (polymethylmethacrylate), polyvinyl Polyvinyl chloride-based, Polyvinylpyrrolidone-based, Polyimide-based, Polyethylene-based, Polyurethane-based, Polypropylene-based, Polypropylene oxide-based Polypropylene oxide ), Polyethylene imine-based, polyethylene sulfide-based, polyvinyl acetate-based, polyethylenesuccinate-based, polyester-based, polyamine-based, One selected from the group consisting of polysulfide-based, siloxane-based, derivatives thereof, and combinations thereof In that it comprises the features.
  • each of the first electrolyte layer and the second electrolyte layer according to the present invention is characterized in that it comprises different ceramic particles.
  • the ceramic particles according to the present invention is Al 2 O 3 system, SiO 2 system, BaTiO 3 system, TiO 2 system, lithium oxide system, lithium sulfide system, amorphous ion conductivity material, Nasicon (NASICON), sodium sulfide system , Sodium oxide, derivatives thereof, and combinations thereof, characterized in that it comprises one or more selected from the group consisting of.
  • the solid electrolyte is made of polymer or ceramic only, and the ceramic and polymer composite electrolyte are made of only one layer.
  • the polymer electrolyte has low ion conductivity at room temperature and the ceramic solid electrolyte is The large interfacial resistance and the ceramic and polymer composite electrolyte do not satisfy the characteristics of the positive electrode and the negative electrode of the secondary battery.
  • the composite electrolyte for secondary batteries having a multilayer structure according to the present invention has an effect of high ionic conductivity, reducing interfacial resistance with the electrode, and simultaneously satisfying the characteristics of the positive electrode and the negative electrode.
  • thermal stability is excellent and the capacity is excellent when applied to the secondary battery and maintained without a large decrease in capacity as the charge-discharge cycle proceeds.
  • FIG. 1 is a view for schematically showing a cross-sectional structure of a composite electrolyte for secondary batteries having a two-layer structure according to the present invention.
  • FIG. 2 is a view schematically showing a cross-sectional structure of a composite electrolyte for secondary batteries having a three-layer structure according to the present invention.
  • Figure 3 is a SEM analysis of the surface of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention.
  • Figure 4 is a SEM analysis of the cross section of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention.
  • 5A and 5B are views for showing deformation characteristics of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention.
  • 6A and 6B are photographs for testing the thermal stability of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention.
  • 7a and 7b are photographs for testing the thermal stability of the conventional commercial separator for secondary batteries.
  • 8B is a charge-discharge curve of a conventional composite electrolyte for secondary batteries.
  • FIG. 1 is a view for schematically showing a cross-sectional structure of a composite electrolyte for secondary batteries having a two-layer structure according to the present invention.
  • the composite electrolyte 100 for a secondary battery having a two-layer structure according to the present invention is used in a secondary battery including a positive electrode portion and a negative electrode portion, and the first electrolyte layer 110 and the negative electrode portion facing toward the positive electrode portion. It characterized in that it comprises a second electrolyte layer 120 positioned toward.
  • each of the first electrolyte layer 110 and the second electrolyte layer 120 includes a polymer substrate 10 and ceramic particles 20 distributed on the polymer substrate 10, wherein the first electrolyte layer 110 and the second electrolyte layer 120 is characterized in that formed from different materials.
  • the ceramic particles 20 and the polymer substrate 10 used in the composite electrolyte for the secondary battery have different characteristics in the positive electrode portion and the negative electrode portion of the secondary battery according to the type, and thus there is a problem in that the electrochemical characteristics are lowered.
  • one electrolyte layer is contacted with the positive electrode part and the negative electrode part, and this one electrolyte layer has different characteristics at the positive electrode part and the negative electrode part, so that the stability and electrochemical characteristics of the secondary battery are different. There is a limit to improving it.
  • a composite electrolyte having two or more multilayered structures is formed by complexing different ceramic particles 20 and polymer substrate 10 so as to have different materials in the electrolyte contacting the anode and cathode portions.
  • FIG. 2 is a diagram schematically illustrating a cross-sectional structure of a composite electrolyte for secondary batteries having a three-layer structure according to the present invention.
  • the composite electrolyte 100 for a secondary battery having a multilayer structure according to the present invention is used in a secondary battery including a positive electrode portion and a negative electrode portion, and the first electrolyte layer 110 and the negative electrode portion facing toward the positive electrode portion. And a second electrolyte layer 120 positioned toward the second electrolyte layer, and further comprising a third electrolyte layer 130 positioned between the first electrolyte layer 110 and the second electrolyte layer 120. .
  • Each of the electrolyte layers includes a polymer substrate 10 and ceramic particles 20 distributed on the polymer substrate 10, and each of the electrolyte layers positioned toward the positive electrode portion 110 and the negative electrode portion is disposed toward the negative electrode portion.
  • the two electrolyte layers 120 are formed of different materials from each other.
  • the first electrolyte layer 110 has better electrical stability at the anode portion than the second electrolyte layer 120, and the second electrolyte layer 120 is the first electrolyte layer 110. It is preferable that the electrical stability at the cathode part is relatively higher.
  • the electrochemical properties of the secondary battery may be further improved.
  • the multilayer structure may include both the two-layer structure and the three-layer structure described above.
  • a commonly known manufacturing method such as a printing method, a doctor blade method, a phase separation method, an electrospinning method, an extraction method, and a compression method can be used.
  • the composite electrolyte for secondary batteries having a multilayer structure according to the present invention may further include a small amount of liquid electrolyte.
  • the liquid electrolyte is ethylene carbonate (Ethylene Carbonate), propylene carbonate (Propylene Carbonate), 1,2-butylene carbonate (Butylene Carbonate), 2,3-butylene carbonate (Butylene Carbonate), 2,3-pentylene carbonate Cyclic carbonate organic solvents such as (Pentylene Carbonate), dimethyl carbonate (Dimethyl Carbonate), diethyl carbonate (Diethyl Carbonate), ethyl methyl carbonate (Ethylmethyl Carbonate), 1,2-dimethoxyethane, dipropyl carbonate LiBF 4 , LiClO 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , Li (C 2 F 5 SO) in linear carbonate organic solvents such as (Dipropyl Carbonate), Methylpropyl Carbonate and Ethylpropyl Carbonate 3 ) 2 N, LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3
  • the liquid electrolyte is preferably contained in 1 to 50 parts by weight based on 100 parts by weight of the total composite electrolyte, it may be added to the composite electrolyte through the impregnation process.
  • each electrolyte layer separately and impregnate or impregnate the whole composite electrolyte having a multilayer structure.
  • the impregnated liquid electrolyte may not only reduce the interface resistance between the electrode and the electrolyte, but also reduce the interface resistance between the ceramic particles 20 and the polymer substrate 10 in the composite electrolyte.
  • Each of the first electrolyte layer 110 and the second electrolyte layer 120 is not limited to including the same polymer substrate 10, but preferably includes different polymer substrates 10.
  • the polymer substrate 10 is polyvinylidene fluoride (PVdF) -based, polyethylene glycol (PEO) -based, polyacrylonitrile (Polyacrylonitrile, PAN) -based, polymethylmethacrylate (Polymethylmethacrylate) , PMMA), polyvinyl chloride, polyvinylpyrrolidone (PVP), polyimide (PI), polyethylene (polyethylene, PE), polyurethane (PU) Polypropylene (PP), Polypropylene oxide (PPO), Polyethylene imine (PEI), Polyethylene sulfide (PES), Polyvinyl acetate, PVAc ), Polyethylenesuccinate (PESc), polyester (polyester), polyamine (polyamine), polysulfide (siloxane), siloxane (Siloxane), derivatives thereof and their Characterized in that it comprises one or more selected from the group consisting of a combination.
  • PVdF polyvinylidene fluoride
  • each of the first electrolyte layer 110 and the second electrolyte layer 120 preferably includes different ceramic particles 20.
  • the ceramic particles 20 may be Al 2 O 3 based, SiO 2 based, BaTiO 3 based, TiO 2 based, lithium oxide based, lithium sulfide based, amorphous ion conductivity material, Nasicon (NASICON), sodium sulfide based, Sodium oxide, derivatives thereof, and combinations thereof, characterized in that it comprises one or more selected from the group consisting of.
  • the lithium oxide is Li 1 . 3 Al 0 . 3 Ti 1 .7 (PO 4) 3 (LTAP) or Li 7 La 3 Zr 2 O 12 (LLZO)
  • the lithium sulfide is Li 10 GeP 2 S 12, Li 2 SP 2 S 5 And the like
  • the amorphous ion conductive material may include phosphorus-based glass, oxide-based glass, oxide / sulfide based glass, and the like. can do.
  • Polyethylene glycol (PEO) -based polymers are stable on the negative side but unstable on the positive side, and Li 1 . 3 Al 0 . 3 Ti 1 .7 (PO 4) 3 (LTAP) ceramic solid electrolyte is a composite electrolyte to the graphite, Si, a problem that can not be used for the cathode of the low voltage, such as Li, but excellent in lithium ion activity because of the high reduction potential of the Ti Electrochemical properties can be increased.
  • the first electrolyte layer 110 uses polyvinylidene fluoride (PVdF) having high electrical stability as the polymer substrate 10 and LTAP as the ceramic particles 20.
  • the second electrolyte layer 120 is composed of polyvinylidene fluoride (PVdF) having high electrical stability or a polyethylene glycol (PEO) system having high stability at the negative electrode side, as the polymer substrate 10.
  • PVdF polyvinylidene fluoride
  • PEO polyethylene glycol
  • Low-voltage stable LLZO or Al 2 O 3 It can be composited using the ceramic particles 20, but is not limited thereto.
  • the third electrolyte layer 130 uses a polyethylene glycol (PEO) system as the polymer substrate 10 and a lithium sulfide system such as Li 2 SP 2 S 5 as the ceramic particles 20 It may be complex, but is not limited thereto.
  • PEO polyethylene glycol
  • Li 2 SP 2 S 5 lithium sulfide system
  • Figure 3 is a SEM analysis picture of the surface of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention
  • Figure 4 is a SEM picture of the cross section of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention.
  • the composite electrolyte for a secondary battery having a multi-layered structure according to the present invention can be seen that the ceramic particles and the polymer substrate are well mixed, the surface is formed very evenly, and the bond between the electrolyte layers is firmly formed. Can be.
  • 5a and 5b is a view for showing the deformation characteristics of the composite electrolyte for secondary batteries having a multilayer structure according to the present invention, it can be seen that the variability is very excellent as shown.
  • Figure 6a is a photograph for testing the thermal stability of the conventional commercial secondary battery separator
  • Figure 6b is a photograph for testing the thermal stability of the composite electrolyte for a secondary battery having a multilayer structure according to the present invention.
  • the composite electrolyte for a secondary battery having a multilayer structure according to the present invention shows excellent thermal stability that is not flammable and does not shrink at 120 degrees, whereas a commercially available separator burns well and shrinks at 120 degrees. It can be seen that.
  • FIG. 7A is a charge-discharge curve of a composite electrolyte for secondary batteries having a multilayer structure according to the present invention
  • FIG. 7B is a charge-discharge curve of a conventional composite electrolyte for secondary batteries.
  • the composite electrolyte for a secondary battery having a multi-layer structure according to the present invention shown in Figure 7a was prepared by mixing the LTAP and PVdF in a weight ratio of 80:20 of the first electrolyte layer located toward the positive electrode portion, the first electrolyte positioned toward the negative electrode portion 2
  • the electrolyte layer was prepared by mixing LLZO and PVdF in a weight ratio of 80:20, and the printing, phase separation, and doctor blade methods were used as a film manufacturing method.
  • the composite electrolyte thus prepared was impregnated with 10 parts by weight of the liquid electrolyte based on 100 parts by weight of the total composite electrolyte.
  • LiCoO 2 was used as the positive electrode and Li metal having the lowest potential as the negative electrode was charged and discharged at room temperature and a current density of 0.1C.
  • the composite electrolyte for a conventional secondary battery illustrated in FIG. 7B is a composite electrolyte composed of a single mixture of a PEO / LTAP / PEO three-layer structure.
  • the LiCoO 2 anode exhibits a capacity of up to 170 mAh / g.
  • the composite electrolyte for secondary batteries having a multilayer structure according to the present invention has a capacity of 160 mAh / g, and the capacity change is large even though the charge-discharge cycle is repeated.
  • the conventional composite electrolyte for secondary batteries can be seen that the capacity is continuously reduced as the charge-discharge cycle is repeated, it can be seen that the electrochemical characteristics of the secondary battery composite electrolyte having a multilayer structure according to the present invention is excellent. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 이차전지용 복합 전해질로서, 양극부를 향해 위치하는 제1 전해질층과, 음극부를 향해 위치하는 제2 전해질층을 포함하며, 상기 제1 전해질층 및 상기 제2 전해질층 각각은 고분자 기재 및 세라믹 입자를 포함하되, 상기 제1 전해질층 및 상기 제2 전해질층은 서로 상이한 재질로 형성되는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질에 관한 것이다.

Description

다층 구조를 가지는 이차전지용 복합 전해질
본 발명은 이차전지용 복합 전해질에 관한 것으로, 더욱 상세하게는 두 층 이상의 다층으로 복합 전해질을 구성하여 안정성 및 전기 화학적 특성을 향상시킨 다층 구조를 가지는 이차전지용 복합 전해질에 관한 것이다.
휴대폰, 노트북, 캠코더 등의 휴대용 기기뿐만 아니라 전기 자동차에 이르기까지 충방전이 가능한 이차전지의 적용 분야가 날로 확대되고 있으며, 이에 따라 이차전지의 개발이 활발히 이루어지고 있다. 또한, 이차전지의 개발시 용량 밀도 및 비에너지를 향상시키기 위한 전지 설계에 대한 연구 개발도 진행되고 있다.
일반적으로 이차전지는 양극부, 음극부 및 이 사이에 위치하는 전해질과 고분자의 분리막으로 이루어져 있다.
특히, 종래 전기 화학 소자용 전해질로는 액체 상태의 전해질, 특히 비수계 유기 용매에 염을 용해한 이온 전도성 유기 액체 전해질이 주로 사용되어 왔다. 하지만, 액체 상태의 전해질이 가지는 가연성과 낮은 열적 안정성은 리튬 이차전지의 안정성을 저하시키는 문제가 있다.
이러한 문제를 해결하고 리튬 이차전지의 안정성을 향상시키기 위하여 세라믹 고체 전해질, 고분자 전해질과 같은 다양한 전해질이 개발되었다.
하지만, 세라믹 고체 전해질과 고분자 전해질은 상온에서 이온전도도가 낮으며 전극과의 높은 계면 저항 특성을 가지고 있어 이차전지의 전기화학적 특성을 저하시키는 다른 문제가 있다.
이러한 문제를 해결하기 위해 세라믹 입자와 고분자를 혼합하여 복합 전해질을 제조하며 거기에 소량의 액체 전해질을 포함시켜 고체상의 복합 전해질을 제조하는 시도가 있다.
이렇게 제조된 복합 전해질은 열적 안정성도 증가시키지만 계면저항을 감소시키고 리튬 이온 활성화된 세라믹을 포함하고 있어 리튬 이온의 이동을 향상시킴으로써 전기 화학적 특성을 증가시킨다.
그러나, 복합 전해질에 사용되는 세라믹과 고분자는 종류에 따라 이차전지의 양극부와 음극부에서 다른 특성을 가짐에 따라 안정성과 전기화학적 특성 향상에 한계가 있다.
본 발명과 관련된 선행문헌으로는 대한민국 공개특허 제10-2013-0111833호(2013년 10월 11일)가 있으며, 상기 선행문헌에는 양극 및 음극을 포함하는 리튬이온 이차전지용 다층 구조의 전해질이 개시되어 있다.
본 발명의 목적은 양극부를 향해 위치하는 전해질층과 음극부를 향해 위치하는 전해질층을 상이한 재질로 형성하고 다층 구조로 적층함에 따라 양극부와 음극부의 특성을 동시에 만족시킬 수 있는 이차전지용 복합 전해질을 제공하고자 함에 있다.
본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 이차전지용 복합 전해질로서, 양극부를 향해 위치하는 제1 전해질층과, 음극부를 향해 위치하는 제2 전해질층을 포함하며, 상기 제1 전해질층 및 상기 제2 전해질층 각각은 고분자 기재 및 세라믹 입자를 포함하되, 상기 제1 전해질층 및 상기 제2 전해질층은 서로 상이한 재질로 형성되는 것을 특징으로 한다.
또한, 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 상기 제1 전해질층과 상기 제2 전해질층 사이에 위치하는 제3 전해질층을 포함하며, 상기 제3 전해질층은 고분자 기재 및 세라믹 입자를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 이차전지용 복합 전해질은 액체 전해질을 추가로 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 제1 전해질층은 상기 제2 전해질층보다 상대적으로 상기 양극부에서의 전기적 안정성이 우수하고, 상기 제2 전해질층은 상기 제1 전해질층보다 상대적으로 상기 음극부에서의 전기적 안정성이 우수한 것을 특징으로 한다.
또한, 본 발명에 따른 상기 제1 전해질층 및 상기 제2 전해질층 각각은 상이한 고분자 기재를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 고분자 기재는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride)계, 폴리에틸렌 글리콜(Polyethylene glycol)계, 폴리아크릴로니트릴(Polyacrylonitrile)계, 폴리메틸메타크릴레이트(Polymethylmethacrylate)계, 폴리비닐 클로라이드(Polyvinyl chloride)계, 폴리비닐피롤리돈(Polyvinylpyrrolidone)계, 폴리이미드(Polyimide)계, 폴리에틸렌(Polyethylene)계, 폴리우레탄(Polyurethane)계, 폴리프로필렌(Polypropylene)계, 폴리프로필렌옥사이드(Polypropylene oxide)계, 폴리에틸렌이민(Polyethylene imine)계, 폴리에틸렌 설파이드(Polyethylene sulfide)계, 폴리비닐 아세테이트(Polyvinyl acetate)계, 폴리에틸렌석시네이트(Polyethylenesuccinate)계, 폴리에스테르(Polyester)계, 폴리아민(Polyamine)계, 폴리설파이드(Polysulfide)계, 실록산(Siloxane)계, 이의 파생물 및 이의 조합으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 제1 전해질층 및 상기 제2 전해질층 각각은 상이한 세라믹 입자를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 세라믹 입자는 Al2O3계, SiO2계, BaTiO3계, TiO2계, 리튬산화물계, 리튬황화물계, 비정질 이온 전도도 물질, 나시콘(NASICON), 나트륨황화물계, 나트륨산화물계, 이의 파생물 및 이의 조합으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 한다.
기존에는 이차전지의 안정성을 향상시키기 위해 고체상 전해질은 고분자 또는 세라믹으로만 제조되었고, 세라믹과 고분자 복합전해질은 한 층으로만 제조되었는데, 고분자 전해질은 상온에서 이온 전도도가 낮고 세라믹 고체 전해질은 전극과의 계면 저항이 크고 세라믹과 고분자 복합전해질은 이차전지의 양극과 음극의 특성을 동시에 만족시키지 못한다.
이와 달리, 본 발명에 의한 다층 구조를 가지는 이차전지용 복합 전해질은 이온 전도도가 높고 전극과의 계면 저항을 감소시킬 뿐만 아니라 양극부와 음극부의 특성을 동시에 만족시킬 수 있는 효과를 갖는다.
또한, 열적 안정성이 우수하고 이차전지에 적용하는 경우 용량이 우수하며 충-방전 사이클이 진행됨에 따라 용량의 큰 감소 없이 유지되는 장점이 있다.
도 1은 본 발명에 따른 이층 구조를 가지는 이차전지용 복합 전해질의 단면 구조를 모식적으로 나타내기 위한 도면이다.
도 2는 본 발명에 따른 삼층 구조를 가지는 이차전지용 복합 전해질의 단면 구조를 모식적으로 나타내기 위한 도면이다.
도 3은 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질 표면의 SEM 분석 사진이다.
도 4는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질 단면의 SEM 분석 사진이다.
도 5a 및 도 5b는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 변형 특성을 나타내기 위한 도면이다.
도 6a 및 도 6b는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 열적 안정성을 시험하기 위한 사진이다.
도 7a 및 도 7b는 종래 상용화된 이차전지용 분리막의 열적 안정성을 시험하기 위한 사진이다.
도 8a는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 충-방전 곡선이고,
도 8b는 종래 이차전지용 복합 전해질의 충-방전 곡선이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
도 1은 본 발명에 따른 이층 구조를 가지는 이차전지용 복합 전해질의 단면 구조를 모식적으로 나타내기 위한 도면이다.
도 1을 참조하면, 본 발명에 따른 이층 구조를 가지는 이차전지용 복합 전해질(100)은 양극부와 음극부를 포함하는 이차전지에 사용되며, 양극부를 향해 위치하는 제1 전해질층(110)과 음극부를 향해 위치하는 제2 전해질층(120)을 포함하는 것을 특징으로 한다.
이때, 상기 제1 전해질층(110) 및 상기 제2 전해질층(120) 각각은 고분자 기재(10) 및 상기 고분자 기재(10)에 분포된 세라믹 입자(20)를 포함하되, 상기 제1 전해질층(110) 및 상기 제2 전해질층(120)은 서로 상이한 재질로 형성되는 것을 특징으로 한다.
일반적으로 이차전지용 복합 전해질에 사용되는 세라믹 입자(20)와 고분자 기재(10)는 종류에 따라 이차전지의 양극부와 음극부에서 다른 특성을 가지므로 전기 화학적 특성이 저하되는 문제가 있다.
단층 구조의 복합 전해질을 사용하는 경우에는 양극부와 음극부에 하나의 전해질층이 접촉되며, 이러한 하나의 전해질층은 양극부와 음극부에서 각각 다른 특성을 나타내므로 이차전지의 안정성 및 전기 화학적 특성을 향상시키는 것에 한계가 있다.
이와 달리, 본 발명에서는 양극부와 음극부에 접촉하는 전해질에 서로 상이한 재질을 가지도록 각각 다른 세라믹 입자(20)와 고분자 기재(10)를 복합화시켜 두 층 또는 그 이상의 다층 구조를 가지는 복합 전해질을 제조함으로써 이차전지의 안정성 및 전기 화학적 특성을 향상시키고자 한다.
도 2는 본 발명에 따른 삼층 구조를 가지는 이차전지용 복합 전해질의 단면 구조를 모식적으로 나타내는 도면이다.
도 2를 참조하면, 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질(100)은 양극부와 음극부를 포함하는 이차전지에 사용되며, 양극부를 향해 위치하는 제1 전해질층(110)과 음극부를 향해 위치하는 제2 전해질층(120)을 포함하며, 상기 제1 전해질층(110)과 상기 제2 전해질층(120) 사이에 위치하는 제3 전해질층(130)을 더 포함하는 것을 특징으로 한다.
상기 전해질층 각각은 고분자 기재(10) 및 상기 고분자 기재(10)에 분포된 세라믹 입자(20)를 포함하되, 상기 양극부를 향해 위치하는 제1 전해질층(110)과 상기 음극부를 향해 위치하는 제2 전해질층(120)은 서로 상이한 재질로 형성되는 것을 특징으로 한다.
이때, 상기 제1 전해질층(110)은 상기 제2 전해질층(120)보다 상대적으로 상기 양극부에서의 전기적 안정성이 우수하고, 상기 제2 전해질층(120)은 상기 제1 전해질층(110)보다 상대적으로 상기 음극부에서의 전기적 안정성이 우수한 것이 바람직하다.
또한, 상기 제3 전해질층(130)을 통해 다양한 세라믹 특성을 복합화시킴으로써 이차전지의 전기화학적 특성을 더욱 향상시킬 수 있다.
위 구조 이외에도 사용하고자 하는 이차전지의 특성이나 원하는 복합 전해질의 특성을 구현하기 위해 상기 제1 전해질층(110)과 상기 제2 전해질층(120) 사이에 복수의 전해질층을 추가하는 것이 가능하며 이를 통해 다층 구조를 가지는 이차전지용 복합 전해질을 구현할 수 있다. 다층 구조는 앞서 설명한 이층 구조 및 삼층 구조를 모두 포함할 수 있음은 물론이다.
이와 같은 다층 구조를 제조하기 위해서는 프린팅법, 닥터브레이드법, 상 분리법, 전기방사법, 추출법, 압착법 등 통상적으로 알려진 제조 방법을 이용할 수 있다.
본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 소량의 액체 전해질을 추가로 포함할 수 있다.
상기 액체 전해질은, 에틸렌 카보네이트(Ethylene Carbonate), 프로필렌 카보네이트(Propylene Carbonate), 1,2-부틸렌 카보네이트(Butylene Carbonate), 2,3-부틸렌 카보네이트(Butylene Carbonate), 2,3-펜틸렌 카보네이트(Pentylene Carbonate) 등과 같은 환형 카보네이트계 유기 용매와, 디메틸 카보네이트(Dimethyl Carbonate), 디에틸 카보네이트(Diethyl Carbonate), 에틸메틸 카보네이트(Ethylmethyl Carbonate), 1,2-디메톡시에탄(Dimethoxyethane), 디프로필 카보네이트(Dipropyl Carbonate), 메틸프로필 카보네이트(Methylpropyl Carbonate) 및 에틸프로필 카보네이트(Ethylpropyl Carbonate) 등과 같은선형 카보네이트계 유기 용매에 LiBF4, LiClO4, LiPF6, LiSbF6, LiAsF6, Li(C2F5SO3)2N, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(CF3SO2)3C, LiBPh4, LiAlO4, LiAlCl4, LiSCN 및 LiC(CF3SO2)3로 이루진 군에서 선택된 하나 이상의 리튬염을 용해시킨 것일 수 있으나, 이에 제한되는 것은 아니며 당해 기술분야에서 통상적으로 사용되는 모든 종류의 액체 전해질을 포함할 수 있다.
상기 액체 전해질은 전체 복합 전해질 100 중량부에 대하여 1~50 중량부로 포함되는 것이 바람직하며, 함침 과정을 통해 복합 전해질에 투입할 수 있다.
액체 전해질을 함침시키는 방법에는 각각의 전해질층을 별도로 제작한 후 함침시키거나 다층 구조를 가지는 복합 전해질 전체를 함침시키는 것도 가능하다.
이렇게 함침된 액체 전해질은 전극과 전해질의 계면 저항을 감소시킬 뿐만 아니라 복합 전해질 내의 세라믹 입자(20)와 고분자 기재(10) 사이의 계면 저항도 감소시킬 수 있다.
제1 전해질층(110) 및 제2 전해질층(120) 각각은 동일한 고분자 기재(10)를 포함하는 것을 제한하는 것은 아니나 상이한 고분자 기재(10)를 포함하는 것이 바람직하다.
여기서, 상기 고분자 기재(10)는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF)계, 폴리에틸렌 글리콜(Polyethylene glycol, PEO)계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계, 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA)계, 폴리비닐 클로라이드(Polyvinyl chloride)계, 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)계, 폴리이미드(Polyimide, PI)계, 폴리에틸렌(Polyethylene, PE)계, 폴리우레탄(Polyurethane, PU)계, 폴리프로필렌(Polypropylene, PP)계, 폴리프로필렌옥사이드(Polypropylene oxide, PPO)계, 폴리에틸렌이민(Polyethylene imine, PEI)계, 폴리에틸렌 설파이드(Polyethylene sulfide, PES)계, 폴리비닐 아세테이트(Polyvinyl acetate, PVAc)계, 폴리에틸렌석시네이트(Polyethylenesuccinate, PESc)계, 폴리에스테르(Polyester)계, 폴리아민(Polyamine)계, 폴리설파이드(Polysulfide)계, 실록산(Siloxane)계, 이의 파생물 및 이의 조합으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 한다.
또한, 제1 전해질층(110) 및 제2 전해질층(120) 각각은 상이한 세라믹 입자(20)를 포함하는 것이 바람직하다.
여기서, 상기 세라믹 입자(20)는 Al2O3계, SiO2계, BaTiO3계, TiO2계, 리튬산화물계, 리튬황화물계, 비정질 이온 전도도 물질, 나시콘(NASICON), 나트륨황화물계, 나트륨산화물계, 이의 파생물 및 이의 조합으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 한다.
이때, 상기 리튬산화물계는 Li1 . 3Al0 . 3Ti1 .7(PO4)3(LTAP)나 Li7La3Zr2O12(LLZO) 등을 포함할 수 있고, 상기 리튬황화물계는 Li10GeP2S12, Li2S-P2S5 등을 포함할 수 있고, 상기 비정질 이온 전도도 물질은 인-기반 글래스(phosphorus-based glass), 옥사이드-기반 글래스(oxide-based glass), 옥사이드/설파이드 기반 글래스(oxide/sulfide based glass) 등을 포함할 수 있다.
폴리에틸렌 글리콜(Polyethylene glycol, PEO)계 고분자는 음극부 쪽에서는 안정하지만 양극부 쪽에서는 불안정한 측면이 있고, Li1 . 3Al0 . 3Ti1 .7(PO4)3(LTAP) 세라믹 고체 전해질은 Ti의 높은 환원 전위 때문에 흑연, Si, Li 등과 같은 낮은 전압의 음극을 사용할 수 없는 문제가 있으나 리튬 이온 활성도가 우수하여 복합 전해질의 전기화학적 특성을 증가시킬 수 있다.
예를 들면, 본 발명에 따른 제1 전해질층(110)은 전기적 안정성이 높은 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF)를 고분자 기재(10)로 이용하고 LTAP를 세라믹 입자(20)로 이용하여 복합화시키고, 제2 전해질층(120)은 전기적 안정성이 높은 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF)나 음극부 쪽에서 안정성이 높은 폴리에틸렌 글리콜(Polyethylene glycol, PEO)계를 고분자 기재(10)로 이용하고 저전압에 안정적인 LLZO나 Al2O3를 세라믹 입자(20)로 이용하여 복합화시킬 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 제3 전해질층(130)은 폴리에틸렌 글리콜(Polyethylene glycol, PEO)계를 고분자 기재(10)로 이용하고 Li2S-P2S5 등의 리튬황화물계를 세라믹 입자(20)로 이용하여 복합화시킬 수 있으나, 이에 한정되는 것은 아니다.
도 3은 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질 표면의 SEM 분석 사진이고, 도 4는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질 단면의 SEM 분석 사진이다.
도 3 및 도 4를 참조하면, 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 세라믹 입자와 고분자 기재가 잘 혼합되어 표면이 매우 고르게 형성된 것을 알 수 있으며 전해질층 간의 결합이 견고하게 형성된 것을 알 수 있다.
도 5a 및 도 5b는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 변형 특성을 나타내기 위한 도면인데, 도시된 바와 같이 가변성이 매우 우수함을 알 수 있다.
도 6a는 종래 상용화된 이차전지용 분리막의 열적 안정성을 시험하기 위한 사진이고, 도 6b는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 열적 안정성을 시험하기 위한 사진이다.
도 6a 및 도 6b를 참조하면, 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 가연성이 없으며 120도에서도 수축되지 않는 우수한 열적 안정성을 보여주는 반면에 상용화 분리막은 불에 잘 타며 120도에서 심하게 수축되는 것을 알 수 있다.
도 7a는 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 충-방전 곡선이고, 도 7b는 종래 이차전지용 복합 전해질의 충-방전 곡선이다.
여기서, 도 7a에 도시된 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 양극부를 향해 위치하는 제1 전해질층을 LTAP와 PVdF를 중량비 80:20으로 혼합하여 제조하였고, 음극부를 향해 위치하는 제2 전해질층을 LLZO와 PVdF를 중량비 80:20으로 혼합하여 제조하였으며, 필름 제조 방법으로 프린팅, 상 분리 및 닥터 블레이드 방법을 사용하였다. 이렇게 제조된 복합 전해질을 전체 복합 전해질 100 중량부에 대하여 10 중량부에 해당하는 액체 전해질을 함침시켰다.
복합 전해질을 사용한 이차전지의 전기 화학적 특성 분석을 위하여 양극으로는 LiCoO2를 사용하고 음극으로는 전위가 가장 낮은 Li 금속을 사용하여 상온, 0.1C의 전류밀도에서 충-방전시켰다.
도 7b에 도시된 종래 이차전지용 복합 전해질은 PEO/LTAP/PEO 3층 구조의 단일 혼합물로 복합 전해질을 구성한 것이다.
도시된 바와 같이, LiCoO2양극이 최대 170mAh/g의 용량을 나타내는데, 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질은 160mAh/g의 용량을 가지며 충-방전 사이클이 반복됨에도 불구하고 용량 변화가 크지 않는데 반해 종래 이차전지용 복합 전해질은 충-방전 사이클이 반복됨에 따라 용량이 계속적으로 감소하는 것을 알 수 있는바, 본 발명에 따른 다층 구조를 가지는 이차전지용 복합 전해질의 전기 화학적 특성이 우수함을 알 수 있다.
지금까지 본 발명에 따른 이차전지용 복합 전해질에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허등록 청구범위뿐만 아니라 이 특허등록 청구범위와 균등한 것들에 의해 정해져야 한다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허등록 청구범위에 의하여 나타내어지며, 그 특허등록 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (8)

  1. 이차전지용 복합 전해질로서,
    양극부를 향해 위치하는 제1 전해질층과,
    음극부를 향해 위치하는 제2 전해질층을 포함하며,
    상기 제1 전해질층 및 상기 제2 전해질층 각각은 고분자 기재 및 세라믹 입자를 포함하되,
    상기 제1 전해질층 및 상기 제2 전해질층은 서로 상이한 재질로 형성되는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  2. 청구항 1에 있어서,
    상기 제1 전해질층과 상기 제2 전해질층 사이에 위치하는 제3 전해질층을 포함하며,
    상기 제3 전해질층은 고분자 기재 및 세라믹 입자를 포함하는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 이차전지용 복합 전해질은 액체 전해질을 추가로 포함하는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 제1 전해질층은 상기 제2 전해질층보다 상대적으로 상기 양극부에서의 전기적 안정성이 우수하고,
    상기 제2 전해질층은 상기 제1 전해질층보다 상대적으로 상기 음극부에서의 전기적 안정성이 우수한 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  5. 청구항 4에 있어서,
    상기 제1 전해질층 및 상기 제2 전해질층 각각은 상이한 고분자 기재를 포함하는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  6. 청구항 5에 있어서,
    상기 고분자 기재는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride)계, 폴리에틸렌 글리콜(Polyethylene glycol)계, 폴리아크릴로니트릴(Polyacrylonitrile)계, 폴리메틸메타크릴레이트(Polymethylmethacrylate)계, 폴리비닐 클로라이드(Polyvinyl chloride)계, 폴리비닐피롤리돈(Polyvinylpyrrolidone)계, 폴리이미드(Polyimide)계, 폴리에틸렌(Polyethylene)계, 폴리우레탄(Polyurethane)계, 폴리프로필렌(Polypropylene)계, 폴리프로필렌옥사이드(Polypropylene oxide)계, 폴리에틸렌이민(Polyethylene imine)계, 폴리에틸렌 설파이드(Polyethylene sulfide)계, 폴리비닐 아세테이트(Polyvinyl acetate)계, 폴리에틸렌석시네이트(Polyethylenesuccinate)계, 폴리에스테르(Polyester)계, 폴리아민(Polyamine)계, 폴리설파이드(Polysulfide)계, 실록산(Siloxane)계, 이의 파생물 및 이의 조합으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  7. 청구항 4에 있어서,
    상기 제1 전해질층 및 상기 제2 전해질층 각각은 상이한 세라믹 입자를 포함하는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
  8. 청구항 7에 있어서,
    상기 세라믹 입자는 Al2O3계, SiO2계, BaTiO3계, TiO2계, 리튬산화물계, 리튬황화물계, 비정질 이온 전도도 물질, 나시콘(NASICON), 나트륨황화물계, 나트륨산화물계, 이의 파생물 및 이의 조합으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 다층 구조를 가지는 이차전지용 복합 전해질.
PCT/KR2016/013063 2016-03-28 2016-11-14 다층 구조를 가지는 이차전지용 복합 전해질 WO2017171187A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SI201631756T SI3439096T1 (sl) 2016-03-28 2016-11-14 Kompozitni elektrolit za sekundarno baterijo, ki ima večplastno strukturo
LTEPPCT/KR2016/013063T LT3439096T (lt) 2016-03-28 2016-11-14 Sudėtinis elektrolitas antrinei baterijai, turintis daugiasluoksnę struktūrą
US16/087,830 US11322740B2 (en) 2016-03-28 2016-11-14 Composite electrolyte for secondary battery, having multi-layer structure
JP2018550591A JP6884796B2 (ja) 2016-03-28 2016-11-14 多層構造を有する二次電池用複合電解質
CN201680083921.6A CN108886164B (zh) 2016-03-28 2016-11-14 一种具有多层结构的二次电池用复合电解质
FIEP16897207.3T FI3439096T3 (fi) 2016-03-28 2016-11-14 Toisioakkuun tarkoitettu yhdistelmäelektrolyytti, jolla on monikerroksinen rakenne
DK16897207.3T DK3439096T3 (da) 2016-03-28 2016-11-14 Kompositelektrolyt til sekundært batteri med flerlagsstruktur
EP16897207.3A EP3439096B1 (en) 2016-03-28 2016-11-14 Composite electrolyte for secondary battery, having multi-layer structure
PL16897207.3T PL3439096T3 (pl) 2016-03-28 2016-11-14 Elektrolit kompozytowy do baterii wtórnej mający strukturę wielowarstwową

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160036894A KR20170111439A (ko) 2016-03-28 2016-03-28 다층 구조를 가지는 이차전지용 복합 전해질
KR10-2016-0036894 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017171187A1 true WO2017171187A1 (ko) 2017-10-05

Family

ID=59964775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013063 WO2017171187A1 (ko) 2016-03-28 2016-11-14 다층 구조를 가지는 이차전지용 복합 전해질

Country Status (13)

Country Link
US (1) US11322740B2 (ko)
EP (1) EP3439096B1 (ko)
JP (1) JP6884796B2 (ko)
KR (1) KR20170111439A (ko)
CN (1) CN108886164B (ko)
DK (1) DK3439096T3 (ko)
FI (1) FI3439096T3 (ko)
HU (1) HUE063859T2 (ko)
LT (1) LT3439096T (ko)
PL (1) PL3439096T3 (ko)
PT (1) PT3439096T (ko)
SI (1) SI3439096T1 (ko)
WO (1) WO2017171187A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019236904A1 (en) * 2018-06-06 2019-12-12 Quantumscape Corporation Solid-state battery
CN110828883A (zh) * 2018-08-08 2020-02-21 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
CN110858660A (zh) * 2018-08-24 2020-03-03 比亚迪股份有限公司 锂离子电池及其制备方法和电动车辆
US20220052378A1 (en) * 2018-12-19 2022-02-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Hybrid solid state electrolyte
US11450926B2 (en) 2016-05-13 2022-09-20 Quantumscape Battery, Inc. Solid electrolyte separator bonding agent

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983474B1 (ko) * 2017-11-07 2019-09-10 울산과학기술원 전기화학 소자용 복합 전해질, 이를 이용한 전기화학 소자 및 전기화학소자의 제조방법
EP3809510A4 (en) 2018-06-15 2021-08-11 Lg Chem, Ltd. SOLID ELECTROLYTIC MEMBRANE AND FULLY SOLID BATTERY INCLUDING IT
CN109638349B (zh) * 2018-12-04 2022-08-16 中国科学院山西煤炭化学研究所 一种无机-有机纳米复合固态电解质隔膜及其制备方法和应用
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池
CN110556574A (zh) * 2019-08-12 2019-12-10 北京协同创新研究院 一种多层固态电解质及其制备方法、固态电池和电子设备
CN112448021B (zh) * 2019-08-27 2021-11-12 比亚迪股份有限公司 一种复合固态电解质及固态锂电池
US11936028B1 (en) 2020-07-13 2024-03-19 Ampcera Inc. Systems and methods for heating electrochemical systems
CN112599846B (zh) * 2020-12-24 2022-12-09 蜂巢能源科技有限公司 全固态锂金属负极电池用复合电解质膜、其制备方法及包括其的全固态硫化物锂离子电池
US20220255063A1 (en) * 2021-02-10 2022-08-11 GM Global Technology Operations LLC Lithium-containing electrodes including ceramic particles and methods of making the same
CN113725481A (zh) * 2021-09-03 2021-11-30 天能帅福得能源股份有限公司 一种新型纳米固态电解质的合成及复合固态电解质的制备方法
CN115548463B (zh) * 2022-12-05 2023-04-25 天能电池集团股份有限公司 一种半固态电池及其制备方法
CN118017020A (zh) * 2024-04-02 2024-05-10 华南农业大学 一种耐高压固态聚合物锂金属电池的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505932A (ja) * 1993-11-26 1997-06-10 モトローラ・インコーポレイテッド 多層化電解質およびそれを使用した電気化学的電池
KR20010066272A (ko) * 1999-12-31 2001-07-11 김덕중 다층 구조의 고분자 전해질, 이의 제조방법 및 이를이용한 리튬 이차전지
KR20020085942A (ko) * 2001-05-10 2002-11-18 주식회사 애니셀 고율 충·방전용 다층 고체 전해질, 이를 이용한 박막전지및 그의 제조방법
KR101387855B1 (ko) * 2005-07-15 2014-04-22 사임베트 코퍼레이션 연질 및 경질 전해질층을 가진 박막 배터리 및 그 제조방법
KR20150018559A (ko) * 2012-07-11 2015-02-23 도요타 지도샤(주) 전고체 전지 및 그 제조 방법

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753114B2 (en) * 1998-04-20 2004-06-22 Electrovaya Inc. Composite electrolyte for a rechargeable lithium battery
JP4016344B2 (ja) 1998-12-03 2007-12-05 住友電気工業株式会社 リチウム二次電池
JP3643289B2 (ja) * 1999-04-30 2005-04-27 株式会社オハラ ガラスセラミックス複合電解質、及びリチウム二次電池
JP4626013B2 (ja) 2000-06-08 2011-02-02 住友電気工業株式会社 リチウム二次電池負極
JP2002008724A (ja) * 2000-06-23 2002-01-11 Ryoji Mishima ナノ粒子複合ポリマー電解質及びそれを用いたリチウム二次電池
JP2002333618A (ja) 2001-05-07 2002-11-22 Nitto Denko Corp 反射型液晶表示装置
KR100569186B1 (ko) 2002-11-15 2006-04-10 한국과학기술연구원 복합 고분자 전해질, 이를 이용한 리튬이차전지 및 그들의제조방법
KR100496641B1 (ko) * 2003-04-25 2005-06-20 한국전자통신연구원 이성 모폴로지를 가지는 리튬 이차전지용 복합 고분자전해질 및 그 제조 방법
KR100666821B1 (ko) * 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
US20080274411A1 (en) 2004-05-14 2008-11-06 Junji Nakajima Lithium Ion Secondary Battery
FR2881275B1 (fr) 2005-01-24 2007-04-27 Batscap Sa Electrolyte bicouche pour batterie au lthium
CN101233648B (zh) * 2005-08-02 2011-02-16 出光兴产株式会社 固体电解质片
JP5153065B2 (ja) * 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
JP5211526B2 (ja) 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
US9893337B2 (en) * 2008-02-13 2018-02-13 Seeo, Inc. Multi-phase electrolyte lithium batteries
WO2010111308A1 (en) * 2009-03-23 2010-09-30 Tda Research, Inc. Liquid electrolyte filled polymer electrolyte
CN102612782B (zh) * 2009-11-27 2014-12-03 株式会社村田制作所 固体电池
DE102010030197A1 (de) 2010-06-17 2011-12-22 Sb Limotive Company Ltd. Lithium-Ionen-Zelle
US8785051B2 (en) 2010-08-26 2014-07-22 Sumitomo Electric Industries, Ltd. Nonaqueous-electrolyte battery and method for producing the same
CN103620850B (zh) 2011-06-23 2016-01-06 株式会社Lg化学 具有新型结构的电极组件和使用其的二次电池
CN103094611B (zh) * 2011-11-07 2015-03-25 中国科学院上海硅酸盐研究所 一种制备离子液体凝胶电解质的方法
WO2013137224A1 (ja) * 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
KR101422908B1 (ko) * 2012-04-02 2014-07-23 삼성정밀화학 주식회사 리튬이온 이차전지용 전해질 및 이것을 포함하는 리튬이온 이차전지
JP2014110149A (ja) 2012-11-30 2014-06-12 Murata Mfg Co Ltd 全固体型電池用積層体
US10263279B2 (en) * 2012-12-14 2019-04-16 Sila Nanotechnologies Inc. Electrodes for energy storage devices with solid electrolytes and methods of fabricating the same
CN103972584B (zh) * 2013-02-04 2017-09-22 苏州宝时得电动工具有限公司 电解质载体膜、电解质及其制备方法以及锂离子电池
JP2014216131A (ja) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 全固体電池およびその製造方法
EP3017491B1 (en) * 2013-07-03 2018-11-28 Sion Power Corporation Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries
CN103456991B (zh) * 2013-09-02 2015-07-15 宁德时代新能源科技有限公司 锂离子电池及其凝胶电解质以及其制备方法
US10714724B2 (en) * 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
CN105374980B (zh) * 2014-08-15 2021-07-13 北京卫蓝新能源科技有限公司 界面浸润的准固态碱金属电池、电池电极及电池制备方法
HUE064081T2 (hu) * 2014-08-28 2024-02-28 Samsung Electronics Co Ltd Kompozit elektrolit és az ezt tartalmazó lítium akkumulátor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505932A (ja) * 1993-11-26 1997-06-10 モトローラ・インコーポレイテッド 多層化電解質およびそれを使用した電気化学的電池
KR20010066272A (ko) * 1999-12-31 2001-07-11 김덕중 다층 구조의 고분자 전해질, 이의 제조방법 및 이를이용한 리튬 이차전지
KR20020085942A (ko) * 2001-05-10 2002-11-18 주식회사 애니셀 고율 충·방전용 다층 고체 전해질, 이를 이용한 박막전지및 그의 제조방법
KR101387855B1 (ko) * 2005-07-15 2014-04-22 사임베트 코퍼레이션 연질 및 경질 전해질층을 가진 박막 배터리 및 그 제조방법
KR20150018559A (ko) * 2012-07-11 2015-02-23 도요타 지도샤(주) 전고체 전지 및 그 제조 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11450926B2 (en) 2016-05-13 2022-09-20 Quantumscape Battery, Inc. Solid electrolyte separator bonding agent
US11881596B2 (en) 2016-05-13 2024-01-23 Quantumscape Battery, Inc. Solid electrolyte separator bonding agent
WO2019236904A1 (en) * 2018-06-06 2019-12-12 Quantumscape Corporation Solid-state battery
CN112243543A (zh) * 2018-06-06 2021-01-19 昆腾斯科普公司 固态电池
CN110828883A (zh) * 2018-08-08 2020-02-21 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
CN110828883B (zh) * 2018-08-08 2021-09-03 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
CN110858660A (zh) * 2018-08-24 2020-03-03 比亚迪股份有限公司 锂离子电池及其制备方法和电动车辆
CN110858660B (zh) * 2018-08-24 2021-06-18 比亚迪股份有限公司 锂离子电池及其制备方法和电动车辆
US20220052378A1 (en) * 2018-12-19 2022-02-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Hybrid solid state electrolyte

Also Published As

Publication number Publication date
FI3439096T3 (fi) 2023-11-20
EP3439096A4 (en) 2019-09-25
US11322740B2 (en) 2022-05-03
EP3439096A1 (en) 2019-02-06
JP6884796B2 (ja) 2021-06-09
DK3439096T3 (da) 2023-11-27
PT3439096T (pt) 2023-11-13
PL3439096T3 (pl) 2024-02-05
HUE063859T2 (hu) 2024-02-28
KR20170111439A (ko) 2017-10-12
LT3439096T (lt) 2023-12-11
EP3439096B1 (en) 2023-10-11
US20200303729A1 (en) 2020-09-24
CN108886164A (zh) 2018-11-23
CN108886164B (zh) 2022-05-06
SI3439096T1 (sl) 2023-12-29
JP2019510349A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2017171187A1 (ko) 다층 구조를 가지는 이차전지용 복합 전해질
KR102025033B1 (ko) 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
WO2019066445A1 (ko) 일체형 전고체 이차전지
WO2011019187A2 (ko) 리튬 이차전지
KR102047300B1 (ko) 복합 고체 전해질 및 이를 이용한 이차전지
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2018182216A2 (ko) 다층 구조의 복합전해질 및 이를 이용한 이차전지
WO2012044132A2 (ko) 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2011105866A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2012138039A1 (ko) 세퍼레이터 및 이를 구비하는 전기화학소자
WO2010024559A2 (ko) 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2016148408A1 (ko) 일체형 전극조립체 및 이를 포함하는 전기화학소자
WO2012150813A2 (ko) 다층의 전극활물질층을 포함하는 전극 및 이를 포함하는 이차 전지
WO2019194581A1 (ko) 수명 성능이 향상된 리튬 금속 이차전지
WO2018009018A1 (ko) 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법
WO2018056491A1 (ko) 이차 전지용 복합 고체 전해질 및 이의 제조방법
WO2012128440A1 (ko) 전극조립체 및 이의 제조방법
WO2018124636A1 (ko) 분리막 및 이를 포함하는 리튬-황 전지
WO2011105865A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2012074300A2 (ko) 리튬 이차전지
WO2013066052A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2013081228A1 (ko) 셀룰로오스 나노섬유를 포함하는 이차전지용 다공성 분리막 및 그 제조방법
WO2011059154A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897207

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897207

Country of ref document: EP

Kind code of ref document: A1