WO2012138039A1 - 세퍼레이터 및 이를 구비하는 전기화학소자 - Google Patents
세퍼레이터 및 이를 구비하는 전기화학소자 Download PDFInfo
- Publication number
- WO2012138039A1 WO2012138039A1 PCT/KR2011/009266 KR2011009266W WO2012138039A1 WO 2012138039 A1 WO2012138039 A1 WO 2012138039A1 KR 2011009266 W KR2011009266 W KR 2011009266W WO 2012138039 A1 WO2012138039 A1 WO 2012138039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- inorganic particles
- lithium
- coating layer
- electrochemical device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator having a porous coating layer and an electrochemical device having the same, and to a separator for improving the impregnation property of an electrolyte by introducing a continuous or discontinuous pattern layer for permeating the electrolyte.
- lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
- lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
- the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively low compared to the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.
- electrochemical devices are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that an electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 degrees or more due to material characteristics and manufacturing process characteristics including stretching, and thus, a short circuit between the anode and the cathode. There is a problem that causes.
- Korean Patent Publication No. 10-2007-231 discloses a porous organic material formed by coating a mixture of inorganic particles and a binder polymer on at least one surface of a porous substrate having a plurality of pores A separator having an inorganic coating layer has been proposed.
- the separator having such a porous organic-inorganic coating layer does not have high affinity for the electrolyte solution, so that it takes a long time for the electrolyte to be impregnated into the separator, and especially in a large-capacity electrochemical device, it takes a long time to impregnate the electrolyte. Difficulties follow Therefore, the impregnation of the separator with respect to the electrolyte solution is urgently required.
- an object of the present invention is to provide a separator having an organic-inorganic porous coating layer having excellent impregnation and an electrochemical device having the same.
- the present invention is a porous substrate; It is formed on at least one surface of the porous substrate, and provided with a porous coating layer comprising a mixture of inorganic particles and a binder polymer, characterized in that the surface of the porous coating layer is formed with a continuous or discontinuous pattern layer for infiltrating the electrolyte solution A separator is provided.
- the continuous or discontinuous pattern layer of the present invention is not particularly limited in kind, but may be one that is a groove continuously or discontinuously formed.
- the depth of the groove is preferably 1 to 20% of the thickness of the porous coating layer, the width of the groove is preferably 0.1 to 50 mm.
- the porous substrate of the present invention may be a polyolefin-based porous substrate, it is preferable to use polyethylene, polypropylene, polybutylene and polypentene as the polyolefin-based porous substrate.
- the inorganic particles may be inorganic particles having a dielectric constant of 5 or more, inorganic particles having a lithium ion transfer ability, mixtures thereof, and the like.
- the inorganic particles having a dielectric constant of 5 or more are not particularly limited in kind, but BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3
- the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium Aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), Lithium Nitride (Li x x
- polyvinylidene fluoride-co-hexafluoropropylene polyvinylidene fluoride-co-hexafluoropropylene
- polyvinylidene fluoride- trichloroethylene polyvinylidene fluoride-co- trichloroethylene, polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol
- Ethylene vinyl acetate copolymer polyethylene-co-vinyl acetate
- polyethylene oxide polyarylate, styrene butadiene rubber, cellulose acetate, cellulose acetate butylate (cellulose acetate butyrate), cellulose ace Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyan
- composition ratio of the inorganic particles to the first binder polymer is preferably 50:50 to 99: 1 by weight each independently.
- the separator of the present invention is suitable for an electrochemical device including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and may be particularly used in a lithium secondary battery.
- the separator of the present invention having a porous coating layer having continuous grooves for penetrating the electrolyte has a continuous or discontinuous pattern layer, so that the wettability to the electrolyte is improved, so that the time taken to impregnate the electrolyte in the separator can be shortened.
- the separator is provided with a porous coating layer is excellent in heat resistance.
- FIG. 1 is a three-dimensional view of a separator having a porous coating layer formed with a groove according to an embodiment.
- FIG. 2 is a cross-sectional view of a separator having a porous coating layer having a groove according to one embodiment.
- Example 3 is a photographed image of a separator having a porous coating layer having a groove according to Example 1 of the present invention.
- Example 4 is an SEM observation result at the groove interface of the separator having a porous coating layer with a groove according to Example 1 of the present invention.
- Example 5 is an SEM observation result at the groove interface of the separator having a porous coating layer with a groove according to Example 2 of the present invention.
- the porous substrate used in the present invention is not particularly limited in kind, and both membranes and nonwoven fabrics may be used.
- the porous substrate of the present invention may be a polyolefin-based porous substrate, it is preferable to use polyethylene, polypropylene, polybutylene, polypentene and the like as the polyolefin-based porous substrate.
- the separator of the present invention includes a porous coating layer including a mixture of inorganic particles and a binder polymer on the surface of the porous substrate.
- the porous coating layer is attached to each other (ie, the binder polymer is connected and fixed between the inorganic particles) so that the binder polymer can remain in the state in which the inorganic particles are bound to each other, and the porous coating layer is also bound to the porous substrate by the binder polymer Stay intact.
- Inorganic particles of the porous coating layer are present in a substantially filled structure in contact with each other, the interstitial volume generated when the inorganic particles are in contact with the pores of the porous coating layer.
- the separator having the porous coating layer is interposed between the electrodes to form an electrochemical device. Since the porous substrate and the porous coating layer of the separator do not have high affinity for the electrolyte, it takes a long time to impregnate the electrochemical device with the electrolyte. Takes Therefore, the separator of the present invention introduces a continuous or discontinuous pattern layer for permeating the electrolyte solution to the surface of the porous coating layer in order to shorten the impregnation time of the electrolyte solution.
- continuous means that the pattern is made of a polygonal or irregular shape of the shape entirely closed on the porous substrate
- discontinuous means a polygonal or irregular shape that is not closed pattern or even a porous substrate It means that only a portion of the pattern layer is formed.
- the pattern layer can be a passage through which the electrolyte is soaked, it may be of any shape modified to suit the purpose of the present invention.
- such a pattern layer may be a pattern layer made of a set of dots arranged regularly or irregularly, and a pattern layer made of continuous or discontinuous grooves may also be used.
- the separator 100 of the present invention has a porous coating layer having continuous grooves 30 formed therein for infiltrating an electrolyte solution on at least one surface of the porous substrate 10 in order to improve the impregnation of the electrolyte solution. 20).
- the continuous groove 30 is not particularly limited in its shape, but preferably has a continuous, concave, and long form of a fan string so as to be connected from one cutting surface to the other cutting surface of the separator. May have The electrolyte penetrates through the continuous grooves 30 exposed at the edges of the electrochemical device, and the electrolyte can easily reach the inside of the separator of the electrochemical device, thereby helping the impregnation of the electrolyte of the separator.
- the cross section of the groove may have the shape of a triangle, a square, a semi-circle, and the like, and has a cross section of various shapes according to the manufacturing method is not particularly limited to the shape.
- a pattern layer made of continuous grooves it is more preferable to use a pattern layer made of continuous grooves.
- the depth (h) of the groove of the present invention is preferably 1 to 20% of the thickness of the porous coating layer, when the depth of the groove is deeper than 20%, mechanical properties of the porous coating layer is damaged and heat resistance It may be lowered, and wrinkles may occur in the separator due to the thickness variation of the irregular porous coating layer.
- the depth of the groove is shallower than 1%, the electrolyte is difficult to seep.
- the width (w) of the groove of the present invention is preferably from 0.1 to 50 mm, when the width of the groove is less than 0.1 mm, it is difficult to penetrate the electrolyte solution to improve the effect of improving the wettability of the electrolyte, the width of the groove is 50 mm If it exceeds, the separator may be wrinkled.
- the inorganic particles to be used are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li + ) of the applied electrochemical device. In particular, in the case of using the inorganic particles having the ion transport ability, it is possible to improve the performance by increasing the ion conductivity in the electrochemical device.
- the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt such as lithium salt in the liquid electrolyte.
- the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
- Non-limiting examples of inorganic particles having a dielectric constant greater than or equal to BaTiO 3 Pb (Zr x Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2, etc. Can be used or mixed two or more kinds
- the inorganic particles having a lithium ion transfer capacity refers to an inorganic particle containing lithium element but having a function of transferring lithium ions without storing lithium, and the inorganic particles having a lithium ion transfer capacity are formed inside the particle structure. Since lithium ions can be transferred and transported due to a kind of defect present, lithium ion conductivity in the battery is improved, thereby improving battery performance.
- Non-limiting examples of the inorganic particles having a lithium ion transfer capacity is lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) , Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P (LiAlTiP) x O y series glass such as 2 O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3 ), Li germanium thiophosphate such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S
- the inorganic particle size of the porous coating layer is not limited, but is preferably in the range of 0.001 to 10um. If it is less than 0.001 um, the dispersibility is lowered, so that it is not easy to adjust the physical properties of the separator, and if it exceeds 10 um, the mechanical properties may be reduced.
- the binder polymer is preferably 1 to 50% by weight relative to the inorganic particles.
- the inorganic particles may not be sufficiently bound to each other, and when the amount of the binder polymer exceeds 50% by weight, the porosity of the porous coating layer may be lowered and the wettability of the electrolyte may be reduced.
- polyvinylidene fluoride-co-hexafluoropropylene polyvinylidene fluoride-co-hexafluoropropylene
- polyvinylidene fluoride- trichloroethylene polyvinylidene fluoride-co- trichloroethylene, polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol
- Ethylene vinyl acetate copolymer polyethylene-co-vinyl acetate
- polyethylene oxide polyarylate, styrene butadiene rubber, cellulose acetate, cellulose acetate butylate (cellulose acetate butyrate), cellulose ace Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyan
- the separator of the present invention can be manufactured through the following process.
- the binder polymer is dissolved in a solvent to prepare a binder polymer solution, and inorganic particles are mixed to prepare a slurry.
- the slurry thus prepared may be intermittently coated on the surface of the porous substrate to form a continuous groove having a predetermined interval.
- a binder polymer solution may be prepared and secondarily coated to form a continuous groove.
- the secondary binder polymer solution to be coated may optionally include inorganic particles, it may be used to melt the binder polymer.
- the coating method used herein is not particularly limited, and coating methods generally used may be applied.
- dip-dip coating, dip-slot coating, tip-slide coating, dip-roll printing, dip-microgravure coating, dip-spray coating, dip-ink jet Coating, slot-slot coating, slot-slide coating, slot-roll printing, slot-microgravure coating, slot-spray coating, slot-inkjet spray coating, etc. can be used, and the method of coating slurry and binder simultaneously
- various coating methods such as multilayer slot die coating, multilayer slide-slot coating, multilayer slide coating, and the like can be used.
- slot coating, slide coating, roll printing, micro gravure coating, spray coating, ink jet spray coating, etc. are preferable.
- multilayer slot die coating, multilayer slide-slot coating, and multilayer slide coating are preferable.
- the binder polymer used at this time may use the above-mentioned binder polymer.
- the separator of the present invention prepared as described above may be used as a separator of an electrochemical device. That is, the separator of the present invention can be usefully used as the separator interposed between the positive electrode and the negative electrode.
- Electrochemical devices include all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
- a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
- the electrochemical device may be manufactured according to conventional methods known in the art, and for example, may be manufactured by injecting an electrolyte after assembling the separator described above between an anode and a cathode. .
- the electrode to be applied with the separator of the present invention is not particularly limited, and according to a conventional method known in the art, the electrode active material may be prepared in a form bound to the electrode current collector.
- the positive electrode active material of the electrode active material may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or combinations thereof It is preferable to use one lithium composite oxide.
- Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred.
- Non-limiting examples of the positive electrode current collector is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector by copper, gold, nickel or copper alloy or a combination thereof Foils produced.
- Electrolyte that may be used in the present invention is A + B - A salt of the structure, such as, A + is Li +, Na +, K + comprises an alkaline metal cation or an ion composed of a combination thereof, such as, and B - is PF 6 -, BF 4 -, Cl - , Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 )
- Salts containing ions consisting of anions such as 3 - or combinations thereof include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , Dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (
- the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
- the separator of the present invention may be interposed between the positive electrode and the negative electrode of the secondary battery, and may be interposed between adjacent cells or electrodes when a plurality of cells or electrodes are assembled to form an electrode assembly.
- the electrode assembly may have various structures such as a simple stack type, a jelly roll, a stack type, and the like.
- the electrode assembly may be prepared by interposing the separator of the present invention between the positive electrode and the negative electrode to which the active material is applied, and winding the positive electrode / separation membrane / cathode continuously.
- the electrode assembly may be manufactured to have a zig-zag overlapping structure by bending the anode / separator / cathode at regular intervals.
- the electrode assembly to be wound or bent may include a plurality of electrodes and a separator that are alternately stacked to increase capacity.
- the electrode assembly may be prepared by stacking the anode / separator / cathode or the cathode / separator / anode in a repeating unit.
- the separator uses the separator of the present invention.
- a plurality of unit cells having a structure of a full cell or a bicell may be prepared by gathering a folding film.
- the folding film may use a general insulating film or the separator of the present invention.
- the full cell structure includes at least one cell structure having a separator interposed between electrodes having different polarities, but a cell structure having different polarities of electrodes located at the outermost sides. Examples of the full cell structure include an anode / separator / cathode or an anode / separator / cathode / separator / anode / separator / cathode.
- the bicell structure refers to a cell structure including at least one cell structure having a separator interposed between electrodes having different polarities, but having the same polarity as the electrode located at the outermost side.
- Examples of the bicell structure include an anode / separator / cathode / separator / anode or a cathode / separator / anode / separator / cathode.
- an electrode assembly may be manufactured by arranging a plurality of unit cells on one surface of the folding film extending in a longitudinal direction at predetermined intervals and winding the folding film in one direction together with the arranged unit cells.
- the electrode assembly thus manufactured has a structure in which unit cells are inserted between the wound folding films.
- an electrode assembly may be manufactured by arranging a plurality of unit cells on both sides of the folding film extending in a longitudinal direction at predetermined intervals and winding the folding film in one direction together with the arranged unit cells.
- the electrode assembly thus manufactured has a structure in which unit cells are inserted between the wound folding films.
- the arrangement interval of the unit cells and the polarity of the electrode positioned at the outermost portion of each unit cell are selected such that the polarities of the electrodes of the upper cell and the electrodes of the lower cell in contact with the folding film are reversed.
- an electrode disposed at an outermost interval of each unit cell and an arrangement interval of the unit cells so as to form an electrode assembly structure such as an anode / separator / cathode / folding film / anode / separator / cathode / folding film / anode.
- the polarity of can be selected.
- a plurality of unit cells are arranged on one surface of the folding film extending in a longitudinal direction at predetermined intervals, and the folding film is bent in a zigzag shape with the arranged unit cells, and the folded film is interposed therebetween.
- the electrode assembly may be manufactured in a structure in which the unit cells are arranged.
- the electrode assembly manufactured as described above has a structure in which unit cells are inserted between folded and stacked folding films.
- the folding film is bent in a zigzag shape with the arranged unit cells, and unit cells are formed between the folded folding films.
- the electrode assembly may be manufactured with the disposed structure.
- the electrode assembly manufactured as described above has a structure in which unit cells are inserted between folded and stacked folding films.
- the arrangement interval of the unit cells and the polarity of the electrode positioned at the outermost portion of each unit cell are selected such that the polarities of the electrodes of the upper cell and the electrodes of the lower cell in contact with the folding film are reversed.
- an electrode disposed at an outermost interval of each unit cell and an arrangement interval of the unit cells so as to form an electrode assembly structure such as an anode / separator / cathode / folding film / anode / separator / cathode / folding film / anode.
- the polarity of can be selected.
- a method of collecting electrodes using a folding film may be various.
- an electrode assembly may be manufactured by alternately arranging a cathode, an anode, a cathode, an anode, etc. on one surface of the folding film, and winding an electrode disposed together with the folding film in one direction.
- the electrode assembly thus manufactured has a structure in which electrodes are inserted between the wound folding films.
- the electrode assembly may be manufactured by arranging a plurality of electrodes on both sides of the folding film extending in the longitudinal direction at predetermined intervals and winding the folding film in one direction together with the arranged electrodes.
- the electrode assembly thus manufactured has a structure in which electrodes are inserted between the wound folding films.
- the spacing of the electrodes and the polarity of the electrodes are selected such that the polarities of the upper and lower electrodes in contact with the folding film are reversed.
- the arrangement interval of the electrodes and the polarity of each electrode may be selected to form the structure of the electrode assembly such as the anode / folding film / cathode / folding film / anode.
- an electrode, an anode, a cathode, an anode, etc. are alternately arranged on one side of the folding film, the electrodes arranged together with the folding film in one direction are bent, and the electrodes are disposed between the folded folding films.
- the electrode assembly can be manufactured with the structure.
- the electrode assembly thus manufactured has a structure in which the electrodes are inserted between the folded and stacked folding films.
- the folding film is bent together with the arranged electrodes, so that the unit cells are arranged between the bent folding films. The assembly can be manufactured.
- the electrode assembly thus manufactured has a structure in which the electrodes are inserted between the folded and stacked folding films.
- the spacing of the electrodes and the polarity of the electrodes are selected such that the polarities of the upper and lower electrodes in contact with the folding film are reversed.
- the arrangement interval of the electrodes and the polarity of each electrode may be selected to form the structure of the electrode assembly such as the anode / folding film / cathode / folding film / anode.
- the length of the folding film used to manufacture the electrode assembly may be selected to wrap the last unit cell or electrode in the manner described above, and then wrap the electrode assembly at least once.
- the electrode assemblies may be modified in various other forms, and the scope of the present invention is not limited thereto.
- Example 1 Preparation of a separator having a porous coating layer having a groove
- the polyvinylidene fluoride-chlorodriproethylene copolymer (PVdF-CTFE) and cyanoethylpullulan (cyanoethylpullulan) were added to acetone in a weight ratio of 10: 2, respectively, and dissolved in the polymer solution for about 12 hours at 50 ° C. Was prepared.
- the particle size of the inorganic particles of the slurry thus prepared was 600 nm on average.
- a multilayer slot die coater was used to supply the above prepared slurry to the lower layer to continuously coat 4 ⁇ m thick on one side.
- a PVDF-CTFE solution prepared in 4% by weight of acetone was allowed to pass through the diaphragm in the slit having a width of 12 mm to form an uncoated portion having a stripe-shaped groove.
- the thickness of the area coated with the binder solution is 0.5 ⁇ m (micrometer)
- the depth of the groove corresponds to 11% of the thickness of the porous coating layer, and the width of the groove was formed to be 11 mm.
- the stripe-shaped grooves thus formed are shown in FIG. 3. 4 is an SEM observation result at the groove interface of the separator.
- SBR styrene butadiene rubber
- the polyvinylidene fluoride-chlorodriproethylene copolymer (PVdF-CTFE) and cyanoethylpullulan (cyanoethylpullulan) were added to acetone in a weight ratio of 10: 2, respectively, and dissolved in the polymer solution for about 12 hours at 50 ° C. Was prepared.
- the particle size of the inorganic particles of the slurry thus prepared was 600 nm on average.
- a multilayer slot die coater was used to supply the prepared slurry to the lower layer to continuously coat a surface having a thickness of 4 ⁇ m to form a porous coating layer.
- a 4 wt% PVdF-CTFE solution was used to form a continuous coating layer having a thickness of 0.5 ⁇ m. Therefore, the coating layer thickness of this upper layer corresponds to 11% of the porous coating layer.
- Test Example 1 Measurement of wettability of the electrolyte of the battery
- a stack cell was prepared using the separators prepared in Example 1-2 and Comparative Example 1. First, two separators are prepared, the cathodes are interposed between these separators, and then the anodes are placed on both surfaces of the outer surface of these separators, respectively, and laminated at a temperature of 100 ° C. Stack cells using the separators prepared in Comparative Example 1 were prepared, respectively.
- Example 1 As shown in Table 1, in the case of using the separator of Example 1-2 and Comparative Example 1, the height of the electrolyte impregnation is 92mm, 84mm, 67mm, respectively, in the case of Example 1-2 having a groove formed on the surface of the separator It was found that the wettability of the electrolyte solution was better than that of Comparative Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Cell Separators (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 다공성 기재; 상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물입자와 바인더 고분자의 혼합물을 포함하는 다공성 코팅층을 구비하며, 상기 다공성 코팅층의 표면에는 전해액이 스며들기 위한 연속 또는 불연속의 패턴층이 형성되어 있는 것을 특징으로 하는 세퍼레이터에 관한 것으로, 전해액이 스며들기 위한 연속적인 홈들이 형성된 다공성 코팅층을 구비하는 본 발명의 세퍼레이터는, 전해액이 스며들기 위한 연속적인 홈을 구비하고 있어 전해액에 대한 젖음성이 향상되므로 세퍼레이터에 전해액을 함침시키는데 걸리는 시간을 단축할 수 있다.
Description
본 발명은 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비하는 전기화학소자에 관한 것으로, 전해액이 스며들기 위한 연속 또는 불연속의 패턴층을 도입하여 전해액에 대한 함침성을 향상시키기 위한 세퍼레이터에 대한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 촛점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이러한 전기화학소자의 안전성 문제를 해결하기 위하여, 대한민국 특허공개공보 제10-2007-231호에는 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 형성한 다공성 유기-무기 코팅층을 구비하는 세퍼레이터가 제안되었다. 그러나, 이러한 다공성 유기-무기 코팅층을 구비하는 세퍼레이터는 전해액에 대한 친화성이 높지 않아서, 전해액이 세퍼레이터에 함침되는데 많은 시간이 걸리게 되며, 특히 대용량 전기화학소자에서는 전해액의 함침에 장시간이 소요되어 제조공정상 어려움이 따른다. 따라서, 세퍼레이터의 전해액에 대한 함침성의 개선이 시급히 요구되고 있다.
따라서 본 발명이 해결하고자 하는 과제는, 함침성이 우수한 유기-무기 다공성 코팅층을 구비하는 세퍼레이터 및 이를 구비한 전기화학소자의 제공을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 다공성 기재; 상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물입자와 바인더 고분자의 혼합물을 포함하는 다공성 코팅층을 구비하며, 상기 다공성 코팅층의 표면에는 전해액이 스며들기 위한 연속 또는 불연속의 패턴층이 형성되어 있는 것을 특징으로 하는 세퍼레이터를 제공한다. 또한, 본 발명의 연속 또는 불연속의 패턴층은 특별히 그 종류를 한정하는 것은 아니지만, 상기 연속 또는 불연속적으로 형성된 홈인 것을 사용할 수 있다.
상기 홈의 깊이는 다공성 코팅층 두께의 1 내지 20%인 것이 바람직하며, 상기 홈의 너비는 0.1 내지 50 mm인 것이 바람직하다.
본 발명의 다공성 기재는 폴리올레핀계 다공성 기재인 것을 사용할 수 있으며, 이러한 폴리올레핀계 다공성 기재로는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐 등을 사용하는 것이 바람직하다.
상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물 등을 사용할 수 있다. 이러한 유전율 상수가 5 이상인 무기물 입자는 그 종류를 특별히 한정하는 것은 아니지만, BaTiO3, Pb(Zrx, Ti1-x)O3 (PZT, 0<x<1), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 0<x<1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2 등을 사용하는 것이 바람직하다. 또한, 상기 리튬 이온 전달 능력을 갖는 무기물 입자로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass 등을 사용할 수 있지만, 이에 한정되는 것은 아니다.
본 발명의 바인더 고분자로는 특별히 그 종류를 한정하는 것은 아니지만, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 스티렌 부타디엔 고무(styrene butadiene rubber), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물 등을 사용할 수 있다.
상기 무기물 입자 대 제1 바인더 고분자의 조성비는 각각 독립적으로, 50:50 내지 99:1 중량비인 것을 사용하는 것이 바람직하다.
본 발명의 세퍼레이터는 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전기화학소자에 적합하며, 특히 리튬 이차전지에 사용될 수 있다.
전해액이 스며들기 위한 연속적인 홈들이 형성된 다공성 코팅층을 구비하는 본 발명의 세퍼레이터는, 연속 또는 불연속의 패턴층을 구비하고 있어 전해액에 대한 젖음성이 향상되므로 세퍼레이터에 전해액을 함침시키는데 걸리는 시간을 단축할 수 있다. 또한, 상기 세퍼레이터는 다공성 코팅층을 구비하여 내열성이 우수하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 일 실시예에 따른 홈이 형성된 다공성 코팅층을 구비한 세퍼레이터에 대한 입체도이다.
도 2는 일 실시예에 따른 홈이 형성된 다공성 코팅층을 구비한 세퍼레이터에 대한 단면도이다.
도 3은 본 발명의 실시예 1에 따른 홈이 형성된 다공성 코팅층을 구비한 세퍼레이터의 촬영 이미지이다.
도 4는 본 발명의 실시예 1에 따른 홈이 형성된 다공성 코팅층을 구비한 세퍼레이터의 홈 경계면에서의 SEM 관찰 결과이다.
도 5는 본 발명의 실시예 2에 따른 홈이 형성된 다공성 코팅층을 구비한 세퍼레이터의 홈 경계면에서의 SEM 관찰 결과이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도 1 및 도 2에는 본 발명에 따른 바람직한 일시예의 세퍼레이터가 도시되어 있다. 하지만, 이하 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명에 사용되는 다공성 기재는 특별히 그 종류를 한정하지는 않으며 막(membrane)이나 부직포를 모두 사용할 수 있다. 또한, 본 발명의 다공성 기재는 폴리올레핀계 다공성 기재인 것을 사용할 수 있으며, 이러한 폴리올레핀계 다공성 기재로는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐 등을 사용하는 것이 바람직하다.
본 발명의 세퍼레이터는 다공성 기재의 표면에 무기물 입자와 바인더 고분자의 혼합물을 포함하는 다공성 코팅층을 구비한다. 이러한 다공성 코팅층은 바인더 고분자가 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시키고 있으며, 또한 다공성 코팅층은 바인더 고분자에 의해 다공성 기재와 결착된 상태를 유지한다. 다공성 코팅층의 무기물 입자는 실질적으로 서로 접촉한 상태로 충전된 구조로 존재하며, 무기물 입자들이 접촉된 상태에서 생기는 틈새 공간(interstitial volume)이 다공성 코팅층의 기공이 된다.
이러한 다공성 코팅층을 구비하는 세퍼레이터는 전극 사이에 개재되어 전기화학소자를 형성하게 되는데, 이러한 세퍼레이터의 다공성 기재 및 다공성 코팅층은 전해액에 대한 친화성이 높지 않으므로 전기화학소자에 전해액을 함침하는 데에는 많은 시간이 걸린다. 따라서, 본 발명의 세퍼레이터는 전해액의 함침시간을 단축시키기 위해서, 다공성 코팅층의 표면에 전해액이 스며들기 위한 연속 또는 불연속의 패턴층을 도입하였다. 여기서 연속이라 함은 패턴이 상기 다공성 기재에 전체적으로 폐쇄된 형태의 다각형 또는 불규칙적인 도형으로 이루어진 것을 의미하고, 불연속이라 함은 패턴이 폐쇄되지 아니한 다각형 또는 불규칙적인 도형이거나 폐쇄된 형태라 하여도 다공성 기재의 일부분에만 패턴층이 형성되어 있는 것을 의미한다. 그리고, 이러한 패턴층은 전해액이 스며드는 통로가 될 수 있는 것이라면, 본 발명의 목적을 달성하기에 적합하도록 변형된 어떤 형태인 것도 가능하다. 예를, 들면, 이러한 패턴층으로는 규칙적 또는 불규칙적으로 배치된 도트(dot)의 집합으로 이루어진 패턴층도 가능하며, 연속적인 또는 불연속적인 홈으로 이루어진 패턴층도 사용가능하다.
도 1을 참고하면, 본 발명의 세퍼레이터(100)는 전해액에 대한 함침성을 향상시키기 위해서, 다공성 기재(10)의 적어도 일면에, 전해액이 스며들기 위한 연속적인 홈(30)들이 형성된 다공성 코팅층(20)을 구비한다. 이러한 연속적인 홈(30)은 특별이 그 형태를 한정하는 것은 아니지만, 세퍼레이터의 한쪽 절단면에서 다른 절단면까지 연결되도록 연속적이고 오목하고 길게 팬 줄의 형태를 갖는 것이 바람직하며, 격자무늬의 형태의 홈을 가질 수도 있다. 전기화학소자의 모서리에 노출되는 이러한 연속적인 홈(30)을 통하여 전해액이 스며들게 되며, 전기화학소자의 세퍼레이터의 내부까지 전해액이 쉽게 도달할 수 있어, 세퍼레이터의 전해액에 대한 함침을 도와주게 된다. 또한, 이러한 홈의 단면은 삼각형, 사각형 및 반원 등의 모양 가질 수 있으며, 그 제조방법에 따라 여러 가지 모양의 단면을 갖는 것으로 그 모양에 특별히 한정되지는 않는다. 다만, 전해액의 효과적인 함침을 위해서는 연속적인 홈으로 이루어진 패턴층을 사용하는 것이 좀 더 바람직하다.
도 2를 참고하면, 본 발명의 홈의 깊이(h)는 다공성 코팅층 두께의 1 내지 20%인 것이 바람직하며, 홈의 깊이가 20%보다 더 깊은 경우에는 다공성 코팅층의 기계적 물성이 손상되어 내열성이 저하될 수 있으며, 불규칙한 다공성 코팅층의 두께 편차에 의해서 세퍼레이터에 주름이 발생할 수 있다. 또한, 홈의 깊이가 1% 보다 더 얕은 경우에는 전해액이 스며들기 어렵기 때문이다. 또한, 본 발명의 홈의 너비(w)는 0.1 내지 50 mm인 것이 바람직한데, 홈의 너비가 0.1 mm 미만인 경우에는 전해액의 침투가 어려워 전해액 젖음성 개선 효과를 기대하기 어렵고, 홈의 너비가 50 mm를 초과하는 경우에는 세퍼레이터에 주름이 발생할 우려가 있다.
본 발명의 세퍼레이터에 있어서, 사용되는 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우 전기화학소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있다.
또한, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합체를 포함하는 것이 바람직하다.
유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(ZrxTi1-x)O3 (PZT, 여기서 0 < x < 1), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, 여기서 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2 등을 각각 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다
특히, 전술한 BaTiO3, Pb(ZrxTi1-x)O3 (PZT, 여기서 0 < x < 1), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, 여기서 0 < x < 1), 하프니아(HfO2)와 같은 무기물 입자들은 유전율 상수 100 이상인 고유전율 특성을 나타낼 뿐만 아니라, 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 양쪽 면 간에 전위차가 발생하는 압전성(piezoelectricity)을 가짐으로써, 외부 충격에 의한 양(兩) 전극의 내부 단락 발생을 방지하여 전기화학소자의 안전성 향상을 도모할 수 있다. 또한, 전술한 고유전율 무기물 입자와 리튬 이온 전달 능력을 갖는 무기물 입자들을 혼용할 경우 이들의 상승 효과는 배가될 수 있다.
본 발명에서 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다. 상기 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
본 발명의 세퍼레이터에 있어서, 다공성 코팅층의 무기물 입자 크기는 제한이 없으나, 가능한 한 0.001 내지 10um 범위인 것이 바람직하다. 0.001 um 미만인 경우 분산성이 저하되어 세퍼레이터의 물성을 조절하기가 용이하지 않고, 10 um를 초과하는 경우 기계적 물성이 저하될 수 있다.
또한, 상기 바인더 고분자는 상기 무기물 입자 대비 1 ~ 50 중량%인 것이 바람직하다. 상기 바인더 고분자의 사용량이 1 중량% 미만인 경우에는 무기물 입자들을 서로 충분히 결착할 수 없으며, 50 중량%를 초과하는 경우에는 다공성 코팅층의 다공성이 저하되며 전해액에 대한 젖음성이 저하될 수 있다.
본 발명의 바인더 고분자로는 특별히 그 종류를 한정하는 것은 아니지만, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 스티렌 부타디엔 고무(styrene butadiene rubber), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물 등을 사용할 수 있다.
본 발명의 세퍼레이터는 다음과 같은 과정을 통하여 제조할 수 있다.
바인더 고분자를 용매에 용해시켜 바인더 고분자 용액을 준비하고, 무기물 입자를 혼합하여 슬러리를 제조한다. 이렇게 제조된 슬러리를 다공성 기재의 표면에 간헐 코팅하여 일정한 간격을 갖는 연속적인 홈을 형성할 수 있다. 또 다른 제조방법으로는, 다공성 기재의 표면에 전술한 슬러리를 도포하여 1차적으로 다공성 코팅층을 형성한 후에, 바인더 고분자 용액을 준비하여 다시 2차적으로 코팅하여 연속적인 홈을 형성할 수도 있다. 이 때 2차적으로 코팅되는 바인더 고분자 용액은 무기물 입자를 선택적으로 포함할 수 있으며, 바인더 고분자를 용융하여 사용할 수도 있다. 여기서 사용되는 코팅방법은 특별히 한정하는 것은 아니며, 일반적으로 사용되는 코팅 방식들이 적용될 수 있다. 예를 들어, 슬러리와 바인더를 순차적으로 코팅하는 방식으로서, 딥-딥 코팅, 딥-슬롯 코팅, 팁-슬라이드 코팅, 딥-롤 프린팅, 딥-마이크로 그래비어 코팅, 딥-스프레이 코팅, 딥-잉크젯 코팅, 슬롯-슬롯 코팅, 슬롯-슬라이드 코팅, 슬롯-롤 프린팅, 슬롯-마이크로 그래비어 코팅, 슬롯-스프레이 코팅, 슬롯-잉크젯 분사 코팅 등의 방법들이 사용될 수 있고, 슬러리와 바인더를 동시에 코팅하는 방식으로서, 다층 슬롯 다이 코팅, 다층 슬라이드-슬롯 코팅, 다층 슬라이드 코팅 등과 같은 다양한 코팅방법들이 사용될 수 있다. 특히, 패턴 형상을 구현함에 있어서, 순차 코팅의 경우 1차 슬러리를 도포한 다음 2차 코팅시에 슬롯 코팅, 슬라이드 코팅, 롤 프린팅, 마이크로 그래비어 코팅, 스프레이 코팅, 잉크젯 분사 코팅 등이 바람직하며, 슬러리와 바인더를 동시에 코팅하는 방식으로는 다층 슬롯 다이 코팅, 다층 슬라이드-슬롯 코팅, 다층 슬라이드 코팅이 바람직하다.
또한, 이때 사용되는 바인더 고분자는 상기에서 언급된 바인더 고분자를 사용할 수 있다.
이와 같이 제조된 본 발명의 세퍼레이터는 전기화학소자의 세퍼레이터(separator)로 사용될 수 있다. 즉, 양극과 음극 사이에 개재시킨 세퍼레이터로서 본 발명의 세퍼레이터가 유용하게 사용될 수 있다. 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
전기화학소자는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 양극과 음극 사이에 전술한 세퍼레이터를 개재(介在)시켜 조립한 후 전해액을 주입함으로써 제조될 수 있다.
본 발명의 세퍼레이터와 함께 적용될 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 양극활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6
-, BF4
-, Cl-, Br-, I-, ClO4
-, AsF6
-, CH3CO2
-, CF3SO3
-, N(CF3SO2)2
-, C(CF2SO2)3
-와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 세퍼레이터는 이차전지의 양극과 음극 사이에 개재될 수 있고, 복수의 셀 또는 전극을 집합시켜 전극조립체를 구성할 때 인접하는 셀 또는 전극 사이에 개재될 수 있다. 상기 전극조립체는 단순 스택형, 젤리-롤형, 스택-폴딩형 등의 다양한 구조를 가질 수 있다.
일 실시예에 따르면, 상기 전극조립체는 활물질이 도포된 양극과 음극 사이에 본 발명의 세퍼레이터를 개재시키고 양극/분리막/음극을 연속적으로 권취하여 제조할 수 있다. 대안적으로는 양극/분리막/음극을 일정한 간격을 가지도록 절곡하여 지그재그형의 중첩된 구조를 갖도록 전극조립체를 제조할 수 있다. 한편, 상기 권취 또는 절곡되는 전극조립체는 용량의 증대를 위해 교호로 적층된 복수의 전극과 분리막을 포함할 수 있다.
또 다른 일 실시예에 따르면, 상기 전극조립체는 양극/분리막/음극 또는 음극/분리막/양극을 반복 단위로 적층시켜 제조할 수 있다. 여기서 상기 분리막은 본 발명의 세퍼레이터를 사용한다.
일 실시예에 따르면, 풀셀 또는 바이셀의 구조를 갖는 복수의 단위셀을 폴딩필름으로 집합시켜 제조할 수 있다. 여기서 상기 폴딩 필름은 일반적인 절연필름 또는 본 발명의 세퍼레이터를 사용할 수 있다. 상기 풀셀 구조는 극성이 다른 전극 사이에 분리막이 개재된 셀 구조를 적어도 하나 이상 포함하되 최외측에 위치한 전극의 극성이 다른 셀 구조를 의미한다. 풀셀 구조의 일례로는 양극/분리막/음극 또는 양극/분리막/음극/분리막/양극/분리막/음극 등을 들 수 있다. 상기 바이셀 구조는 극성이 다른 전극 사이에 분리막이 개재된 셀 구조를 적어도 하나 이상 포함하되 최외측에 위치한 전극의 극성이 같은 셀 구조를 의미한다. 바이셀 구조의 일례로는 양극/분리막/음극/분리막/양극 또는 음극/분리막/양극/분리막/음극 등을 들 수 있다.
폴딩필름을 사용하여 단위셀들을 집합시키는 방식은 여러 가지가 가능하다. 일례로, 길이 방향으로 연장된 폴딩필름의 한쪽 면에 복수의 단위셀들을 소정의 간격으로 배열한 후 배열된 단위셀들과 함께 폴딩필름을 한쪽 방향으로 권취하여 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 권취된 폴딩필름의 사이에 단위셀들이 삽입된 구조를 갖는다. 다른 예로, 길이 방향으로 연장된 폴딩필름의 양면에 복수의 단위셀들을 소정의 간격으로 배열한 후 배열된 단위셀들과 함께 폴딩필름을 한쪽 방향으로 권취하여 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 권취된 폴딩필름의 사이에 단위셀들이 삽입된 구조를 갖는다. 상기 단위셀들의 배치 간격과 각 단위셀의 최외각에 위치하는 전극의 극성은 폴딩필름에 접한 상부 셀의 전극과 하부셀의 전극의 극성이 반대가 되도록 선택된다. 일례로, 양극/분리막/음극/폴딩필름/양극/분리막/음극/폴딩필름/양극...과 같은 전극조립체의 구조가 형성되도록 단위셀의 배치간격과 각 단위셀의 최외각에 위치하는 전극의 극성이 선택될 수 있다.
또 다른 예는, 길이 방향으로 연장된 폴딩필름의 한쪽 면에 복수의 단위셀들을 소정의 간격으로 배열하고, 배열된 단위셀들과 함께 폴딩필름을 지그재그형으로 절곡하여, 절곡된 폴딩필름 사이에 단위셀이 배치된 구조로 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 절곡하여 적층된 폴딩필름의 사이에 단위셀들이 삽입된 구조를 갖는다. 다른 예로, 길이 방향으로 연장된 폴딩필름의 양면에 복수의 단위셀들을 소정의 간격으로 배열한 후 배열된 단위셀들과 함께 폴딩필름을 지그재그형으로 절곡하여, 절곡된 폴딩필름 사이에 단위셀이 배치된 구조로 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 절곡하여 적층된 폴딩필름의 사이에 단위셀들이 삽입된 구조를 갖는다. 상기 단위셀들의 배치 간격과 각 단위셀의 최외각에 위치하는 전극의 극성은 폴딩필름에 접한 상부 셀의 전극과 하부셀의 전극의 극성이 반대가 되도록 선택된다. 일례로, 양극/분리막/음극/폴딩필름/양극/분리막/음극/폴딩필름/양극...과 같은 전극조립체의 구조가 형성되도록 단위셀의 배치간격과 각 단위셀의 최외각에 위치하는 전극의 극성이 선택될 수 있다.
그리고, 폴딩필름을 사용하여 전극들을 집합시키는 방식은 여러 가지가 가능하다. 일례로, 폴딩필름의 한쪽 면에 음극, 양극, 음극, 양극...을 교대로 배치하고, 한쪽 방향으로 폴딩필름과 함께 배치된 전극을 권취하여 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 권취된 폴딩필름의 사이에 전극들이 삽입된 구조를 갖는다. 다른 예로, 길이 방향으로 연장된 폴딩필름의 양면에 복수의 전극들을 소정의 간격으로 배열한 후 배열된 전극들과 함께 폴딩필름을 한쪽 방향으로 권취하여 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 권취된 폴딩필름의 사이에 전극들이 삽입된 구조를 갖는다. 상기 전극들의 배치 간격과 상기 전극의 극성은 폴딩필름에 접한 상부 전극과 하부 전극의 극성이 반대가 되도록 선택된다. 일례로, 양극/폴딩필름/음극/폴딩필름/양극...과 같은 전극조립체의 구조가 형성되도록 전극의 배치간격과 각 전극의 극성이 선택될 수 있다.
또 다른 예는, 폴딩필름의 한쪽 면에 음극, 양극, 음극, 양극...을 교대로 배치하고, 한쪽 방향으로 폴딩필름과 함께 배치된 전극을 절곡하여, 절곡된 폴딩필름 사이에 전극이 배치된 구조로 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 절곡하여 적층된 폴딩필름의 사이에 전극들이 삽입된 구조를 갖는다. 다른 예로, 길이 방향으로 연장된 폴딩필름의 양면에 복수의 전극들을 소정의 간격으로 배열한 후 배열된 전극들과 함께 폴딩필름을 절곡하여, 절곡된 폴딩필름 사이에 단위셀이 배치된 구조로 전극조립체를 제조할 수 있다. 이렇게 제조된 전극조립체는 절곡하여 적층된 폴딩필름의 사이에 전극들이 삽입된 구조를 갖는다. 상기 전극들의 배치 간격과 상기 전극의 극성은 폴딩필름에 접한 상부 전극과 하부 전극의 극성이 반대가 되도록 선택된다. 일례로, 양극/폴딩필름/음극/폴딩필름/양극...과 같은 전극조립체의 구조가 형성되도록 전극의 배치간격과 각 전극의 극성이 선택될 수 있다.
한편, 전극조립체의 제조에 사용되는 폴딩필름의 길이는 마지막 단위셀 또는 전극을 상기에서 설명한 방식으로 집합시킨 후, 전극조립체를 적어도 한번 이상 감쌀 수 있도록 선택될 수 있다. 다만, 상기의 전극조립체들은 여러 가지 다른 형태로 변형될 수 있으며, 또한 본 발명의 범위가 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1. 홈이 형성된 다공성 코팅층을 구비하는 세퍼레이터의 제조
폴리비닐리덴플로라이드-클로로드리프로로에틸렌 공중합체(PVdF-CTFE) 및 시아노에틸풀루란(cyanoethylpullulan)을 10:2의 중량비로 각각 아세톤에 첨가하여 50 ℃에서 약 12 시간 동안 용해시켜 고분자 용액을 제조하였다. Al2O3 분말을 고분자/무기물 입자 = 5/95 중량비가 되도록 상기 제조된 고분자 용액에 첨가하고, 12시간 동안 볼밀(ball mill)법을 이용하여 무기물 입자들을 파쇄 및 분산하여 슬러리를 제조하였다. 이렇게 제조된 슬러리의 무기물 입자의 입격은 평균 600 nm이었다.
두께 16 ㎛ 폴리올레핀 다공성 막(Celgard사, C210)을 기재로 하여, 다층 슬롯 다이 코터를 사용하여 하층부에는 상기 제조된 슬러리를 공급하여 일면에 4 ㎛ 두께로 연속적으로 코팅하였다. 상층부에는 아세톤에 4중량%으로 제조한 PVdF-CTFE 용액을 12mm 너비의 슬릿 내 격막을 통과하게 하여 줄무늬 형태의 홈을 갖는 미공팅부가 형성되도록 하였다. 이때 바인더 용액이 코팅된 영역의 두께는 0.5 ㎛(마이크로미터)이므로, 홈의 깊이는 다공성 코팅층 두께의 11%에 해당되며, 홈의 너비는 11 mm로 형성되었다. 이렇게 형성된 줄무늬 형태의 홈은 도 3에 나타내었다. 도 4는 세퍼레이터의 홈 경계면에서의 SEM 관찰 결과이다.
실시예 2. 홈이 형성된 다공성 코팅층을 구비하는 세퍼레이터의 제조
두께 16 ㎛ 폴리올레핀 다공성 막(Celgard사, C210)을 기재로 하여, 다층 슬롯 다이 코터를 사용하여, 물에 5중량%으로 제조한 스티렌 부타디엔 고무(SBR) 용액을 상층부의 코팅액으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 이렇게 형성된 세퍼레이터의 홈 경계면에서의 SEM 관찰결과는 도 5에 나타내었다.
비교예 1. 홈이 형성되지 않은 다공성 코팅층을 구비하는 세퍼레이터의 제조
폴리비닐리덴플로라이드-클로로드리프로로에틸렌 공중합체(PVdF-CTFE) 및 시아노에틸풀루란(cyanoethylpullulan)을 10:2의 중량비로 각각 아세톤에 첨가하여 50 ℃에서 약 12 시간 동안 용해시켜 고분자 용액을 제조하였다. Al2O3 분말을 고분자/무기물 입자 = 5/95 중량비가 되도록 상기 제조된 고분자 용액에 첨가하고, 12시간 동안 볼밀(ball mill)법을 이용하여 무기물 입자들을 파쇄 및 분산하여 슬러리를 제조하였다. 이렇게 제조된 슬러리의 무기물 입자의 입격은 평균 600 nm이었다.
두께 16 ㎛ 폴리올레핀 다공성 막(Celgard사, C210)을 기재로 하여, 다층 슬롯 다이 코터를 사용하여 하층부에는 상기 제조된 슬러리를 공급하여 일면에 4 ㎛ 두께로 연속적으로 코팅여 다공성 코팅층을 형성였다. 상층부에는 4중량%의 PVdF-CTFE 용액을 사용하여 두께는 0.5 ㎛이며 연속적인 코팅층을 형성하였다. 따라서 이러한 상층부의 코팅층 두께는 다공성 코팅층의 11%에 해당된다.
시험예 1. 전지의 전해액에 대한 젖음성 측정
실시예 1-2 및 비교예 1에서 제조된 세퍼레이터를 사용하여 스택셀(stack cell)을 제조하였다. 먼저, 상기 세퍼레이터를 2장을 준비하여, 이들 세퍼레이터의 사이에 음극을 개재시킨 후에, 다시 이들 세퍼레이터의 외면의 양면에 양극을 각각 위치시키고, 100 ℃의 온도에서 라미네이션하여, 실시예 1-2 및 비교예 1에서 제조된 세퍼레이터를 사용한 스택셀을 각각 제조하였다.
상기 제조된 스택셀의 한쪽 모서리를 전해액에 담그고, 2 시간 후에 전해액의 함침되는 높이를 측정하여 하기 표 1에 나타내었다.
표 1
전해액이 함침된 높이(mm) | |
실시예 1 | 92 |
실시예 2 | 84 |
비교예 1 | 67 |
상기 표 1에 나타난 바와 같이, 실시예 1-2와 비교예 1의 세퍼레이터를 사용한 경우에 전해액이 함침된 높이는 각각 92mm, 84mm, 67mm로, 세퍼레이터의 표면에 홈이 형성된 실시예 1-2의 경우가 비교예 1에 비하여 전해액에 대한 젖음성이 더 우수함을 알 수 있었다.
Claims (13)
- 다공성 기재;상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물입자와 바인더 고분자의 혼합물을 포함하는 다공성 코팅층을 구비하며,상기 다공성 코팅층의 표면에는 전해액이 스며들기 위한 연속 또는 불연속의 패턴층이 형성되어 있는 것을 특징으로 하는 세퍼레이터.
- 제1항에 있어서,상기 연속 또는 불연속의 패턴층은 상기 연속 또는 불연속적으로 형성된 홈인 것을 특징으로 하는 세퍼레이터.
- 제2항에 있어서,상기 홈의 깊이는 다공성 코팅층 두께의 1 내지 20%인 것을 특징으로 하는 세퍼레이터.
- 제2항에 있어서,상기 홈의 너비는 0.1 내지 50 mm인 것을 특징으로 하는 세퍼레이터.
- 제1항에 있어서,상기 다공성 기재는 폴리올레핀계 다공성 기재인 것을 특징으로 하는 세퍼레이터.
- 제5항에 있어서,상기 폴리올레핀계 다공성 기재는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐으로 이루어진 군으로부터 선택된 어느 하나의 고분자로 형성된 것을 특징으로 하는 세퍼레이터.
- 제1항에 있어서,상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 무기물 입자인 것을 특징으로 하는 세퍼레이터.
- 제7항에 있어서,상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zrx, Ti1-x)O3 (PZT, 0<x<1), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 0<x<1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터.
- 제7항에 있어서,상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터.
- 제1항에 있어서,상기 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 스티렌 부타디엔 고무(styrene butadiene rubber), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 군으로부터 선택된 어느 하나의 바인더 고분자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터.
- 제1항에 있어서,상기 무기물 입자 대 바인더 고분자의 조성비는 각각 독립적으로, 50:50 내지 99:1 중량비인 것을 특징으로 하는 세퍼레이터.
- 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전기화학소자에 있어서,상기 세퍼레이터가 제1항 내지 제11항 중 어느 한 항의 세퍼레이터인 것을 특징으로 하는 전기화학소자.
- 제12항에 있어서,상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11863245.4A EP2696395B1 (en) | 2011-04-06 | 2011-12-01 | Separator and electrochemical device including same |
CN201180069929.4A CN103460444B (zh) | 2011-04-06 | 2011-12-01 | 隔膜及包含该隔膜的电化学装置 |
JP2014502437A JP6095642B2 (ja) | 2011-04-06 | 2011-12-01 | セパレータ及びこれを備える電気化学素子 |
US13/688,401 US9276247B2 (en) | 2011-04-06 | 2012-11-29 | Separator and electrochemical device comprising the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110031829 | 2011-04-06 | ||
KR10-2011-0031829 | 2011-04-06 | ||
KR1020110127155A KR101281037B1 (ko) | 2011-04-06 | 2011-11-30 | 세퍼레이터 및 이를 구비하는 전기화학소자 |
KR10-2011-0127155 | 2011-11-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/688,401 Continuation US9276247B2 (en) | 2011-04-06 | 2012-11-29 | Separator and electrochemical device comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012138039A1 true WO2012138039A1 (ko) | 2012-10-11 |
WO2012138039A4 WO2012138039A4 (ko) | 2012-11-29 |
Family
ID=47283486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/009266 WO2012138039A1 (ko) | 2011-04-06 | 2011-12-01 | 세퍼레이터 및 이를 구비하는 전기화학소자 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2696395B1 (ko) |
JP (2) | JP6095642B2 (ko) |
KR (1) | KR101281037B1 (ko) |
CN (1) | CN103460444B (ko) |
WO (1) | WO2012138039A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101536560B1 (ko) * | 2014-12-30 | 2015-07-15 | 한밭대학교 산학협력단 | 패턴화된 세라믹 코팅 분리막 및 제조방법 그리고 이를 포함하는 이차전지 |
CN110247004A (zh) * | 2018-03-07 | 2019-09-17 | 丰田自动车株式会社 | 电池及其制造方法 |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101686599B1 (ko) * | 2012-11-14 | 2016-12-28 | 주식회사 엘지화학 | 패턴화된 다공성 코팅층을 포함하는 분리막 및 그의 제조방법 |
KR101636393B1 (ko) * | 2012-11-30 | 2016-07-05 | 주식회사 엘지화학 | 가스 배출성이 개선된 전기화학소자용 기재, 그의 제조방법 및 그를 포함하는 전기화학소자 |
KR101650418B1 (ko) * | 2012-11-30 | 2016-08-23 | 주식회사 엘지화학 | 가스 배출성이 개선된 전기화학소자용 세퍼레이터, 그의 제조방법 및 그를 포함하는 전기화학소자 |
JP6046486B2 (ja) * | 2012-12-26 | 2016-12-14 | 株式会社日本自動車部品総合研究所 | 二次電池及び組電池 |
US9680143B2 (en) | 2013-10-18 | 2017-06-13 | Miltec Uv International Llc | Polymer-bound ceramic particle battery separator coating |
JP6519998B2 (ja) * | 2014-07-11 | 2019-05-29 | 日産自動車株式会社 | 電気デバイス |
JP6585337B2 (ja) * | 2014-07-11 | 2019-10-02 | 株式会社エンビジョンAescジャパン | 電気デバイス |
US10818900B2 (en) | 2014-07-18 | 2020-10-27 | Miltec UV International, LLC | UV or EB cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof |
KR102246767B1 (ko) | 2014-08-13 | 2021-04-30 | 삼성에스디아이 주식회사 | 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법 |
KR101850583B1 (ko) | 2015-02-27 | 2018-05-31 | 주식회사 엘지화학 | 스택-폴딩형 전극 조립체 |
KR102604599B1 (ko) | 2015-04-02 | 2023-11-22 | 에스케이이노베이션 주식회사 | 리튬 이차전지용 복합 분리막 및 이의 제조방법 |
JP5979299B1 (ja) * | 2015-08-12 | 2016-08-24 | 宇部興産株式会社 | 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス |
CN114171851A (zh) * | 2015-08-17 | 2022-03-11 | 赛尔格有限责任公司 | 改进的电池隔板和相关方法 |
WO2017105156A1 (ko) * | 2015-12-18 | 2017-06-22 | 주식회사 엘지화학 | 분리막 및 이를 포함하는 전지 |
KR102065734B1 (ko) * | 2016-01-19 | 2020-01-13 | 주식회사 엘지화학 | 스택-폴딩형 전극 조립체 |
CN105742551A (zh) * | 2016-03-23 | 2016-07-06 | 上海恩捷新材料科技股份有限公司 | 一种电化学装置隔离膜及其制备方法和用途 |
JP2018125272A (ja) * | 2016-03-24 | 2018-08-09 | 三菱製紙株式会社 | リチウムイオン電池セパレータ |
PL3352248T3 (pl) | 2016-04-01 | 2020-06-29 | Lg Chem, Ltd. | Separator zawierający warstwę adhezyjną dla urządzenia elektrochemicznego i zespół elektrod go zawierający |
WO2018066968A1 (ko) * | 2016-10-04 | 2018-04-12 | 주식회사 엘지화학 | 열 안전성이 개선된 전극조립체 |
KR101944904B1 (ko) * | 2017-03-04 | 2019-02-01 | 에스에프에너지텍 주식회사 | 분리체 구비 전기 이중층 커패시터용 전극, 이를 갖는 전기 이중층 커패시터 셀 및 에너지 저장 장치 |
US10821521B2 (en) * | 2017-04-11 | 2020-11-03 | Hamilton Sunstrand Corporation | Article surface finishing method |
WO2019034143A1 (en) * | 2017-08-18 | 2019-02-21 | Shanghai Energy New Materials Technology Co., Ltd. | SEPARATORS AND ELECTROCHEMICAL DEVICES COMPRISING THE SEPARATOR |
KR102170661B1 (ko) * | 2017-12-27 | 2020-10-27 | 주식회사 엘지화학 | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자 |
WO2020066108A1 (ja) * | 2018-09-25 | 2020-04-02 | パナソニックIpマネジメント株式会社 | セパレータおよび非水電解質二次電池 |
KR20210080541A (ko) | 2018-11-15 | 2021-06-30 | 어드밴스드 배터리 컨셉츠, 엘엘씨 | 배터리 조립체의 전력 및 에너지 밀도의 밸런싱에 유용한 활물질 |
JP7277234B2 (ja) * | 2019-04-16 | 2023-05-18 | 住友化学株式会社 | 非水電解液二次電池用積層セパレータ |
WO2020243093A1 (en) | 2019-05-24 | 2020-12-03 | Advanced Battery Concepts, LLC | Battery assembly with integrated edge seal and methods of forming the seal |
CN110571394B (zh) * | 2019-08-07 | 2023-01-31 | 深圳市星源材质科技股份有限公司 | 一种陶瓷浆料和陶瓷涂覆隔膜 |
JP7296042B2 (ja) * | 2019-10-18 | 2023-06-22 | トヨタ自動車株式会社 | 非水電解液二次電池 |
CN115836405A (zh) * | 2020-03-16 | 2023-03-21 | 高级电池概念有限责任公司 | 电池组件、制备方法及其热控制 |
KR20220000064A (ko) * | 2020-06-25 | 2022-01-03 | 주식회사 엘지에너지솔루션 | 바인더층이 형성된 전극 및 이의 제조방법 |
US20220311092A1 (en) * | 2020-08-14 | 2022-09-29 | Ubatt Inc. | Separator for electrochemical device |
EP4261971A1 (en) * | 2020-12-08 | 2023-10-18 | Panasonic Energy Co., Ltd. | Non-aqueous electrolyte secondary battery |
CN112952296A (zh) * | 2021-03-19 | 2021-06-11 | 合肥国轩高科动力能源有限公司 | 一种离子膜及其制备方法以及半固态电解质电池 |
KR20230052253A (ko) * | 2021-10-12 | 2023-04-19 | 주식회사 엘지에너지솔루션 | 전기화학소자용 분리막 및 이를 포함하는 전기화학소자 |
CN115832610A (zh) * | 2022-01-30 | 2023-03-21 | 北京卫蓝新能源科技有限公司 | 一种功能化的锂电池隔膜及其制备方法和应用 |
CN115832622A (zh) * | 2022-01-30 | 2023-03-21 | 北京卫蓝新能源科技有限公司 | 一种高功率、长循环、高安全锂电池复合隔膜及其制备方法和应用 |
US20230246295A1 (en) * | 2022-01-31 | 2023-08-03 | GM Global Technology Operations LLC | Coated separators for electrochemical cells and methods of forming the same |
WO2024143346A1 (ja) * | 2022-12-26 | 2024-07-04 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよび電解コンデンサの製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030010406A (ko) * | 2001-07-27 | 2003-02-05 | 주식회사 뉴턴에너지 | 다공성 격리막 및 이의 제조방법 |
KR20060063751A (ko) * | 2004-12-07 | 2006-06-12 | 주식회사 엘지화학 | 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자 |
KR20070000231A (ko) | 2005-06-27 | 2007-01-02 | 주식회사 엘지화학 | 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자 |
KR20090083854A (ko) * | 2008-01-30 | 2009-08-04 | 주식회사 엘지화학 | 전극에 대한 결착성이 개선된 세퍼레이터 및 이를 구비한 전기화학소자 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62105412A (ja) * | 1985-11-01 | 1987-05-15 | 株式会社村田製作所 | 電気二重層コンデンサ |
JP3303694B2 (ja) * | 1996-12-17 | 2002-07-22 | 三菱電機株式会社 | リチウムイオン二次電池及びその製造方法 |
TWI283493B (en) * | 2003-05-30 | 2007-07-01 | Lg Chemical Ltd | Rechargeable lithium battery using separator partially coated with gel polymer |
EP1659650A4 (en) * | 2004-03-30 | 2008-12-24 | Panasonic Corp | NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
CN100394632C (zh) * | 2004-03-30 | 2008-06-11 | 松下电器产业株式会社 | 非水电解液二次电池 |
JP4657001B2 (ja) * | 2004-05-25 | 2011-03-23 | パナソニック株式会社 | リチウムイオン二次電池およびその製造方法 |
US7875391B2 (en) * | 2004-05-25 | 2011-01-25 | Panasonic Corporation | Lithium ion secondary battery and method for manufacturing same |
JP4581547B2 (ja) * | 2004-08-05 | 2010-11-17 | パナソニック株式会社 | 非水電解液二次電池 |
EP1935621B1 (en) * | 2005-09-22 | 2012-06-06 | Mitsubishi Plastics, Inc. | Process for producing porous laminate and porous laminate |
JP4546910B2 (ja) * | 2005-09-22 | 2010-09-22 | 三菱樹脂株式会社 | 多孔積層体の製造方法および多孔積層体 |
KR100966024B1 (ko) * | 2007-04-24 | 2010-06-24 | 주식회사 엘지화학 | 이종의 세퍼레이터를 구비한 전기화학소자 |
ITPD20070356A1 (it) * | 2007-10-24 | 2009-04-25 | Orv Spa | Elemento distanziatore per accumulatori al piombo del tipo gelled o per accumulatori del tipo ad acido libero |
KR100947181B1 (ko) * | 2007-11-19 | 2010-03-15 | 주식회사 엘지화학 | 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자 |
JP5719306B2 (ja) * | 2009-08-10 | 2015-05-13 | エルジー・ケム・リミテッド | リチウム二次電池 |
DE102009055944B4 (de) * | 2009-11-26 | 2013-08-08 | Continental Automotive Gmbh | Separator für eine elektrochemische Zelle und elektrochemische Zelle mit einem solchen Separator |
-
2011
- 2011-11-30 KR KR1020110127155A patent/KR101281037B1/ko active IP Right Grant
- 2011-12-01 JP JP2014502437A patent/JP6095642B2/ja active Active
- 2011-12-01 WO PCT/KR2011/009266 patent/WO2012138039A1/ko active Application Filing
- 2011-12-01 CN CN201180069929.4A patent/CN103460444B/zh active Active
- 2011-12-01 EP EP11863245.4A patent/EP2696395B1/en active Active
-
2015
- 2015-08-07 JP JP2015157010A patent/JP6265552B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030010406A (ko) * | 2001-07-27 | 2003-02-05 | 주식회사 뉴턴에너지 | 다공성 격리막 및 이의 제조방법 |
KR20060063751A (ko) * | 2004-12-07 | 2006-06-12 | 주식회사 엘지화학 | 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자 |
KR20070000231A (ko) | 2005-06-27 | 2007-01-02 | 주식회사 엘지화학 | 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자 |
KR20090083854A (ko) * | 2008-01-30 | 2009-08-04 | 주식회사 엘지화학 | 전극에 대한 결착성이 개선된 세퍼레이터 및 이를 구비한 전기화학소자 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2696395A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101536560B1 (ko) * | 2014-12-30 | 2015-07-15 | 한밭대학교 산학협력단 | 패턴화된 세라믹 코팅 분리막 및 제조방법 그리고 이를 포함하는 이차전지 |
CN110247004A (zh) * | 2018-03-07 | 2019-09-17 | 丰田自动车株式会社 | 电池及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20120114142A (ko) | 2012-10-16 |
JP2014509777A (ja) | 2014-04-21 |
EP2696395B1 (en) | 2017-11-22 |
KR101281037B1 (ko) | 2013-07-09 |
WO2012138039A4 (ko) | 2012-11-29 |
CN103460444A (zh) | 2013-12-18 |
EP2696395A1 (en) | 2014-02-12 |
CN103460444B (zh) | 2016-06-08 |
JP6265552B2 (ja) | 2018-01-24 |
JP2016026371A (ja) | 2016-02-12 |
EP2696395A4 (en) | 2014-10-29 |
JP6095642B2 (ja) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012138039A1 (ko) | 세퍼레이터 및 이를 구비하는 전기화학소자 | |
WO2013070031A1 (ko) | 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2012128440A1 (ko) | 전극조립체 및 이의 제조방법 | |
KR101358761B1 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2011105866A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
WO2011040704A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
WO2013005898A1 (ko) | 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자 | |
WO2009110726A2 (en) | Separator having porous coating layer and electrochemical device containing the same | |
WO2013058421A1 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2011105865A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
WO2009096671A2 (en) | Separator for progressing united force to electrode and electrochemical containing the same | |
WO2014073937A1 (ko) | 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자 | |
WO2013157902A1 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자 | |
WO2010076989A2 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2012046966A2 (ko) | 사이클 특성이 개선된 전기화학소자 | |
WO2011065765A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자 | |
WO2010024559A2 (ko) | 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 | |
WO2013100519A1 (ko) | 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자 | |
WO2010027203A2 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
WO2013066052A1 (ko) | 세퍼레이터 및 이를 구비한 전기화학소자 | |
US9276247B2 (en) | Separator and electrochemical device comprising the same | |
WO2016171519A1 (ko) | 리튬 이차전지용 분리막 및 그의 제조방법 | |
WO2017010779A1 (ko) | 세퍼레이터 및 이를 포함하는 전기화학소자 | |
KR101499676B1 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
KR20120086038A (ko) | 이차전지용 전극조립체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11863245 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011863245 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014502437 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |