CN110858660A - 锂离子电池及其制备方法和电动车辆 - Google Patents

锂离子电池及其制备方法和电动车辆 Download PDF

Info

Publication number
CN110858660A
CN110858660A CN201810971205.2A CN201810971205A CN110858660A CN 110858660 A CN110858660 A CN 110858660A CN 201810971205 A CN201810971205 A CN 201810971205A CN 110858660 A CN110858660 A CN 110858660A
Authority
CN
China
Prior art keywords
solid electrolyte
electrolyte layer
layer
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810971205.2A
Other languages
English (en)
Other versions
CN110858660B (zh
Inventor
郭姿珠
谢静
马永军
易观贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201810971205.2A priority Critical patent/CN110858660B/zh
Priority to PCT/CN2019/084567 priority patent/WO2020038011A1/zh
Publication of CN110858660A publication Critical patent/CN110858660A/zh
Application granted granted Critical
Publication of CN110858660B publication Critical patent/CN110858660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供了一种锂离子电池以及制备方法和电动车辆,所述锂离子电池包括正极、负极以及位于正极和负极之间的复合固态电解质层,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在所述正极侧固态电解质层和负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括第二无机固态电解质,所述复合固态电解质可以延缓锂枝晶穿透电解质层造成电池内部微短路的问题,并能避免电解质层被锂枝晶还原失效的问题,进而使得整个电池的循环性能和安全性能大大提高。

Description

锂离子电池及其制备方法和电动车辆
技术领域
本发明属于锂离子电池领域,尤其涉及锂离子电池和电动车辆。
背景技术
全固态锂电池中硫化物固态电解质材料由于具有优异的Li+电导率及加工性能等备受关注,常见的硫化物固态电解质材料有Li2S-SiS2、Li2S-P2S5、Li2S-GeS2-P2S5等。目前文献和研究的基于硫化物固态电解质的全固态锂电池中的电解质层为Li2S-SiS2、Li2S-P2S5、Li2S-GeS2-P2S5中的一种或多种。2011年,日本东京工业大学Kamaya等与丰田汽车公司及高能量加速器研究机构的研究小组(Nature Materials, 2011, 10:682-686)开发出迄今为止离子电导率最高的超离子导电体—Li10GeP2S12,室温离子电导率高达12 mS cm-1,并随后推出In/Li10GeP2S12/LiCoO2和Li-In/Li10GeP2S12/LiCoO2全固态锂电池体系。由于Li10GeP2S12与金属锂界面稳定性差,不能直接与金属锂匹配构建全固态锂电池,针对该问题,Trevey等(Electrochimica Acta, 2011, 56:4243-4247)提出具有双电解质结构的Li/Li2S-P2S5/Li2S-GeS2-P2S5/LiCoO2电池体系,中间电解质层Li2S-P2S5的加入有效地提高了Li2S-GeS2-P2S5电解质与锂负极接触界面的化学和电化学稳定性。
现有技术存在以下几大缺点:①若只采用Li10GeP2S12作为电解质层,负极不能采用金属锂,匹配其他负极材料则会极大地降低电池体系的能量密度;②Li2S-P2S5电解质与金属锂之间的界面稳定性较高,但是若只用Li2S-P2S5电解质匹配金属锂负极时,充放电过程中Li2S-P2S5内部易形成纳米锂枝晶造成电池微短路。③双层电解质结构可以避免Li10GeP2S12与金属锂的直接接触,但是从Li2S-P2S5电解质层形成的纳米锂枝晶仍然会与Li10GeP2S12接触,并且由于Li10GeP2S12与纳米锂枝晶的还原产物具有较好的电子电导,会导致Li10GeP2S12层持续性的被还原,最终导致双层电解质结构中Li10GeP2S12层失去Li+传导,电池失效。④Li10GeP2S12中的“Ge”属于稀有金属,价格昂贵,Li10GeP2S12在电池体系中的大规模应用必会导致电池成本的增加。
发明内容
本发明的在于提供一种固态电解质与金属负极界面稳定性高且电池内部微短路大大降低因而具有良好充放电性能和循环性能的锂离子电池及其制备方法和含有该电池的电动车辆。
为了实现上述目的,本发明提供了一种锂离子电池,包括正极、负极以及位 于正极和负极之间的复合电解质层。
与现有技术相比,本发明具有的有益效果为,本发明的复合固态电解质为三层结构,负极侧固态电解质层与金属负极界面稳定性高;中间层固态电解质层可以大大减少锂枝晶穿透整个复合固态电解质而导致内部微短路的问题,且离子电导率高,不易被金属负极还原;正极侧固态电解质层可以有效降低中间层固态电解质层被电化学反应后与正极之间直接接触形成高的界面阻抗,将上述复合固态电解质用于锂离子电池,复合固态电解质层与层之间相互作用,使电池的充放电性能和循环性能以及安全性能大大提高。
附图说明
附图1为本发明的实施例1、对比例2和对比例5提供的复合固态电解质对金属锂负极稳定性测试结果;
附图2为本发明的实施例1、对比例2和对比例5提供的锂离子电池首次充放电曲线。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更佳清楚明白,一下结合实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解决本发明,并不用于限定本发明。
本发明提供了一种锂离子电池,包括正极、负极以及位于正极和负极之间的复合固态电解质层,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在正极侧固态电解质层、负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括结第二无机固态电解质第二无机固态电解质。
根据本发明,所述第一无机固态电解质选自化学式为x1Li2X-(100-x1)P2X5的固态电解质中的一种或多种,其中,70≤x1≤85,且x为整数,X=O、S、Se中的一种或多种。所述化学式为x1Li2X-(100-x1)P2X5的固态电解质可以为玻璃态的、陶瓷态的、也可以为玻璃陶瓷态。本发明对正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层中含有的第一无机固态电解质的组成配比和晶体结构是否一致不做限定,三层固态电解层中的第一无机固态电解质的组成配比和/或晶体结构可以相同也可以不同,优选相同,可以优化工艺流程,达到相同的效果。
优选的,所述第一无机固态电解质选自70Li2X-30P2X5、75Li2X-25P2X5、80Li2X-20P2X5中的一种或多种,例如,70Li2S-30P2S5、75Li2S-25P2S5、80Li2S-20P2S5、70Li2O-30P2O5、75Li2O-25P2O5、80Li2O-20P2O5,70Li2Se-30P2Se5、75Li2Se-25P2Se5、80Li2Se-20P2Se5中的一种或多种。本申请的发明人经过多次实验后发现当第一无机固态电解质选自上述几种时,将该复合固态电解质应用于锂离子电池时,所述电池的综合性能较优。
作为本发明的第一无机固态电解质可以是市售品,也可以通过本领域常规的方法制备,本发明优选采用的第一无机固态电解质的制备过程可以参考中国发明专利CN201510695407.5所记载的。
根据本发明,所述第二无机固态电解质选自锂磷氧氮固态电解质、NASICON型固态电解质和化学式为Li10±1MA2N12的固态电解质中的一种或多种,其中,M为Si、Ge、Sn、B中的一种或多种,A为P/或As,N为O、S、Se中的一种或多种。
作为本发明的第二无机固态电解质可以是市售品,也可以通过本领域常规的方法制备,本申请不作限定。
进一步的,所述化学式为Li10±1MA2N12的固态电解质选自选自Li10SnP2S12、Li10GeP2S12、Li10SiP2S12中的一种或多种,本申请的发明人经过多次实验后发现当第二无机固态电解质选自上述几种时,将该固态电解质应用于锂离子电池时,所述电池的综合性能较优。
根据本发明,所述锂磷氧氮固态电解质可以为玻璃态锂磷氧氮、陶瓷态锂磷氧氮和玻璃陶瓷态锂磷氧氮中的一种。
作为本发明的锂磷氧氮固态电解质可以是市售品,也可以通过本领域常规的方法制备,本申请不作限定。
优选的,所述锂磷氧氮固态电解质选自玻璃态的锂磷氧氮固态电解质,电解质颗粒之间的界面电荷迁移电阻小、室温离子电导率高,制备工艺简单。
根据本发明,所述NASICON型固态电解质选自Li1+x4Bx4T2-x4(PO4)3中的一种或多种,其中, B为Al,Cr,Ga,Fe,Sc,In,Lu,Y,La中的一种或多种,T为Ti和或Ge ,0≤x4≤2。
作为本发明的NASICON型固态电解质可以是市售品,也可以通过本领域常规的方法制备,本申请不作限定。
优选的,所述NASICON型固态电解质选自Li1.3Al0.3Ti1.7(PO4)3、Li1.5Cr0.5Ti1.5(PO4)3、Li1.5Al0.5Ge1.5(PO4)3、Li1.5Al0.4Cr0.1Ge1.5(PO4)3中的一种或多种,本申请的发明人经过多次实验后发现当NASICON型固态电解质选自上述几种时,将该固态电解质应用于锂离子电池时,所述电池的综合性能较优。
根据本发明提供的锂离子电池,其电池结构可以表示为正极/正极侧固态电解质/中间层固态电解质/负极侧固态电解质/负极,如上所述,正极侧固态电解质、中间层固态电解质层和负极侧固态电解质均含有第一无机固态电解质,但对于三者中的第一无机固态电解质是否一致,本申请不做限定,中间层固态电解质层除了含有第一无机固态电解质外,还包括第二无机固态电解质,例如,可以是第一无机固态电解质和化学式为Li10±1MA2N12的固态电解质的混合物,或者是第一无机固态电解质与锂磷氧氮固态电解质的混合物,也可以是第一无机固态电解质与NASICON型固态电解质的混合物。
具有上述三层结构的复合固态电解质层特别适用于负极包括金属锂或者锂合金的电池,当将具有上述三层结构的复合固态电解质应用于负极为金属锂或者锂合金的电池时,负极侧的固态电解质与金属锂或者锂合金的负极的界面稳定好,不易形成较大的界面阻抗。现有技术中常常采用Li2S-P2S5电解质匹配金属锂负极时,充放电过程中,金属锂沉积优先沿着Li2S-P2S5电解质层的缝隙生长或因为应力大而挤开Li2S-P2S5电解质层,使得Li2S-P2S5内部易形成纳米锂枝晶,持续生长的纳米锂枝晶会刺穿现有的电解质层使电池正负极接触而造成微短路;本公开采用三层结构的复合固态电解层,负极侧固态电解质层产生锂枝晶后,锂枝晶刺穿负极侧固态电解质层与中间层固态电解质层接触,中间层固态电解质层中的第二无机固态电解质与纳米锂枝晶发生氧化还原反应,锂枝晶被氧化,即,本公开提供的复合固态电解质层可以有效延缓锂枝晶刺穿整个电解质层而尽量避免造成电池微短路问题。当中间层固态电解质中仅含有第二无机固态电解质时,其被纳米锂枝晶还原后的物质具有较好的电子电导,会导致第二无机固态电解质被持续还原,最终使中间层固态电解质层失去锂离子传导,导致电池失效,在中间层固态电解质层中添加第一无机固态电解质可以提供锂离子传输通道,从而避免或者缓解中间层固态电解质被金属负极完全还原引起的电池失效问题,另外中间层固态电解质中的第二无机固态电解质被持续还原后如果与正极直接接触,由于不具有导锂性,会形成高的界面阻抗,影响锂离子的传导,因此在中间层固态电解质层与正极之间加入正极侧固态电解质可以避免第二无机固态电解质被电化学反应后与正极直接接触,从而有效降低中间层固态电解质层与正极之间的界面阻抗。上述复合固态电解质层中的三层固态电解质层之间存在相互协同作用,使得采用该复合固态电解质的锂离子电池的循环性能和充放电性能大大提高。
本发明中,所述负极包括负极集流体和位于负极集流体表面的负极材料;所述负极材料包括负极活性材料,所述负极活性材料包括锂金属或锂合金。具体的,所述锂金属负极活性材料包括锂箔、锂薄膜、稳定化锂粉、锂带中的一种;所述锂合金包括锂-硅-碳或者硼、镓、铟、铝、磷、铅、锗、锡中的一种或多种与锂形成的合金;锂-硅-碳负极活性材料包括预嵌锂后的硅-碳负极,硅碳负极与锂带、锂粉、锂薄膜等复合在一起的负极活性材料;所述负极集流体包括铜箔、铜网、镍网、镍箔、泡沫铜、泡沫镍、不锈钢网、不锈钢带中的一种。
本发明中,所述复合固态电解质的厚度为1μm-100um,对正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层的厚度,不作特殊要求,尽可能的致密和薄即可,优选的,所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层的厚度之比为10-80:10-80:10-80,本申请的发明人经过多次实验后发现,当复合固态电解质的三层的厚度基于上述范围时,既可以更好的缓解锂枝晶刺穿复合固态电解质造成的电池内部微短路的现象,又可以降低正负极界面阻抗导致的极化问题,将该复合固态电解质应用于电池,所述电池的综合性能最优。
根据本发明,优选的,在所述中间层固态电解质层中,所述第二无机固态电解质占中间层固态电解质层总重量的1%~90%,进一步优选为10%~70%,采用上述重量比范围的第一固态电解质,既能够及时的反应掉从负极层固态电解质侧穿透生成的纳米锂枝晶,从而大大减少由于锂枝晶刺穿整个复合电解质层造成的电池内部微短路问题,同时又能够获得最为合适的防止被金属负极还原的效果和尽可能高的锂离子电导率。
本发明中,对于正极没有特殊限制,具体可以采用现有锂电池中通常采用的正极。具体的,所述正极包括正极集流体和位于正极集流体表面的正极材料。
所述正极集流体的种类为本领域技术人员所公知,例如,可以选自铝箔、铜箔、或者冲压钢带。
上述正极材料包括正极活性物质、导电剂和第四粘结剂。
优选地,所述正极活性材料选自LiFexMnyMzPO4(0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1,其中M为Al、Mg、Ga 、Ti、Cr、Cu、Zn、Mo中的至少一种)、Li3V2(PO4)3、Li3V3(PO4)3、LiNi0.5- xMn1.5-yMx+yO4(-0.1≤x≤0.5, 0≤y≤1.5,M为Li、Co、Fe、Al、Mg、Ca 、Ti、Mo、Cr、Cu、Zn中的至少一种,)、LiVPO4F、Li1+xL1-y-zMyNzO2(L、M、N 为Li、Co、Mn、Ni、Fe、Al、Mg、Ga 、Ti、Cr、Cu、Zn、Mo、F、I、S、B中的至少一种,-0.1≤x≤0.2,0≤y≤1,0≤z≤1,0≤y+z≤1.0)、Li2CuO2、Li5FeO4、硫、硫化锂、V2O5、MnO2、TiS2、FeS2中的一种或多种,采用所述正极活性材料的固态锂电池可获得较高的比能量。
进一步优选地,所述正极活性材料选自LiAl0.05Co0.15Ni0.80O2、LiNi0.80Co0.10Mn0.10O2、LiNi0.60Co0.20Mn0.20O2、LiCoO2、LiMn2O4、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、LiNi0.5Mn1.5O4、Li3V3(PO4)3等中的一种或多种,所述正极活性材料比容量高、工艺制备简单,成本较低。
本发明对所述导电剂没有特别限制,可以为本领域常规的正极导电剂,比如乙块黑、碳纳米管、HV、碳黑中的至少一种。其中,以正极活性物质的重量为基准,所述导电剂的含量为0.1~20wt% ,优选为1~10wt%。
所述第四粘结剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF) 、聚四氟乙烯(PTFE) 和丁苯橡胶(SBR) 中的一种或几种。一般来说,根据所用粘合剂种类的不同,以正极活性物质的重量为基准,第四粘结剂的含量为0. 01 -10wt % ,优选为0. 02-5wt%。
本发明还提供了一种上述锂离子电池的制备方法,该方法包括:将第一固态电解质浆料涂布于支撑体上,烘干得到正极侧固态电解质层或负极侧固态电解质层;在所述正极侧固态电解质层表面或负极侧固态电解质层表面涂覆第二固态电解质浆料,得到中间层固态电解质层,在所述中间层固态电解质层表面涂覆第三固态电解质浆料,烘干得到所述复合固态电解质,然后将正极、复合固态电解质、负极压制成型,得到所述锂离子电池。
对于上述制备方法,可以先制备正极侧固态电解质层,也可以先制作负极侧固态电解质层,本申请不作限定。例如,先制作正极侧固态电解质层,相应的,在正极侧固态电解质层表面涂覆第二固态电解质获得正极侧固态电解质层/中间层固态电解质层的双层结构、再涂覆第三固态电解质浆料后,获得正极侧固态电解质层/中间层固态电解质层/负极侧固态电解质层的三层结构。
本发明对上述锂离子电池的先后制备的顺序可以有所不同,本申请不作限定。
例如,先制备复合固态电解质层,再将正极、复合固态电解质层和负极依次层压,得到所述锂离子电池,还可以形成具有双层结构的第一复合体,所述第一复合体包括正极以及位于正极表面的正极侧固态电解质层,然后在正极侧固态电解质层表面依次形成中间层固态电解质层和负极侧固态电解质层,最后将负极置于负极侧固态电解质层上压制成型,也可以先将负极和负极侧固态电解质质层和中间层固态电解质层形成第二复合体,再将第二复合体与第一复合体层叠,使正极侧固态电解质层和中间层固态电解质层接触,然后压制成型。
下面对先获得复合固态电解质层,然后将再将正极、复合固态电解质层和负极按照固定的顺序层压,得到所述锂离子电池的方法进行详细描述。
首选,获得正极侧固态电解质层。此时制备正极侧固态电解质层的方法采用涂布的方法,具体包括:在支撑体上涂布第一固态电解质浆料,然后在40°C~100°C下烘干。所述第一固态电解质浆料包括第一无机固态电解质、第一粘结剂和第一溶剂,以所述第一固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%~69.7%,第一粘结剂的占比为0.03%~7%,第一溶剂占比30%-70%;对于第一溶剂,用于将第一无机固态电解质分布其中,形成浆料,利于涂布。在后续干燥过程中,上述第一溶剂被先除去。
其次,在正极侧固态电解质层表面获得中间层固态电解质层,此时制备中间层固态电解质层的方法采用涂布的方法,具体包括:在烘干后的正极侧固态电解质层表面涂布第二固态电解质浆料,然后在40°C~100°C 下烘干。所述第二固态电解质浆料包括第一无机固态电解质、第二无机固态电解质、第二粘结剂和第二溶剂,以所述第二固态电解质浆料的重量为基准,所述第一无机固态电解质占比1%~68.7%,第二无机固态电解质占比1%~68.7%,第二粘结剂的占比为0.03%~7%,第二溶剂的占比为30%-70%,对于第二溶剂,与上述第一溶剂的作用相同。
再次,获得负极侧固态电解质层,此时制备负极侧固态电解质层的方法采用涂布的方法,具体包括:在烘干后的中间层固态电解质层表面涂布第三固态电解质浆料,然后在40°C~100°C 下烘干。所述第三固态电解质浆料包括第一无机固态电解质、第三粘结剂和第三溶剂,以所述第三固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%-69.7%,第三粘结剂的占比为0.03%~7%,第三溶剂的占比为30%-70%;对于第三溶剂,与上述第一溶剂的作用相同。
对于上述制备方法,所述第一固态电解质浆料、第二固态电解质浆料和第三固态电解质浆料中的第一无机固态电解质的种类可以相同也可以不同,含量可以相同也可以不同,本申请不作限定。
对于上述制备方法,所述第一粘结剂、第二粘结剂和第三粘结剂的种类可以相同也可以不同,各自独立的选自聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚氧化乙烯(PEO)和丁苯橡胶(SBR)中的一种或多种;所述第一粘结剂、第二粘结剂和第三粘结剂的含量可以相同也可以不同,本申请不作限定。
对于上述制备方法,所述第一溶剂、第二溶剂和第三溶剂的种类可以相同也可以不同,各自独立的选自二甲苯、甲苯、正庚烷、乙腈、二氯甲烷中的一种或多种;所述第一溶剂、第二溶剂和第三溶剂的含量可以相同也可以不同,本申请不作限定。
对于上述复合电解质层的制备中,所述支撑体用于辅助电解质浆料的铺展,支撑体与电解质浆料之间的粘附不强,电解质浆料在烘干后,电解质可以从支撑体表面取下来,所述支撑体为本领域常规使用的,例如,支撑体选自聚酯薄膜(PET膜)、聚酰亚胺膜(PI膜)。
接下来,获得正极,所述正极包括正极集流体以及位于正极集流体表面的正极材料。上述正极可直接获取或自行制备。自行制备时,其具体制备方法是本领域技术人员所熟知的,例如将正极浆料涂覆在正极集流体上,经干燥、压延制备得到。其中,正极浆料包括正极活性物质、导电剂、第四粘结剂和溶剂。上述正极活性物质、导电剂、第四粘结剂所采用的物质以及各自的添加量如前文所述,在此不再赘述。上述溶剂用于将正极活性物质、导电剂、第四粘结剂分布于其中,形成浆料状,利于涂布。在后续干燥过程中,上述溶剂被除去。溶剂所采用的具体物质以及添加量是本领域技术人员所知晓的,在此不再赘述。
接下来获得负极,所述负极包含锂金属、锂-硅-碳、可与锂形成合金的其它负极材料。其中锂金属负极活性材料包括锂箔、锂薄膜、稳定化锂粉、锂带等。锂-硅-碳负极活性材料包括预嵌锂后的硅-碳负极,硅碳负极与锂带、锂粉、锂薄膜等复合在一起的负极活性材料。可与锂形成合金的负极活性材料包括硼、镓、铟、铝、磷、铅、锗、锡。其中负极还包含铜箔、铜网、镍网、镍箔、泡沫铜、泡沫镍、不锈钢网、不锈钢带等集流体。自行制备时,其具体制备方法是本领域技术人员所熟知的,例如将锂薄膜压制在铜箔集流体上,制作获得锂负极。
最后,将正极、复合电解质层、负极按照顺序依次层叠得到所述电解质。所述压制成型的方法为热辊压。
本法明的第三个目的提供了一种锂离子电池,由上述制备方法制备得到。
本发明的第三个目的提供了一种电动车辆,含有上述提供的锂离子电池。
以下,通过实施例对本发明进行进一步的说明。
实施例1
正极侧固态电解质层的制作:
将4.85g 70Li2S-30P2S5硫化物固体电解质(其制备方法参照中国发明专利CN201510695407.5)和0.15g丁苯橡胶(SBR)加入到6.0 g无水正庚烷中,然后在真空搅拌机中搅拌,形成稳定均一的第一固态电解质浆料;将第一固态电解质浆料均匀地间歇涂布在PET膜上,于~80℃下干燥,滚压处理,得到正极侧固态电解质层,涂覆厚度为10 μm。
中间层固态电解质层的制作:
将2.85g硫化物固体电解质70Li2S-30P2S5、2.0g Li10SnP2S12电解质和0.15g SBR加入到6.0 g无水正庚烷中,然后在真空搅拌机中搅拌,形成稳定均一的第二固态电解质浆料;将第二固态电解质浆料均匀地间歇涂布在正极侧固态电解质膜上,于~80℃下干燥,滚压处理,得到中间层固态电解质层,涂覆厚度为15 μm。
负极侧固态电解质层的制作:
将4.85g70Li2S-30P2S5硫化物固体电解质和0.15gSBR加入到6.0 g无水正庚烷中,然后在真空搅拌机中搅拌,形成稳定均一的第三固态电解质浆料;将第三固态电解质浆料均匀地间歇涂布在中间层固态电解质层上,于~80℃下干燥,滚压处理,涂覆厚度为10 μm,得到复合固态电解质层,将其裁剪为15mm直径的电解质圆片,记为C1。
正极的制作:
将6.0mg LiCoO2、3mg固体电解质70Li2S-30P2S5、0.7mg导电剂(乙炔黑)和0.3mg SBR加入到12.0 g无水甲苯中,然后在真空搅拌机中搅拌,形成稳定均匀的正极浆料,其中,搅拌的速度为1000 rmp,时间为12 h;然后将得到的浆料单面涂覆在集流体铝片上,然后在80℃下烘干,经过辊压机压片后得到正极片,再裁剪成直径为15.0mm的圆片。
负极的制作:
将30 μm锂薄膜压制在铜箔集流体上,并使用裁片将锂片裁剪成直径为15 mm的锂负极圆片。
电池的组装
使用CR2025电池壳组装扣式电池。首先将正极居中放置在正极壳中,然后依次放入复合电解质层,负极,并施加0.1~1 MPa的压力以压紧,随后进行封装即得到锂离子电池S1。
实施例2
按照实施例1的方法制备复合电解质C2和扣式电池S2,所不同的是,在制作中间层固态电解质层,用玻璃态的Li3PO3.6N0.4替换Li10SnP2S12电解质。
实施例3
按照实施例1的方法制备复合电解质C3和扣式电池S3,所不同的是,在制作中间层固态电解质层,用Li1.3Al0.3Ti1.7(PO4)3替换Li10SnP2S12电解质。
实施例4
按照实施例1的方法制备复合电解质C4和扣式电池S4,所不同的是,在制作正极侧固态电解质层,用75Li2S-24P2S5- P2O5替换70Li2S-30P2S5电解质。
实施例5
按照实施例1的方法制备复合电解质C5和扣式电池S5,所不同的是,在制作正极侧固态电解质层,用80Li2S-20P2S5替换70Li2S-30P2S5电解质。
实施例6
按照实施例1的方法制备复合电解质C6和扣式电池S6,所不同的是,复合固态电解质的总厚度为100 um,正极侧固态电解质的涂覆厚度为30 um,中间层固态电解质的涂覆厚度为40 um,负极侧固态电解质的涂覆厚度为30 um。
实施例7
按照实施例1的方法制备复合电解质C7和扣式电池S7,所不同的是,复合固态电解质的总厚度为1um,正极侧固态电解质的涂覆厚度为0.3 um,中间层固态电解质的涂覆厚度为0.4 um,负极侧固态电解质的涂覆厚度为0.3 um。
实施例8
按照实施例1的方法制备复合电解质C8和扣式电池S8,所不同的是,在制备中间层固态电解质时,Li10SnP2S12的加入量为6.65g。
实施例9
按照实施例1的方法制备复合电解质C9和扣式电池S9,所不同的是,在制备中间层固态电解质时,Li10SnP2S12的加入量为0.317 g。
实施例10
按照实施例1的方法制备复合电解质C10和扣式电池S10,所不同的是,在制备中间层固态电解质时,Li10SnP2S12的加入量为2.85 g。
实施例11
按照实施例1的方法制备复合电解质C11和扣式电池S11,所不同的是,在制备中间层固态电解质时,Li10SnP2S12的加入量为1.90 g。
对比例1
直接将实施例1中制备的正极侧固态电解质用作本对比例的固态电解质DC1,其中涂覆厚度为35μm,按照实施例1的方法制备扣式电池DS2。
对比例2
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC2,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC2,制备得到扣式电池DS2。
对比例3
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,所不同的是用Li3PO3.6N0.4替换Li10SnP2S12,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC3,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC3,制备得到扣式电池DS3。
对比例4
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,所不同的是用Li1.3Al0.3Ti1.7(PO4)3替换Li10SnP2S12,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC4,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC4,制备得到扣式电池DS4。
对比例5
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,所不同的是在电解质浆料中不添加70Li2S-30P2S5,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC5,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC5,制备得到扣式电池DS5。
性能测试
1)Li vs Li对称电池的制备与测试:分别将复合固态电解质C1-复合固态电解质C11,固态电解质DC1-复合固态电解质DC5裁成15mm直径的电解质圆片,然后两边贴上相同大小的锂箔,施加0.1~1Mpa的压力使之压紧,封装与扣式电池壳中即得到Li vs Li对称电池DE1。25℃下,170uA/cm2,2小时充电/2小时放电,进行对称电池测试,评估电解质膜对金属锂负极的稳定性,测试结果表1,图1为C1、DC1、DC2和DC5的测试曲线图。
2)充放电性能测试:分别将电池S1-电池S11,电池DS1-电池DS5在25±1℃条件下,将电池恒流0.05C充电至4.2 V截止;搁置5分钟;恒流0.01C放电至2.5 V;如此对电池进行充放电50次循环,测试结果见表2,图2为S1、DS1、DS2和DS5的首次充放电曲线图。
3)锂离子电池阻抗的测试:测试条件为,开路电位下,频率范围100 KHz-0.1 Hz,振幅50 mV,固态锂电池的阻抗大小,测试结果见表2。
图1测试结果显示C1电解质膜对金属锂负极的界面稳定最好,可维持约120 h小时的循环;DC1电解质膜只能维持约20分钟的时间便会出现电压急剧下降,出现短路的现象;DC2和DC5电解质膜中的Li10SnP2S12电解质与两侧金属锂之间接触,界面形成副反应,导致阻抗随着循环逐渐增加,约40h,电压剧烈极化,导致循环结束。
表1 C1-C11,DC1-DC5电解质对锂稳定性结果
Figure 835629DEST_PATH_IMAGE002
图2中的首次充放电曲线显示DS1电池不能正常充放电,表2中测试得到的阻抗急剧下降至约150Ω,表明出现微短路的现象;DS2和DS5由于Li10SnP2S12电解质组分与金属锂负极之间接触,导致两者之间界面副反应多,首次效率低,表2中的阻抗值变大。S1电池不仅没有出现微短路现象,而且表现出较高的首次充放电容量、效率和容量保持率。
表2 S1-S11、DS1-DS5固态锂电池充放电测试和阻抗测试结果
电池编号 循环前阻抗/Ω 循环50次后阻抗/Ω 首次充电容量/mAh g<sup>-1</sup> 首次放电容量/ mAh g<sup>-1</sup> 首次库仑效率/% 50次循环容量保持率/%
S1 1531 4203 125.2 116.0 92.66 88.5
S2 6910 24105 120.6 106.9 88.68 86.5
S3 5562 21322 121.3 108.8 89.72 87.7
S4 1541 4316 122.5 113.3 92.53 88.3
S5 1532 4311 125.0 115.8 92.61 88.2
S6 1728 4627 120.9 111.9 92.58 87.8
S7 1136 4116 124.8 115.7 92.67 88.5
S8 1527 4201 125.1 115.7 92.48 87.9
S9 1537 4218 123.8 114.7 92.62 88.1
S10 1529 4189 125.2 115.9 92.59 88.0
S11 1540 4256 123.8 114.6 92.60 87.8
DS1 1552 150 - - - -
DS2 1572 35322 119.18 79.3 66.59 52.1
DS3 2860 48213 110.3 69.0 62.52 43.5
DS4 2563 45510 116.2 73.3 63.11 42.2
DS5 1411 51251 117.0 60.6 51.78 20.5
从表1中对锂的稳定性实验结果显示C2、C3分别优于相应的对比例DC3、DC4,同样表2中固态电池S2、S3的电化学性能也分别优于相应的对比例DS3、DS4的电化学性能。
上述实验结果表明三层电解质设计的电解质膜对金属锂负极的稳定性得到了极大的提升,能有效缓解了固态电池中的微短路现象。

Claims (13)

1.一种锂离子电池,包括正极、负极以及位于正极和负极之间的复合固态电解质层,其特征在于,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在所述正极侧固态电解质层和负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括第二无机固态电解质;
所述第一无机固态电解质选自化学式为x1Li2X-(100-x1)P2X5的固态电解质中的一种或多种,其中,70≤x1≤85,且x1为整数,X=O、S、Se中的一种或多种;
所述第二无机固态电解质选自锂磷氧氮固态电解质、NASICON型固态电解质和化学式为Li10±1MA2N12的固态电解质中的一种或多种,其中,M为Si、Ge、Sn、B中的一种或多种,A为P/或As,N为O、S、Se中的一种或多种。
2.根据权利要求1所述锂离子电池,其特征在于,所述第一无机固态电解质选自70Li2X-30P2X5、75Li2X-25P2X5、80Li2X-20P2X5中的一种或多种;
所述化学式为Li10±1MA2N12的固态电解质选自Li10SnP2S12、Li10GeP2S12、Li10SiP2S12中的一种或多种;
所述锂磷氧氮固态电解质选自玻璃态的锂磷氧氮固态电解质、陶瓷态的锂磷氧氮固态电解质和玻璃陶瓷态的锂磷氧氮固态电解质中的一种或几种。
3.根据权利要求1所述的锂离子电池,其特征在于,所述NASICON型固态电解质选自Li1+x4Bx4T2-x4(PO4)3中的一种或多种, 其中, B为Al,Cr,Ga,Fe,Sc,In,Lu,Y,La中的一种或多种,T为Ti和或Ge,0≤x4≤2。
4.据权利要求3所述的锂离子电池,其特征在于,所述NASICON型固态电解质选自Li1.3Al0.3Ti1.7(PO4)3、Li1.5Cr0.5Ti1.5(PO4)3、Li1.5Al0.5Ge1.5(PO4)3、Li1.5Al0.4Cr0.1Ge1.5(PO4)3中的一种或多种。
5.根据权利要求1或2所述锂离子电池,其特征在于,所述负极包括负极活性材料,所述负极活性材料为金属锂或锂合金。
6.根据权利要求1所述锂离子电池,其特征在于,所述复合固态电解质层的厚度为1μm-100μm,所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层的厚度之比为10-80:10-80:10-80。
7.根据权利要求1所述锂离子电池,其特征在于,在所述中间层固态电解质层中,所述第二无机固态电解质占中间层固态电解质层总重量的1%~90%。
8.根据权利要求7所述锂离子电池,其特征在于,在所述中间层固态电解质层中,所述第二无机固态电解质占中间层固态电解质层总重量的10%~70%。
9.一种如权利要求1-8中任意一项所述锂离子电池的制备方法,其特征在于,所述制备方法包括将第一固态电解质浆料涂布于支撑体上,烘干得到正极侧固态电解质层或负极侧固态电解质层;在所述正极侧固态电解质层表面或负极侧固态电解质层表面涂覆第二固态电解质浆料,得到中间层固态电解质层,在所述中间层固态电解质层表面涂覆第三固态电解质浆料,烘干得到所述复合固态电解质,然后将正极、复合固态电解质、负极压制成型,得到所述锂离子电池。
10.根据权利要求9所述锂离子电池的制备方法,其特征在于,所述第一固态电解质浆料包括第一无机固态电解质、第一粘结剂和第一溶剂,以所述第一固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%-69.7%,第一粘结剂的占比为0.03%-7%,第一溶剂占比30%-70%;
所述第二电解质浆料包括第一无机固态电解质、第二无机固态电解质、第二粘结剂和第二溶剂,以所述第二固态电解质浆料的重量为基准,所述第一无机固态电解质占比1%-68.7%,第二无机固态电解质占比1%-68.7%,第二粘结剂的占比为0.03%-7%,第二溶剂占比30%-70%;
所述第三固态电解质浆料包括第一无机固态电解质、第三粘结剂和第三溶剂,以所述第三固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%-69.7%,第三粘结剂的占比为0.03%-7%,第三溶剂占比30%-70%;
所述第一粘结剂、第二粘结剂和第三粘结剂各自独立地选自聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚氧化乙烯(PEO)和丁苯橡胶(SBR)中的一种或多种;
所述第一溶剂、第二溶剂和第三溶剂各自独立地选自二甲苯、甲苯、正庚烷、乙腈、二氯甲烷中的一种或多种。
11.根据权利要求9所述锂离子电池的制备方法,其特征在于,所述支撑体选自聚酯薄膜和/或聚酰亚胺膜。
12.一种锂离子电池,由权利要求9-12任一项所述的制备方法制备得到。
13.一种电动车辆,含有权利要求1-8、12中任一项所述锂离子电池。
CN201810971205.2A 2018-08-24 2018-08-24 锂离子电池及其制备方法和电动车辆 Active CN110858660B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810971205.2A CN110858660B (zh) 2018-08-24 2018-08-24 锂离子电池及其制备方法和电动车辆
PCT/CN2019/084567 WO2020038011A1 (zh) 2018-08-24 2019-04-26 锂离子电池及其制备方法和电动车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810971205.2A CN110858660B (zh) 2018-08-24 2018-08-24 锂离子电池及其制备方法和电动车辆

Publications (2)

Publication Number Publication Date
CN110858660A true CN110858660A (zh) 2020-03-03
CN110858660B CN110858660B (zh) 2021-06-18

Family

ID=69592349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810971205.2A Active CN110858660B (zh) 2018-08-24 2018-08-24 锂离子电池及其制备方法和电动车辆

Country Status (2)

Country Link
CN (1) CN110858660B (zh)
WO (1) WO2020038011A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086680A (zh) * 2020-09-23 2020-12-15 蜂巢能源科技有限公司 一种全固态电解质层及其制备方法和用途
CN112687945A (zh) * 2020-12-21 2021-04-20 南方科技大学 一种复合固态电解质浆料、薄膜、制备方法及全固态电池
CN113659195A (zh) * 2021-07-02 2021-11-16 恒大新能源技术(深圳)有限公司 一种复合薄膜及其制备方法、固态锂电池
CN114639869A (zh) * 2022-03-25 2022-06-17 厦门海辰新能源科技有限公司 固态电解质及其制备方法和应用
WO2022267414A1 (zh) * 2021-06-23 2022-12-29 中国第一汽车股份有限公司 多层固体电解质膜,全固态电池及全固态电池的制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126758A (ja) * 1999-10-28 2001-05-11 Kyocera Corp リチウム電池
CN1925203A (zh) * 2005-08-31 2007-03-07 株式会社小原 锂离子二次电池和用于其的固体电解质
CN101276941A (zh) * 2007-03-29 2008-10-01 Tdk株式会社 全固体锂离子二次电池及其制造方法
CN102246335A (zh) * 2008-12-10 2011-11-16 那米克斯公司 锂离子二次电池及其制造方法
CN103098288A (zh) * 2010-08-26 2013-05-08 住友电气工业株式会社 非水电解质电池及其制造方法
DE102015005805A1 (de) * 2014-05-21 2015-11-26 Schott Ag Elektrolyt mit mehrlagigem Aufbau und elektrische Speichereinrichtung
CN105409032A (zh) * 2013-06-21 2016-03-16 魁北克电力公司 全固态锂-硫电化学电池及其生产方法
CN105531864A (zh) * 2013-10-01 2016-04-27 丰田自动车株式会社 二次电池
US20160261002A1 (en) * 2011-03-17 2016-09-08 The Regents Of The University Of Colorado, A Body Corporate Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
CN106159312A (zh) * 2015-05-15 2016-11-23 精工爱普生株式会社 固体电解质电池及其制造方法、电极复合体、复合固体电解质
CN106611871A (zh) * 2015-10-23 2017-05-03 比亚迪股份有限公司 固体电解质材料及其制备方法和固体电解质和电池
WO2017171187A1 (ko) * 2016-03-28 2017-10-05 주식회사 세븐킹 에너지 다층 구조를 가지는 이차전지용 복합 전해질
CN108039463A (zh) * 2017-11-27 2018-05-15 北京化工大学 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
CN108063278A (zh) * 2017-11-27 2018-05-22 浙江衡远新能源科技有限公司 一种全固态锂离子电池及其制备方法
WO2018123967A1 (ja) * 2016-12-26 2018-07-05 昭和電工株式会社 全固体リチウムイオン電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328992B (zh) * 2015-06-30 2019-09-13 比亚迪股份有限公司 一种锂离子电池和该锂离子电池的制备方法
CN107425176A (zh) * 2017-07-07 2017-12-01 福建猛狮新能源科技有限公司 一种全固态锂离子电池及其制备方法
CN107732297B (zh) * 2017-10-13 2020-07-14 中国科学院青岛生物能源与过程研究所 一种应用于锂电池的宽电位窗口的多级结构复合固态电解质

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126758A (ja) * 1999-10-28 2001-05-11 Kyocera Corp リチウム電池
CN1925203A (zh) * 2005-08-31 2007-03-07 株式会社小原 锂离子二次电池和用于其的固体电解质
CN101276941A (zh) * 2007-03-29 2008-10-01 Tdk株式会社 全固体锂离子二次电池及其制造方法
CN104617255A (zh) * 2007-03-29 2015-05-13 Tdk株式会社 全固体锂离子二次电池及其制造方法
CN102246335A (zh) * 2008-12-10 2011-11-16 那米克斯公司 锂离子二次电池及其制造方法
CN103098288A (zh) * 2010-08-26 2013-05-08 住友电气工业株式会社 非水电解质电池及其制造方法
US20160261002A1 (en) * 2011-03-17 2016-09-08 The Regents Of The University Of Colorado, A Body Corporate Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
CN105409032A (zh) * 2013-06-21 2016-03-16 魁北克电力公司 全固态锂-硫电化学电池及其生产方法
CN105531864A (zh) * 2013-10-01 2016-04-27 丰田自动车株式会社 二次电池
DE102015005805A1 (de) * 2014-05-21 2015-11-26 Schott Ag Elektrolyt mit mehrlagigem Aufbau und elektrische Speichereinrichtung
CN106159312A (zh) * 2015-05-15 2016-11-23 精工爱普生株式会社 固体电解质电池及其制造方法、电极复合体、复合固体电解质
CN106611871A (zh) * 2015-10-23 2017-05-03 比亚迪股份有限公司 固体电解质材料及其制备方法和固体电解质和电池
WO2017171187A1 (ko) * 2016-03-28 2017-10-05 주식회사 세븐킹 에너지 다층 구조를 가지는 이차전지용 복합 전해질
WO2018123967A1 (ja) * 2016-12-26 2018-07-05 昭和電工株式会社 全固体リチウムイオン電池
CN108039463A (zh) * 2017-11-27 2018-05-15 北京化工大学 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
CN108063278A (zh) * 2017-11-27 2018-05-22 浙江衡远新能源科技有限公司 一种全固态锂离子电池及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086680A (zh) * 2020-09-23 2020-12-15 蜂巢能源科技有限公司 一种全固态电解质层及其制备方法和用途
CN112687945A (zh) * 2020-12-21 2021-04-20 南方科技大学 一种复合固态电解质浆料、薄膜、制备方法及全固态电池
WO2022134496A1 (zh) * 2020-12-21 2022-06-30 南方科技大学 一种复合固态电解质浆料、薄膜、制备方法及全固态电池
WO2022267414A1 (zh) * 2021-06-23 2022-12-29 中国第一汽车股份有限公司 多层固体电解质膜,全固态电池及全固态电池的制备方法
CN113659195A (zh) * 2021-07-02 2021-11-16 恒大新能源技术(深圳)有限公司 一种复合薄膜及其制备方法、固态锂电池
CN114639869A (zh) * 2022-03-25 2022-06-17 厦门海辰新能源科技有限公司 固态电解质及其制备方法和应用

Also Published As

Publication number Publication date
WO2020038011A1 (zh) 2020-02-27
CN110858660B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN110858660B (zh) 锂离子电池及其制备方法和电动车辆
CN110137485B (zh) 一种含有表面修饰膜的硅负极材料的制备方法
CN108376783B (zh) 一种锂阳极表面保护涂层及其制备方法
CN111640913B (zh) 负极片及二次电池
CN109494349B (zh) 负极极片及二次电池
CN111446489A (zh) 一种锂离子电池结构及补锂方法
CN102668182A (zh) 精细沉积的锂金属粉末
CN110828883A (zh) 一种锂离子电池及其制备方法和电动车辆
CN111463403A (zh) 复合人工固态电解质界面膜修饰的负极材料及其电池应用
CN112825354B (zh) 锂负极及其制备方法、锂二次电池
CN110247009A (zh) 一种防过充隔膜及其制备方法和锂离子电池
CN113571672A (zh) 一种干法电极、固态锂离子电池及其制备方法
CN111740100A (zh) 正极浆料以及锂离子电池
CN112993213A (zh) 一种负极预锂化补锂容量的计算方法及其应用
CN115395116B (zh) 一种钠离子电池正极极片及其制备方法、钠离子电池
CN113410427A (zh) 一种正极极片及其制备方法和应用
CN115939308A (zh) 一种补锂正极极片及其制备方法与锂离子电池
CN114583176A (zh) 一种多功能新型导电剂及其在预锂化复合正极中的应用
CN110380057A (zh) 一种耐过充锂离子电池
CN113725411A (zh) 一种适合低温环境的正极材料和锂离子电池
CN113140699A (zh) 一种复合负极片及包含该负极片的锂离子电池
CN112670592A (zh) 一种极片与隔膜复合工艺及锂电芯制备工艺
CN217239505U (zh) 锂离子电池正极极片和锂离子电池
CN112928234B (zh) 一种锂离子电池正极电极的制备方法
CN108400374A (zh) 一种高比能锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant