WO2020038011A1 - 锂离子电池及其制备方法和电动车辆 - Google Patents

锂离子电池及其制备方法和电动车辆 Download PDF

Info

Publication number
WO2020038011A1
WO2020038011A1 PCT/CN2019/084567 CN2019084567W WO2020038011A1 WO 2020038011 A1 WO2020038011 A1 WO 2020038011A1 CN 2019084567 W CN2019084567 W CN 2019084567W WO 2020038011 A1 WO2020038011 A1 WO 2020038011A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
lithium
ion battery
positive electrode
Prior art date
Application number
PCT/CN2019/084567
Other languages
English (en)
French (fr)
Inventor
郭姿珠
谢静
马永军
易观贵
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2020038011A1 publication Critical patent/WO2020038011A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure belongs to the field of lithium-ion batteries, and particularly relates to lithium-ion batteries and electric vehicles.
  • Sulfide solid electrolyte materials in all-solid-state lithium batteries have attracted much attention due to their excellent Li + conductivity and processability.
  • Common sulfide solid electrolyte materials include Li 2 S-SiS 2 , Li 2 SP 2 S 5 , and Li 2 S-GeS 2 -P 2 S 5 and the like.
  • the electrolyte layer in all-solid-state lithium batteries based on sulfide solid electrolytes in current literature and research is one of Li 2 S-SiS 2 , Li 2 SP 2 S 5 , Li 2 S-GeS 2 -P 2 S 5 or Multiple. In 2011, the research team of Tokyo University of Technology, Kamaya, etc.
  • Li / Li 2 SP 2 S 5 / Li 2 S-GeS 2 -P 2 S 5 / LiCoO 2 battery system proposed a dual-electrolyte structure.
  • An object of the present disclosure is to provide a lithium ion battery with high interface stability between a solid electrolyte and a metal negative electrode and greatly reduced internal micro-short circuits, thereby having good charge-discharge performance and cycle performance, a method for preparing the same, and an electric vehicle containing the battery.
  • a first aspect of the present disclosure provides a lithium ion battery including a positive electrode, a negative electrode, and a composite electrolyte layer between the positive electrode and the negative electrode.
  • the composite solid electrolytic layer includes a positive electrode-side solid electrolyte layer and a negative electrode-side solid electrolyte.
  • Each of the solid electrolyte layers contains a first inorganic solid electrolyte, and the intermediate solid electrolyte layer further includes a second inorganic solid electrolyte
  • the first inorganic solid electrolyte is selected from a chemical formula of x1Li 2 X- (100-x1) P 2 X 5
  • the first inorganic solid electrolyte is selected from a chemical formula of x1Li 2 X- (100-x1) P 2 X 5
  • the first inorganic solid electrolyte is selected from a chemical formula of x1Li 2 X- (100-x1) P 2 X 5
  • the second inorganic solid electrolyte is selected from lithium phosphorus oxynitrid
  • the present disclosure has the beneficial effect that the composite solid electrolyte of the present disclosure has a three-layer structure, and the interface stability between the negative-side solid electrolyte layer and the metal negative electrode is high; the intermediate solid-state electrolyte layer can greatly reduce lithium dendrites.
  • the interaction between the composite solid electrolyte layer and the layer greatly improves the charge and discharge performance, cycle performance, and safety performance of the battery.
  • a second aspect of the present disclosure provides a method for preparing a lithium ion battery, the method comprising: coating a first solid electrolyte slurry on a support and drying to obtain a positive-electrode-side solid-electrolyte layer or a negative-electrode-side solid-electrolyte layer; Apply a second solid electrolyte slurry on the surface of the positive electrode side solid electrolyte layer or the surface of the negative electrode side solid electrolyte layer to obtain an intermediate solid electrolyte layer, and apply a third solid electrolyte slurry on the surface of the intermediate solid electrolyte layer The composite solid electrolyte is dried to obtain the composite solid electrolyte, and then the positive electrode, the composite solid electrolyte, and the negative electrode are pressed to form the lithium ion battery.
  • a third aspect of the present disclosure provides an electric vehicle including the lithium-ion battery described above or a lithium-ion battery obtained by using the method.
  • FIG. 1 is a result of stability test of a composite solid electrolyte to a lithium metal negative electrode provided in Example 1, Comparative Example 2, and Comparative Example 5 of the present disclosure;
  • FIG. 2 is a first charge-discharge curve of a lithium-ion battery provided in Example 1, Comparative Example 2, and Comparative Example 5 of the present disclosure.
  • the disclosure provides a lithium ion battery including a positive electrode, a negative electrode, and a composite solid electrolyte layer between the positive electrode and the negative electrode.
  • the composite solid electrolytic layer includes a positive electrode-side solid electrolyte layer, a negative electrode-side solid electrolyte layer, and a positive electrode sandwiched between the positive electrode and the negative electrode.
  • the intermediate solid electrolyte layer between the side solid electrolyte layer and the negative solid electrolyte layer; the positive solid electrolyte layer, the negative solid electrolyte layer, and the intermediate solid electrolyte layer each contain a first inorganic solid electrolyte, and the intermediate layer
  • the solid electrolyte layer further includes a second inorganic solid electrolyte and a second inorganic solid electrolyte.
  • the solid electrolyte having a chemical formula of x1Li 2 X- (100-x1) P 2 X 5 may be in a glass state, a ceramic state, or a glass-ceramic state.
  • the disclosure does not limit whether the composition ratio and crystal structure of the first inorganic solid electrolyte contained in the positive-electrode solid electrolyte layer, the negative-electrode solid electrolyte layer, and the intermediate solid electrolyte layer are consistent.
  • the composition ratio of the inorganic solid electrolyte may be the same or different.
  • the crystal structure of the first inorganic electrolyte in the three solid electrolytic layers may be the same or different.
  • the The first inorganic solid electrolyte has the same composition ratio and the same crystal structure, which can optimize the process flow and achieve the same effect.
  • the first inorganic solid electrolyte is selected from one or more of 70Li 2 X-30P 2 X 5 , 75Li 2 X-25P 2 X 5 , 80Li 2 X-20P 2 X 5 ,
  • -20P 2 O 5 70Li 2 Se-30P 2 Se 5 , 75Li 2 Se-25P 2 Se 5 , 80Li 2 Se-20P 2 Se 5 .
  • the inventors of the present disclosure have discovered after multiple experiments that when the first inorganic solid electrolyte is selected from the above, when the composite solid electrolyte is applied to a lithium ion battery, the overall performance of the battery is superior.
  • the first inorganic solid electrolyte of the present disclosure may be a commercially available product, or may be prepared by a conventional method in the art. According to the embodiment of the present disclosure, the preparation process of the first inorganic solid electrolyte used may refer to the Chinese invention patent CN201510695407.5 As recorded.
  • the second inorganic solid electrolyte is selected from one or more of a lithium phosphorus oxynitride solid electrolyte, a NASICON-type solid electrolyte, and a solid electrolyte having a chemical formula of Li 10 ⁇ 1 MA 2 N 12 , wherein M is One or more of Si, Ge, Sn, and B, A is P or As, and N is one or more of O, S, and Se.
  • the second inorganic solid electrolyte as the present disclosure may be a commercially available product or may be prepared by a conventional method in the art, and the present disclosure is not limited thereto.
  • the solid electrolyte having a chemical formula of Li 10 ⁇ 1 MA 2 N 12 is selected from one or more selected from the group consisting of Li 10 SnP 2 S 12 , Li 10 GeP 2 S 12 , and Li 10 SiP 2 S 12 ,
  • the inventors of the present disclosure have discovered after multiple experiments that when the second inorganic solid electrolyte is selected from the foregoing, when the solid electrolyte is applied to a lithium ion battery, the overall performance of the battery is superior.
  • the lithium phosphorus oxynitride solid state electrolyte may be one of a glassy lithium phosphorus oxynitride, a ceramic lithium phosphonium oxynitride, and a glass ceramic lithium oxyphosphorus nitrogen.
  • the lithium phosphorus oxynitride solid electrolyte of the present disclosure may be a commercially available product or may be prepared by a conventional method in the art, and the present disclosure is not limited thereto.
  • the lithium phosphorus oxynitride solid electrolyte is selected from a glassy lithium phosphorus oxynitride solid electrolyte, the interface charge transfer resistance between the electrolyte particles is small, the ionic conductivity at room temperature is high, and the preparation process is simple.
  • the NASICON-type solid electrolyte is selected from one or more of Li 1 + x4 B x4 T 2-x4 (PO 4 ) 3 , where B is Al, Cr, Ga, Fe, Sc, In One or more of Lu, Y, La, T is Ti and or Ge, 0 ⁇ x4 ⁇ 2, for example, X 4 is 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 , 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.
  • the NASICON type solid electrolyte as the present disclosure may be a commercially available product or may be prepared by a conventional method in the art, and the present disclosure is not limited thereto.
  • the NASICON-type solid electrolyte is selected from Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Cr 0.5 Ti 1.5 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 And one or more of Li 1.5 Al 0.4 Cr 0.1 Ge 1.5 (PO 4 ) 3 , the inventor of the present disclosure has found after multiple experiments that when the NASICON-type solid electrolyte is selected from the above, the solid electrolyte is applied For lithium-ion batteries, the overall performance of the battery is superior.
  • the battery structure can be expressed as a positive electrode / positive electrode side solid electrolyte / intermediate layer solid electrolyte / negative electrode side solid electrolyte / negative electrode.
  • the positive electrode side solid electrolyte, the intermediate layer solid electrolyte layer, and the negative electrode The side solid electrolytes all include a first inorganic solid electrolyte, but whether the first inorganic solid electrolyte is the same among the three is not limited in this disclosure.
  • the intermediate solid electrolyte layer includes a second inorganic solid electrolyte in addition to the first inorganic solid electrolyte.
  • a solid electrolyte for example, the intermediate solid electrolyte layer may be a mixture of a first inorganic solid electrolyte and a solid electrolyte having a chemical formula of Li 10 ⁇ 1 MA 2 N 12 or a mixture of a first inorganic solid electrolyte and a lithium phosphorus oxynitride solid electrolyte It may also be a mixture of the first inorganic solid electrolyte and a NASICON-type solid electrolyte.
  • the composite solid electrolyte layer having the above three-layer structure is particularly suitable for a battery including a lithium metal or a lithium alloy as a negative electrode.
  • a lithium metal or a lithium alloy as a negative electrode.
  • the interface between the solid electrolyte and the negative electrode of lithium metal or lithium alloy is good, and it is difficult to form a large interface impedance.
  • metal lithium deposition preferentially grows along the gap of the Li 2 SP 2 S 5 electrolyte layer or squeezes out Li 2 due to large stress.
  • the SP 2 S 5 electrolyte layer makes it easy to form nano-lithium dendrites inside Li 2 SP 2 S 5.
  • the continuously growing nano-lithium dendrites will pierce the existing electrolyte layer and bring the positive and negative electrodes of the battery into contact to cause micro-short circuits; this disclosure
  • a three-layer composite solid electrolytic layer is adopted. After the lithium dendrite is generated on the negative-electrode solid electrolyte layer, the lithium dendrite penetrates the negative-electrode solid electrolyte layer and contacts the intermediate solid electrolyte layer.
  • the second inorganic solid in the intermediate solid electrolyte layer undergoes a redox reaction with the nano-lithium dendrite, and the lithium dendrite is oxidized, that is, the composite solid-state electrolyte layer provided by the present disclosure can effectively delay the lithium dendrite from piercing the entire electrolyte layer and avoid causing micro-short circuit problems.
  • the intermediate solid electrolyte contains only the second inorganic solid electrolyte, the material reduced by the nano-lithium dendrite has a better electronic conductivity, which will cause the second inorganic solid electrolyte to be continuously reduced, and finally the intermediate solid electrolyte layer Loss of lithium ion conduction results in battery failure.
  • Adding a first inorganic solid electrolyte to the intermediate solid electrolyte layer can provide a lithium ion transmission channel, thereby avoiding or mitigating the battery failure problem caused by the intermediate solid electrolyte being completely reduced by the metal negative electrode.
  • the second inorganic solid electrolyte in the layered solid electrolyte is continuously reduced if it is in direct contact with the positive electrode. Because it does not have lithium conductivity, it will form a high interface impedance and affect the conduction of lithium ions.
  • Adding a positive-electrode-side solid electrolyte in between can prevent the second inorganic solid-state electrolyte from directly contacting the positive electrode after being electrochemically reacted, thereby effectively reducing the interface resistance between the intermediate solid-state electrolyte layer and the positive electrode.
  • the negative electrode includes a negative electrode current collector and a negative electrode material located on a surface of the negative electrode current collector; the negative electrode material includes a negative electrode active material, and the negative electrode active material includes a lithium metal or a lithium alloy.
  • the lithium metal negative electrode active material includes one of a lithium foil, a lithium film, a stabilized lithium powder, and a lithium ribbon; the lithium alloy includes lithium-silicon-carbon or boron, gallium, indium, aluminum, phosphorus, One or more alloys of lead, germanium, and tin with lithium; lithium-silicon-carbon anode active materials include silicon-carbon anodes pre-inserted with lithium, silicon-carbon anodes and lithium ribbons, lithium powder, lithium films, etc.
  • a negative electrode active material compounded together; the negative electrode current collector includes one of copper foil, copper mesh, nickel mesh, nickel foil, copper foam, nickel foam, stainless steel mesh, and stainless steel strip.
  • the thickness of the composite solid electrolyte is 1 ⁇ m to 100 ⁇ m, for example, the thickness is 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 11 ⁇ m, 13 ⁇ m, 15 ⁇ m, 17 ⁇ m, 20 ⁇ m, 21 ⁇ m, 23 ⁇ m, 25 ⁇ m, 27 ⁇ m, 30 ⁇ m, 31 ⁇ m , 33 ⁇ m, 35 ⁇ m, 37 ⁇ m, 40 ⁇ m, 41 ⁇ m, 43 ⁇ m, 45 ⁇ m, 47 ⁇ m, 50 ⁇ m, 51 ⁇ m, 53 ⁇ m, 55 ⁇ m, 57 ⁇ m, 60 ⁇ m, 61 ⁇ m, 63 ⁇ m, 65 ⁇ m, 67 ⁇ m, 70 ⁇ m, 71 ⁇ m, 73 ⁇ m, 75 ⁇ m, 77 ⁇ m, 80 ⁇ m , 83 ⁇ m, 85 ⁇ m, 87
  • the thickness of the positive electrode side solid electrolyte layer, the negative electrode side solid electrolyte layer, and the intermediate solid electrolyte layer are not particularly required, and they should be as dense and thin as possible. That is, according to the embodiment of the present disclosure, the ratio of the thicknesses of the positive-electrode-side solid electrolyte layer, the negative-electrode-side solid electrolyte layer, and the intermediate-layer solid electrolyte layer is 10-80: 10-80: 10-80, for example (10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80): (10, 12, 15, 17, 20, 22, 25, 27, 30 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80): (10, 12, 15, 17, 20, 22, 25, 27, 30 32, 35, 37, 40, 42
  • the second inorganic solid electrolyte accounts for 1% to 90% of the total weight of the intermediate solid electrolyte layer, for example, 1%, 3%, 5%, 7 %, 10%, 11%, 13%, 15%, 17%, 20%, 21%, 23%, 25%, 27%, 30%, 31%, 33%, 35%, 37%, 40%, 41%, 43%, 45%, 47%, 50%, 51%, 53%, 55%, 57%, 60%, 61%, 63%, 65%, 67%, 70%, 71%, 73% , 75%, 77%, 80%, 81%, 83%, 85%, 87%, 90%, according to an embodiment of the present disclosure, the second inorganic solid electrolyte accounts for 10% of the total weight of the intermediate solid electrolyte layer ⁇ 70%, using the first solid electrolyte in the above weight ratio range, can not only timely react to the nano-lithium dendrites generated by penetrating from
  • the positive electrode there is no particular limitation on the positive electrode, and specifically, a positive electrode commonly used in existing lithium batteries can be specifically used.
  • the positive electrode includes a positive electrode current collector and a positive electrode material located on a surface of the positive electrode current collector.
  • the type of the positive electrode current collector is well known to those skilled in the art, and may be selected from, for example, aluminum foil, copper foil, or stamped steel strip.
  • the positive electrode material includes a positive electrode active material, a conductive agent, and a fourth binder.
  • the positive electrode active material is selected from LiAl 0.05 Co 0.15 Ni 0.80 O 2 , LiNi 0.80 Co 0.10 Mn 0.10 O 2 , LiNi 0.60 Co 0.20 Mn 0.20 O 2 , LiCoO 2 , LiMn 2 O 4 , LiFePO 4.
  • the positive electrode active material has high specific capacity, simple process preparation and cost Lower.
  • the present disclosure has no particular limitation on the conductive agent, and may be a conventional positive electrode conductive agent in the art, such as at least one of block black, carbon nanotube, HV, and carbon black.
  • the content of the conductive agent is 0.1 to 20 wt%, for example, 0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, 1.0 wt%, 1.1 wt%, 1.3 wt%, 1.5wt%, 1.7wt%, 2.0wt%, 2.1wt%, 2.3wt%, 2.5wt%, 2.7wt%, 3.0wt%, 3.1wt%, 3.3wt%, 3.5wt%, 3.7wt% , 4.0% by weight, 4.1% by weight, 4.3% by weight, 4.5% by weight, 4.7% by weight, 5.0% by weight, 5.1% by weight, 5.3% by weight, 5.5% by weight, 5.7% by weight, 6.0% by
  • the type and content of the fourth binder are well known to those skilled in the art, for example, fluorine-containing resin and polyolefin compounds such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and styrene-butadiene rubber (SBR) ) One or more of them.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • the content of the fourth binder is 0.01-10 wt%, for example, 0.01 wt%, 0.03 wt%, 0.05 wt%, 0.07wt, based on the weight of the positive electrode active material according to the type of the binder used.
  • % 0.1wt%, 0.11wt%, 0.13wt%, 0.15wt%, 0.17wt%, 0.2wt%, 0.3wt%, 0.5wt%, 0.7wt%, 1.0wt%, 1.1wt%, 1.3wt%, 1.5% by weight, 1.7% by weight, 2.0% by weight, 2.1% by weight, 2.3% by weight, 2.5% by weight, 2.7% by weight, 3.0% by weight, 3.1% by weight, 3.3% by weight, 3.5% by weight, 3.7% by weight, 4.0% by weight %, 4.1% by weight, 4.3% by weight, 4.5% by weight, 4.7% by weight, 5.0% by weight, 5.1% by weight, 5.3% by weight, 5.5% by weight, 5.7% by weight, 6.0% by weight, 6.1% by weight, 6.3% by weight, 6.5wt%, 6.7% wt, 7.0% wt, 7.1% wt, 7.3% wt, 7.5% wt, 7.7% wt, 8.0% wt, 8.1% wt
  • the present disclosure also provides a method for preparing the above-mentioned lithium ion battery.
  • the method includes: coating a first solid electrolyte slurry on a support, and drying to obtain a positive-side solid electrolyte layer or a negative-side solid electrolyte layer; The surface of the positive-electrode-side solid electrolyte layer or the surface of the negative-electrode-side solid electrolyte layer is coated with a second solid-state electrolyte slurry to obtain an intermediate solid-state electrolyte layer.
  • a third solid-electrolyte slurry is coated on the surface of the intermediate-layer solid-electrolyte layer and dried. The composite solid electrolyte is obtained, and then the positive electrode, the composite solid electrolyte, and the negative electrode are press-molded to obtain the lithium ion battery.
  • the positive-electrode-side solid electrolyte layer may be prepared first, and the negative-electrode-side solid electrolyte layer may also be prepared first, which is not limited in the present disclosure.
  • a positive-electrode-side solid electrolyte layer is first prepared, and accordingly, a second solid-state electrolyte is coated on the surface of the positive-electrode-side solid electrolyte layer to obtain a double-layered structure of the positive-electrode-side solid-electrolyte layer / intermediate-layer solid-electrolyte layer, and then a third solid-electrolyte After the slurry, a three-layer structure of a positive-electrode-side solid electrolyte layer / intermediate-layer solid-electrolyte layer / negative-electrode-side solid-electrolyte layer was obtained.
  • the present disclosure may have different orders for the above-mentioned lithium-ion batteries, and the present disclosure is not limited.
  • a composite solid electrolyte layer is prepared first, and then the positive electrode, the composite solid electrolyte layer, and the negative electrode are sequentially laminated to obtain the lithium ion battery.
  • a first composite body having a double-layer structure may also be formed.
  • the first composite body includes The positive electrode and the solid electrolyte layer on the positive electrode side, and then an intermediate solid electrolyte layer and a negative solid electrolyte layer are sequentially formed on the surface of the positive solid electrolyte layer. Finally, the negative electrode is pressed and formed on the negative solid electrolyte layer.
  • the negative electrode, the negative electrode side solid electrolyte substance layer, and the intermediate solid electrolyte layer are formed into a second composite, and then the second composite is laminated with the first composite to bring the positive electrode solid electrolyte layer and the intermediate solid electrolyte layer into contact, and then Pressing.
  • the method of obtaining the composite solid electrolyte layer first, and then laminating the positive electrode, the composite solid electrolyte layer, and the negative electrode in a fixed order to obtain the lithium ion battery is described in detail below.
  • the method for preparing the positive-electrode-side solid electrolyte layer adopts a coating method, which specifically includes: coating a first solid electrolyte slurry on a support, and then drying at 40 ° C to 100 ° C, such as 40 ° C, 42 ° C, 45 ° C, 47 ° C, 50 ° C, 52 ° C, 55 ° C, 57 ° C, 60 ° C, 62 ° C, 65 ° C, 67 ° C, 70 ° C, 72 ° C, 75 ° C, 77 ° C, 80 ° C, 82 ° C, 85 ° C , 87 ° C, 90 ° C, 92 ° C, 95 ° C, 97 ° C, 100 ° C.
  • a coating method which specifically includes: coating a first solid electrolyte slurry on a support, and then drying at 40 ° C to 100 ° C, such as 40 ° C, 42 ° C, 45 °
  • the first solid electrolyte slurry includes a first inorganic solid electrolyte, a first binder, and a first solvent. Based on the weight of the first solid electrolyte slurry, the first inorganic solid electrolyte accounts for 23%.
  • the proportion of the first binder is 0.03% to 7%, for example 0.03 %, 0.05%, 0.07%, 0.1%, 0.13%, 0.15%, 0.17%, 0.2%, 0.23%, 0.25%, 0.27%, 0.3%, 0.33%, 0.35%, 0.37%, 0.4%, 0.43%, 0.45%, 0.47%, 0.5%, 0.53%, 0.55%, 0.57%, 0.6%, 0.63%, 0.65%, 0.67%, 0.7%, 0.73%, 0.75%, 0.77%, 0.8%, 0.83%, 0.85% , 0.87%, 0.9%, 0.93%, 0.95%, 0.97%,
  • an intermediate solid electrolyte layer is obtained on the surface of the positive-electrode-side solid electrolyte layer.
  • the method for preparing the intermediate solid-electrolyte layer is a coating method, which specifically includes: coating a second surface of the positive-electrode-side solid-electrolyte layer after drying.
  • Solid electrolyte slurry and then dried at 40 ° C to 100 ° C, such as 40 ° C, 42 ° C, 45 ° C, 47 ° C, 50 ° C, 52 ° C, 55 ° C, 57 ° C, 60 ° C, 62 ° C, 65 ° C, 67 ° C, 70 ° C, 72 ° C, 75 ° C, 77 ° C, 80 ° C, 82 ° C, 85 ° C, 87 ° C, 90 ° C, 92 ° C, 95 ° C, 97 ° C, 100 ° C.
  • the second solid electrolyte slurry includes a first inorganic solid electrolyte, a second inorganic solid electrolyte, a second binder, and a second solvent.
  • the first inorganic electrolyte Solid electrolyte accounts for 1% to 68.7%, such as 1%, 3%, 5%, 7%, 9%, 11%, 13%, 15%, 17%, 19%, 21%, 23%, 25%, 27%, 30%, 33%, 35%, 37%, 40%, 43%, 45%, 47%, 50%, 53%, 55%, 57%, 60%, 63%, 65%, 67% , 67.5%, 68%, 68.5%, 68.7%
  • the second inorganic solid electrolyte accounts for 1% to 68.7%, such as 1%, 3%, 5%, 7%, 9%, 11%, 13%, 15% , 17%, 19%, 21%, 23%, 25%, 27%, 27%, 30%, 33%, 35%, 3
  • the method for preparing the negative-electrode-side solid electrolyte layer adopts a coating method, which specifically includes: coating a third solid-state electrolyte slurry on the surface of the intermediate solid-state electrolyte layer after drying, and then Dry at 40 ° C to 100 ° C, such as 40 ° C, 42 ° C, 45 ° C, 47 ° C, 50 ° C, 52 ° C, 55 ° C, 57 ° C, 60 ° C, 62 ° C, 65 ° C, 67 ° C, 70 ° C, 72 C, 75C, 77C, 80C, 82C, 85C, 87C, 90C, 92C, 95C, 97C, and 100C.
  • a coating method which specifically includes: coating a third solid-state electrolyte slurry on the surface of the intermediate solid-state electrolyte layer after drying, and then Dry at 40 ° C to 100 ° C, such as 40 ° C, 42 ° C
  • the third solid electrolyte slurry includes a first inorganic solid electrolyte, a third binder, and a third solvent. Based on the weight of the third solid electrolyte slurry, the first inorganic solid electrolyte accounts for 23%.
  • the proportion of the third binder is 0.03% to 7%, for example 0.03 %, 0.05%, 0.07%, 0.1%, 0.13%, 0.15%, 0.17%, 0.2%, 0.23%, 0.25%, 0.27%, 0.3%, 0.33%, 0.35%, 0.37%, 0.4%, 0.43%, 0.45%, 0.47%, 0.5%, 0.53%, 0.55%, 0.57%, 0.6%, 0.63%, 0.65%, 0.67%, 0.7%, 0.73%, 0.75%, 0.77%, 0.8%, 0.83%, 0.85% , 0.87%, 0.9%, 0.93%, 0.95%, 0.97%, 0.97%, 0.97%
  • the types of the first inorganic solid electrolyte in the first solid electrolyte slurry, the second solid electrolyte slurry, and the third solid electrolyte slurry may be the same or different, and the content may be the same or different. Opening is not limited.
  • the types of the first binder, the second binder, and the third binder may be the same or different, and each is independently selected from polyvinylidene fluoride (PVDF) and polytetrafluoroethylene.
  • PVDF polyvinylidene fluoride
  • One or more of (PTFE), polyethylene oxide (PEO), and styrene-butadiene rubber (SBR); the content of the first binder, the second binder, and the third binder may be the same or may be Different, this disclosure is not limited.
  • the types of the first solvent, the second solvent, and the third solvent may be the same or different, and each is independently selected from one of xylene, toluene, n-heptane, acetonitrile, and dichloromethane, or A plurality of types; the contents of the first solvent, the second solvent, and the third solvent may be the same or different, which is not limited in the present disclosure.
  • the support is used to assist the spreading of the electrolyte slurry.
  • the adhesion between the support and the electrolyte slurry is not strong.
  • the electrolyte can be removed from the surface of the support. Removed, the support is conventionally used in the art, for example, the support is selected from one or two of a polyester film (PET film) and a polyimide film (PI film).
  • PET film polyester film
  • PI film polyimide film
  • a positive electrode is obtained, the positive electrode including a positive electrode current collector and a positive electrode material located on a surface of the positive electrode current collector.
  • the above positive electrode can be obtained directly or prepared by itself.
  • the specific preparation method is well known to those skilled in the art, for example, the positive electrode slurry is coated on the positive electrode current collector, and then is prepared by drying and calendering.
  • the positive electrode slurry includes a positive electrode active material, a conductive agent, a fourth binder, and a solvent.
  • the materials used for the positive electrode active material, the conductive agent, and the fourth binder and their respective added amounts are as described above, and will not be repeated here.
  • the solvent is used to distribute the positive electrode active material, the conductive agent, and the fourth binder therein to form a slurry, which is favorable for coating. During the subsequent drying process, the aforementioned solvents are removed.
  • the specific substance and the added amount of the solvent are known to those skilled in the art, and will not be repeated here.
  • a negative electrode which includes lithium metal, lithium-silicon-carbon, and other negative electrode materials that can form an alloy with lithium.
  • the lithium metal negative active material includes a lithium foil, a lithium film, a stabilized lithium powder, a lithium ribbon, and the like.
  • the lithium-silicon-carbon negative electrode active material includes a silicon-carbon negative electrode that is pre-inserted with lithium.
  • the silicon-carbon negative electrode is compounded with a lithium ribbon, a lithium powder, a lithium film, and the like.
  • Negative electrode active materials that can be alloyed with lithium include boron, gallium, indium, aluminum, phosphorus, lead, germanium, and tin.
  • the negative electrode also contains current collectors such as copper foil, copper mesh, nickel mesh, nickel foil, copper foam, nickel foam, stainless steel mesh, and stainless steel strip.
  • current collectors such as copper foil, copper mesh, nickel mesh, nickel foil, copper foam, nickel foam, stainless steel mesh, and stainless steel strip.
  • the pressing method is hot rolling.
  • a third object of the present disclosure is to provide an electric vehicle including the lithium-ion battery provided above or the lithium-ion battery obtained by the above method.
  • a 30 ⁇ m lithium film was pressed on a copper foil current collector, and the lithium piece was cut into a lithium negative electrode disk having a diameter of 15 mm using a cutting piece.
  • the positive electrode is centered in the positive electrode case, then the composite electrolyte layer and the negative electrode are sequentially placed, and a pressure of 0.1 to 1 MPa is applied to compact, and then the lithium ion battery S1 is obtained by encapsulation.
  • the composite electrolyte C2 and the button cell S2 were prepared according to the method of Example 1. The difference was that the Li 10 SnP 2 S 12 electrolyte was replaced with a glassy Li 3 PO 3.6 N 0.4 in the preparation of an intermediate solid electrolyte layer.
  • the composite electrolyte C3 and the button cell S3 were prepared according to the method of Example 1, except that the Li 10 SnP 2 S 12 electrolyte was replaced with Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 during the preparation of an intermediate solid electrolyte layer.
  • the composite electrolyte C4 and the button cell S4 were prepared according to the method of Example 1. The difference was that in the preparation of the positive-electrode-side solid electrolyte layer, 75Li 2 S-24P 2 S 5 -P 2 O 5 was used to replace 70Li 2 S-30P 2 S 5 electrolyte.
  • the composite electrolyte C5 and the coin cell S5 were prepared according to the method of Example 1, except that the positive electrode side solid electrolyte layer was prepared, and the 70Li 2 S-30P 2 S 5 electrolyte was replaced with 80Li 2 S-20P 2 S 5 .
  • the composite electrolyte C6 and the button cell S6 were prepared according to the method of Example 1. The difference is that the total thickness of the composite solid electrolyte is 100 ⁇ m, the coating thickness of the positive-side solid electrolyte is 30 ⁇ m, and the coating thickness of the intermediate solid electrolyte is The coating thickness of the solid electrolyte on the negative electrode side was 40 ⁇ m and 30 ⁇ m.
  • the composite electrolyte C7 and the button cell S7 were prepared according to the method of Example 1. The difference is that the total thickness of the composite solid electrolyte is 1 ⁇ m, the coating thickness of the positive-side solid electrolyte is 0.3 ⁇ m, and the coating thickness of the intermediate solid electrolyte is The thickness was 0.4 ⁇ m, and the coating thickness of the negative-electrode-side solid electrolyte was 0.3 ⁇ m.
  • the composite electrolyte C8 and the button cell S8 were prepared according to the method of Example 1, except that the Li 10 SnP 2 S 12 was added in an amount of 6.65 g when preparing the intermediate solid electrolyte.
  • the composite electrolyte C9 and the button cell S9 were prepared according to the method of Example 1, except that the Li 10 SnP 2 S 12 was added in an amount of 0.317 g when preparing the intermediate solid electrolyte.
  • the composite electrolyte C10 and the button cell S10 were prepared according to the method of Example 1, except that the Li 10 SnP 2 S 12 was added in an amount of 2.85 g when preparing the intermediate solid electrolyte.
  • the composite electrolyte C11 and the button cell S11 were prepared according to the method of Example 1, except that the Li 10 SnP 2 S 12 was added in an amount of 1.90 g when preparing the intermediate solid electrolyte.
  • Example 1 The positive electrode-side solid electrolyte prepared in Example 1 was directly used as the solid electrolyte DC1 of this comparative example, with a coating thickness of 35 ⁇ m, and a button cell DS2 was prepared according to the method of Example 1.
  • the method for preparing the second electrolyte slurry was prepared with reference to Example 1.
  • the electrolyte slurry of this example was prepared, and then the electrolyte slurry was directly coated on a PET film, dried at ⁇ 80 ° C, and rolled to obtain the comparative example.
  • the solid electrolyte layer DC2 has a coating thickness of 35 ⁇ m. Then, according to the method of Example 1, and using the solid electrolyte DC2 of this comparative example, a button-type battery DS2 was prepared.
  • the method for preparing the second electrolyte slurry was prepared according to Example 1 except that Li 3 PO 3.6 N 0.4 was used to replace Li 10 SnP 2 S 12 , and then the electrolyte slurry was directly coated on The PET film was dried at ⁇ 80 ° C. and rolled to obtain a solid electrolyte layer DC3 of the comparative example with a coating thickness of 35 ⁇ m. Then, according to the method of Example 1, and using the solid electrolyte DC3 of this comparative example, a button-type battery DS3 was prepared.
  • the method for preparing the second electrolyte slurry was prepared according to Example 1 except that Li 10 SnP 2 S 12 was replaced with Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , and then the electrolyte slurry was prepared.
  • the material was directly coated on a PET film, dried at ⁇ 80 ° C., and rolled to obtain a solid electrolyte layer DC4 of the present comparative example with a coating thickness of 35 ⁇ m.
  • a button-type battery DS4 was prepared.
  • the method for preparing the second electrolyte slurry was prepared according to Example 1 except that 70Li 2 S-30P 2 S 5 was not added to the electrolyte slurry, and then the electrolyte slurry was directly coated. On a PET film, it was dried at ⁇ 80 ° C and rolled to obtain a solid electrolyte layer DC5 of the present comparative example with a coating thickness of 35 ⁇ m. Then, according to the method of Example 1, the solid electrolyte DC5 of this comparative example was used to prepare a button-type battery DS5.
  • Lithium-ion battery impedance test The test conditions are: under open-circuit potential, the frequency range is 100KHz-0.1Hz, the amplitude is 50mV, and the impedance of the solid-state lithium battery is shown in Table 2.
  • the first charge-discharge curve in Figure 2 shows that the DS1 battery cannot be charged and discharged normally.
  • the impedance measured in Table 2 dropped sharply to about 150 ⁇ , indicating a micro-short circuit phenomenon.
  • DS2 and DS5 are due to Li 10 SnP 2 S 12 electrolyte components and The contact between the metal lithium negative electrodes results in many side reactions at the interface between the two, and the first time the efficiency is low, and the impedance value in Table 2 becomes larger.
  • the S1 battery not only did not have a micro short-circuit phenomenon, but also showed a high first-time charge and discharge capacity, efficiency, and capacity retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

公开了一种锂离子电池以及制备方法和电动车辆,所述锂离子电池包括正极、负极以及位于正极和负极之间的复合固态电解质层,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在所述正极侧固态电解质层和负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括第二无机固态电解质。

Description

锂离子电池及其制备方法和电动车辆
优先权信息
本公开请求于2018年08月24日向中国国家知识产权局提交的、专利申请号为201810971205.2、申请名称为“锂离子电池及其制备方法和电动车辆”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开属于锂离子电池领域,尤其涉及锂离子电池和电动车辆。
背景技术
全固态锂电池中硫化物固态电解质材料由于具有优异的Li +电导率及加工性能等备受关注,常见的硫化物固态电解质材料有Li 2S-SiS 2、Li 2S-P 2S 5、Li 2S-GeS 2-P 2S 5等。目前文献和研究的基于硫化物固态电解质的全固态锂电池中的电解质层为Li 2S-SiS 2、Li 2S-P 2S 5、Li 2S-GeS 2-P 2S 5中的一种或多种。2011年,日本东京工业大学Kamaya等与丰田汽车公司及高能量加速器研究机构的研究小组(Nature Materials,2011,10:682-686)开发出迄今为止离子电导率最高的超离子导电体—Li 10GeP 2S 12,室温离子电导率高达12mS cm -1,并随后推出In/Li 10GeP 2S 12/LiCoO 2和Li-In/Li 10GeP 2S 12/LiCoO 2全固态锂电池体系。由于Li 10GeP 2S 12与金属锂界面稳定性差,不能直接与金属锂匹配构建全固态锂电池,针对该问题,Trevey等(Electrochimica Acta,2011,56:4243-4247)提出具有双电解质结构的Li/Li 2S-P 2S 5/Li 2S-GeS 2-P 2S 5/LiCoO 2电池体系,中间电解质层Li 2S-P 2S 5的加入有效地提高了Li 2S-GeS 2-P 2S 5电解质与锂负极接触界面的化学和电化学稳定性。
公开内容
本公开目的在于提供一种固态电解质与金属负极界面稳定性高且电池内部微短路大大降低因而具有良好充放电性能和循环性能的锂离子电池及其制备方法和含有该电池的电动车辆。
为了实现上述目的,本公开第一方面提供了一种锂离子电池,包括正极、负极以及位于正极和负极之间的复合电解质层,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在所述正极侧固态电解质层和所述负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、所述负极侧固态电解质层和所述中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括第二无机固态电解 质;所述第一无机固态电解质选自化学式为x1Li 2X-(100-x1)P 2X 5的固态电解质中的一种或多种,其中,70≤x1≤85,且x1为整数,X=O、S、Se中的一种或多种;所述第二无机固态电解质选自锂磷氧氮固态电解质、NASICON型固态电解质和化学式为Li 10±1MA 2N 12的固态电解质中的一种或多种,其中,M为Si、Ge、Sn、B中的一种或多种,A为P/或As,N为O、S、Se中的一种或多种。
与现有技术相比,本公开具有的有益效果为,本公开的复合固态电解质为三层结构,负极侧固态电解质层与金属负极界面稳定性高;中间层固态电解质层可以大大减少锂枝晶穿透整个复合固态电解质而导致内部微短路的问题,且离子电导率高,不易被金属负极还原;正极侧固态电解质层可以有效降低中间层固态电解质层被电化学反应后与正极之间直接接触形成高的界面阻抗,将上述复合固态电解质用于锂离子电池,复合固态电解质层与层之间相互作用,使电池的充放电性能和循环性能以及安全性能大大提高。
本公开第二方面提供了一种制备锂离子电池的方法,所述方法包括:将第一固态电解质浆料涂布于支撑体上,烘干得到正极侧固态电解质层或负极侧固态电解质层;在所述正极侧固态电解质层表面或所述负极侧固态电解质层表面涂覆第二固态电解质浆料,得到中间层固态电解质层,在所述中间层固态电解质层表面涂覆第三固态电解质浆料,烘干得到所述复合固态电解质,然后将正极、所述复合固态电解质、负极压制成型,得到所述锂离子电池。
本公开第三方面提供了一种电动车辆,所述电动车辆含有上述所述的锂离子电池或采用上述方法得到的锂离子电池。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,需要说明的是:
附图1为本公开的实施例1、对比例2和对比例5提供的复合固态电解质对金属锂负极稳定性测试结果;
附图2为本公开的实施例1、对比例2和对比例5提供的锂离子电池首次充放电曲线。
公开详细描述
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本公开提供了一种锂离子电池,包括正极、负极以及位于正极和负极之间的复合固态电解质层,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在正极侧固态电解质层、负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括结第二无机固态电解质第二无机固态电解质。
根据本公开,所述第一无机固态电解质选自化学式为x1Li 2X-(100-x1)P 2X 5的固态电解质中的一种或多种,其中,70≤x1≤85,且x为整数,例如x1为70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85,X=O、S、Se中的一种或多种。所述化学式为x1Li 2X-(100-x1)P 2X 5的固态电解质可以为玻璃态的、陶瓷态的、也可以为玻璃陶瓷态。本公开对正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层中含有的第一无机固态电解质的组成配比和晶体结构是否一致不做限定,三层固态电解层中的第一无机固态电解质的组成配比可以相同也可以不同,同样的,三层固态电解层中的第一无机电解质的晶体结构可以相同也可以不同,根据本公开的实施例,三层固态电解层中的第一无机固态电解质的组成配比相同且晶体结构也相同,可以优化工艺流程,达到相同的效果。
根据本公开的实施例,所述第一无机固态电解质选自70Li 2X-30P 2X 5、75Li 2X-25P 2X 5、80Li 2X-20P 2X 5中的一种或多种,例如,70Li 2S-30P 2S 5、75Li 2S-25P 2S 5、80Li 2S-20P 2S 5、70Li 2O-30P 2O 5、75Li 2O-25P 2O 5、80Li 2O-20P 2O 5,70Li 2Se-30P 2Se 5、75Li 2Se-25P 2Se 5、80Li 2Se-20P 2Se 5中的一种或多种。本公开的发明人经过多次实验后发现当第一无机固态电解质选自上述几种时,将该复合固态电解质应用于锂离子电池时,所述电池的综合性能较优。
作为本公开的第一无机固态电解质可以是市售品,也可以通过本领域常规的方法制备,根据本公开的实施例,采用的第一无机固态电解质的制备过程可以参考中国发明专利CN201510695407.5所记载的。
根据本公开,所述第二无机固态电解质选自锂磷氧氮固态电解质、NASICON型固态电解质和化学式为Li 10±1MA 2N 12的固态电解质中的一种或多种,其中,M为Si、Ge、Sn、B中的一种或多种,A为P或As,N为O、S、Se中的一种或多种。
作为本公开的第二无机固态电解质可以是市售品,也可以通过本领域常规的方法制备,本公开不作限定。
进一步的,所述化学式为Li 10±1MA 2N 12的固态电解质选自选自Li 10SnP 2S 12、Li 10GeP 2S 12、Li 10SiP 2S 12中的一种或多种,本公开的发明人经过多次实验后发现当第二无机固态电解质选自上述几种时,将该固态电解质应用于锂离子电池时,所述电池的综合性能较优。
根据本公开,所述锂磷氧氮固态电解质可以为玻璃态锂磷氧氮、陶瓷态锂磷氧氮和玻璃陶瓷态锂磷氧氮中的一种。
作为本公开的锂磷氧氮固态电解质可以是市售品,也可以通过本领域常规的方法制备,本公开不作限定。
根据本公开的实施例,所述锂磷氧氮固态电解质选自玻璃态的锂磷氧氮固态电解质,电解质颗粒之间的界面电荷迁移电阻小、室温离子电导率高,制备工艺简单。
根据本公开,所述NASICON型固态电解质选自Li 1+x4B x4T 2-x4(PO 4) 3中的一种或多种,其中,B为Al,Cr,Ga,Fe,Sc,In,Lu,Y,La中的一种或多种,T为Ti和或Ge,0≤x4≤2,例如 X4为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2。
作为本公开的NASICON型固态电解质可以是市售品,也可以通过本领域常规的方法制备,本公开不作限定。
根据本公开的实施例,所述NASICON型固态电解质选自Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 1.5Cr 0.5Ti 1.5(PO 4) 3、Li 1.5Al 0.5Ge 1.5(PO 4) 3、Li 1.5Al 0.4Cr 0.1Ge 1.5(PO 4) 3中的一种或多种,本公开的发明人经过多次实验后发现当NASICON型固态电解质选自上述几种时,将该固态电解质应用于锂离子电池时,所述电池的综合性能较优。
根据本公开提供的锂离子电池,其电池结构可以表示为正极/正极侧固态电解质/中间层固态电解质/负极侧固态电解质/负极,如上所述,正极侧固态电解质、中间层固态电解质层和负极侧固态电解质均含有第一无机固态电解质,但对于三者中的第一无机固态电解质是否一致,本公开不做限定,中间层固态电解质层除了含有第一无机固态电解质外,还包括第二无机固态电解质,例如,中间层固态电解质层可以是第一无机固态电解质和化学式为Li 10±1MA 2N 12的固态电解质的混合物,或者是第一无机固态电解质与锂磷氧氮固态电解质的混合物,也可以是第一无机固态电解质与NASICON型固态电解质的混合物。
具有上述三层结构的复合固态电解质层特别适用于负极包括金属锂或者锂合金的电池,当将具有上述三层结构的复合固态电解质应用于负极为金属锂或者锂合金的电池时,负极侧的固态电解质与金属锂或者锂合金的负极的界面稳定好,不易形成较大的界面阻抗。现有技术中常常采用Li 2S-P 2S 5电解质匹配金属锂负极时,充放电过程中,金属锂沉积优先沿 着Li 2S-P 2S 5电解质层的缝隙生长或因为应力大而挤开Li 2S-P 2S 5电解质层,使得Li 2S-P 2S 5内部易形成纳米锂枝晶,持续生长的纳米锂枝晶会刺穿现有的电解质层使电池正负极接触而造成微短路;本公开采用三层结构的复合固态电解层,负极侧固态电解质层产生锂枝晶后,锂枝晶刺穿负极侧固态电解质层与中间层固态电解质层接触,中间层固态电解质层中的第二无机固态电解质与纳米锂枝晶发生氧化还原反应,锂枝晶被氧化,即,本公开提供的复合固态电解质层可以有效延缓锂枝晶刺穿整个电解质层而尽量避免造成电池微短路问题。当中间层固态电解质中仅含有第二无机固态电解质时,其被纳米锂枝晶还原后的物质具有较好的电子电导,会导致第二无机固态电解质被持续还原,最终使中间层固态电解质层失去锂离子传导,导致电池失效,在中间层固态电解质层中添加第一无机固态电解质可以提供锂离子传输通道,从而避免或者缓解中间层固态电解质被金属负极完全还原引起的电池失效问题,另外中间层固态电解质中的第二无机固态电解质被持续还原后如果与正极直接接触,由于不具有导锂性,会形成高的界面阻抗,影响锂离子的传导,因此在中间层固态电解质层与正极之间加入正极侧固态电解质可以避免第二无机固态电解质被电化学反应后与正极直接接触,从而有效降低中间层固态电解质层与正极之间的界面阻抗。上述复合固态电解质层中的三层固态电解质层之间存在相互协同作用,使得采用该复合固态电解质的锂离子电池的循环性能和充放电性能大大提高。
本公开中,所述负极包括负极集流体和位于负极集流体表面的负极材料;所述负极材料包括负极活性材料,所述负极活性材料包括锂金属或锂合金。具体的,所述锂金属负极活性材料包括锂箔、锂薄膜、稳定化锂粉、锂带中的一种;所述锂合金包括锂-硅-碳或者硼、镓、铟、铝、磷、铅、锗、锡中的一种或多种与锂形成的合金;锂-硅-碳负极活性材料包括预嵌锂后的硅-碳负极,硅碳负极与锂带、锂粉、锂薄膜等复合在一起的负极活性材料;所述负极集流体包括铜箔、铜网、镍网、镍箔、泡沫铜、泡沫镍、不锈钢网、不锈钢带中的一种。
本公开中,所述复合固态电解质的厚度为1μm-100μm,例如厚度为1μm、3μm、5μm、7μm、10μm、11μm、13μm、15μm、17μm、20μm、21μm、23μm、25μm、27μm、30μm、31μm、33μm、35μm、37μm、40μm、41μm、43μm、45μm、47μm、50μm、51μm、53μm、55μm、57μm、60μm、61μm、63μm、65μm、67μm、70μm、71μm、73μm、75μm、77μm、80μm、81μm、83μm、85μm、87μm、90μm、91μm、93μm、95μm、97μm、100μm,对正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层的厚度,不作特殊要求,尽可能的致密和薄即可,根据本公开的实施例,所述正极侧固态电解质层、负极侧固态电解质层和中间层固态电解质层的厚度之比为10-80:10-80:10-80,例如(10、12、15、17、20、22、25、27、30、32、35、 37、40、42、45、47、50、52、55、57、60、62、65、67、70、72、75、77、80):(10、12、15、17、20、22、25、27、30、32、35、37、40、42、45、47、50、52、55、57、60、62、65、67、70、72、75、77、80):(10、12、15、17、20、22、25、27、30、32、35、37、40、42、45、47、50、52、55、57、60、62、65、67、70、72、75、77、80),本公开的发明人经过多次实验后发现,当复合固态电解质的三层的厚度基于上述范围时,既可以更好的缓解锂枝晶刺穿复合固态电解质造成的电池内部微短路的现象,又可以降低正负极界面阻抗导致的极化问题,将该复合固态电解质应用于电池,所述电池的综合性能最优。
根据本公开的实施例,在所述中间层固态电解质层中,所述第二无机固态电解质占中间层固态电解质层总重量的1%~90%,例如1%、3%、5%、7%、10%、11%、13%、15%、17%、20%、21%、23%、25%、27%、30%、31%、33%、35%、37%、40%、41%、43%、45%、47%、50%、51%、53%、55%、57%、60%、61%、63%、65%、67%、70%、71%、73%、75%、77%、80%、81%、83%、85%、87%、90%,根据本公开的实施例,所述第二无机固态电解质占中间层固态电解质层总重量的10%~70%,采用上述重量比范围的第一固态电解质,既能够及时的反应掉从负极层固态电解质侧穿透生成的纳米锂枝晶,从而大大减少由于锂枝晶刺穿整个复合电解质层造成的电池内部微短路问题,同时又能够获得最为合适的防止被金属负极还原的效果和尽可能高的锂离子电导率。
本公开中,对于正极没有特殊限制,具体可以采用现有锂电池中通常采用的正极。具体的,所述正极包括正极集流体和位于正极集流体表面的正极材料。
所述正极集流体的种类为本领域技术人员所公知,例如,可以选自铝箔、铜箔、或者冲压钢带。
上述正极材料包括正极活性物质、导电剂和第四粘结剂。
根据本公开的实施例所述正极活性材料选自LiFe xMn yM zPO 4(0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1,其中M为Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo中的至少一种)、Li 3V 2(PO 4) 3、Li 3V 3(PO 4) 3、LiNi 0.5-aMn 1.5-bA a+bO 4(-0.1≤a≤0.5,0≤b≤1.5,0≤a+b,A为Li、Co、Fe、Al、Mg、Ca、Ti、Mo、Cr、Cu、Zn中的至少一种,)、LiVPO 4F、Li 1+cE 1-d-eF dG eO 2(E、F、G为Li、Co、Mn、Ni、Fe、Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo、F、I、S、B中的至少一种,-0.1≤c≤0.2,0≤d≤1,0≤e≤1,0≤d+e≤1.0)、Li 2CuO 2、Li 5FeO 4、硫、硫化锂、V 2O 5、MnO 2、TiS 2、FeS 2中的一种或多种,采用所述正极活性材料的固态锂电池可获得较高的比能量。
根据本公开的实施例,所述正极活性材料选自LiAl 0.05Co 0.15Ni 0.80O 2、LiNi 0.80Co 0.10Mn 0.10O 2、LiNi 0.60Co 0.20Mn 0.20O 2、LiCoO 2、LiMn 2O 4、LiFePO 4、LiMnPO 4、LiNiPO 4、LiCoPO 4、LiNi 0.5Mn 1.5O 4、Li 3V 3(PO 4) 3等中的一种或多种,所述正极活性材料比容量高、工 艺制备简单,成本较低。
本公开对所述导电剂没有特别限制,可以为本领域常规的正极导电剂,比如乙块黑、碳纳米管、HV、碳黑中的至少一种。其中,以正极活性物质的重量为基准,所述导电剂的含量为0.1~20wt%,例如,0.1wt%、0.3wt%、0.5wt%、0.7wt%、1.0wt%、1.1wt%、1.3wt%、1.5wt%、1.7wt%、2.0wt%、2.1wt%、2.3wt%、2.5wt%、2.7wt%、3.0wt%、3.1wt%、3.3wt%、3.5wt%、3.7wt%、4.0wt%、4.1wt%、4.3wt%、4.5wt%、4.7wt%、5.0wt%、5.1wt%、5.3wt%、5.5wt%、5.7wt%、6.0wt%、6.1wt%、6.3wt%、6.5wt%、6.7wt%、7.0wt%、7.1wt%、7.3wt%、7.5wt%、7.7wt%、8.0wt%、8.1wt%、8.3wt%、8.5wt%、8.7wt%、9.0wt%、9.1wt%、9.3wt%、9.5wt%、9.7wt%、10.0wt%、10.1wt%、10.3wt%、10.5wt%、10.7wt%、11.0wt%、11.1wt%、11.3wt%、11.5wt%、11.7wt%、12.0wt%、13.1wt%、13.3wt%、13.5wt%、13.7wt%、14.0wt%、14.1wt%、14.3wt%、14.5wt%、14.7wt%、15.0wt%、15.1wt%、15.3wt%、15.5wt%、15.7wt%、16.0wt%、16.1wt%、16.3wt%、16.5wt%、16.7wt%、17.0wt%、17.1wt%、17.3wt%、17.5wt%、17.7wt%、18.0wt%、18.1wt%、18.3wt%、18.5wt%、18.7wt%、19.0wt%、19.1wt%、19.3wt%、19.5wt%、19.7wt%、20wt%,根据本公开的实施例,以正极活性物质的重量为基准,所述导电剂的含量为1~10wt%。
所述第四粘结剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)和丁苯橡胶(SBR)中的一种或几种。一般来说,根据所用粘合剂种类的不同,以正极活性物质的重量为基准,第四粘结剂的含量为0.01-10wt%,例如0.01wt%、0.03wt%、0.05wt%、0.07wt%、0.1wt%、0.11wt%、0.13wt%、0.15wt%、0.17wt%、0.2wt%、0.3wt%、0.5wt%、0.7wt%、1.0wt%、1.1wt%、1.3wt%、1.5wt%、1.7wt%、2.0wt%、2.1wt%、2.3wt%、2.5wt%、2.7wt%、3.0wt%、3.1wt%、3.3wt%、3.5wt%、3.7wt%、4.0wt%、4.1wt%、4.3wt%、4.5wt%、4.7wt%、5.0wt%、5.1wt%、5.3wt%、5.5wt%、5.7wt%、6.0wt%、6.1wt%、6.3wt%、6.5wt%、6.7wt%、7.0wt%、7.1wt%、7.3wt%、7.5wt%、7.7wt%、8.0wt%、8.1wt%、8.3wt%、8.5wt%、8.7wt%、9.0wt%、9.1wt%、9.3wt%、9.5wt%、9.7wt%、10wt%,根据本公开的实施例,以正极活性物质的重量为基准,第四粘结剂的含量为0.02-5wt%。
本公开还提供了一种上述锂离子电池的制备方法,该方法包括:将第一固态电解质浆料涂布于支撑体上,烘干得到正极侧固态电解质层或负极侧固态电解质层;在所述正极侧固态电解质层表面或负极侧固态电解质层表面涂覆第二固态电解质浆料,得到中间层固态电解质层,在所述中间层固态电解质层表面涂覆第三固态电解质浆料,烘干得到所述复合固态电解质,然后将正极、复合固态电解质、负极压制成型,得到所述锂离子电池。
对于上述制备方法,可以先制备正极侧固态电解质层,也可以先制作负极侧固态电解质层,本公开不作限定。例如,先制作正极侧固态电解质层,相应的,在正极侧固态电解质层表面涂覆第二固态电解质获得正极侧固态电解质层/中间层固态电解质层的双层结构、再涂覆第三固态电解质浆料后,获得正极侧固态电解质层/中间层固态电解质层/负极侧固态电解质层的三层结构。
本公开对上述锂离子电池的先后制备的顺序可以有所不同,本公开不作限定。
例如,先制备复合固态电解质层,再将正极、复合固态电解质层和负极依次层压,得到所述锂离子电池,还可以形成具有双层结构的第一复合体,所述第一复合体包括正极以及位于正极表面的正极侧固态电解质层,然后在正极侧固态电解质层表面依次形成中间层固态电解质层和负极侧固态电解质层,最后将负极置于负极侧固态电解质层上压制成型,也可以先将负极和负极侧固态电解质质层和中间层固态电解质层形成第二复合体,再将第二复合体与第一复合体层叠,使正极侧固态电解质层和中间层固态电解质层接触,然后压制成型。
下面对先获得复合固态电解质层,然后将再将正极、复合固态电解质层和负极按照固定的顺序层压,得到所述锂离子电池的方法进行详细描述。
首选,获得正极侧固态电解质层。此时制备正极侧固态电解质层的方法采用涂布的方法,具体包括:在支撑体上涂布第一固态电解质浆料,然后在40℃~100℃下烘干,例如40℃、42℃、45℃、47℃、50℃、52℃、55℃、57℃、60℃、62℃、65℃、67℃、70℃、72℃、75℃、77℃、80℃、82℃、85℃、87℃、90℃、92℃、95℃、97℃、100℃。所述第一固态电解质浆料包括第一无机固态电解质、第一粘结剂和第一溶剂,以所述第一固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%~69.7%,例如23%、25%、27%、30%、33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、69%、69.3%、69.5%、69.7%,第一粘结剂的占比为0.03%~7%,例如0.03%、0.05%、0.07%、0.1%、0.13%、0.15%、0.17%、0.2%、0.23%、0.25%、0.27%、0.3%、0.33%、0.35%、0.37%、0.4%、0.43%、0.45%、0.47%、0.5%、0.53%、0.55%、0.57%、0.6%、0.63%、0.65%、0.67%、0.7%、0.73%、0.75%、0.77%、0.8%、0.83%、0.85%、0.87%、0.9%、0.93%、0.95%、0.97%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%,第一溶剂占比30%-70%,例如30%、33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、69%、69%、69.5%、69.7%、70%;对于第一溶剂,用于将第一无机固态电解质分布其中,形成浆料,利于涂布。在后续干燥过程中,上述第一溶剂被先除去。
其次,在正极侧固态电解质层表面获得中间层固态电解质层,此时制备中间层固态电解质层的方法采用涂布的方法,具体包括:在烘干后的正极侧固态电解质层表面涂布第二固态电解质浆料,然后在40℃~100℃下烘干,例如40℃、42℃、45℃、47℃、50℃、52℃、55℃、57℃、60℃、62℃、65℃、67℃、70℃、72℃、75℃、77℃、80℃、82℃、85℃、87℃、90℃、92℃、95℃、97℃、100℃。所述第二固态电解质浆料包括第一无机固态电解质、第二无机固态电解质、第二粘结剂和第二溶剂,以所述第二固态电解质浆料的重量为基准,所述第一无机固态电解质占比1%~68.7%,例如1%、3%、5%、7%、9%、11%、13%、15%、17%、19%、21%、23%、25%、27%、30%、33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、68.7%,第二无机固态电解质占比1%~68.7%,例如1%、3%、5%、7%、9%、11%、13%、15%、17%、19%、21%、23%、25%、27%、30%、33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、68.7%,第二粘结剂的占比为0.03%~7%,例如0.03%、0.05%、0.07%、0.1%、0.13%、0.15%、0.17%、0.2%、0.23%、0.25%、0.27%、0.3%、0.33%、0.35%、0.37%、0.4%、0.43%、0.45%、0.47%、0.5%、0.53%、0.55%、0.57%、0.6%、0.63%、0.65%、0.67%、0.7%、0.73%、0.75%、0.77%、0.8%、0.83%、0.85%、0.87%、0.9%、0.93%、0.95%、0.97%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%,第二溶剂的占比为30%-70%,例如30%、33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、69%、70%,对于第二溶剂,与上述第一溶剂的作用相同。
再次,获得负极侧固态电解质层,此时制备负极侧固态电解质层的方法采用涂布的方法,具体包括:在烘干后的中间层固态电解质层表面涂布第三固态电解质浆料,然后在40℃~100℃下烘干,例如40℃、42℃、45℃、47℃、50℃、52℃、55℃、57℃、60℃、62℃、65℃、67℃、70℃、72℃、75℃、77℃、80℃、82℃、85℃、87℃、90℃、92℃、95℃、97℃、100℃。所述第三固态电解质浆料包括第一无机固态电解质、第三粘结剂和第三溶剂,以所述第三固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%-69.7%,例如23%、25%、27%、30%、33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、69%、69.3%、69.5%、69.7%,第三粘结剂的占比为0.03%~7%,例如0.03%、0.05%、0.07%、0.1%、0.13%、0.15%、0.17%、0.2%、0.23%、0.25%、0.27%、0.3%、0.33%、0.35%、0.37%、0.4%、0.43%、0.45%、0.47%、0.5%、0.53%、0.55%、0.57%、0.6%、0.63%、0.65%、0.67%、0.7%、0.73%、0.75%、0.77%、0.8%、0.83%、0.85%、0.87%、0.9%、0.93%、0.95%、0.97%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%,第三溶剂的占比为30%-70%,例如30%、 33%、35%、37%、40%、43%、45%、47%、50%、53%、55%、57%、60%、63%、65%、67%、67.5%、68%、68.5%、69%、69%、69.5%、69.7%、70%;对于第三溶剂,与上述第一溶剂的作用相同。
对于上述制备方法,所述第一固态电解质浆料、第二固态电解质浆料和第三固态电解质浆料中的第一无机固态电解质的种类可以相同也可以不同,含量可以相同也可以不同,本公开不作限定。
对于上述制备方法,所述第一粘结剂、第二粘结剂和第三粘结剂的种类可以相同也可以不同,各自独立的选自聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚氧化乙烯(PEO)和丁苯橡胶(SBR)中的一种或多种;所述第一粘结剂、第二粘结剂和第三粘结剂的含量可以相同也可以不同,本公开不作限定。
对于上述制备方法,所述第一溶剂、第二溶剂和第三溶剂的种类可以相同也可以不同,各自独立的选自二甲苯、甲苯、正庚烷、乙腈、二氯甲烷中的一种或多种;所述第一溶剂、第二溶剂和第三溶剂的含量可以相同也可以不同,本公开不作限定。
对于上述复合电解质层的制备中,所述支撑体用于辅助电解质浆料的铺展,支撑体与电解质浆料之间的粘附不强,电解质浆料在烘干后,电解质可以从支撑体表面取下来,所述支撑体为本领域常规使用的,例如,支撑体选自聚酯薄膜(PET膜)和聚酰亚胺膜(PI膜)中的一种或两种。
接下来,获得正极,所述正极包括正极集流体以及位于正极集流体表面的正极材料。上述正极可直接获取或自行制备。自行制备时,其具体制备方法是本领域技术人员所熟知的,例如将正极浆料涂覆在正极集流体上,经干燥、压延制备得到。其中,正极浆料包括正极活性物质、导电剂、第四粘结剂和溶剂。上述正极活性物质、导电剂、第四粘结剂所采用的物质以及各自的添加量如前文所述,在此不再赘述。上述溶剂用于将正极活性物质、导电剂、第四粘结剂分布于其中,形成浆料状,利于涂布。在后续干燥过程中,上述溶剂被除去。溶剂所采用的具体物质以及添加量是本领域技术人员所知晓的,在此不再赘述。
接下来获得负极,所述负极包含锂金属、锂-硅-碳、可与锂形成合金的其它负极材料。锂金属负极活性材料包括锂箔、锂薄膜、稳定化锂粉、锂带等。锂-硅-碳负极活性材料包括预嵌锂后的硅-碳负极,硅碳负极与锂带、锂粉、锂薄膜等复合在一起的负极活性材料。可与锂形成合金的负极活性材料包括硼、镓、铟、铝、磷、铅、锗、锡。负极还包含铜箔、铜网、镍网、镍箔、泡沫铜、泡沫镍、不锈钢网、不锈钢带等集流体。自行制备时,其具体制备方法是本领域技术人员所熟知的,例如将锂薄膜压制在铜箔集流体上,制作获得锂 负极。
最后,将正极、复合电解质层、负极按照顺序依次层叠得到所述电解质。所述压制成型的方法为热辊压。
本公开的第三个目的提供了一种电动车辆,含有上述提供的锂离子电池或含有采用上述方法得到的锂离子电池。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
实施例1
正极侧固态电解质层的制作:
将4.85g 70Li 2S-30P 2S 5硫化物固体电解质(其制备方法参照中国发明专利CN201510695407.5)和0.15g丁苯橡胶(SBR)加入到6.0g无水正庚烷中,然后在真空搅拌机中搅拌,形成稳定均一的第一固态电解质浆料;将第一固态电解质浆料均匀地间歇涂布在PET膜上,于~80℃下干燥,滚压处理,得到正极侧固态电解质层,涂覆厚度为10μm。
中间层固态电解质层的制作:
将2.85g硫化物固体电解质70Li 2S-30P 2S 5、2.0g Li 10SnP 2S 12电解质和0.15g SBR加入到6.0g无水正庚烷中,然后在真空搅拌机中搅拌,形成稳定均一的第二固态电解质浆料;将第二固态电解质浆料均匀地间歇涂布在正极侧固态电解质膜上,于~80℃下干燥,滚压处理,得到中间层固态电解质层,涂覆厚度为15μm。
负极侧固态电解质层的制作:
将4.85g70Li 2S-30P 2S 5硫化物固体电解质和0.15gSBR加入到6.0g无水正庚烷中,然后在真空搅拌机中搅拌,形成稳定均一的第三固态电解质浆料;将第三固态电解质浆料均匀地间歇涂布在中间层固态电解质层上,于~80℃下干燥,滚压处理,涂覆厚度为10μm,得到复合固态电解质层,将其裁剪为15mm直径的电解质圆片,记为C1。
正极的制作:
将6.0mg LiCoO 2、3mg固体电解质70Li 2S-30P 2S 5、0.7mg导电剂(乙炔黑)和0.3mg SBR加入到12.0g无水甲苯中,然后在真空搅拌机中搅拌,形成稳定均匀的正极浆料,搅拌的速度为1000rmp,时间为12h;然后将得到的浆料单面涂覆在集流体铝片上,然后在80℃下烘干,经过辊压机压片后得到正极片,再裁剪成直径为15.0mm的圆片。
负极的制作:
将30μm锂薄膜压制在铜箔集流体上,并使用裁片将锂片裁剪成直径为15mm的锂负极圆片。
电池的组装
使用CR2025电池壳组装扣式电池。首先将正极居中放置在正极壳中,然后依次放入复合电解质层,负极,并施加0.1~1MPa的压力以压紧,随后进行封装即得到锂离子电池S1。
实施例2
按照实施例1的方法制备复合电解质C2和扣式电池S2,所不同的是,在制作中间层固态电解质层,用玻璃态的Li 3PO 3.6N 0.4替换Li 10SnP 2S 12电解质。
实施例3
按照实施例1的方法制备复合电解质C3和扣式电池S3,所不同的是,在制作中间层固态电解质层,用Li 1.3Al 0.3Ti 1.7(PO 4) 3替换Li 10SnP 2S 12电解质。
实施例4
按照实施例1的方法制备复合电解质C4和扣式电池S4,所不同的是,在制作正极侧固态电解质层,用75Li 2S-24P 2S 5-P 2O 5替换70Li 2S-30P 2S 5电解质。
实施例5
按照实施例1的方法制备复合电解质C5和扣式电池S5,所不同的是,在制作正极侧固态电解质层,用80Li 2S-20P 2S 5替换70Li 2S-30P 2S 5电解质。
实施例6
按照实施例1的方法制备复合电解质C6和扣式电池S6,所不同的是,复合固态电解质的总厚度为100μm,正极侧固态电解质的涂覆厚度为30μm,中间层固态电解质的涂覆厚度为40μm,负极侧固态电解质的涂覆厚度为30μm。
实施例7
按照实施例1的方法制备复合电解质C7和扣式电池S7,所不同的是,复合固态电解质的总厚度为1μm,正极侧固态电解质的涂覆厚度为0.3μm,中间层固态电解质的涂覆厚度为0.4μm,负极侧固态电解质的涂覆厚度为0.3μm。
实施例8
按照实施例1的方法制备复合电解质C8和扣式电池S8,所不同的是,在制备中间层 固态电解质时,Li 10SnP 2S 12的加入量为6.65g。
实施例9
按照实施例1的方法制备复合电解质C9和扣式电池S9,所不同的是,在制备中间层固态电解质时,Li 10SnP 2S 12的加入量为0.317g。
实施例10
按照实施例1的方法制备复合电解质C10和扣式电池S10,所不同的是,在制备中间层固态电解质时,Li 10SnP 2S 12的加入量为2.85g。
实施例11
按照实施例1的方法制备复合电解质C11和扣式电池S11,所不同的是,在制备中间层固态电解质时,Li 10SnP 2S 12的加入量为1.90g。
对比例1
直接将实施例1中制备的正极侧固态电解质用作本对比例的固态电解质DC1,涂覆厚度为35μm,按照实施例1的方法制备扣式电池DS2。
对比例2
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC2,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC2,制备得到扣式电池DS2。
对比例3
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,所不同的是用Li 3PO 3.6N 0.4替换Li 10SnP 2S 12,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC3,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC3,制备得到扣式电池DS3。
对比例4
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,所不同的是用Li 1.3Al 0.3Ti 1.7(PO 4) 3替换Li 10SnP 2S 12,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC4,涂覆厚度为35μm。然后按照实施例 1的方法,采用本对比例的固态电解质DC4,制备得到扣式电池DS4。
对比例5
参照实施例1制备第二电解质浆料的方法制备本实施例的电解质浆料,所不同的是在电解质浆料中不添加70Li 2S-30P 2S 5,然后将该电解质浆料直接涂覆在PET膜上,于~80℃下干燥,滚压处理,得到本对比例的固态电解质层DC5,涂覆厚度为35μm。然后按照实施例1的方法,采用本对比例的固态电解质DC5,制备得到扣式电池DS5。
性能测试
1)Li vs Li对称电池的制备与测试:分别将复合固态电解质C1-复合固态电解质C11,固态电解质DC1-复合固态电解质DC5裁成15mm直径的电解质圆片,然后两边贴上相同大小的锂箔,施加0.1~1Mpa的压力使之压紧,封装与扣式电池壳中即得到Li vs Li对称电池DE1。25℃下,170uA/cm 2,2小时充电/2小时放电,进行对称电池测试,评估电解质膜对金属锂负极的稳定性,测试结果表1,图1为C1、DC1、DC2和DC5的测试曲线图。
2)充放电性能测试:分别将电池S1-电池S11,电池DS1-电池DS5在25±1℃条件下,将电池恒流0.05C充电至4.2V截止;搁置5分钟;恒流0.01C放电至2.5V;如此对电池进行充放电50次循环,测试结果见表2,图2为S1、DS1、DS2和DS5的首次充放电曲线图。
3)锂离子电池阻抗的测试:测试条件为,开路电位下,频率范围100KHz-0.1Hz,振幅50mV,固态锂电池的阻抗大小,测试结果见表2。
图1测试结果显示C1电解质膜对金属锂负极的界面稳定最好,可维持约120h小时的循环;DC1电解质膜只能维持约20分钟的时间便会出现电压急剧下降,出现短路的现象;DC2和DC5电解质膜中的Li 10SnP 2S 12电解质与两侧金属锂之间接触,界面形成副反应,导致阻抗随着循环逐渐增加,约40h,电压剧烈极化,导致循环结束。
表1 C1-C11,DC1-DC5电解质对锂稳定性结果
Figure PCTCN2019084567-appb-000001
Figure PCTCN2019084567-appb-000002
图2中的首次充放电曲线显示DS1电池不能正常充放电,表2中测试得到的阻抗急剧下降至约150Ω,表明出现微短路的现象;DS2和DS5由于Li 10SnP 2S 12电解质组分与金属锂负极之间接触,导致两者之间界面副反应多,首次效率低,表2中的阻抗值变大。S1电池不仅没有出现微短路现象,而且表现出较高的首次充放电容量、效率和容量保持率。
表2 S1-S11、DS1-DS5固态锂电池充放电测试和阻抗测试结果
Figure PCTCN2019084567-appb-000003
Figure PCTCN2019084567-appb-000004
从表1中对锂的稳定性实验结果显示C2、C3分别优于相应的对比例DC3、DC4,同样表2中固态电池S2、S3的电化学性能也分别优于相应的对比例DS3、DS4的电化学性能。
上述实验结果表明三层电解质设计的电解质膜对金属锂负极的稳定性得到了极大的提升,能有效缓解了固态电池中的微短路现象。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例 进行变化、修改、替换和变型。

Claims (19)

  1. 一种锂离子电池,包括正极、负极以及位于所述正极和所述负极之间的复合固态电解质层,其中,所述复合固态电解层包括正极侧固态电解质层、负极侧固态电解质层和夹设在所述正极侧固态电解质层和所述负极侧固态电解质层之间的中间层固态电解质层;所述正极侧固态电解质层、所述负极侧固态电解质层和所述中间层固态电解质层均含有第一无机固态电解质,所述中间层固态电解质层还包括第二无机固态电解质;
    所述第一无机固态电解质选自化学式为x1Li 2X-(100-x1)P 2X 5的固态电解质中的一种或多种,其中,70≤x1≤85,且x1为整数,X=O、S、Se中的一种或多种;
    所述第二无机固态电解质选自锂磷氧氮固态电解质、NASICON型固态电解质和化学式为Li 10±1MA 2N 12的固态电解质中的一种或多种,其中,M为Si、Ge、Sn、B中的一种或多种,A为P或As,N为O、S、Se中的一种或多种。
  2. 根据权利要求1所述的锂离子电池,其中,所述第一无机固态电解质选自70Li 2X-30P 2X 5、75Li 2X-25P 2X 5、80Li 2X-20P 2X 5中的一种或多种。
  3. 根据权利要求1或2所述的锂离子电池,其中,所述第一无机固态电解质选自70Li 2S-30P 2S 5、75Li 2S-25P 2S 5、80Li 2S-20P 2S 5、70Li 2O-30P 2O 5、75Li 2O-25P 2O 5、80Li 2O-20P 2O 5,70Li 2Se-30P 2Se 5、75Li 2Se-25P 2Se 5、80Li 2Se-20P 2Se 5中的一种或多种。
  4. 根据权利要求1-3中任一项所述的锂离子电池,其中,所述化学式为Li 10±1MA 2N 12的固态电解质选自Li 10SnP 2S 12、Li 10GeP 2S 12、Li 10SiP 2S 12中的一种或多种。
  5. 根据权利要求1-4中任一项所述的锂离子电池,其中,所述锂磷氧氮固态电解质选自玻璃态的锂磷氧氮固态电解质、陶瓷态的锂磷氧氮固态电解质和玻璃陶瓷态的锂磷氧氮固态电解质中的一种或几种。
  6. 根据权利要求1-5中任一项所述的锂离子电池,其中,所述NASICON型固态电解质选自Li 1+x4B x4T 2-x4(PO 4) 3中的一种或多种,其中,B为Al,Cr,Ga,Fe,Sc,In,Lu,Y,La中的一种或多种,T为Ti和或Ge,0≤x4≤2。
  7. 据权利要求1-6中任一项所述的锂离子电池,其中,所述NASICON型固态电解质选自Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 1.5Cr 0.5Ti 1.5(PO 4) 3、Li 1.5Al 0.5Ge 1.5(PO 4) 3、Li 1.5Al 0.4Cr 0.1Ge 1.5(PO 4) 3中的一种或多种。
  8. 根据权利要求1-7中任一项所述的锂离子电池,其中,所述负极包括负极集流体和位于负极集流体表面的负极材料。
  9. 根据权利要求1-8中任一项所述的锂离子电池,其中,所述负极材料包括负极活性材料,所述负极活性材料为锂金属或锂合金。
  10. 根据权利要求1-9中任一项所述的锂离子电池,其中,所述复合固态电解质层的厚度为1μm-100μm,所述正极侧固态电解质层、所述负极侧固态电解质层和所述中间层固态电解质层的厚度之比为10-80:10-80:10-80。
  11. 根据权利要求1-10中任一项所述的锂离子电池,其中,在所述中间层固态电解质层中,所述第二无机固态电解质占所述中间层固态电解质层总重量的1%~90%。
  12. 根据权利要求1-11中任一项所述的锂离子电池,其中,在所述中间层固态电解质层中,所述第二无机固态电解质占所述中间层固态电解质层总重量的10%~70%。
  13. 根据权利要求1-12中任一项所述的锂离子电池,其中,所述正极包括正极集流体和位于所述正极集流体表面的正极材料,所述正极材料包括正极活性物质。
  14. 根据权利要求1-13中任一项所述的锂离子电池,其中,所述正极活性物质选自LiFe xMn yM zPO 4、Li 3V 2(PO 4) 3、Li 3V 3(PO 4) 3、LiNi 0.5-aMn 1.5-bA a+bO 4、LiVPO 4F、Li 1+cE 1-d-eF dG eO 2、Li 2CuO 2、Li 5FeO 4、硫、硫化锂、V 2O 5、MnO 2、TiS 2、FeS 2中的一种或多种,
    其中,0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1,其中M为Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo中的至少一种;
    -0.1≤a≤0.5,0≤b≤1.5,0≤a+b;A为Li、Co、Fe、Al、Mg、Ca、Ti、Mo、Cr、Cu、Zn中的至少一种;
    E、F、G为Li、Co、Mn、Ni、Fe、Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo、F、I、S、B中的至少一种,-0.1≤c≤0.2,0≤d≤1,0≤e≤1,0≤d+e≤1.0。
  15. 根据权利要求1-14中任一项所述的锂离子电池,其中,所述正极活性物质选自LiAl 0.05Co 0.15Ni 0.80O 2、LiNi 0.80Co 0.10Mn 0.10O 2、LiNi 0.60Co 0.20Mn 0.20O 2、LiCoO 2、LiMn 2O 4、LiFePO 4、LiMnPO 4、LiNiPO 4、LiCoPO 4、LiNi 0.5Mn 1.5O 4、Li 3V 3(PO 4) 3中的一种或多种。
  16. 一种制备权利要求1-15中任一项所述锂离子电池的方法,其中,所述方法包括:
    将第一固态电解质浆料涂布于支撑体上,烘干得到正极侧固态电解质层或负极侧固态电解质层;
    在所述正极侧固态电解质层表面或所述负极侧固态电解质层表面涂覆第二固态电解质浆料,得到中间层固态电解质层,在所述中间层固态电解质层表面涂覆第三固态电解质浆 料,烘干得到所述复合固态电解质,然后将正极、所述复合固态电解质、负极压制成型,得到所述锂离子电池。
  17. 根据权利要求16所述的方法,其中,所述第一固态电解质浆料包括第一无机固态电解质、第一粘结剂和第一溶剂,以所述第一固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%-69.7%,第一粘结剂的占比为0.03%-7%,第一溶剂占比30%-70%;所述第二电解质浆料包括第一无机固态电解质、第二无机固态电解质、第二粘结剂和第二溶剂,以所述第二固态电解质浆料的重量为基准,所述第一无机固态电解质占比1%-68.7%,第二无机固态电解质占比1%-68.7%,第二粘结剂的占比为0.03%-7%,第二溶剂占比30%-70%;所述第三固态电解质浆料包括第一无机固态电解质、第三粘结剂和第三溶剂,以所述第三固态电解质浆料的重量为基准,所述第一无机固态电解质占比23%-69.7%,第三粘结剂的占比为0.03%-7%,第三溶剂占比30%-70%;所述第一粘结剂、所述第二粘结剂和所述第三粘结剂各自独立地选自聚偏二氟乙烯、聚四氟乙烯、聚氧化乙烯和丁苯橡胶中的一种或多种;所述第一溶剂、所述第二溶剂和所述第三溶剂各自独立地选自二甲苯、甲苯、正庚烷、乙腈、二氯甲烷中的一种或多种。
  18. 根据权利要求16或17所述的方法,其中,所述支撑体选自聚酯薄膜和聚酰亚胺膜中的一种或两种。
  19. 一种电动车辆,其中,所述电动车辆含有权利要求1-15中任一项所述的锂离子电池或采用权利要求16-18中任一项所述方法得到的锂离子电池。
PCT/CN2019/084567 2018-08-24 2019-04-26 锂离子电池及其制备方法和电动车辆 WO2020038011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810971205.2A CN110858660B (zh) 2018-08-24 2018-08-24 锂离子电池及其制备方法和电动车辆
CN201810971205.2 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020038011A1 true WO2020038011A1 (zh) 2020-02-27

Family

ID=69592349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084567 WO2020038011A1 (zh) 2018-08-24 2019-04-26 锂离子电池及其制备方法和电动车辆

Country Status (2)

Country Link
CN (1) CN110858660B (zh)
WO (1) WO2020038011A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086680B (zh) * 2020-09-23 2022-09-06 蜂巢能源科技有限公司 一种全固态电解质层及其制备方法和用途
CN112687945A (zh) * 2020-12-21 2021-04-20 南方科技大学 一种复合固态电解质浆料、薄膜、制备方法及全固态电池
CN113422109B (zh) * 2021-06-23 2023-02-21 中国第一汽车股份有限公司 一种多层固体电解质膜及其应用
CN113659195A (zh) * 2021-07-02 2021-11-16 恒大新能源技术(深圳)有限公司 一种复合薄膜及其制备方法、固态锂电池
CN114639869A (zh) * 2022-03-25 2022-06-17 厦门海辰新能源科技有限公司 固态电解质及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328992A (zh) * 2015-06-30 2017-01-11 比亚迪股份有限公司 一种锂离子电池和该锂离子电池的制备方法
CN107425176A (zh) * 2017-07-07 2017-12-01 福建猛狮新能源科技有限公司 一种全固态锂离子电池及其制备方法
CN107732297A (zh) * 2017-10-13 2018-02-23 中国科学院青岛生物能源与过程研究所 一种应用于锂电池的耐高电压多级结构复合固态电解质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126758A (ja) * 1999-10-28 2001-05-11 Kyocera Corp リチウム電池
JP5153065B2 (ja) * 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質
JP5211526B2 (ja) * 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
JP4728385B2 (ja) * 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
KR20130108244A (ko) * 2010-08-26 2013-10-02 스미토모덴키고교가부시키가이샤 비수 전해질 전지 및, 그 제조 방법
US20120301778A1 (en) * 2011-03-17 2012-11-29 James Trevey Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
CA2820635A1 (en) * 2013-06-21 2014-12-21 Hydro-Quebec All-solid state polymer li-s electrochemical cells and their manufacturing processes
JP2015069967A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 二次電池
DE102015005805A1 (de) * 2014-05-21 2015-11-26 Schott Ag Elektrolyt mit mehrlagigem Aufbau und elektrische Speichereinrichtung
JP2016219130A (ja) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
CN106611871B (zh) * 2015-10-23 2020-11-06 比亚迪股份有限公司 固体电解质材料及其制备方法和固体电解质和电池
KR20170111439A (ko) * 2016-03-28 2017-10-12 주식회사 세븐킹에너지 다층 구조를 가지는 이차전지용 복합 전해질
EP3483971A4 (en) * 2016-12-26 2019-11-13 Showa Denko K.K. LITHIUM-ION BATTERY SOLID STATE
CN108039463A (zh) * 2017-11-27 2018-05-15 北京化工大学 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
CN108063278A (zh) * 2017-11-27 2018-05-22 浙江衡远新能源科技有限公司 一种全固态锂离子电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328992A (zh) * 2015-06-30 2017-01-11 比亚迪股份有限公司 一种锂离子电池和该锂离子电池的制备方法
CN107425176A (zh) * 2017-07-07 2017-12-01 福建猛狮新能源科技有限公司 一种全固态锂离子电池及其制备方法
CN107732297A (zh) * 2017-10-13 2018-02-23 中国科学院青岛生物能源与过程研究所 一种应用于锂电池的耐高电压多级结构复合固态电解质

Also Published As

Publication number Publication date
CN110858660B (zh) 2021-06-18
CN110858660A (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
WO2020038011A1 (zh) 锂离子电池及其制备方法和电动车辆
CN103746089B (zh) 一种具有梯度结构的全固态锂电池及其制备方法
JP5930035B2 (ja) 全固体電池及びその製造方法
WO2017128983A1 (zh) 全固态锂离子电池正极复合材料及其制备方法和应用
JP6885309B2 (ja) 直列積層型全固体電池
CN112928381B (zh) 锂离子电池的补锂电极片、补锂隔膜及其制备方法
CN112397793A (zh) 用于双极电容器辅助固态蓄电池的混合电极材料
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
CN112713266B (zh) 负极浆料及其应用
KR20200134688A (ko) 고에너지 밀도 전고체 전지 및 이의 제조 방법
JPWO2014010042A1 (ja) 全固体電池の製造方法
JP2016207636A (ja) リチウムイオン電池用陽極及びこれを利用したリチウムイオン電池
WO2022057189A1 (zh) 一种固态电池、电池模组、电池包及其相关的装置
JP5806335B2 (ja) 電極体及びその製造方法
CN112072164A (zh) 固态锂电池及其制备方法
CN112133887A (zh) 准固态电池极片及其制备方法和应用
JP2015005421A (ja) 電極体及び全固体電池
CN116845393A (zh) 一种固态锂离子电池
KR102431358B1 (ko) 리튬을 함유하는 중간막이 코팅된 고체 전해질 분리막 및 이를 이용한 전고체 이차 전지
KR20200050627A (ko) 겔형 고분자 전해질을 포함하는 전고체전지용 복합 전극, 그의 제조방법 및 그를 포함하는 전고체 리튬 전지
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
US11811043B2 (en) Electrode for all-solid-state battery and method for manufacturing electrode assembly comprising the same
CN112436106B (zh) 金属正极和基于金属正极的电池
CN111224048B (zh) 富勒烯在固态电池中的应用和固态电池及其组装工艺
JP2023533234A (ja) 固体電解質材料を含む全固体電池を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853112

Country of ref document: EP

Kind code of ref document: A1