WO2018009018A1 - 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법 - Google Patents

다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018009018A1
WO2018009018A1 PCT/KR2017/007282 KR2017007282W WO2018009018A1 WO 2018009018 A1 WO2018009018 A1 WO 2018009018A1 KR 2017007282 W KR2017007282 W KR 2017007282W WO 2018009018 A1 WO2018009018 A1 WO 2018009018A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
multilayer
secondary battery
ceramic
polymer
Prior art date
Application number
PCT/KR2017/007282
Other languages
English (en)
French (fr)
Inventor
임성윤
권지윤
김석구
하회진
김영식
최현지
김재광
허성우
Original Assignee
주식회사 엘지화학
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 울산과학기술원 filed Critical 주식회사 엘지화학
Priority to CN201780003991.0A priority Critical patent/CN108352568B/zh
Priority to EP17824574.2A priority patent/EP3364489B1/en
Priority to US15/778,125 priority patent/US11145895B2/en
Publication of WO2018009018A1 publication Critical patent/WO2018009018A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a multilayer electrolyte cell, a secondary battery including a multilayer electrolyte cell, and a method for manufacturing the same. More specifically, a polymer coating layer including a ceramic solid electrolyte and a liquid electrolyte including an ionic liquid in a porous structure base
  • the electrolyte relates to a multilayer electrolyte cell composed of multiple layers, a secondary battery comprising a multilayer electrolyte cell, and a method of manufacturing the same.
  • the structure of a lithium ion secondary battery consists of three elements, a negative electrode active material, a positive electrode active material, and electrolyte solution. Battery action advances by moving lithium ions from the positive electrode to the negative electrode and from the negative electrode to the positive electrode.
  • the electrolyte portion only functions as a lithium ion conductor.
  • an electrolyte solution in which lithium salt is dissolved in a proton organic solvent is used.
  • the liquid electrolyte has the advantage of exhibiting high ionic conductivity, but it is basically environmentally undesirable as an acid solution and contains a risk of leakage.
  • the negative electrolyte and the positive electrode electrolyte are not separated and are not electrochemically safe, and a half cell test is impossible.
  • the positive electrode and the negative electrode electrolyte made of the same composition are included in order to stabilize both the positive electrode and the negative electrode, the range of the positive electrode active material that can be used in the lithium secondary battery is limited, and a high voltage positive electrode can be used. There is no problem.
  • the conventional lithium secondary battery has a problem in that it is not possible to maximize the additional characteristics due to the electrolyte and the characteristics of the positive electrode by using the positive electrode and the negative electrode electrolyte of the same composition, it is not possible to determine the exact characteristics of the high voltage positive electrode.
  • a polymer coating layer including a cathode electrolyte is formed on a surface of a cathode, and a ceramic solid electrolyte including a cathode electrolyte is bonded to an anode, thereby providing a multilayer electrolyte cell in which each electrode electrolyte is physically separated.
  • the purpose is.
  • the ceramic solid electrolyte and the polymer coating layer by physically separating the ceramic solid electrolyte and the polymer coating layer, it is possible to prevent the positive electrode material from penetrating the negative electrode, to easily determine the exact characteristics of the high voltage / high capacity positive electrode active material, and to include a high voltage / high capacity positive electrode electrolyte.
  • the purpose is to provide a cell.
  • the positive electrode electrolyte is included in the ceramic solid electrolyte, the polymer electrolyte layer between the positive electrode and the ceramic solid electrolyte can be omitted, and the thickness thereof is relatively low, and the manufacturing cost is relatively low, thereby providing an economical multilayer electrolyte cell.
  • a multilayer electrolyte cell according to an embodiment of the present invention, a ceramic solid electrolyte, a positive electrode positioned on one side of the ceramic solid electrolyte, a negative electrode positioned on the other side of the ceramic solid electrolyte and a polymer formed between the ceramic solid electrolyte and the negative electrode
  • the ceramic solid electrolyte may include a coating layer, and the ionic liquid may be included in the porous structure base.
  • the porous structure base is LiTiO 3 (LLTO), Li 1 + x Al x Ti 2 - x (PO4) 3 (LTAP), Li 7 La 3 Zr 2 O 12 (LLZO) and Li 1 + x Ti 2 - x Al x Si y (PO 4) 3 -y ( where, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) may include one or more inorganic ceramic and Teflon-based binder selected from the group consisting of.
  • the binder may be polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the ionic liquid is 1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1-proply piperidinium, bis (trifluoromethylsulfonyl) It may include any one or more of imide (TFSI) and trifluoromethanesulfonate.
  • TFSI imide
  • TFSI trifluoromethanesulfonate
  • the positive electrode xLi 2 MnP 3 + (1-x) LiMO 2 , LiNi 0 . 5 Mn 1 . It may include any one of 5 O 4 , LiCoPO 4 , LiNiPO 4 and Li 2 CoPO 4 F.
  • the polymer coating layer may include any one or more of a polymer polymer, a liquid electrolyte, a lithium salt, and an initiator.
  • the polymer polymer comprises any one of ETPTA, PEO, PAN, PVdF and PMMA
  • the liquid electrolyte comprises any one of an ether-based liquid electrolyte and a carbonate-based liquid electrolyte
  • the lithium salt is LiPFSi, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 and Li (CF 3 SO 2 ) 2 N
  • the initiator is 2-hydroxy (Hydroxy) -2-methyl propiophenone (Methyl Propiophenone).
  • the secondary battery manufacturing method including a multilayer electrolyte cell according to an embodiment of the present invention, (a) forming a polymer coating layer on the negative electrode; (b) depositing a ceramic solid electrolyte on the anode; And (c) stacking the ceramic solid electrolyte and the cathode such that a polymer coating layer is positioned between the ceramic solid electrolyte and the cathode.
  • step (a) may include (a1) preparing a polymer coating liquid by mixing any one or more of a polymer polymer, a liquid electrolyte, a lithium salt, and an initiator.
  • the step (a1) comprises the steps of preparing an electrolyte mixture by mixing the polymer polymer, the liquid electrolyte and the lithium salt; And mixing the initiator with the electrolyte mixture solution to prepare a coating solution.
  • the polymer polymer may be mixed at a ratio of 40 to 60% by weight, the liquid electrolyte at 20 to 40% by weight, and the lithium salt at 5 to 20% by weight.
  • the initiator may be mixed in a weight ratio of 0.5 to 1.5% of the weight of the electrolyte mixture solution.
  • step (b) comprises the steps of: (b1) preparing a porous structure base;
  • the step (b1) the step of heat treating the ceramic precursor to synthesize a ceramic powder; Preparing a mixed solution by wet mixing at least one of the ceramic powder, the precursor, and the binder; Spray drying the mixed solution to produce a mixed powder; Compacting the mixed powder; And heat treating the mixed powder to form a porous structure base.
  • the ceramic precursor may be heat-treated at a temperature of 700 to 900 °C.
  • the preparing of the mixed solution may be performed for 15 to 25 hours using any one of a ball mill, a rod mill, a vibrating mill, a centrifugal impact mill, a bead mill, and an attrition mill.
  • the step of producing the mixed powder may be spray dried at a temperature of 100 to 200 °C.
  • the compressing the mixed powder may include mixing and compressing the mixed powder and the powder precursor; And compressing the compressed mixed powder and the powder precursor by cold isotropic pressure.
  • the step of mixing and compressing the mixed powder and the powder precursor may be compressed to a pressure of 20 to 50 MPa.
  • compressing the compressed mixed powder and the powder precursor by cold isotropic pressure may be compressed to a pressure of 1500 to 2500kg / cm 2.
  • each electrode active material does not affect, there is an effect that can selectively use an electrolyte suitable for each electrode.
  • FIG. 1 is an exploded view showing a multilayer electrolyte cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a multilayer electrolyte cell according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a secondary battery manufacturing method including a multilayer electrolyte cell according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a secondary battery including a multilayer electrolyte cell according to an embodiment of the present invention.
  • Figure 5 is a SEM analysis of the ceramic solid electrolyte according to the ratio of the ceramic powder and the precursor.
  • the multilayer electrolyte cell 100 according to the present invention includes a ceramic solid electrolyte 10, a cathode 20 located on one side of the ceramic solid electrolyte 10, and a ceramic solid electrolyte 10. And a polymer coating layer 40 formed between the negative electrode 30 and the ceramic solid electrolyte 10 and the negative electrode 30 positioned on the side, and the ceramic solid electrolyte 10 forms ions in the porous structure base 1. Sex liquid 2 may be included.
  • the ceramic solid electrolyte 10 and the anode 20 may be referred to as an anode part
  • the polymer coating layer 40 and the cathode 30 may be referred to as a cathode part.
  • the ceramic solid electrolyte 10 may generally serve as a separator and an electrolyte of a secondary battery, and the separator serves to separate the positive electrode 20 and the negative electrode 30, and the electrolyte may serve as the positive electrode 20 and the negative electrode. It may serve as an intermediate mediator that enables ion migration of (30). Accordingly, the ceramic solid electrolyte 10 may serve as a separator, and include a porous structure base 1 through which lithium ions can pass and an ionic liquid 2 serving as an electrolyte.
  • the porous structure base 1 may be a material having high ion conductivity and excellent electrochemical stability to diffuse lithium ions.
  • it may be made of inorganic ceramics such as sulfides, oxides and phosphides.
  • the sulfide inorganic ceramics include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -Li 4 SiO 4 , Li 2 S-Ga 2 S 3 -GeS 2 , Li 2 S-Sb 2 S 3 -GeS 2 , Li 3 .25 -Ge 0 .25 -P 0. 75 S 4 (Thio-LISICON) and the like, a high ion conductivity greater reactivity with water.
  • phosphite-based inorganic ceramics is Li 1 + x Al x Ge 2 -x (PO 4) 3 (LAGP), Li 1 + x Al x Ti 2 -x ( PO 4 ) 3 (LATP), Li 1 + x Ti 2 -x Al x Si y (PO 4 ) 3-y , LiAl x Zr 2 -x (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 (LLZO ), LiTi x Zr 2 -x (PO 4 ) 3, and the like (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the sulfide-based solid electrolyte has a higher interfacial resistance between the electrode active material and the solid electrolyte than the organic electrolyte, and reacts with water to generate hydrogen sulfide, thereby controlling humidity.
  • oxide-based and phosphide-based solid electrolytes are stable compounds and may be used as coating materials for electrodes and separators.
  • it has a lattice defect and a passage through which ions can move is formed, and thus has high ion conductivity. Accordingly, in the present invention, LATP or LLZO may be preferably used.
  • the porous structure base 1 may comprise a teflon-based material, for example PVDF, as a binder. Since PVDF has a flexible mechanical property, it may be included in a solid ceramic electrolyte to prepare an electrolyte having a thin but flexible and excellent ion conductivity.
  • PVDF teflon-based material
  • the ionic liquid 2 is impregnated in the porous structure base 1 as a stable liquid in the positive electrode 20, thereby reducing the interface resistance between the ceramic solid electrolyte 10 and the positive electrode 20.
  • the high voltage positive electrode 20 it is possible to prevent degradation of battery characteristics due to decomposition of the porous structure base 1.
  • the ionic liquid (2) is a high-voltage electrolyte 1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1-proply piperidinium, bis ( trifluoromethylsulfonyl) may include any one or more of imide (TFSI) and trifluoromethanesulfonate.
  • TFSI imide
  • TFSI trifluoromethanesulfonate
  • the high voltage electrolyte it is possible to secure the electrochemical stability of the secondary battery, to prevent oxidative decomposition of the electrolyte, and to suppress the dissolution of the positive electrode active material.
  • the positive electrode 20 generally serves to cause a reaction in which the positive electrode active material is reduced by receiving electrons from an external conductor in a secondary battery.
  • the positive electrode 20 used in the multilayer electrolyte cell 100 according to the present invention may include a high voltage positive electrode material, for example, xLi 2 MnP 3+ (1-x) LiMO 2 , LiNi 0 . 5 Mn 1 . It may include any one of 5 O 4 , LiCoPO 4 , LiNiPO 4 and Li 2 CoPO 4 F.
  • the high voltage positive electrode 20 may refer to a positive electrode material capable of inserting / removing stable Li ions when electrons move in an oxidation / reduction reaction at a high voltage of 4.8 V or higher.
  • the multilayer electrolyte cell 100 according to the present invention may be physically divided into a positive electrode part and a negative electrode part, different electrolytes may be used for the positive electrode 20 and the negative electrode 30, and thus, the ceramic solid electrolyte 10 may be used.
  • the high voltage positive electrode electrolyte may be impregnated, and the high voltage positive electrode 20 may be tested for characteristics.
  • the negative electrode 30 reversibly absorbs / discharges lithium ions from the positive electrode 20, thereby causing an oxidation reaction in the secondary battery.
  • the negative electrode 30 may include lithium metal.
  • Lithium metal is an element having a low oxidation / reduction potential of -3 V, and has excellent energy density determined by capacity and operating voltage.
  • the polymer coating layer 40 serves to reduce the interface resistance between the cathode 30 and the ceramic solid electrolyte 10, and the polymer coating layer 40 may include any one or more of a polymer polymer, a liquid electrolyte, a lithium salt, and an initiator. have.
  • the polymer polymer may serve as a support of the polymer coating layer 40 and may include any one of ETPTA, PEO, PAN, PVdF, and PMMA.
  • the liquid electrolyte may include any one of an ether based liquid electrolyte and a carbonate based liquid electrolyte.
  • the interface resistance between the ceramic solid electrolyte 10 and the cathode 30 may be reduced by the liquid electrolyte.
  • the ether and carbonate-based liquid electrolyte there is an effect that can suppress the direct side reaction between the lithium and the ceramic solid electrolyte (10).
  • the carbonate-based electrolyte may include any one of EC (ethylene carbonate), DMC (dimethyl carbonate) and DEC (Diethyl carbonate), the ether-based electrolyte is DME (dimethyl ether), Diglycol methyl ether, Triethylene glycol dimethyl ether And TEGDME (Tetraethylene glycol dimethyl ether).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC Diethyl carbonate
  • the ether-based electrolyte is DME (dimethyl ether), Diglycol methyl ether, Triethylene glycol dimethyl ether And TEGDME (Tetraethylene glycol dimethyl ether).
  • the carbonate-based electrolyte is excellent in pressure resistance and has an effect of maintaining chemical / electrical stability even at high pressure.
  • the ether-based electrolyte prevents the formation of a passivation film on the electrode surface due to the solid discharge product, and the insoluble property of the electrolyte due to the passivation film causes the oxidation reaction not to freeze due to the charge, thereby degrading the surface properties between the electrode and the electrolyte. There is an effect that can solve the problem.
  • the lithium salt may include any one or more of LiPFSi, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 and Li (CF 3 SO 2 ) 2 N, and the initiator is 2-hydroxy-Hydroxy- 2-methyl propiophenone.
  • the polymer coating layer 40 may have conductivity by lithium salts, and the polymer coating layer 40 may serve as a movement path of lithium ions when the secondary battery is driven.
  • the polymer coating layer 40 may be located between the ceramic solid electrolyte 10 and the anode 20.
  • the liquid electrolyte included in the polymer coating layer 40 is a positive electrode electrolyte, 1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1 It may include any one or more of -proply piperidinium, bis (trifluoromethylsulfonyl) imide (TFSI) and trifluoromethanesulfonate.
  • TFSI bis (trifluoromethylsulfonyl) imide
  • the secondary battery including the multilayer electrolyte cell 100 according to an embodiment of the present invention may include the multilayer electrolyte cell 100 according to the embodiment of the present invention. That is, the multilayer electrolyte cell 100 may include a negative electrode current collector and a positive electrode current collector.
  • the positive electrode current collector is generally positioned above the positive electrode 20, and may serve to collect electrons generated by the electrochemical reaction of the positive electrode active material.
  • the negative electrode current collector is generally positioned above the negative electrode 30, and may serve to supply electrons required for an electrochemical reaction.
  • the positive electrode current collector and the negative electrode current collector are not particularly limited as long as they have conductivity without causing chemical changes in the multilayer electrolyte cell 100, and detailed descriptions thereof will be omitted since conventionally known compositions are used. Shall be.
  • 3 is a diagram illustrating a secondary battery manufacturing method including a multilayer electrolyte cell 100 according to an embodiment of the present invention.
  • 4 is a flowchart of a secondary battery manufacturing method including a multilayer electrolyte cell 100 according to an embodiment of the present invention. 3 and 4, in the secondary battery manufacturing method including the multilayer electrolyte cell 100 according to the present invention, (a) forming a polymer coating layer 40 on the negative electrode 30 (S100), ( b) stacking the ceramic solid electrolyte 10 on the anode 20 and (c) the ceramic solid electrolyte 10 so that the polymer coating layer 40 is positioned between the ceramic solid electrolyte 10 and the cathode 30. Stacking the cathodes 30.
  • Step (a) is a step of preparing a negative electrode portion (a1) mixing any one or more of a polymer polymer, a liquid electrolyte, a lithium salt and an initiator to prepare a polymer coating liquid (S110) and (a2) a polymer coating liquid as a negative electrode ( It may include a step (S120) to form a polymer coating layer 40 by applying a cured to 30).
  • step (a1) may include preparing an electrolyte mixture by mixing a polymer polymer, a liquid electrolyte, and a lithium salt (S111), and preparing a coating solution by mixing an initiator in the electrolyte mixture (S112).
  • the mixing ratio of the polymer polymer, the liquid electrolyte and the lithium salt is 40 to 60% by weight of the polymer polymer, 20 to 40% by weight of the liquid electrolyte and 5 to 20% by weight of the lithium salt is mixed with the electrolyte mixture Can be prepared.
  • the liquid electrolyte is a cathode electrolyte, and may serve to reduce interfacial resistance and side reactions between the ceramic solid electrolyte 10 and the cathode 30.
  • the initiator mixed in the electrolyte mixture may be mixed in a weight ratio of 0.5 to 1.5% of the weight of the electrolyte mixture.
  • the initiator may be cured by applying ultraviolet light after applying the polymer coating layer to the cathode 30 in step S112 as an ultraviolet initiator.
  • Step (b) is to prepare an anode part, (b1) preparing a porous structure base (1) (S210), (b2) impregnated ionic liquid (2) in the porous structure base (1) ceramic solid Producing an electrolyte 10 (S220) and (b3) may include stacking the ceramic solid electrolyte 10 on the anode 20 (S230).
  • the method may further include forming a polymer coating layer 40 on the anode 20 (S240).
  • the polymer coating layer 40 may be formed through UV curing.
  • the polymer coating layer 40 includes the anode electrolyte, thereby reducing the interface resistance between the anode 20 and the ceramic solid electrolyte 10.
  • Step (b1) comprises the step of synthesizing the ceramic powder by heat-treating the ceramic precursor (S211), wet mixing any one or more of the ceramic powder, the precursor and the binder to prepare a mixed solution (S212), spray-drying the mixed solution to mix It may include the step of producing a powder (S213), the step of compressing the mixed powder (S214) and the heat treatment of the mixed powder to form a porous structure base (1) (S215).
  • Step S211 is a step of generating and synthesizing the ceramic powder that is the basis of the porous structure base (1), the ceramic precursor may be synthesized by heat-treating the ceramic precursor at a temperature of 700 °C to 900 °C.
  • the composition of the ceramic powder may comprise at least one of lithium, titanium, aluminum, phosphoric acid and zirconium.
  • Step S212 is to adjust the porosity of the porous structure base (1), it is possible to adjust the porosity of the porous structure base (1) by the ratio of the ceramic powder and the precursor.
  • the precursor is heat treated, gas components contained in the precursor are sublimed to generate pores. Therefore, as the proportion of the precursor increases, the pore generation amount increases.
  • FIG. 5A is an SEM photograph of the porous structure base 1 produced using a mixture of ceramic powder and precursor in a ratio of 3: 1, and the porosity of the porous structure base 1 is 8 to. 15% may be formed.
  • 5b is a SEM photograph of the porous structure base 1 produced using a mixture of ceramic powder and precursor mixed in a ratio of 1: 1, and the porosity of the porous structure base 1 is 30 to 45%. Can be.
  • the proportion of the ceramic powder decreases, the porosity of the porous structure base 1 increases, and the amount of the ionic liquid 2 impregnated in the porous structure base 1 increases, so that the ceramic solid electrolyte 10 and the anode 20 or the interface resistance between the ceramic solid electrolyte 10 and the cathode 30 is reduced. That is, the ionic liquid 2 has the effect of reducing the resistance of the entire cell.
  • the ceramic powder and the precursor according to the present invention may be mixed in a ratio of 3: 1 to 1: 1, and the porosity of the porous structure base 1 is 8% to 45%.
  • the porosity is 8% or less, the ionic liquid 2 is not impregnated in the porous structure base 1 so that the interface resistance between the ceramic solid electrolyte 10 and the cathode 30 or the ceramic solid electrolyte 10 and the anode 20 is reduced. This increases and there is a problem that side reactions can occur.
  • the mixed solution in step S212 may be mixed for 15 to 25 hours using any one of a ball mill, rod mill, vibrating mill, centrifugal impact mill, bead mill and attrition mill.
  • Step S213 is a step of powdering the mixed solution, it can be spray dried at a temperature of 100 °C to 200 °C.
  • the spray drying may powder the mixed liquid by any one of hot air drying method, spray drying method, freeze drying method and heat drying method. More specifically, the mixed liquor can be powdered at the same time as the spray by spraying the size and the droplets at a high temperature at a constant flow rate.
  • the step S214 may include mixing and compressing the mixed powder and the powder precursor, and compressing the compressed mixed powder and the powder precursor by cold isotropic pressure. It is noted that by compression and cold isostatic pressure, the thickness of the porous structure base 1 can be adjusted and does not require a separate cutting and forming process.
  • the compression may be compressed at a pressure of 20 to 50 MPa, and the cold isotropic pressure may be compressed at a pressure of 1500 to 2500 kg / cm 2.
  • step S215 the compressed mixed powder and the powder precursor are heat treated at a temperature of 700 ° C. to 900 ° C. for 2 hours to 4 hours, thereby increasing the porosity by subliming the gas component remaining in the powder precursor.
  • step S220 after the ionic liquid 2 is applied to the porous structure base 1, the ionic liquid 2 may be impregnated in the porous structure base 1 by maintaining the vacuum state. It is noted that the impregnated ionic liquid 2 can reduce the peripheral resistance of the ceramic solid electrolyte 10 and the interface resistance between the ceramic solid electrolyte 10, the positive electrode 20, and the negative electrode 30.
  • Step (c) is a step of stacking the anode part and the cathode part, whereby the ceramic solid electrolyte 10 and the polymer coating layer 40 are stacked to form a multilayer structure, thereby preventing the anode material from moving to the cathode part.
  • the characteristics of the positive and negative electrode compositions can be determined by decomposing into and the negative electrode portions.
  • pores are formed in the ceramic solid electrolyte, thereby improving cell driving speed and improving cycle characteristics.
  • the cell driving speed is improved from 0.025 to 0.033 C-rate to 0.066 C-rate, and as the cycle progresses, the capacity decreases and reversible capacity can be obtained.
  • the porous ceramic solid electrolyte may improve cell driving speed and exhibit excellent cycle characteristics. More specifically, during the 13th cycle, the discharge capacity is 233.42 to 233.26 mAh / g to ensure a reversible capacity compared to the liquid electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법에 관한 기술로, 보다 상세하게는, 다공성 구조 베이스에 이온성 액체가 포함되는 세라믹 고체 전해질 및 액체 전해질이 포함된 폴리머 코팅층을 적층함으로써, 전해질이 다층으로 구성된 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법에 관한 것이다.

Description

다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법
본 명세서는 2016년 07월 08일 한국 특허청에 제출된 한국 특허 출원 제10-2016-0087037호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법에 관한 기술로, 보다 상세하게는, 다공성 구조 베이스에 이온성 액체가 포함되는 세라믹 고체 전해질 및 액체 전해질이 포함된 폴리머 코팅층을 적층함으로써, 전해질이 다층으로 구성된 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법에 관한 것이다.
최근 노트북, 핸드폰 등 휴대용 전자 기기의 사용이 급격히 증가함에 따라 이들 기기에 전원을 공급하기 위한 이차전지 기술 또한 많은 관심을 받고 있다. 이들 기기의 성능이 발달하면서 전력 소비량 또한 증가하게 되었고, 그에 따라 고용량, 고전압의 배터리에 대한 필요성 또한 대두되고 있다. 따라서 기존 이차전지의 단점을 보완하고 고성능, 고효율의 배터리를 설계하기 위한 많은 공학자들의 노력을 바탕으로 이차전지의 성능이 상당수준 향상되었으나, 여전히 많은 한계점을 드러내고 있는 것이 현실이다.
리튬이온 이차전지의 구조는 음극 활물질, 양극 활물질 및 전해액의 3대 요소로 되어 있다. 리튬 이온이 양극으로부터 음극으로, 음극으로부터 양극으로 이동함으로써 전지 작용이 진행된다.
전해질 부분은 리튬이온 전도체로만 기능한다. 널리 사용되고 있는 리튬이온 이차전지에서는 비 양성자(proton)성 유기용매에 리튬염을 용해시킨 전해질 용액이 사용되고 있다.
그러나, 액체 전해질은 높은 이온 전도도를 나타낸다는 장점을 가지고 있으나, 기본적으로 산 용액으로서 환경적으로 바람직하지 못하며 누액에 따른 위험성을 내포하고 있다. 또한, 음극 전해질과 양극 전해질이 분리되지 않아 전기화학적으로 안전하지 않고, 반 전지 테스트(half cell test)가 불가능한 문제점이 있다.
따라서, 액체 전해질의 문제점을 극복하기 위하여 고체 전해질에 대한 연구가 활발해 졌으나, 종래 고체 전해질은 전극과 고체 전해질 간의 점 접촉으로 인하여 계면 저항이 높고 이온전도도가 낮은 문제점이 있다.
아울러, 전기자동차 및 전력 저장 등의 시장선점을 위해서는 리튬 이온전지의 고전압 및 고용량화 전지 기술이 반드시 확보되어야 하며 이를 위해서는 고전압 양극 개발이 필수적이다.
그러나, 종래 이차 전지의 경우, 양극 및 음극 모두를 안정시킬 수 있기 위해 동일한 조성물로 이루어진 양극 및 음극 전해질이 포함됨으로써, 리튬 이차 전지에 사용할 수 있는 양극 활물질의 범위가 한정적이고, 고전압 양극을 사용할 수 없는 문제점이 있다.
또한, 종래 리튬 이차 전지는 동일한 조성물의 양극 및 음극 전해질을 사용함으로써, 전해질로 인한 부가적인 문제점 및 양극의 특성을 극대화할 수 없어 고전압 양극의 정확한 특성을 파악할 수 없는 문제점이 있다.
상기와 같은 문제점을 해결하기 위하여 음극 전해질을 포함하는 폴리머 코팅층을 음극 표면에 형성시키고, 양극 전해질이 포함된 세라믹 고체 전해질을 양극과 접합시킴으로써, 각 전극 전해질이 물리적으로 분리된 다층 전해질 셀을 제공하는데 그 목적이 있다.
또한, 세라믹 고체 전해질과 폴리머 코팅층이 물리적으로 분리됨으로써, 양극 물질이 음극에 침투되는 것을 방지하고, 고전압/고용량 양극 활물질의 정확한 특성 파악이 용이하며, 고전압/고용량 양극 전해질을 포함할 수 있는 다층 전해질 셀을 제공하는데 그 목적이 있다.
그리고, 세라믹 고체 전해질에 양극 전해질이 포함됨으로써, 양극과 세라믹 고체 전해질 사이 고분자 전해질층의 생략이 가능하고, 두께가 얇고 상대적으로 제조 단가가 저렴하여 경제적인 다층 전해질 셀을 제공하는데 그 목적이 있다.
본 발명의 실시예에 따른 다층 전해질 셀은, 세라믹 고체 전해질, 상기 세라믹 고체 전해질 일 측에 위치하는 양극, 상기 세라믹 고체 전해질 타 측에 위치하는 음극 및 상기 세라믹 고체 전해질과 상기 음극 사이에 형성되는 폴리머 코팅층을 포함하고, 그리고, 상기 세라믹 고체 전해질은 다공성 구조 베이스에 이온성 액체가 포함할 수 있다.
바람직하게는, 상기 다공성 구조 베이스는, LiTiO3(LLTO), Li1 + xAlxTi2 -x(PO4)3(LTAP), Li7La3Zr2O12(LLZO) 및 Li1 + xTi2 - xAlxSiy(PO4)3 -y(여기서, 0<x<1, 0<y<1)로 이루어진 군으로부터 선택된 하나 이상의 무기 세라믹과 테플론계 바인더를 포함할 수 있다.
바람직하게는, 상기 바인더는 폴리비닐리덴 플루오라이드(PVDF)일 수 있다.
바람직하게는, 상기 이온성 액체는, 1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1-proply piperidinium, bis (trifluoromethylsulfonyl) imide(TFSI) 및 trifluoromethanesulfonate 중 어느 하나 이상을 포함할 수 있다.
바람직하게는, 상기 양극은, xLi2MnP3 +(1-x)LiMO2, LiNi0 . 5Mn1 . 5O4, LiCoPO4, LiNiPO4 및 Li2CoPO4F 중 어느 하나를 포함할 수 있다.
바람직하게는, 상기 폴리머 코팅층은, 폴리머 고분자, 액체 전해질, 리튬염 및 개시제 중 어느 하나 이상을 포함할 수 있다.
바람직하게는, 상기 폴리머 고분자는 ETPTA, PEO, PAN, PVdF 및 PMMA 중 어느 하나를 포함하고, 상기 액체 전해질은 에테르계 액체 전해질 및 카보네이트계 액체 전해질 중 어느 하나를 포함하고, 상기 리튬염은 LiPFSi, LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3 및 Li(CF3SO2)2N 중 어느 하나 이상을 포함하고, 상기 개시제는 2-히드록시(Hydroxy)-2-메틸 프로피오페논(Methyl Propiophenone)을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 다층 전해질 셀을 포함하는 이차 전지 제조 방법은, (a) 음극 상부에 폴리머 코팅층을 형성하는 단계; (b) 양극 상부에 세라믹 고체 전해질을 적층하는 단계; 및 (c) 상기 세라믹 고체 전해질과 상기 음극 사이에 폴리머 코팅층이 위치하도록 상기 세라믹 고체 전해질과 상기 음극을 적층하는 단계;를 포함할 수 있다.
바람직하게는, 상기 (a) 단계는, (a1) 폴리머 고분자, 액체 전해질, 리튬염 및 개시제 중 어느 하나 이상을 혼합하여 폴리머 코팅액을 제조하는 단계;를 포함할 수 있다.
바람직하게는, 상기 (a1) 단계는, 상기 폴리머 고분자, 상기 액체 전해질 및 상기 리튬염을 혼합하여 전해질 혼합액을 제조하는 단계; 및 상기 전해질 혼합액에 상기 개시제를 혼합하여 코팅액을 제조하는 단계;를 포함할 수 있다.
바람직하게는, 상기 (a1) 단계는, 상기 폴리머 고분자는 40 내지 60 중량%, 상기 액체 전해질은 20 내지 40 중량% 및 상기 리튬염은 5 내지 20 중량%의 비율로 혼합할 수 있다.
바람직하게는, 상기 (a1) 단계는, 상기 개시제는 상기 전해질 혼합액 중량의 0.5 내지 1.5%의 중량비로 혼합할 수 있다.
바람직하게는, 상기 (b) 단계는, (b1) 다공성 구조 베이스를 제조하는 단계;
(b2) 상기 다공성 구조 베이스에 이온성 액체를 함침시켜 세라믹 고체 전해질을 제조하는 단계; 및 (b3) 세라믹 고체 전해질을 양극 상부에 적층하는 단계;를 포함할 수 있다.
바람직하게는, 상기 (b1) 단계는, 세라믹 전구체를 열처리하여 세라믹 분말을 합성하는 단계; 상기 세라믹 분말, 전구체 및 바인더 중 어느 하나 이상을 습식 혼합하여 혼합액을 제조하는 단계; 상기 혼합액을 분무 건조하여 혼합 분말을 생성하는 단계; 상기 혼합 분말을 압축하는 단계; 및 상기 혼합 분말을 열처리하여 다공성 구조 베이스를 형성하는 단계;를 포함할 수 있다.
바람직하게는, 상기 세라믹 분말을 합성하는 단계는, 700 내지 900℃ 온도에서 상기 세라믹 전구체를 열처리할 수 있다.
바람직하게는, 상기 혼합액을 제조하는 단계는, 볼 밀, 로드 밀, 진동식 밀, 원심 충격 밀, 비드 밀 및 마멸(attrition) 밀 중 어느 하나를 이용하여 15시간 내지 25시간 동안 혼합할 수 있다.
바람직하게는, 상기 혼합 분말을 생성하는 단계는, 100 내지 200℃의 온도에서 분무 건조할 수 있다.
바람직하게는, 상기 혼합 분말을 압축하는 단계는, 상기 혼합 분말 및 분말 전구체를 혼합하여 압축하는 단계; 및 압축된 상기 혼합 분말 및 상기 분말 전구체를 냉간 등방압에 의해 압축하는 단계;를 포함할 수 있다.
바람직하게는, 상기 혼합 분말 및 상기 분말 전구체를 혼합하여 압축하는 단계는, 20 내지 50 MPa의 압력으로 압축할 수 있다.
바람직하게는, 상기 압축된 상기 혼합 분말 및 상기 분말 전구체를 냉간 등방압에 의해 압축하는 단계는, 1500 내지 2500kg/㎠의 압력으로 압축할 수 있다.
전술한 본 발명의 과제 해결 수단에 의하면, 다공성 구조 베이스에 이온성 액체를 함침시킴으로써, 세라믹 고체 전해질과 양극 사이 계면저항을 감소시키고, 이온전도도를 증가시키는 효과가 있다.
또한, 세라믹 고체 전해질 일 측에 폴리머 코팅층이 적층되어 다층 전해질을 형성함으로써, 양극과 세라믹 고체 전해질을 포함하는 양극부, 음극과 폴리머 코팅층을 포함하는 음극부로 분리 가능하고, 양극의 특성을 파악하는데 전해질로 인한 부가적인 문제점을 최소화 할 수 있는 효과가 있다.
아울러, 양극부와 음극부를 물리적으로 분리시킴으로써, 각 전극 활물질이 영향을 미치지 않아 각 전극에 적합한 전해질을 선택적으로 사용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 다층 전해질 셀을 나타내는 분해도이다.
도 2는 본 발명의 일 실시예에 따른 다층 전해질 셀을 개략적으로 나타내는 단면도이다.
도 3은 본 발명의 일 실시예에 따른 다층 전해질 셀을 포함하는 이차 전지 제조 방법을 도식화한 도면이다.
도 4는 본 발명의 일 실시예에 따른 다층 전해질 셀을 포함하는 이차 전지 제조 방법 순서도이다.
도 5는 세라믹 분말과 전구체의 비율에 따른 세라믹 고체 전해질의 SEM분석 사진이다.
도 6은 상기 본 발명에 의해 제조된 다공성 세라믹 고체 전해질을 포함하는 다층 전해질 셀과 기공이 없는 세라믹 고체 전해질을 포함하는 다층 전해질 셀의 성능 비교 실험 결과이다.
도 7은 액체 전해질, 세라믹 고체 전해질, 다공성 세라믹 고체 전해질에 따른 고전압 양극 성능 비교 실험 결과이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
<다층 전해질 셀>
도 1은 본 발명의 일 실시예에 따른 다층 전지 셀(100)을 나타내는 분해도이다. 도 2는 본 발명의 일 실시예에 따른 다층 전해질 셀(100)을 나타낸 단면도이다. 도 1 및 도 2을 참조하면, 본 발명에 따른 다층 전해질 셀(100)은 세라믹 고체 전해질(10), 세라믹 고체 전해질(10) 일 측에 위치하는 양극(20), 세라믹 고체 전해질(10) 타 측에 위치하는 음극(30) 및 세라믹 고체 전해질(10)과 음극(30) 사이에 형성되는 폴리머 코팅층(40)을 포함하고, 그리고, 세라믹 고체 전해질(10)은 다공성 구조 베이스(1)에 이온성 액체(2)가 포함될 수 있다.
여기서, 세라믹 고체 전해질(10) 및 양극(20)을 포함하여 양극부라 하고, 폴리머 코팅층(40) 및 음극(30)을 포함하여 음극부라 할 수 있다.
세라믹 고체 전해질(10)은 일반적으로 이차 전지의 분리막(separate) 및 전해질 역할을 할 수 있으며, 분리막은 양극(20)과 음극(30)을 분리하는 역할을 하고, 전해질은 양극(20)과 음극(30)의 이온 이동을 가능하게 하는 중간 매개체역할을 할 수 있다. 따라서, 세라믹 고체 전해질(10)은 분리막 역할을 하고, 리튬이온이 통과될 수 있는 다공성 구조 베이스(1)와 전해질 역할을 하는 이온성 액체(2)를 포함할 수 있다.
다공성 구조 베이스(1)는 리튬이온을 확산시키기 위해 이온전도율이 높고, 전기화학적 안정성이 우수한 물질이 사용될 수 있다. 예를 들어, 황화물, 산화물 및 인화물 등의 무기 세라믹으로 제조될 수 있다. 황화물계 무기 세라믹으로는 Li2S-P2S5, Li2S-P2S5-Li4SiO4, Li2S-Ga2S3-GeS2, Li2S-Sb2S3-GeS2, Li3 .25-Ge0 .25-P0. 75S4 (Thio-LISICON)등이 있으며, 이온전도도가 높고 수분과의 반응성이 크다. 산화물계 무기 세라믹으로는 (La,Li)TiO3(LLTO)((La,Li)=La 및 Li), Li6La2CaTa2O12, Li6La2ANb2O12(A=Ca 또는 Sr), Li2Nd3TeSbO12, Li3BO2 . 5N0 .5, Li9SiAlO8 등이 있고, 인화물계 무기 세라믹으로는 Li1 + xAlxGe2 -x(PO4)3(LAGP), Li1 + xAlxTi2 -x(PO4)3(LATP), Li1 + xTi2 -xAlxSiy(PO4)3-y, LiAlxZr2 -x(PO4)3, Li7La3Zr2O12(LLZO), LiTixZr2 -x(PO4)3 등이 있다(여기서, 0<x<1, 0<y<1).
여기서, 황화물계 고체전해질은 유기 전해액 대비 전극 활물질과 고체 전해질의 계면저항이 높고, 물과 반응해 황화수소가 발생하기 때문에 습도의 제어가 반드시 필요하다. 그러나, 산화물계와 인화물계 고체전해질은 안정한 화합물이며 전극 및 분리막의 코팅재료로 사용 가능할 수 있다. 또한, 격자 결함을 가지고 있어 이온이 이동할 수 있는 통로가 형성되어 높은 이온 전도성을 가지고 있다. 따라서, 본 발명에서 바람직하게는 LATP 또는 LLZO를 사용할 수 있다.
또한, 다공성 구조 베이스(1)는 바인더로서 테플론계 물질, 에컨대 PVDF를 포함할 수 있다. PVDF는 유연한 기계적 성질을 가지므로 고체 세라믹 전해질에 포함되어 얇아도 유연하고 이온전도도가 우수한 전해질을 제조할 수 있다.
이온성 액체(2)는 양극(20)에 안정적인 액체로 다공성 구조 베이스(1)에 함침되어 세라믹 고체 전해질(10)과 양극(20)의 계면 저항을 감소시키는 효과가 있다. 또한, 고전압 양극(20)사용 시, 다공성 구조 베이스(1) 분해로 인한 전지 특성 저하를 방지할 수 있다.
여기서, 이온성 액체(2)는 고전압 전해질로 1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1-proply piperidinium, bis (trifluoromethylsulfonyl) imide(TFSI) 및 trifluoromethanesulfonate 중 어느 하나 이상을 포함할 수 있다.
종래 양극 전해질은 전해질의 전기화학적 안전창이 약 4.5V로 4.8V 이상의 고전압 양극과 함께 사용될 경우 이차 전지 작동에 문제가 있을 수 있다. 그러나, 본 발명에 따른 이온성 액체(2)는 이차 전지에서 고전압 양극과 사용할 경우, 전기화학적 안전창의 범위가 증가하고, 열 및 화학적으로 안정하며 고이온 전도성을 가지는 효과가 있을 수 있다.
또한, 고전압 전해질을 사용함으로써, 이차 전지의 전기화학적 안정성을 확보할 수 있고, 전해질의 산화 분해를 방지하며, 양극 활물질의 용해를 억제하는 효과가 있을 수 있다.
양극(20)은 일반적으로 이차 전지에서 외부 도선으로부터 전자를 받아 양극 활물질이 환원되는 반응을 일으키는 역할을 한다. 본 발명에 따른 다층 전해질 셀(100)에 사용되는 양극(20)은 고전압 양극 물질을 포함할 수 있고, 예를 들어, xLi2MnP3+(1-x)LiMO2, LiNi0 . 5Mn1 . 5O4, LiCoPO4, LiNiPO4 및 Li2CoPO4F 중 어느 하나를 포함할 수 있다.
여기서, 고전압 양극(20)이란 4.8V이상의 고전압에서 산화/환원 반응으로 전자가 이동할 때, 안정된 Li이온의 삽입/탈리가 가능한 양극물질을 의미할 수 있다.
본 발명에 따른 다층 전해질 셀(100)은 물리적으로 양극부와 음극부로 나눠질 수 있기 때문에 양극(20)과 음극(30)에 각각 다른 전해질을 사용할 수 있고, 이에 따라 세라믹 고체 전해질(10)에 고전압 양극 전해질을 함침시킬 수 있으며 고전압 양극(20)의 특성을 테스트할 수 있는 효과가 있다.
예를 들어, 종래 액체 전해질 및 고전압 양극을 포함하는 이차 전지와 본 발명에 의한 세라믹 고체 전해질(10) 및 고전압 양극(20)을 포함하는 다층 전해질 셀(100)의 특성 테스트 결과, 본 발명에 따른 다층 전해질 셀(100)의 경우, 음극(30) 표면에 망간이 형성되지 않는다. 즉, 양극 전해질의 부반응이 일어나지 않아 종래의 이차 전지보다 사이클 특성이 더 우수하다.
음극(30)은 일반적으로 양극(20)에서 나온 리튬이온을 가역적으로 흡수/방출함으로써, 이차 전지에서 산화 반응을 일으키는 역할을 한다. 아울러, 음극(30)은 리튬 금속을 포함할 수 있다. 리튬 금속은 -3V의 낮은 산화/환원 전위를 갖는 원소이며, 용량과 작동 전압에 의해 결정되는 에너지 밀도가 우수한 특성을 가지고있다.
폴리머 코팅층(40)은 음극(30)과 세라믹 고체 전해질(10) 사이 계면 저항을 감소시키는 역할로, 폴리머 코팅층(40)은 폴리머 고분자, 액체 전해질, 리튬염 및 개시제 중 어느 하나 이상을 포함할 수 있다. 여기서, 폴리머 고분자는 폴리머 코팅층(40)의 지지체 역할을 하는 것으로 ETPTA, PEO, PAN, PVdF 및 PMMA 중 어느 하나를 포함할 수 있다.
또한, 액체 전해질은 에테르계 액체 전해질 및 카보네이트계 액체 전해질 중 어느 하나를 포함할 수 있다. 액체 전해질에 의해 세라믹 고체 전해질(10)과 음극(30) 사이 계면 저항이 감소될 수 있다. 또한, 에텔르계 및 카보네이트계 액체 전해질을 포함함으로써 리튬과 세라믹 고체 전해질(10) 사이의 직접적인 부반응을 억제할 수 있는 효과가 있다. 아울러, 카보네이트계 전해질은 EC(ethylene carbonate), DMC(dimethyl carbonate) 및 DEC(Diethyl carbonate) 중 어느 하나를 포함할 수 있고, 에테르계 전해질은 DME(dimethyl ether), Diglycol methyl ether, Triethylene glycol dimethyl ether 및 TEGDME(Tetraethylene glycol dimethyl ether) 중 어느 하나를 포함할 수 있다.
나아가, 카보네이트계 전해질은 내압성이 뛰어나 높은 압력에서도 화학적/전기적 안정성을 유지할 수 있는 효과가 있다. 에테르계 전해질은 고상의 방전 생성물로 인해 전극 표면에 부동태 막이 형성되는 것을 방지하고, 부동태 막에 의해 전해질의 불용해성이 일어나 충전에 의해 산화반응이 얼어나지 않아 전극과 전해질 사이의 게면 특성을 저하시키는 문제점을 해결할 수 있는 효과가 있다.
리튬염은 LiPFSi, LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3 및 Li(CF3SO2)2N 중 어느 하나 이상을 포함할 수 있고, 개시제는 2-히드록시(Hydroxy)-2-메틸 프로피오페논(Methyl Propiophenone)을 포함할 수 있다. 리튬염에 의해 폴리머 코팅층(40)은 전도도를 가질 수 있으며, 이차 전지 구동 시 폴리머 코팅층(40)이 리튬 이온의 이동 통로 역할을 할 수 있는 효과가 있다.
여기서, 폴리머 코팅층(40)은 세라믹 고체 전해질(10)과 양극(20) 사이에 위치될 수 있다. 이 때, 폴리머 코팅층(40)에 포함되는 액체 전해질은 양극 전해질로써, 1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1-proply piperidinium, bis (trifluoromethylsulfonyl) imide(TFSI) 및 trifluoromethanesulfonate 중 어느 하나 이상을 포함할 수 있다. 아울러, 세라믹 고체 전해질(10)과 양극(20) 사이 계면 저항을 감소시킬 수 있는 효과가 있다.
<다층 전해질 셀을 포함하는 이차전지>
본 발명의 일 실시예에 따른 다층 전해질 셀(100)을 포함하는 이차 전지는 상기 본 발명의 일 실시예에 따른 다층 전해질 셀(100)을 포함할 수 있다. 즉, 다층 전해질 셀(100), 음극 집전체 및 양극 집전체를 포함할 수 있다.
양극 집전체는 일반적으로 양극(20) 상부에 위치되는 구성으로, 양극 활물질의 전기화학반응에 의해 생성된 전자를 모으는 역할을 할 수 있다.
음극 집전체는 일반적으로 음극(30) 상부에 위치되는 구성으로, 전기화학반응에 필요한 전자를 공급하는 역할을 할 수 있다.
또한, 양극 집전체 및 음극 집전체는 다층 전해질 셀(100)에 화학적 변화를 유발하지 않으면서 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 기존의 공지된 조성물을 사용하기 때문에 그에 대한 상세한설명은 생략하기로 한다.
<다층 전해질 셀을 포함하는 이차 전지 제조 방법>
도 3은 본 발명의 일 실시예에 의한 다층 전해질 셀(100)을 포함하는 이차 전지 제조 방법을 도식화한 도면이다. 도 4는 본 발명의 일 실시예에 의한 다층 전해질 셀(100)을 포함하는 이차 전지 제조 방법 순서도이다. 도 3 및 도 4를 참조하면, 본 발명에 따른 다층 전해질 셀(100)을 포함하는 이차 전지 제조 방법은 (a) 음극(30) 상부에 폴리머 코팅층(40)을 형성하는 단계(S100), (b) 양극(20) 상부에 세라믹 고체 전해질(10)을 적층하는 단계 및 (c) 세라믹 고체 전해질(10)과 음극(30) 사이에 폴리머 코팅층(40)이 위치하도록 세라믹 고체 전해질(10)과 음극(30)을 적층하는 단계를 포함할 수 있다.
(a)단계는, 음극부를 준비하는 단계로 (a1) 폴리머 고분자, 액체 전해질, 리튬염 및 개시제 중 어느 하나 이상을 혼합하여 폴리머 코팅액을 제조하는 단계(S110) 및 (a2) 폴리머 코팅액을 음극(30)에 도포한 후 경화시켜 폴리머 코팅층(40)을 형성하는 단계(S120)를 포함할 수 있다.
나아가, (a1)단계는 폴리머 고분자, 액체 전해질 및 리튬염을 혼합하여 전해질 혼합액을 제조하는 단계(S111) 및 전해질 혼합액에 개시제를 혼합하여 코팅액을 제조하는 단계(S112)를 포함할 수 있다.
아울러, S111단계에서, 폴리머 고분자, 액체 전해질 및 리튬염의 혼합비율은 폴리머 고분자는 40 내지 60 중량%, 액체 전해질은 20 내지 40 중량% 및 리튬염은 5 내지 20 중량%의 비율로 혼합하여 전해질 혼합액을 제조할 수 있다.
여기서, 액체 전해질은 음극 전해질로써, 세라믹 고체 전해질(10)과 음극(30) 사이 계면 저항 감소 및 부반응을 억제하는 역할을 할 수 있다.
또한, 전해질 혼합액에 혼합되는 개시제는 전해질 혼합액 중량의 0.5 내지 1.5%의 중량 비로 혼합할 수 있다.
이 때, 개시제는 자외선 개시제로 S112 단계에서 음극(30)에 폴리머 코팅층을 도포한 후 자외선을 조사하여 경화시킬 수 있다.
(b)단계는 양극부를 준비하는 단계로, (b1) 다공성 구조 베이스(1)를 제조하는 단계(S210), (b2) 다공성 구조 베이스(1)에 이온성 액체(2)를 함침시켜 세라믹 고체 전해질(10)을 제조하는 단계(S220) 및 (b3) 세라믹 고체 전해질(10)을 양극(20) 상부에 적층하는 단계(S230)를 포함할 수 있다.
여기서, (b2)단계 이후, 양극(20) 상부에 폴리머 코팅층(40)을 형성하는 단계(S240)를 더 포함할 수 있다. 양극(20) 표면에 폴리머 코팅액을 도포한 후 자외선 경화를 통해 폴리머 코팅층(40)이 형성될 수 있다. 이 때, 폴리머 코팅층(40)에는 양극 전해질이 포함됨으로써, 양극(20)과 세라믹 고체 전해질(10) 사이 계면 저항을 감소시킬 수 있음을 유의한다.
(b1) 단계는, 세라믹 전구체를 열처리하여 세라믹 분말을 합성하는 단계(S211), 세라믹 분말, 전구체 및 바인더 중 어느 하나 이상을 습식 혼합하여 혼합액을 제조하는 단계(S212), 혼합액을 분무 건조하여 혼합 분말을 생성하는 단계(S213), 혼합 분말을 압축하는 단계(S214) 및 혼합 분말을 열처리하여 다공성 구조 베이스(1)를 형성하는 단계(S215)를 포함할 수 있다.
S211단계는 다공성 구조 베이스(1)의 기초가 되는 세라믹 분말을 생성 및 합성하는 단계로, 700℃ 내지 900℃ 온도에서 상기 세라믹 전구체를 열처리하여 세라믹 분말을 합성할 수 있다. 세라믹 분말의 조성물은 리튬, 티타늄, 알루미늄, 인산 및 지르코늄 중 적어도 하나 이상을 포함할 수 있다.
S212단계는 다공성 구조 베이스(1)의 기공률을 조절하는 단계로, 세라믹 분말과 전구체의 비율에 의해 다공성 구조 베이스(1)의 기공률을 조절할 수 있다. 전구체를 열처리하게 되면 전구체에 포함된 기체성분이 승화되어 기공이 발생하게 된다. 따라서, 전구체의 비율이 증가할수록 기공 발생량이 증가하게 된다. 도 5를 참조하면, 도 5a는 세라믹 분말과 전구체의 비율이 3:1로 혼합된 혼합액을 사용하여 생성된 다공성 구조 베이스(1)의 SEM사진이고, 다공성 구조 베이스(1)의 기공률은 8 내지 15%로 형성될 수 있다. 그리고, 도 5b는 세라믹 분말과 전구체의 비율이 1:1로 혼합된 혼합액을 사용하여 생성된 다공성 구조 베이스(1)의 SEM사진이고, 다공성 구조 베이스(1)의 기공률은 30 내지 45%로 형성될 수 있다. 결과적으로, 세라믹 분말의 비율이 감소할수록 다공성 구조 베이스(1)의 기공률이 증가하고, 다공성 구조 베이스(1)에 함침되는 이온성 액체(2)의 양도 증가하여, 세라믹 고체 전해질(10)과 양극(20) 또는 세라믹 고체 전해질(10)과 음극(30) 사이 계면 저항이 감소하게 된다. 즉, 이온성 액체(2)에 의해 셀 전체의 저항이 줄어드는 효과가 있다.
따라서, 본 발명에 따른 세라믹 분말과 전구체는 3:1 내지 1:1 비율로 혼합될 수 있고, 다공성 구조 베이스(1)의 기공률은 8% 내지 45%라는 것을 유의한다. 기공률이 8% 이하일 경우, 이온성 액체(2)가 다공성 구조 베이스(1)에 함침되지 않아 세라믹 고체 전해질(10)과 음극(30) 또는 세라믹 고체 전해질(10)과 양극(20) 사이 계면 저항이 증가하고 부반응이 발생할 수 있는 문제점이 있다.
아울러, S212단계에서 혼합액은 볼 밀, 로드 밀, 진동식 밀, 원심 충격 밀, 비드 밀 및 마멸(attrition) 밀 중 어느 하나를 이용하여 15시간 내지 25시간 동안 혼합할 수 있다.
S213단계는 혼합액을 분말화 하는 단계로, 100℃ 내지 200℃의 온도에서 분무 건조할 수 있다. 혼합액을 분무 건조함으로써, 생성되는 분말의 크기를 조절할 수 있다. 이 때, 분무 건조는 열풍건조법, 분무건조법, 동결건조법 및 가열건조법 중 어느 하나에 의해 혼합액을 분말화 할 수 있다. 좀 더 상세하게는, 혼합액을 크기 및 액적이 일정한 유속으로 고온에서 분무됨으로써, 분무와 동시에 분말화될 수 있다.
S214단계는 혼합 분말 및 분말 전구체를 혼합하여 압축하는 단계 및 압축된 상기 혼합 분말 및 분말 전구체를 냉간 등방압에 의해 압축하는 단계를 포함할 수 있다. 압축 및 냉간 등방압함으로써 다공성 구조 베이스(1)의 두께 조절이 가능하고, 별도의 커팅 및 성형 공정을 필요로하지 않는다는 점을 유의한다.
아울러, S214단계에서 압축은 20 내지 50 MPa의 압력으로 압축될 수 있고, 냉간 등방압은 1500 내지 2500kg/㎠의 압력으로 압축될 수 있다.
S215단계는 압축된 혼합 분말 및 분말 전구체를 700℃ 내지 900℃의 온도에서 2시간 내지 4시간 동안 열처리함으로써, 분말 전구체에 남아있는 기체 성분을 승화시켜 기공률을 증가시킬 수 있다.
S220단계는 다공성 구조 베이스(1)에 이온성 액체(2)를 도포한 후, 진공 상태를 유지함으로써, 다공성 구조 베이스(1)에 이온성 액체(2)를 함침시킬 수 있다. 함침된 이온성 액체(2)에 의해 세라믹 고체 전해질(10) 내주 점 저항 및 세라믹 고체 전해질(10)과 양극(20), 음극(30) 사이 계면 저항이 감소될 수 있음을 유의한다.
(c)단계는 양극부와 음극부를 적층하는 단계로, 세라믹 고체 전해질(10)과 폴리머 코팅층(40)이 적층되어 다층 구조가 형성됨으로써, 양극부 물질이 음극부로 이동하는 것을 방지하고, 양극부와 음극부로 분해하여 양극부 및 음극부 조성물의 특성을 파악할 수 있음을 유의한다.
<실험예 1>
도 6는 상기 본 발명에 의해 제조된 다공성 세라믹 고체 전해질을 포함하는 다층 전해질 셀과 기공이 없는 세라믹 고체 전해질을 포함하는 다층 전해질 셀의 성능 비교 실험 결과이다.
도 6을 참조하면, 세라믹 고체 전해질에 기공이 형성됨으로써, 셀 구동 속도 향상이 가능하며 사이클 특성이 우수해진다. 또한, 0.025 내지 0.033 C-rate에서 0.066 C-rate로 셀 구동 속도가 개선되는 것을 알 수 있고, 사이클이 진행됨에 따라 용량 저하가 줄어들며 가역적인 용량 확보가 가능한 것을 알 수 있다.
<실험예 2>
도 7은 액체 전해질, 세라믹 고체 전해질, 다공성 세라믹 고체 전해질에 따른 고전압 양극 성능 비교 실험 결과이다.
도 7을 참조하면, 다공성 세라믹 고체 전해질은 이온성 액체의 함침으로 인해, 셀 구동 속도 향상이 가능하며 우수한 사이클 특성을 보인다. 좀 더 상세하게는, 13번째 사이클 진행 시, 방전 용량이 233.42에서 233.26mAh/g로 액체 전해질에 비해 가역적인 용량 확보가 가능하다.
상기 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 당업계에서 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (21)

  1. 세라믹 고체 전해질;
    상기 세라믹 고체 전해질 일 측에 위치하는 양극;
    상기 세라믹 고체 전해질 타 측에 위치하는 음극; 및
    상기 세라믹 고체 전해질과 상기 음극 사이에 형성되는 폴리머 코팅층;을 포함하고,
    그리고, 상기 세라믹 고체 전해질은 다공성 구조 베이스에 이온성 액체가 포함되는 것을 특징으로 하는,
    다층 전해질 셀.
  2. 제1항에 있어서,
    상기 다공성 구조 베이스는,
    LiTiO3(LLTO), Li1 + xAlxTi2 -x(PO4)3(LTAP), Li7La3Zr2O12(LLZO) 및 Li1 + xTi2 -xAlxSiy(PO4)3-y(여기서, 0<x<1, 0<y<1)로 이루어진 군으로부터 선택된 하나 이상의 무기 세라믹과 테플론계 바인더를 포함하는 것을 특징으로 하는, 다층 전해질 셀.
  3. 제2항에 있어서,
    상기 바인더는 폴리비닐리덴 플루오라이드(PVDF)인 것을 특징으로 하는, 다층 전해질 셀.
  4. 제1항에 있어서,
    상기 이온성 액체는,
    1-Ethyl-3-methyl imidazolium, 1-Butyl-3-methyl imidazolium, 1-Butyl-1-methyl pyrrolidinium, 1-Methyl-1-proply piperidinium, bis (trifluoromethylsulfonyl) imide(TFSI) 및 trifluoromethanesulfonate 중 어느 하나 이상을 포함하는 것을 특징으로 하는, 다층 전해질 셀.
  5. 제1항에 있어서,
    상기 양극은,
    xLi2MnP3 +(1-x)LiMO2, LiNi0 . 5Mn1 . 5O4, LiCoPO4, LiNiPO4 및 Li2CoPO4F 중 어느 하나를 포함하는 것을 특징으로 하는, 다층 전해질 셀.
  6. 제1항에 있어서,
    상기 폴리머 코팅층은,
    폴리머 고분자, 액체 전해질, 리튬염 및 개시제 중 어느 하나 이상을 포함하는 것을 특징으로 하는, 다층 전해질 셀.
  7. 제6항에 있어서,
    상기 폴리머 고분자는 ETPTA, PEO, PAN, PVdF 및 PMMA 중 어느 하나를 포함하고, 상기 액체 전해질은 에테르계 액체 전해질 및 카보네이트계 액체 전해질 중 어느 하나를 포함하고, 상기 리튬염은 LiPFSi, LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3 및 Li(CF3SO2)2N 중 어느 하나 이상을 포함하고, 상기 개시제는 2-히드록시(Hydroxy)-2-메틸 프로피오페논(Methyl Propiophenone)을 포함하는 것을 특징으로 하는, 다층 전해질 셀.
  8. 제1항 내지 제7항 중 어느 한 항의 다층 전해질 셀을 포함하는 이차 전지.
  9. (a) 음극 상부에 폴리머 코팅층을 형성하는 단계;
    (b) 양극 상부에 세라믹 고체 전해질을 적층하는 단계; 및
    (c) 상기 세라믹 고체 전해질과 상기 음극 사이에 폴리머 코팅층이 위치하도록 상기 세라믹 고체 전해질과 상기 음극을 적층하는 단계;를 포함하는,
    다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  10. 제9항에 있어서,
    상기 (a) 단계는,
    (a1) 폴리머 고분자, 액체 전해질, 리튬염 및 개시제 중 어느 하나 이상을 혼합하여 폴리머 코팅액을 제조하는 단계;를 포함하는 것을 특징으로 하는,
    다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  11. 제10항에 있어서,
    상기 (a1) 단계는,
    상기 폴리머 고분자, 상기 액체 전해질 및 상기 리튬염을 혼합하여 전해질 혼합액을 제조하는 단계; 및
    상기 전해질 혼합액에 상기 개시제를 혼합하여 코팅액을 제조하는 단계;를 포함하는 것을 특징으로 하는,
    다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  12. 제11항에 있어서,
    상기 (a1) 단계는,
    상기 폴리머 고분자는 40 내지 60 중량%, 상기 액체 전해질은 20 내지 40 중량% 및 상기 리튬염은 5 내지 20 중량%의 비율로 혼합하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  13. 제11항에 있어서,
    상기 (a1) 단계는,
    상기 개시제는 상기 전해질 혼합액 중량의 0.5 내지 1.5%의 중량 비로 혼합하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  14. 제9항에 있어서,
    상기 (b) 단계는,
    (b1) 다공성 구조 베이스를 제조하는 단계;
    (b2) 상기 다공성 구조 베이스에 이온성 액체를 함침시켜 세라믹 고체 전해질을 제조하는 단계; 및
    (b3) 세라믹 고체 전해질을 양극 상부에 적층하는 단계;를 포함하는 것을 특징으로 하는,
    다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  15. 제14항에 있어서,
    상기 (b1) 단계는,
    세라믹 전구체를 열처리하여 세라믹 분말을 합성하는 단계;
    상기 세라믹 분말, 전구체 및 바인더 중 어느 하나 이상을 습식 혼합하여 혼합액을 제조하는 단계;
    상기 혼합액을 분무 건조하여 혼합 분말을 생성하는 단계;
    상기 혼합 분말을 압축하는 단계; 및
    상기 혼합 분말을 열처리하여 다공성 구조 베이스를 형성하는 단계;를 포함하는 것을 특징으로 하는,
    다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  16. 제15항에 있어서,
    상기 세라믹 분말을 합성하는 단계는,
    700 내지 900℃ 온도에서 상기 세라믹 전구체를 열처리하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  17. 제15항에 있어서,
    상기 혼합액을 제조하는 단계는,
    볼 밀, 로드 밀, 진동식 밀, 원심 충격 밀, 비드 밀 및 마멸(attrition) 밀 중 어느 하나를 이용하여 15시간 내지 25시간 동안 혼합하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  18. 제15항에 있어서,
    상기 혼합 분말을 생성하는 단계는,
    100 내지 200℃의 온도에서 분무 건조하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  19. 제15항에 있어서,
    상기 혼합 분말을 압축하는 단계는,
    상기 혼합 분말 및 분말 전구체를 혼합하여 압축하는 단계; 및
    압축된 상기 혼합 분말 및 상기 분말 전구체를 냉간 등방압에 의해 압축하는 단계;를 포함하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  20. 제19항에 있어서,
    상기 혼합 분말 및 상기 분말 전구체를 혼합하여 압축하는 단계는,
    20 내지 50 MPa의 압력으로 압축하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
  21. 제19항에 있어서,
    상기 압축된 상기 혼합 분말 및 상기 분말 전구체를 냉간 등방압에 의해 압축하는 단계는,
    1500 내지 2500kg/㎠의 압력으로 압축하는 것을 특징으로 하는, 다층 전해질 셀을 포함하는 이차 전지 제조 방법.
PCT/KR2017/007282 2016-07-08 2017-07-07 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법 WO2018009018A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003991.0A CN108352568B (zh) 2016-07-08 2017-07-07 多层电解质单元、包括该多层电解质单元的二次电池及其制造方法
EP17824574.2A EP3364489B1 (en) 2016-07-08 2017-07-07 Multilayer electrolyte cell, secondary battery comprising multilayer electrolyte cell and manufacturing method therefor
US15/778,125 US11145895B2 (en) 2016-07-08 2017-07-07 Multilayer electrolyte cell, secondary battery comprising multilayer electrolyte cell and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0087037 2016-07-08
KR1020160087037A KR102091903B1 (ko) 2016-07-08 2016-07-08 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018009018A1 true WO2018009018A1 (ko) 2018-01-11

Family

ID=60912242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007282 WO2018009018A1 (ko) 2016-07-08 2017-07-07 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US11145895B2 (ko)
EP (1) EP3364489B1 (ko)
KR (1) KR102091903B1 (ko)
CN (1) CN108352568B (ko)
WO (1) WO2018009018A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119895A (ja) * 2018-05-16 2020-08-06 日本特殊陶業株式会社 イオン伝導体およびリチウム電池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415543B1 (ko) * 2018-01-18 2022-06-30 주식회사 엘지에너지솔루션 고체 전해질 전지용 전극 및 그를 포함하는 고체 전해질 전지
CN109411695A (zh) * 2018-10-31 2019-03-01 山东玉皇新能源科技有限公司 全固态锂离子电池正极极片及其制备方法
CN110556574A (zh) * 2019-08-12 2019-12-10 北京协同创新研究院 一种多层固态电解质及其制备方法、固态电池和电子设备
CN111435755B (zh) * 2019-12-23 2023-02-21 蜂巢能源科技有限公司 硫化物固态电池及其制备方法
KR102305332B1 (ko) * 2019-12-27 2021-09-24 울산과학기술원 표면 코팅 세라믹 고체 전해질 및 이의 제조방법
CN111261934B (zh) * 2020-01-21 2021-11-16 北京理工大学 一种多层固态电解质及其制备方法和由其形成的锂电池
TWI741559B (zh) * 2020-04-13 2021-10-01 輝能科技股份有限公司 複合式隔離層
CN112599846B (zh) * 2020-12-24 2022-12-09 蜂巢能源科技有限公司 全固态锂金属负极电池用复合电解质膜、其制备方法及包括其的全固态硫化物锂离子电池
CN112635814B (zh) * 2020-12-28 2022-07-12 蜂巢能源科技有限公司 一种硫化物固态电池用电解质膜及其制备方法和用途
CN112838266B (zh) * 2021-03-23 2022-11-22 上海电气集团股份有限公司 复合电解质膜及其制备方法和应用、固态锂电池
CN114628768B (zh) * 2021-09-18 2024-03-08 万向一二三股份公司 一种安全性能高的peo聚合物固体电解质及其制备方法、固体锂电池
TWI831180B (zh) * 2022-04-14 2024-02-01 鴻海精密工業股份有限公司 用於固態電池的複合式正極

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054953A1 (en) * 1998-04-20 1999-10-28 Sankar Dasgupta Composite polymer electrolyte for a rechargeable lithium battery
JP2003059535A (ja) * 2001-06-21 2003-02-28 Samsung Sdi Co Ltd リチウムポリマー電池
JP2009218005A (ja) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池
KR20130104858A (ko) * 2012-03-15 2013-09-25 건국대학교 산학협력단 분무 건조 공정에서 베타알루미나 시드 첨가를 통한 베타알루미나 고체 전해질 제조 방법 및 그 조성물로 이루어진 이차전지
KR20160026648A (ko) * 2014-08-28 2016-03-09 삼성전자주식회사 복합전해질 및 이를 포함하는 리튬전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093679A1 (fr) * 2001-05-10 2002-11-21 Nisshinbo Industries, Inc. Solution electrolytique non aqueuse, composition pour electrolyte en gel polymere, electrolyte en gel polymere, accumulateur, et condensateur electrique forme de deux couches
DE102004018930A1 (de) 2004-04-20 2005-11-17 Degussa Ag Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält
WO2007015409A1 (ja) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. 固体電解質シート
CN101449416A (zh) * 2006-05-11 2009-06-03 A·德沃 包括具有热部和冷部的细长基板的固体氧化物燃料电池装置
KR101422908B1 (ko) * 2012-04-02 2014-07-23 삼성정밀화학 주식회사 리튬이온 이차전지용 전해질 및 이것을 포함하는 리튬이온 이차전지
EP2837049B1 (en) * 2012-04-10 2021-08-18 California Institute of Technology Novel separators for electrochemical systems
KR101383804B1 (ko) 2012-06-08 2014-04-09 지에스에너지 주식회사 적층 박막 전지
CN103682304A (zh) * 2012-09-17 2014-03-26 华为技术有限公司 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
KR102034719B1 (ko) 2012-12-21 2019-10-22 삼성전자주식회사 리튬공기전지용 보호음극 및 이를 포함한 리튬공기전지
KR20150039255A (ko) * 2013-10-01 2015-04-10 한국전기연구원 고체 전해질 및 습윤된 이온성 액체를 구비하는 이차전지
JP6299251B2 (ja) * 2014-02-10 2018-03-28 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池
FR3018395A1 (fr) * 2014-03-06 2015-09-11 St Microelectronics Tours Sas Procede de fabrication d'une microbatterie
HUE064081T2 (hu) * 2014-08-28 2024-02-28 Samsung Electronics Co Ltd Kompozit elektrolit és az ezt tartalmazó lítium akkumulátor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054953A1 (en) * 1998-04-20 1999-10-28 Sankar Dasgupta Composite polymer electrolyte for a rechargeable lithium battery
JP2003059535A (ja) * 2001-06-21 2003-02-28 Samsung Sdi Co Ltd リチウムポリマー電池
JP2009218005A (ja) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池
KR20130104858A (ko) * 2012-03-15 2013-09-25 건국대학교 산학협력단 분무 건조 공정에서 베타알루미나 시드 첨가를 통한 베타알루미나 고체 전해질 제조 방법 및 그 조성물로 이루어진 이차전지
KR20160026648A (ko) * 2014-08-28 2016-03-09 삼성전자주식회사 복합전해질 및 이를 포함하는 리튬전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364489A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119895A (ja) * 2018-05-16 2020-08-06 日本特殊陶業株式会社 イオン伝導体およびリチウム電池
CN111868840A (zh) * 2018-05-16 2020-10-30 日本特殊陶业株式会社 离子传导体和锂电池
CN111868840B (zh) * 2018-05-16 2022-03-08 日本特殊陶业株式会社 离子传导体和锂电池
JP7456790B2 (ja) 2018-05-16 2024-03-27 日本特殊陶業株式会社 イオン伝導体およびリチウム電池

Also Published As

Publication number Publication date
KR20180006202A (ko) 2018-01-17
CN108352568B (zh) 2021-10-29
EP3364489B1 (en) 2020-09-09
EP3364489A1 (en) 2018-08-22
EP3364489A4 (en) 2018-08-22
CN108352568A (zh) 2018-07-31
KR102091903B1 (ko) 2020-05-27
US20180358652A1 (en) 2018-12-13
US11145895B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2018009018A1 (ko) 다층 전해질 셀, 다층 전해질 셀을 포함하는 이차 전지 및 이의 제조 방법
JP7185399B2 (ja) 固体電池の界面層及びその製造方法
KR101655627B1 (ko) 유무기 복합 고체전해질막, 그 제조방법 및 이를 포함하는 전고체 전지
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
KR100813240B1 (ko) 유기 전해액 및 이를 채용한 리튬 전지
KR100873632B1 (ko) 유기전해액 및 이를 채용한 리튬 전지
WO2015065102A1 (ko) 리튬 이차전지
WO2020055183A1 (ko) 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2018038524A1 (ko) 리튬 금속 전지용 분리막 및 이를 포함하는 리튬 금속 전지
KR20160021841A (ko) 충전식 전기화학 전지를 위한 알칼리-이온 전도성 분리기 어셈블리
KR20090012934A (ko) 글리시딜 에테르계 화합물을 채용한 유기전해액 및 리튬전지
KR20180036410A (ko) 전고체 전지
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
KR20200087661A (ko) 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
WO2018004103A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20210048291A (ko) 금속공기전지용 양극, 그 제조방법 및 이를 포함하는 금속공기전지
WO2019135525A1 (ko) 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체
WO2015137728A1 (ko) 환원된 티타늄 산화물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2019139397A1 (ko) 양극 슬러리 조성물, 이를 사용하여 제조된 양극 및 이를 포함하는 전지
KR20200055592A (ko) 양극 및 이를 포함하는 리튬공기전지
WO2020251295A1 (ko) 바이폴라 리튬 이차전지
WO2021085887A1 (ko) 리튬-황 이차전지
WO2023090802A1 (ko) 전극, 이 전극의 제조방법, 및 이 전극을 포함하는 리튬금속전지
KR102670735B1 (ko) 하이브리드 무음극 전고체 리튬이차전지 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017824574

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE