WO2019194581A1 - 수명 성능이 향상된 리튬 금속 이차전지 - Google Patents

수명 성능이 향상된 리튬 금속 이차전지 Download PDF

Info

Publication number
WO2019194581A1
WO2019194581A1 PCT/KR2019/003957 KR2019003957W WO2019194581A1 WO 2019194581 A1 WO2019194581 A1 WO 2019194581A1 KR 2019003957 W KR2019003957 W KR 2019003957W WO 2019194581 A1 WO2019194581 A1 WO 2019194581A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium metal
metal secondary
protective layer
mixture
Prior art date
Application number
PCT/KR2019/003957
Other languages
English (en)
French (fr)
Inventor
윤종건
박솔지
윤현웅
안경호
하회진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19781772.9A priority Critical patent/EP3761437A4/en
Priority to US16/980,701 priority patent/US11437626B2/en
Priority to CN201980020227.3A priority patent/CN111937217B/zh
Publication of WO2019194581A1 publication Critical patent/WO2019194581A1/ko
Priority to US17/874,911 priority patent/US11777100B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/147Side-chains with other heteroatoms in the side-chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1644End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal secondary battery, and more particularly to a lithium metal secondary battery that can improve the life performance by adding a specific additive to the protective layer or a solid electrolyte.
  • lithium metal secondary batteries using lithium metal or a lithium alloy as a negative electrode having a high energy density have attracted attention.
  • a lithium metal secondary battery is a secondary battery using lithium metal or a lithium alloy as a negative electrode.
  • Lithium metal has the most attention as an electrode material of a high energy density cell with a low density of 0.54 g / cm 3 and a very low standard reduction potential of -3.045 V (based on a standard hydrogen electrode).
  • the problem to be solved by the present invention is an additive which is a mixture of an anion comprising hexagonal BN flake and sulfur (S) and an ionomer comprising fluorine (F) which are electrically insulators.
  • S hexagonal BN flake and sulfur
  • F fluorine
  • a lithium metal secondary battery comprising a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode, further comprising a protective layer interposed between the negative electrode and the separator,
  • the protective layer is hexagonal boron nitride flake (hexagonal BN flake);
  • an additive which is a mixture of an anionic group having sulfur (S) and an ionomer containing fluorine (F) is provided.
  • the protective layer, a porous polymer layer, an inorganic layer or a porous polymer layer and the inorganic layer may be laminated.
  • the porous polymer layer polyvinyl chloride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene (polyvinylidene fluoride-co- trichloroethylene), polymethylmethacrylate, polyethylhexyl acrylate, polybutyl acrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinyl Polyvinylidene fluoride, polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, polypropylene oxide, polyarylate , Cellulose acetate, cellulose acetate Cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethyl It may include any one selected from the group consisting of sucrose (
  • the inorganic layer may include SiO 2 , BaTiO 3 , Pb (Zr x Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1- xLa x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3-x PbTiO 3 (PMNPT, 0 ⁇ x ⁇ 1), Hafnia 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Lithium Lanthanum Ziroconium Oxide (LLZO), ZO 3 , Si 3 N 4 , It may include any one selected from the group consisting of TiC, TiO 2 and SiC or a mixture of two or more thereof.
  • the thickness of the protective layer may be 0.1 to 10 ⁇ m.
  • the content of the additive may be 50 to 98% by weight relative to the weight of the protective layer.
  • the additive may be a mixture of the hexagonal boron nitride flakes and the ionomer in a weight ratio of 1: 9 to 9: 1.
  • a lithium metal secondary battery comprising a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode, the positive electrode, the negative electrode or both further comprises a solid electrolyte
  • the solid electrolyte hexagonal boron nitride flakes (hexagonal BN flake);
  • an additive which is a mixture of an anionic group having sulfur (S) and an ionomer containing fluorine (F) is provided.
  • the additive is added in the form of an additive mixture which is a mixture with a solid electrolyte, wherein the solid electrolyte is any one selected from the group consisting of a polymer solid electrolyte, a polymer gel electrolyte, a sulfide solid electrolyte and an oxide solid electrolyte. It may be one or a mixture of two or more thereof.
  • an additive which is an admixture of an ionomer comprising an anionic group containing hexagonal BN flake and sulfur (S) and an fluorine (F), which is an electrically insulator, is added to a protective layer or a solid electrolyte of a negative electrode.
  • the lifetime performance and safety of the battery can be improved.
  • FIG. 1 is a view schematically showing the structure of hexagonal boron nitride flakes (hexagonal BN flake) of the present invention.
  • Figure 2 is a graph showing the evaluation of the life performance of the Examples and Comparative Examples of the present invention.
  • a lithium metal secondary battery including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the lithium metal secondary battery includes lithium metal as a negative electrode active material.
  • the lithium metal secondary battery is hexagonal boron nitride flake (hexagonal BN flake); And an additive which is a mixture of an anionic group including sulfur (S) and an ionomer including fluorine (F).
  • the secondary battery includes a protective layer interposed between the negative electrode and the separator, the protective layer, hexagonal boron nitride flake (hexagonal BN flake); And an ionomer containing sulfur (S) and an ionomer containing fluorine (F).
  • the protective layer will be described in more detail.
  • FIG. 1 is a view schematically showing the structure of hexagonal boron nitride flakes (hexagonal BN flake) of the present invention.
  • the hexagonal boron nitride flake (hexagonal BN flake) has a perfect 2D structure similar to graphene (graphene), it is characterized in that the electrically insulator.
  • the hexagonal boron nitride flake not only improves the mechanical strength of the protective layer, but also exhibits high thermal conductivity, and due to the Lewis acid characteristic of the boron (B) valence, maximizes lithium ion transfer number. It has the property to be able.
  • the size of the hexagonal boron nitride flakes is about 500 nm to 1 ⁇ m.
  • the anion group containing sulfur (S) meets cations such as Li + , H + , Na + , K + , and thus, Maximize your ability to deliver.
  • the anion group is one having the sulfur, sulfuric acid group (SO 4 2-), sulfurous acid group (SO 3 -) or the like and may include one or more of these.
  • the ionomer may be, for example, represented by the following structural formula.
  • n may be 1: 1 to 10: 1)
  • the additive in the protective layer of the present invention it is possible to improve the mechanical strength and ion transfer capacity of the protective layer, to secure the oxidation potential window and to improve the non-combustibility, and ultimately the battery life performance and safety Will improve.
  • the protective layer according to the present invention is to inhibit the growth of dendrite that may occur on the surface of the negative electrode, and to prevent chemical reaction between the electrolyte and the negative electrode, an inorganic layer or a porous polymer layer containing a porous polymer layer, inorganic particles And the inorganic layer may be in a stacked form and includes an additive having the above characteristics.
  • the porous polymer layer has a porous structure to facilitate the inflow of the electrolyte into the negative electrode active material layer, and in the case of injecting the electrolyte after preparing the electrode assembly in which the electrode and the separator are stacked, the protective layer is in the form of the porous polymer layer.
  • the electrolyte can be sufficiently retained in the interior.
  • the porous polymer layer may include a polymer material, and the polymer material may include polyvinyl chloride, polyvinylidene fluoride-co-hexafluoropropylene, and polyvinylidene fluoride.
  • the polymer material may include polyvinyl chloride, polyvinylidene fluoride-co-hexafluoropropylene, and polyvinylidene fluoride.
  • the pore size formed in the porous polymer layer may be 0.01 ⁇ m to 10 ⁇ m, and the porous polymer layer may have a porosity of 5% to 95%.
  • the method of forming the porous structure of the porous polymer layer is not particularly limited and is not particularly limited as long as it is a method of manufacturing a conventional porous polymer film or sheet.
  • a polymer sheet may be formed, for example, by a dry method of preparing a porous sheet in a manner of melting / extruding a polymer resin, a wet method of adding / extracting a plasticizer to form pores, a phase separation method, or a phase inversion method.
  • the inorganic layer by including inorganic particles having high mechanical strength together with or independently of the above-described polymer material, serves to physically inhibit the growth of dendrites in the negative electrode of the lithium metal secondary battery, SiO 2 , BaTiO 3 , Pb (Zr x Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3-x PbTiO 3 (PMNPT, 0 ⁇ x ⁇ 1), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO Group consisting of 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Lithium Lanthanum Ziroconium Ox
  • the thickness of the protective layer is not particularly limited, but may be 0.1 to 10 ⁇ m.
  • the lower limit of the protective layer thickness may be 0.1 ⁇ m, 0.2 ⁇ m or 1 ⁇ m
  • the upper limit of the protective layer thickness may be 10 ⁇ m, 8 ⁇ m, or 5 ⁇ m.
  • the protective layer may sufficiently retain the electrolyte, thereby delaying the problem of depletion of the electrolyte while driving the battery, and may improve the life characteristics of the lithium metal secondary battery.
  • the thickness of the protective layer is less than the lower limit of the numerical range, the protective layer may not serve as a protective layer.
  • the thickness of the protective layer exceeds the upper limit of the numerical range, the resistance of the electrode becomes large, which is not preferable.
  • the protective layer for example, the doctor blade (Doctor Blade) method, the solution casting (Solution Casting) method, dip coating method, spray coating (Spray Coating) containing a solution or slurry containing a polymer or inorganic It can be formed directly on the cathode or the separator by a method, such as spin coating (Spin Coating). However, it is not limited thereto.
  • an additive according to the present invention is added to the protective layer, wherein the content of the additive is 50 wt% to 98 wt%, preferably 80, based on the filling weight of the protective layer. Weight percent to 95 weight percent, more preferably 90 weight percent to 93 weight percent.
  • the lifespan increase effect due to the expected suppression of lithium dendrite may occur. If the value is less than the lower limit, the side effect of increasing the resistance may be increased without the effect of increasing the life. If the upper limit is exceeded, the binder included in the protective layer, for example, PVDF-co-HFP content is too small When the protective layer is coated with low flexibility, the protective layer may be broken.
  • the additive may be a mixture of the hexagonal boron nitride flakes and the ionomer in a weight ratio of 1: 9 to 9: 1. When mixed in such a weight ratio, it is possible to simultaneously obtain lithium ion transfer capacity and nonflammable effect by ionomer, ion transfer capacity and mechanical strength improvement effect by boron nitride flake.
  • the positive electrode in this invention is manufactured by apply
  • the positive electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like on the surface of may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and the current collector may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1% by weight to 50% by weight based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the positive electrode active material used in the present invention is not particularly limited as long as it is used as a positive electrode active material in a lithium ion secondary battery.
  • the positive electrode active material may be a lithium metal oxide such as lithium manganese oxide, lithium manganese nickel cobalt oxide, lithium cobalt oxide, a metal oxide not containing lithium, or a mixture of two or more thereof.
  • Lithium metal oxide which is conventionally used as a cathode active material, can be initially discharged. However, it is also possible to mix metal oxides containing no lithium to some anodes or to apply 100% of metal oxides containing no lithium, which may be inexpensive and ensure safety.
  • the metal oxide does not contain lithium, vanadium oxide, manganese oxide, nickel oxide, cobalt oxide, niobium oxide, iron phosphate and the like.
  • the negative electrode may include only a current collector such as a copper foil, or may include a negative electrode active material layer formed on a surface of the current collector.
  • the negative electrode active material layer may include at least one element belonging to an alkali metal, an alkaline earth metal, a Group 3B, and a transition metal.
  • a non-limiting example of the alkali metal group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) or francium (Fr)
  • materials such as graphite may also be used as the negative electrode active material. Most preferably, it can be prepared by attaching lithium metal on the negative electrode current collector.
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance bonding strength with lithium metal, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
  • the separator used for the lithium metal secondary battery of this application is an insulating thin film interposed between the positive electrode and the negative electrode and having high ion permeability and mechanical strength.
  • the separator may include a porous polymer substrate.
  • the porous polymer substrate may be used as long as it is a porous polymer substrate that is typically used for a separator in a lithium secondary battery.
  • a polyolefin-based porous membrane or a nonwoven fabric may be used. no.
  • polyolefin-based porous membrane examples include polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyethylene such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polypentene such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • the nonwoven fabric may be, for example, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, or polycarbonate. ), Polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide and polyethylenenaphthalate, respectively. Or the nonwoven fabric formed from the polymer which mixed these is mentioned.
  • the structure of the nonwoven can be a spunbond nonwoven or melt blown nonwoven composed of long fibers.
  • the thickness of the porous polymer substrate is not particularly limited, but is 1 ⁇ m to 500 ⁇ m, 3 ⁇ m to 300 ⁇ m, or 5 ⁇ m to 50 ⁇ m.
  • the pore size and pore present in the porous polymer substrate are also not particularly limited, but may be 0.001 ⁇ m to 50 ⁇ m and 10% to 95%, respectively.
  • the separator may further include inorganic particles in terms of heat resistance and physical strength.
  • the inorganic particles are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating range of the electrochemical device to be applied (for example, 0 to 5 V on the basis of Li / Li +).
  • the inorganic particles include SiO 2 , BaTiO 3 , Pb (Zr x Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 ( PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3-x PbTiO 3 (PMNPT, 0 ⁇ x ⁇ 1), hafnia ( HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Lithium Lanthanum Ziroconium Oxide (LLZO), ZO 3 , Si 3 N 4 , TiC, TiO 2 , SiC or two or more thereof.
  • the electrolyte salt contained in the nonaqueous electrolyte that can be used in the present invention is a lithium salt.
  • the lithium salt may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries.
  • organic solvent included in the nonaqueous electrolyte described above those conventionally used in electrolytes for lithium secondary batteries may be used without limitation, and for example, ethers, esters, amides, linear carbonates, and cyclic carbonates may be used alone or in combination of two or more. It can be mixed and used.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, which may dissociate lithium salts in the electrolyte more effectively.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, which may dissociate lithium salts in the electrolyte more effectively.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ Any one or a mixture of two or more selected from the group consisting of -valerolactone and ⁇ -caprolactone may be used, but is not limited thereto.
  • the injection of the nonaqueous electrolyte may be performed at an appropriate step in the manufacturing process of the lithium secondary battery according to the manufacturing process and required physical properties of the final product. That is, the lithium secondary battery may be applied before or at the final stage of assembling the lithium secondary battery.
  • the lithium secondary battery according to the present invention may be a lamination (stack) and folding process of the separator and the electrode in addition to the winding (winding) which is a general process.
  • the battery case may be a pouch-type battery case of a metal can or a laminate sheet including a resin layer and a metal layer, and in detail, may be a pouch-type battery case.
  • a lithium metal secondary battery comprising a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode, the positive electrode and / or the negative electrode further comprises a solid electrolyte, The solid electrolyte, hexagonal boron nitride flakes (hexagonal BN flake); And an ionomer containing sulfur (S) and an ionomer containing fluorine (F).
  • the positive electrode and / or negative electrode may further include a solid electrolyte, and the additive may be added to the positive electrode and / or negative electrode in the form of an additive mixture mixed with the solid electrolyte.
  • the lithium metal secondary battery may further include a protective layer having the above characteristics.
  • the content of the additive may be 50% to 98% by weight, preferably 80% to 95% by weight, and more preferably 90% to 93% by weight of the additive mixture 100% by weight.
  • the lifespan increase effect due to the expected suppression of lithium dendrite may occur. If the value is less than the lower limit of the numerical range, there may be a side effect of increasing resistance only without increasing the lifespan. If the upper limit is exceeded, the content of the solid electrolyte that may be included in the additive mixture may be too low, which may lower flexibility. Can not do it.
  • the additive to the solid electrolyte, it is possible to improve the mechanical strength and ion transfer capacity of the solid electrolyte, to secure the oxidation potential window and to improve the non-combustibility, and ultimately to improve the battery life performance and safety.
  • the solid electrolyte of the present invention mainly serves to transfer lithium ions in the electrode, any material having high ion conductivity, for example, 10 ⁇ 5 s / m or more, preferably 10 ⁇ 4 s / m or more It is usable and is not limited to specific ingredients.
  • the solid electrolyte is a polymer solid electrolyte formed by adding a polymer resin to a solvated electrolyte salt, or a polymer containing an organic electrolyte, an ionic liquid, a monomer or an oligomer containing an organic solvent and an electrolyte salt in the polymer resin. It may be a gel electrolyte, or further, may be a sulfide-based solid electrolyte having high ion conductivity or an oxide-based solid electrolyte having excellent stability.
  • the polymer solid electrolyte for example, polyether polymer, polycarbonate polymer, acrylate polymer, polysiloxane polymer, phosphazene polymer, polyethylene derivative, alkylene oxide derivative, phosphate ester polymer, poly edge Agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, polymers containing ionic dissociating groups, and the like.
  • the polymer solid electrolyte may be a branched copolymer or a comb polymer resin obtained by copolymerizing amorphous polymers such as PMMA, polycarbonate, polysiloxane (pdms) and / or phosphazene into a comonomer in a polyethylene oxide (PEO) main chain as a polymer resin.
  • PMMA polymethyl methacrylate
  • PEO polyethylene oxide
  • comb-like polymer and crosslinked polymer resin, and the like, and may be a mixture of the above polymers.
  • the polymer gel electrolyte includes an organic electrolyte solution containing an electrolyte salt and a polymer resin, and the organic electrolyte solution includes 60 to 400 parts by weight based on the weight of the polymer resin.
  • the polymer to be applied to the gel electrolyte is not limited to specific components, but for example, polyether, PVC, PMMA, polyacrylonitrile (Polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), polyvinyl fluoride) Poly (vinylidene fluoride-hexafluoro propylene: may include PVdF-HFP. And it may be a mixture of the polymers.
  • the electrolyte salt can be represented by Li + X - as an ionizable lithium salt.
  • Such lithium salt is preferably LiTFSI, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) ⁇ 2NLi, Lithium chloroborate, lower aliphatic lithium carbonate, 4-phenyl lithium borate imide, and combinations thereof.
  • a battery module including the above-described lithium metal secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • a specific example of the device may include a power tool moving by being powered by an electric motor; Electric vehicles including electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and the like; Electric motorcycles including electric bicycles and electric scooters; Electric golf card; Power storage systems and the like, but are not limited thereto.
  • a 20 ⁇ m thick lithium metal foil was attached to one surface of the copper current collector.
  • an additive is prepared by mixing a hexagonal boron nitride flake and an ionomer corresponding to Chemical Formula 1 (wherein m is 4 and n is 1) at a weight ratio of 9: 1, and then polyvinylidene fluoride-hexafulluo
  • a protective layer was prepared by adding to a propylene (PVDF-co-HFP) polymer. At this time, the content of the additive was adjusted to be 92% by weight relative to the total weight of the protective layer.
  • the protective layer thus prepared was formed on the lithium metal foil to prepare a negative electrode.
  • a coin cell was prepared between the positive electrode prepared above and the negative electrode prepared in Example 1 with a separator (polypropylene-based porous polymer substrate) interposed therebetween.
  • a lithium metal secondary battery was prepared by injecting an electrolyte solution in which 1 M LiPF 6 was dissolved in a solvent in which fluoro ethylene carbonate (FEC) and ethyl methyl carbonate (EMC) were mixed in a volume ratio of 30:70 in the coin cell.
  • FEC fluoro ethylene carbonate
  • EMC ethyl methyl carbonate
  • the protective layer of the negative electrode in the same manner as in Example 1, except that the protective layer is prepared using only polyvinylidene fluoride-hexafulopropylene (PVDF-co-HFP) polymer without adding an additive.
  • PVDF-co-HFP polyvinylidene fluoride-hexafulopropylene
  • a lithium metal secondary battery was manufactured in the same manner as in Example 2, except that the negative electrode prepared in Comparative Example 1 was used.
  • a negative electrode was manufactured in the same manner as in Example 1 except that the protective layer was not provided, and a lithium metal secondary battery was manufactured in the same manner as in Example 2 using the same.
  • a negative electrode was manufactured in the same manner as in Example 1 except that the hexagonal boron nitride flakes were not included and only an ionomer was added.
  • the battery was prepared.
  • the ion conductivity of the protective layer prepared in Example 1 and the protective layer prepared in Comparative Example 1 was evaluated by impedance measurement, and is shown in Table 1 below.
  • Example 1 Comparative Example 1 Ion conductivity 17.0 ⁇ 10 -4 S / cm 1.9 ⁇ 10 -4 S / cm
  • Comparative Example 2 As a result of measuring the number of cycles at which the capacity retention rate of the battery became 80%, the Example was subjected to 92 cycles, but Comparative Example 2 to which the protective layer containing no additive of the present application was applied 75 times did not include the protective layer itself. Comparative Example 3 is measured in 36 times, it can be seen that the cycle characteristics are significantly improved compared to the comparative examples in the case of the Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것으로, 상기 음극과 상기 세퍼레이터 사이에 개재된 보호층을 더 포함하고, 상기 보호층은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제가 첨가되어 있는 것을 특징으로 하는 리튬 금속 이차전지에 관한 것이다.

Description

수명 성능이 향상된 리튬 금속 이차전지
본 출원은 2018년 4월 6일에 출원된 한국특허출원 제10-2018-0040566호 에 기초한 우선권을 주장한다. 본 발명은 리튬 금속 이차전지에 관한 것으로서, 보다 상세하게는 보호층 또는 고체 전해질에 특정 첨가제를 첨가하여 수명 성능을 향상시킬 수 있는 리튬 금속 이차전지에 관한 것이다.
전기, 전자, 통신 및 컴퓨터 산업이 급속히 발전함에 따라 고용량 전지에 대한 요구가 갈수록 증가하고 있다. 이와 같은 요구에 부응하여 고에너지 밀도를 갖는 음극으로서 리튬 금속 또는 리튬 합금을 음극으로 이용한 리튬 금속 이차전지가 주목 받고 있다.
리튬 금속 이차전지란 음극으로서 리튬 금속 또는 리튬 합금을 사용한 이차전지이다. 리튬 금속은 밀도가 0.54 g/cm 3로 낮고 표준 환원전위도 -3.045V(SHE: 표준 수소 전극을 기준)로 매우 낮아 고에너지 밀도 전지의 전극 재료로서 가장 주목 받고 있다.
이러한 리튬 금속 이차전지는 음극 표면 상에서 리튬의 덴드라이트 성장이 발생하는데, 이러한 덴드라이트는 전지의 수명 성능과 안전성에 심각한 영향을 주기 때문에, 전지 개발에 많은 제약이 따르고 있는 실정이다.
이러한 덴드라이트 성장을 억제하기 위해 다양한 시도가 이루어지고 있으며, 그 중 하나가, 리튬 금속 이차전지의 음극에 직접 보호층을 적용하여 덴드라이트 성장을 억제하는 것이다.
하지만 이러한 보호층의 형성으로 인해 양극과 음극 사이의 이온 전달 능력이 저하될 수 있는 문제가 있다.
따라서, 본 발명이 해결하고자 하는 과제는, 전기적으로 부도체인 육방정계 질화붕소 플레이크(hexagonal BN flake) 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제를 음극의 보호층 또는 고체 전해질에 첨가함으로써, 전지의 수명 성능을 향상시킬 수 있는 리튬 금속 이차전지를 제공하는 것이다.
본 발명의 일 측면에 따르면, 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것으로, 상기 음극과 상기 세퍼레이터 사이에 개재된 보호층을 더 포함하고, 상기 보호층은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제가 첨가되어 있는 것을 특징으로 하는 리튬 금속 이차전지가 제공된다.
여기서, 상기 보호층은, 다공성 고분자층, 무기물층 또는 다공성 고분자층과 무기물층이 적층된 것일 수 있다.
이때, 상기 다공성 고분자층은, 폴리비닐 클로라이드(polyvinyl chloride), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyethylhexyl acrylate), 폴리부틸아크릴레이트(polybutyl acrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리프로필렌 옥사이드(polypropylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan) 및 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있다.
그리고, 상기 무기물층은, SiO 2, BaTiO 3, Pb(Zr xTi 1-x)O 3(PZT, 0<x<1), Pb 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO 3(PMNPT, 0<x<1), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, AlOOH, LLZO(Lithium Lanthanum Ziroconium Oxide), ZO 3, Si 3N 4, TiC, TiO 2 및 SiC로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있다.
그리고, 상기 보호층의 두께는 0.1 내지 10 ㎛일 수 있다.
한편, 상기 첨가제의 함량은, 상기 보호층의 충 중량 대비 50 내지 98 중량%일 수 있다.
그리고, 상기 첨가제는, 상기 육방정계 질화붕소 플레이크와 상기 이오노머가 1:9 내지 9:1의 중량비로 혼합된 것일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것으로, 상기 양극, 상기 음극 또는 이 둘 모두는 고체 전해질을 더 포함하고, 상기 고체 전해질은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제가 첨가되어 있는 것을 특징으로 하는 리튬 금속 이차전지가 제공된다.
이때, 상기 첨가제는 고체 전해질과의 혼합물인 첨가제 혼합물의 형태로 첨가되며, 여기에서 상기 고체 전해질은, 고분자 고체 전해질, 고분자 겔 전해질, 황화물계 고체 전해질 및 산화물계 고체 전해질로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
본 발명에 따르면, 전기적으로 부도체인 육방정계 질화붕소 플레이크(hexagonal BN flake) 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제를 음극의 보호층 또는 고체 전해질에 첨가함으로써, 기계적 강도 향상, 이온전달 능력 향상, 산화 전위창 확보 및 불연성을 극대화할 수 있다.
궁극적으로, 전지의 수명 성능 및 안전성을 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 육방정계 질화붕소 플레이크(hexagonal BN flake)의 구조를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 실시예와 비교예들의 수명 성능을 평가하여 도시한 그래프이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예 및 도면에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 측면에 따르면, 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것이다. 본 발명에 있어서 상기 리튬 금속 이차전지는 음극 활물질로 리튬 금속을 포함하는 것이다.
본 발명에 있어서, 상기 리튬 금속 이차전지는 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 포함하는 음이온기와 불소(F)를 포함하는 이오노머;의 혼합물인 첨가제를 포함한다.
본 발명의 일 실시양태에 있어서, 상기 이차전지는 상기 음극과 상기 세퍼레이터 사이에 개재된 보호층을 포함하고, 상기 보호층은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 포함하는 음이온기와 불소(F)를 포함하는 이오노머;의 혼합물인 첨가제가 첨가되어 있는 것을 특징으로 한다. 상기 보호층에 대해 더욱 상세하게 설명한다.
도 1은 본 발명의 육방정계 질화붕소 플레이크(hexagonal BN flake)의 구조를 개략적으로 도시한 도면이다.
도 1을 참조하면, 상기 육방정계 질화붕소 플레이크(hexagonal BN flake)는 그래핀(graphene)과 유사한 완벽한 2D 구조를 가지고 있긴 하나, 전기적으로 부도체인 것을 특징으로 한다. 이러한 육방정계 질화붕소 플레이크는 상기 보호층의 기계적 강도를 향상시킬 뿐만 아니라, 높은 열전도성을 나타내며, 붕소(B) 원자가 지니는 루이스 산 특성으로 인해, 리튬 이온 전달 넘버(Li ion transfer number)를 극대화할 수 있는 성질을 갖고 있다. 본 발명의 일 실시양태에 있어서, 상기 육방정계 질화붕소 플레이크의 크기는 500 nm 내지 1 ㎛ 정도이다.
그리고, 상기 이오노머는 불소(F)를 포함하고 있어 불연성을 지님과 동시에, 황(S)을 포함하는 음이온기는 Li +, H +, Na +, K + 등의 양이온들과 만나기 때문에, 이러한 양이온들의 전달 능력을 극대화할 수 있다.
이때, 상기 황을 구비한 음이온기는, 황산기(SO 4 2-), 아황산기(SO 3 -) 등일 수 있으며 이 중 하나 이상을 포함할 수 있다.
그리고, 상기 이오노머는, 예를 들면 아래의 구조식으로 표현될 수 있다.
[화학식 1]
Figure PCTKR2019003957-appb-img-000001
(여기서, 상기 m:n은 1:1 내지 10:1일 수 있다.)
즉, 본 발명의 보호층에 상기 첨가제가 포함됨으로써, 보호층의 기계적 강도와 이온전달 능력을 향상시킬 수 있고, 산화 전위창 확보 및 불연성을 향상시킬 수 있으며, 궁극적으로는 전지의 수명 성능 및 안전성을 향상시키게 된다.
또한, 본 발명에 따른 상기 보호층은, 음극 표면 상에서 발생할 수 있는 덴드라이트 성장을 억제하고, 전해질과 음극간의 화학 반응을 방지하는 것으로, 다공성 고분자층, 무기물 입자를 포함하는 무기물층 또는 다공성 고분자층과 무기물층이 적층된 형태일 수 있으며 여기에 전술한 특징을 갖는 첨가제가 포함된다.
이때, 상기 다공성 고분자층은 다공성의 구조를 가짐으로써 음극 활물질층으로의 전해질 유입이 원활하도록 하며, 전극과 세퍼레이터가 적층된 형태의 전극조립체 제조 후 전해질을 주입하는 경우 다공성 고분자층의 형태인 보호층 내에 전해질을 충분히 보유할 수 있다. 다공성 고분자층 내 전해질을 충분히 보유함에 따라 리튬 금속 이차전지가 구동되는 과정에서 전해질이 고갈되는 현상을 지연시킬 수 있으며 결과적으로 리튬 금속 이차전지의 수명이 감소하는 현상을 지연시킬 수 있다.
이러한 다공성 고분자층은 고분자 재료를 포함할 수 있으며, 이러한 고분자 재료로는 폴리비닐 클로라이드(polyvinyl chloride), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyethylhexyl acrylate), 폴리부틸아크릴레이트(polybutyl acrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리프로필렌 옥사이드(polypropylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan) 및 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있다.
그리고, 상기 다공성 고분자층에 형성된 기공 크기는 0.01㎛ 내지 10 ㎛일 수 있으며, 다공성 폴리머층은 기공도가 5% 내지 95%일 수 있다.
또한, 상기 다공성 고분자층의 다공성 구조를 형성하는 방법은 특별히 제한되는 것은 아니며 통상적인 다공성의 고분자 필름이나 시트를 제조하는 방법이면 특별히 어느 하나로 한정되는 것은 아니다. 이러한 고분자 시트는 예를 들어 고분자 수지를 용융/압출하는 방식으로 다공성 시트를 제조하는 건식법, 가소제를 첨가/추출하여 기공을 형성하는 습식법, 상분리법, 또는 상전환법을 통해 형성할 수 있다. 그리고, 상기 무기물층은, 전술한 고분자 재료와 함께 또는 독립적으로 기계적 강도가 높은 무기물 입자를 포함함으로써 리튬 금속 이차전지의 음극에서 덴드라이트가 성장하는 것을 물리적으로 억제하는 역할을 하는 것으로, SiO 2, BaTiO 3, Pb(Zr xTi 1-x)O 3(PZT, 0<x<1), Pb 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO 3(PMNPT, 0<x<1), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, AlOOH, LLZO(Lithium Lanthanum Ziroconium Oxide), ZO 3, Si 3N 4, TiC, TiO 2 및 SiC로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 무기물층에서 다공성 특성은 무기물 입자 사이에 형성된 인터스티셜 볼륨(interstitial volume)에서 기인할 수 있으며, 이러한 다공성 특성은 무기물 입자의 함량 및/또는 직경을 조절하여 소망하는 수준으로 구현할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 보호층의 두께는 특별히 제한되는 것은 아니나, 0.1 내지 10 ㎛일 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 보호층 두께의 하한은 0.1 ㎛, 0.2 ㎛ 또는 1 ㎛일 수 있고, 상기 보호층 두께의 상한은 10 ㎛, 8 ㎛, 또는 5 ㎛일 수 있다. 상기 수치범위 내에서 보호층은 전해질을 충분히 보유할 수 있어 전지 구동 중 전해질이 고갈되는 문제를 지연시킬 수 있으며, 리튬 금속 이차전지의 수명 특성을 개선시킬 수 있다. 상기 보호층의 두께가 상기 수치범위의 하한 값 미만인 경우, 보호층으로서의 역할을 할 수 없고, 상기 수치범위의 상한 값을 초과하는 경우, 전극의 저항이 커져 바람직하지 못하다.
한편, 상기 보호층은, 고분자 또는 무기물을 포함하는 용액 또는 슬러리를, 예컨대, 닥터 블레이드(Doctor Blade) 법, 용액 캐스팅(Solution Casting)법, 딥 코팅(Dip Coating)법, 스프레이 코팅(Spray Coating)법, 스핀 코팅(Spin Coating) 등의 방법으로 음극 또는 세퍼레이터에 직접 형성시킬 수 있다. 그러나 이에 한정되는 것은 아니다.
본 발명에 따르면, 상기 보호층에 본 발명에 따른첨가제가 첨가되어 있는 것을 특징으로 하는데, 이때, 상기 첨가제의 함량은, 상기 보호층의 충 중량 대비 50 중량% 내지 98 중량%, 바람직하게는 80 중량% 내지 95 중량%, 더욱 바람직하게는 90 중량% 내지 93 중량%일 수 있다. 상기 수치범위 만족하게 되면, 기대한 리튬 덴드라이트 억제에 따른 수명 증대 효과가 발생할 수 있다. 상기 수치범위 하한 값 미만이면, 수명 증대 효과 없이 저항만 늘어나는 부작용이 나타날 수 있고, 상기 수치범위 상한 값을 초과하면, 보호층에 포함되는 바인더, 예를 들면, PVDF-co-HFP 함량이 너무 적어 유연성이 떨어져 상기 보호층 코팅시, 보호층이 부서지는 부작용이 나타날 수 있다.
그리고, 상기 첨가제는, 상기 육방정계 질화붕소 플레이크와 상기 이오노머가 1:9 내지 9:1의 중량비로 혼합된 것일 수 있다. 이와 같은 중량비로 혼합되면, 이오노머에 의한 리튬이온 전달능력 극대화와 불연성 효과, 질화붕소 플레이크에 의한 이온 전달능력 및 기계적 강도 향상효과를 동시에 얻을 수 있다.
한편, 본 발명에 있어서의 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3㎛ 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 이러한 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 중량% 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소나노튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌부틸렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명에서 사용되는 양극 활물질은 통상적으로 리튬 이온 이차 전지에서 양극 활물질로 사용되는 것이면 특별한 종류로 한정되는 것은 아니다. 본 발명의 일 실시양태에 있어서, 상기 양극 활물질은 리튬 망간 산화물, 리튬 망간니켈코발트 산화물, 리튬 코발트 산화물 등 리튬 금속 산화물, 리튬을 포함하지 않는 금속 산화물 또는 이들 중 2종 이상의 혼합물일 수 있다. 기존에 양극 활물질로 사용되는 리튬 금속 산화물은 초기 방전이 가능하다. 하지만, 가젹이 저렴하고 안전성이 확보될 수 있는 리튬을 포함하지 않는 금속 산화물을 일부 양극에 혼합하거나, 리튬을 포함하지 않는 금속 산화물을 100% 적용하는 것도 가능하다.
이때, 상기 리튬을 포함하지 않는 금속 산화물은, 바나듐 옥사이드, 망간 옥사이드, 니켈 옥사이드, 코발트 옥사이드, 나이오븀 옥사이드, 인산철 등이 있다.
한편, 상기 음극은, 구리 포일 등의 집전체만을 구비하고 있거나, 또는 상기 집전체 표면에 형성된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 알칼리 금속, 알칼리 토금속, 3B족 및 전이 금속에 속하는 원소를 1종 이상 포함할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 알칼리 금속의 비제한적인 예로 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs) 또는 프랑슘(Fr)으로 이루어진 군으로부터 선택된 적어도 하나 이상의 금속을 들 수 있으며 바람직하게는 리튬을 포함한다. 나아가, 흑연 등의 소재도 음극 활물질로 사용될 수 있다. 가장 바람직하게는, 음극 집전체 상에 리튬 금속을 부착시켜 제조할 수 있다. 상기 음극 집전체는 일반적으로 3㎛ 내지 500 ㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 리튬 금속과의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
한편, 본원의 리튬 금속 이차전지에 사용되는 세퍼레이터는, 양극과 음극 사이에 개재되며 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이다.
상기 세퍼레이터는 다공성 고분자 기재를 포함할 수 있다. 상기 다공성 고분자 기재는, 통상적으로 리튬 이차전지에 세퍼레이터의 용도로 사용되는 다공성 고분자 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.
상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌 테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌 테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르 (polyester), 폴리아세탈 (polyacetal), 폴리아미드 (polyamide), 폴리카보네이트 (polycarbonate), 폴리이미드 (polyimide), 폴리에테르에테르케톤 (polyetheretherketone), 폴리에테르설폰 (polyethersulfone), 폴리페닐렌 옥사이드 (polyphenyleneoxide), 폴리페닐렌 설파이드 (polyphenylenesulfide) 및 폴리에틸렌 나프탈레이트 (polyethylenenaphthalate) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포를 들 수 있다. 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 1㎛ 내지 500 ㎛, 3㎛ 내지 300㎛, 또는 5㎛ 내지 50㎛이다.
다공성 고분자 기재에 존재하는 기공의 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001㎛ 내지 50㎛ 및 10% 내지 95%일 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 세퍼레이터는 내열성 및 물리적 강도의 측면에서 무기물 입자를 더 포함할 수 있다. 상기 무기물 입자는 적용되는 전기화학소자의 작동 범위 (예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 예를 들어 상기 무기물 입자로는 SiO 2, BaTiO 3, Pb(Zr xTi 1-x)O 3(PZT, 0<x<1), Pb 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO 3(PMNPT, 0<x<1), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, AlOOH, LLZO(Lithium Lanthanum Ziroconium Oxide), ZO 3, Si 3N 4, TiC, TiO 2, SiC 또는 이 중 둘 이상을 포함할 수 있다.
그리고, 본 발명에서 사용될 수 있는 비수 전해질에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온으로는 F -, Cl -, Br -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N - , CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, CH 3CO 2 -, SCN - 및 (CF 3CF 2SO 2) 2N -로 이루어진 군에서 선택된 어느 하나일 수 있다.
전술한 비수 전해질에 포함되는 유기용매로는 리튬 이차전지용 전해질에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 비수 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 리튬 이차전지의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 리튬 이차전지 조립 전 또는 리튬 이차전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 리튬 이차전지는, 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다. 그리고, 전지케이스는 금속 캔, 또는 수지층과 금속층을 포함하는 라미네이트 시트의 파우치형 전지케이스일 수 있고, 상세하게는 파우치형 전지케이스일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것으로, 상기 양극 및/또는 상기 음극은 고체 전해질을 더 포함하고, 상기 고체 전해질은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머;의 혼합물인 첨가제와 혼합되어 있는 것을 특징으로 한다. 즉, 본 발명의 일 실시양태에 있어서, 상기 양극 및/또는 음극은 고체 전해질을 더 포함할 수 있으며, 상기 첨가제는 상기 고체 전해질과 혼합된 첨가제 혼합물의 형태로 상기 양극 및/또는 음극에 첨가될 수 있다. 또한 상기 리튬 금속 이차 전지는 전술한 특징을 갖는 보호층을 더 포함할 수 있다.
여기서, 상기 첨가제의 함량은 상기 첨가제 혼합물 100 중량% 중 50 중량% 내지 98 중량%, 바람직하게는 80 중량% 내지 95 중량%, 더욱 바람직하게는 90 중량% 내지 93 중량%일 수 있다. 상기 수치범위 만족하게 되면, 기대한 리튬 덴드라이트 억제에 따른 수명 증대 효과가 발생할 수 있다. 상기 수치범위 하한 값 미만이면, 수명 증대 효과 없이 저항만 늘어나는 부작용이 나타날 수 있고, 상기 수치범위 상한 값을 초과하면, 상기 첨가제 혼합물에 포함될 수 있는 고체 전해질 함량이 너무 적어 유연성이 떨어질 수 있어 바람직하지 못하다.
상기 첨가제가 고체 전해질에 첨가됨으로써, 고체 전해질의 기계적 강도와 이온전달 능력을 향상시킬 수 있고, 산화 전위창 확보 및 불연성을 향상시킬 수 있으며, 궁극적으로는 전지의 수명 성능 및 안전성을 향상시키게 된다.
여기서, 상기 고체 전해질은, 양극에 적용되는 경우에는 산화 안정성이 우수한 고체 전해질을 사용하는 것이 바람직하고, 음극에 적용되는 경우에는 환원 안정성이 우수한 고체 전해질을 사용하는 것이 바람직하다. 본 발명의 고체 전해질은 전극 내에서 주로 리튬 이온을 전달하는 역할을 하기 때문에, 이온 전도도가 높은 소재, 예를 들어 10 -5 s/m 이상, 바람직하게는 10 -4 s/m 이상인 것이면 어느 것이나 사용 가능하며, 특정한 성분으로 한정되는 것은 아니다.
이때, 상기 고체 전해질은, 용매화된 전해질 염에 고분자 수지가 첨가되어 형성된 고분자 고체 전해질이거나, 유기용매와 전해질 염을 함유한 유기 전해액, 이온성 액체, 모노머 또는 올리고머 등을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있으며, 나아가, 이온전도도가 높은 황화물계 고체 전해질 또는 안정성이 우수한 산화물계 고체 전해질일 수도 있다.
이때, 상기 고분자 고체 전해질은 예를 들어, 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등을 포함할 수 있다. 그리고, 상기 고분자 고체 전해질은 고분자 수지로서 PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등이 포함될 수 있고, 상기 고분자 들의 혼합물일 수 있다.
또한, 상기 고분자 겔 전해질은 전해질 염을 포함하는 유기 전해액과 고분자 수지를 포함하는 것으로서, 상기 유기 전해액은 고분자 수지의 중량 대비 60~400 중량부를 포함하는 것이다. 겔 전해질에 적용되는 고분자는 특정한 성분으로 한정되는 것은 아니나, 예를 들어, 폴리에테르계, PVC계, PMMA계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리불화비닐리덴(PVdF), 폴리불화비닐리덴-육불화프로필렌(poly(vinylidene fluoride-hexafluoro propylene: PVdF-HFP 등이 포함될 수 있다. 그리고 상기 고분자 들의 혼합물일 수 있다.
그리고, 상기 전해질 염은 이온화 가능한 리튬염으로서 Li +X -로 표현할 수 있다. 이러한 리튬염은 바람직하게는 LiTFSI, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3CO 2, LiCH 3SO 3, LiCF 3SO 3, LiN(SO 2CF 3) 2, LiN(SO 2C 2F 5) 2, LiC 4F 9SO 3, LiC(CF 3SO 2) 3, (CF 3SO 2)·2NLi, 리튬 클로로보레이트, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 이미드 및 이들의 조합으로 이루어진 군으로부터 선택되는 1종일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전술한 리튬 금속 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
여기서, 상기 디바이스의 구체적인 예로는, 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 등을 포함하는 전기차; 전기 자전거, 전기 스쿠터를 포함하는 전기 이륜차; 전기 골프 카드; 전력저장용 시스템 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 아니 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
1. 실시예 1 - 음극 제조
구리 집전체의 일면에 20 ㎛ 두께의 리튬 금속 포일을 부착시켰다. 이어서, 육방정계 질화붕소 플레이크와 화학식 1에 해당(이때, m은 4, n은 1)하는 이오노머를 9:1의 중량비로 혼합하여 첨가제를 제조한 다음, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-co-HFP) 고분자에 첨가하여 보호층을 제조하였다. 이때, 상기 첨가제의 함량은 상기 보호층의 총 중량 대비 92 중량%가 되도록 조절하였다.
이렇게 제조된 보호층을 상기 리튬 금속 포일상에 형성시켜 음극을 제조하였다.
2. 실시예 2 - 리튬 금속 이차전지 제조
(1) 양극의 제조
양극 활물질로서 LiNi 0.8Mn 0.1Co 0.1O 2 94 중량부, 도전재로서 카본 블랙 2 중량부 및 바인더로서 폴리비닐리덴 풀루오라이드(PVDF) 4 중량부를 용제인 NMP에 첨가하여 양극 활물질 슬러리를 제조한 후, 상기 양극 활물질 슬러리를 알루미늄 집전체의 일면에 79 ㎛의 두께로 코팅하고, 이를 건조 및 압연한 후 일정 크기로 펀칭하여 양극을 제조하였다.
(2) 리튬 이차전지의 제조
상기 제조된 양극과 실시예 1에서 제조된 음극의 사이에, 세퍼레이터(폴리프로필렌계 다공성 고분자 기재)를 개재시킨 코인셀을 제조하였다. 상기 코인셀에 플루오로 에틸렌 카보네이트(FEC)와 에틸메틸 카보네이트(EMC)를 30:70의 부피비로 혼합한 용매에 1M LiPF 6가 용해된 전해액을 주입하여 리튬 금속 이차전지를 제조하였다.
3. 비교예 1 - 음극 제조
음극의 보호층 제조시, 첨가제를 첨가하지 않고, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-co-HFP) 고분자만으로 보호층을 제조하는 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
4. 비교예 2 - 리튬 금속 이차전지 제조
비교예 1에서 제조된 음극을 사용하는 것을 제외하고는 실시예 2와 동일한 방법으로 리튬 금속 이차전지를 제조하였다.
5. 비교예 3 - 리튬 금속 이차전지 제조
음극 제조시, 보호층을 구비하지 않는 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였고, 이를 이용하여 실시예 2와 동일한 방법으로 리튬 금속 이차전지를 제조하였다.
6. 비교예 4 - 리튬 금속 이차전지 제조
음극의 보호층 제조시, 육방정계 질화붕소 플레이크는 포함하지 않고, 이오노머만 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였고, 이를 이용하여 실시예 2와 동일한 방법으로 리튬 금속 이차전지를 제조하였다.
7. 보호층의 이온 전도성 평가
실시예 1에서 제작된 보호층과 비교예 1에서 제작된 보호층의 이온 전도도를, 임피던스 측정을 통해 평가하여, 아래의 표 1에 나타내었다.
실시예 1 비교예 1
이온 전도도 17.0Х10 -4 S/cm 1.9Х10 -4 S/cm
상기 결과를 보면, 실시예 1에서 제작된 보호층의 이온 전도도가 비교예 1에 비해 거의 10 배 가까이 우수하다는 것을 알 수 있다.
8. 리튬 금속 이차전지의 수명 성능 평가
실시예 2, 비교예 2 및 비교예 3에서 제작된 리튬 금속 전지의 수명 성능 평가를 측정하여 표 2 및 도 2에 나타내었다.
Cycle 수(Retention 80% 기준)
실시예 2 92
비교예 2 75
비교예 3 36
비교예 4 78
전지의 용량 유지율이 80%가 되는 사이클 수를 측정한 결과, 실시예는 92회의 사이클이 진행되었지만, 본원의 첨가제를 포함하지 않는 보호층이 적용된 비교예 2는 75회, 보호층 자체를 포함하지 않는 비교예 3은 36회로 측정되어, 실시예의 경우 비교예들에 비해 사이클 특성이 월등히 향상되었음을 알 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것으로,
    상기 음극과 상기 세퍼레이터 사이에 개재된 보호층을 더 포함하고,
    상기 보호층은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제가 첨가되어 있는 것을 특징으로 하는 리튬 금속 이차전지.
  2. 제1항에 있어서,
    상기 보호층은, 다공성 고분자층, 무기물층 또는 다공성 고분자층과 무기물층이 적층된 것을 특징으로 하는 리튬 금속 이차전지.
  3. 제2항에 있어서,
    상기 다공성 고분자층은, 폴리비닐 클로라이드(polyvinyl chloride), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyethylhexyl acrylate), 폴리부틸아크릴레이트(polybutyl acrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리프로필렌 옥사이드(polypropylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan) 및 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 금속 이차전지.
  4. 제2항에 있어서,
    상기 무기물층은, SiO 2, BaTiO 3, Pb(Zr xTi 1-x)O 3(PZT, 0<x<1), Pb 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO 3(PMNPT, 0<x<1), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, AlOOH, LLZO(Lithium Lanthanum Ziroconium Oxide), ZO 3, Si 3N 4, TiC, TiO 2 및 SiC로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 금속 이차전지.
  5. 제1항에 있어서,
    상기 보호층의 두께는 0.1 내지 10 ㎛인 것을 특징으로 하는 리튬 금속 이차전지.
  6. 제1항에 있어서,
    상기 첨가제의 함량은, 상기 보호층의 충 중량 대비 50 내지 98 중량%인 것을 특징으로 하는 리튬 금속 이차전지.
  7. 제1항에 있어서,
    상기 첨가제는, 상기 육방정계 질화붕소 플레이크와 상기 이오노머가 1:9 내지 9:1의 중량비로 혼합된 것을 특징으로 하는 리튬 금속 이차전지.
  8. 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 금속 이차전지에 관한 것으로,
    상기 양극, 상기 음극 또는 이 둘 모두는 고체 전해질을 더 포함하고,
    상기 고체 전해질은, 육방정계 질화붕소 플레이크(hexagonal BN flake); 및 황(S)을 구비한 음이온기와 불소(F)를 포함하는 이오노머의 혼합물인 첨가제가 첨가되어 있는 것을 특징으로 하는 리튬 금속 이차전지.
  9. 제8항에 있어서,
    상기 첨가제는 고체 전해질과의 혼합물인 첨가제 혼합물의 형태로 첨가되는 것인 리튬 금속 이차전지.
  10. 제9항에 있어서,
    상기 고체 전해질은, 고분자 고체 전해질, 고분자 겔 전해질, 황화물계 고체 전해질 및 산화물계 고체 전해질로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 금속 이차전지.
PCT/KR2019/003957 2018-04-06 2019-04-03 수명 성능이 향상된 리튬 금속 이차전지 WO2019194581A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19781772.9A EP3761437A4 (en) 2018-04-06 2019-04-03 SECONDARY LITHIUM-METAL BATTERY WITH IMPROVED LIFETIME PERFORMANCE
US16/980,701 US11437626B2 (en) 2018-04-06 2019-04-03 Lithium metal secondary battery having improved life characteristics
CN201980020227.3A CN111937217B (zh) 2018-04-06 2019-04-03 具有改进的寿命特性的锂金属二次电池
US17/874,911 US11777100B2 (en) 2018-04-06 2022-07-27 Lithium metal secondary battery having improved life characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180040566A KR102274611B1 (ko) 2018-04-06 2018-04-06 수명 성능이 향상된 리튬 금속 이차전지
KR10-2018-0040566 2018-04-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/980,701 A-371-Of-International US11437626B2 (en) 2018-04-06 2019-04-03 Lithium metal secondary battery having improved life characteristics
US17/874,911 Continuation US11777100B2 (en) 2018-04-06 2022-07-27 Lithium metal secondary battery having improved life characteristics

Publications (1)

Publication Number Publication Date
WO2019194581A1 true WO2019194581A1 (ko) 2019-10-10

Family

ID=68100958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003957 WO2019194581A1 (ko) 2018-04-06 2019-04-03 수명 성능이 향상된 리튬 금속 이차전지

Country Status (5)

Country Link
US (2) US11437626B2 (ko)
EP (1) EP3761437A4 (ko)
KR (1) KR102274611B1 (ko)
CN (1) CN111937217B (ko)
WO (1) WO2019194581A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106380A (zh) * 2019-12-30 2020-05-05 华南师范大学 一种具有表面涂层的固态电解质的制备方法和固态电解质电池
CN111193064A (zh) * 2020-01-09 2020-05-22 北京理工大学 一种固态聚合物离子凝胶电解质膜及其制备方法与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019157A (ko) * 2020-08-06 2022-02-16 현대자동차주식회사 발열시트를 내장한 배터리 셀
US20220255063A1 (en) * 2021-02-10 2022-08-11 GM Global Technology Operations LLC Lithium-containing electrodes including ceramic particles and methods of making the same
CN113206290B (zh) * 2021-05-18 2022-05-27 哈尔滨工业大学 一种固态电解质原位界面层修饰方法
KR20220163101A (ko) * 2021-06-02 2022-12-09 주식회사 엘지에너지솔루션 리튬 전극 및 이를 포함하는 리튬 이차전지
CN114497561A (zh) * 2021-12-29 2022-05-13 天津先众新能源科技股份有限公司 一种用于倍率启动电池的正极导电添加剂及其制备方法
CN114975856A (zh) * 2022-06-17 2022-08-30 珠海冠宇电池股份有限公司 一种电极片、电池及电池制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260742A (ja) * 2001-02-27 2002-09-13 Toshiba Corp 非水電解質二次電池
JP2014191912A (ja) * 2013-03-26 2014-10-06 Sony Corp 二次電池
KR101614885B1 (ko) * 2014-06-18 2016-04-22 한국과학기술원 리튬 이차 전지용 리튬 전극의 표면 보호막 및 이를 이용한 리튬 이차 전지
KR20160052351A (ko) * 2014-10-31 2016-05-12 주식회사 엘지화학 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지
KR20170099375A (ko) * 2016-02-23 2017-08-31 주식회사 엘지화학 다공성 보호층이 형성된 전극, 이의 제조방법 및 이를 적용한 리튬 이차전지
KR20180040566A (ko) 2015-06-11 2018-04-20 와치 아웃 에스아 설치 방법 및 설치 모듈을 포함하는 피가공재 기계가공 시스템

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69636595T2 (de) * 1995-04-19 2008-02-14 Ube Industries, Ltd., Ube Sekundärbatterie mit nichtwässrigen elektrolyten
DE69728053T2 (de) 1996-11-01 2004-10-21 Du Pont Hochleitfähiges ionenaustauschpolymer und verfahren
JP4301286B2 (ja) * 2006-12-21 2009-07-22 トヨタ自動車株式会社 蓄電装置
US9099758B2 (en) 2008-06-20 2015-08-04 University Of Dayton Lithium-air cell incorporating lithium aluminum germanium phosphate cathode
JP5682153B2 (ja) 2010-02-01 2015-03-11 ダイキン工業株式会社 含フッ素共重合体の製造方法、ポリマー電解質、リチウム電池用電極及びリチウム電池
KR101805541B1 (ko) * 2011-06-24 2017-12-08 삼성에스디아이 주식회사 복합양극활물질, 이를 포함하는 양극 및 리튬전지, 및 이의 제조방법
US20130022894A1 (en) * 2011-07-20 2013-01-24 GM Global Technology Operations LLC ePTFE-Supported Polyelectrolyte Membranes Made with Ionomer-Kynar Blends
JP5804077B2 (ja) * 2011-11-25 2015-11-04 日産自動車株式会社 電気デバイス用セパレータおよびこれを用いた電気デバイス
WO2015065102A1 (ko) 2013-10-31 2015-05-07 주식회사 엘지화학 리튬 이차전지
DE102013226743A1 (de) 2013-12-19 2015-06-25 Robert Bosch Gmbh Wärmeleitender Polymerseparator
JP2016058163A (ja) 2014-09-05 2016-04-21 旭化成株式会社 リチウムイオン二次電池
EP3136475B1 (en) * 2015-08-31 2021-09-22 Samsung Electronics Co., Ltd. Lithium metal battery
US20170239854A1 (en) * 2016-02-20 2017-08-24 Jingyu Zhang Method of manufacturing hexagonal boron nitride laminates
US10883017B2 (en) * 2018-09-24 2021-01-05 Cap Corporation Coating composition for a silicone rubber wiper blade and silicone rubber wiper blade using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260742A (ja) * 2001-02-27 2002-09-13 Toshiba Corp 非水電解質二次電池
JP2014191912A (ja) * 2013-03-26 2014-10-06 Sony Corp 二次電池
KR101614885B1 (ko) * 2014-06-18 2016-04-22 한국과학기술원 리튬 이차 전지용 리튬 전극의 표면 보호막 및 이를 이용한 리튬 이차 전지
KR20160052351A (ko) * 2014-10-31 2016-05-12 주식회사 엘지화학 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지
KR20180040566A (ko) 2015-06-11 2018-04-20 와치 아웃 에스아 설치 방법 및 설치 모듈을 포함하는 피가공재 기계가공 시스템
KR20170099375A (ko) * 2016-02-23 2017-08-31 주식회사 엘지화학 다공성 보호층이 형성된 전극, 이의 제조방법 및 이를 적용한 리튬 이차전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106380A (zh) * 2019-12-30 2020-05-05 华南师范大学 一种具有表面涂层的固态电解质的制备方法和固态电解质电池
CN111193064A (zh) * 2020-01-09 2020-05-22 北京理工大学 一种固态聚合物离子凝胶电解质膜及其制备方法与应用

Also Published As

Publication number Publication date
CN111937217A (zh) 2020-11-13
CN111937217B (zh) 2024-02-09
US11437626B2 (en) 2022-09-06
KR20190117275A (ko) 2019-10-16
US20220367876A1 (en) 2022-11-17
KR102274611B1 (ko) 2021-07-06
EP3761437A1 (en) 2021-01-06
US20210013514A1 (en) 2021-01-14
US11777100B2 (en) 2023-10-03
EP3761437A4 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2019194581A1 (ko) 수명 성능이 향상된 리튬 금속 이차전지
WO2014021665A1 (ko) 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
WO2012074300A2 (ko) 리튬 이차전지
WO2016064256A1 (ko) 유/무기 복합 다공층을 포함하는 이차 전지용 세퍼레이터 및 이의 제조 방법
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2011019187A2 (ko) 리튬 이차전지
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2016060521A1 (ko) 전기절연층이 코팅되어 있는 전극탭 및 이를 포함하는 이차전지
WO2012046966A2 (ko) 사이클 특성이 개선된 전기화학소자
WO2018038524A1 (ko) 리튬 금속 전지용 분리막 및 이를 포함하는 리튬 금속 전지
WO2020190029A1 (ko) 전고체 전지용 전해질막 및 이를 제조하는 방법
WO2019216713A1 (ko) 안전성이 향상된 리튬 금속 이차전지 및 그를 포함하는 전지모듈
WO2015002390A1 (ko) 도전성이 개선된 양극 합제, 그를 구비하는 양극 및 전기화학소자
WO2021080052A1 (ko) 리튬 메탈 음극 구조체, 이를 포함하는 전기화학소자, 및 상기 리튬 메탈 음극 구조체의 제조방법
WO2019135527A1 (ko) Cmc, 입자형 바인더 및 용해형 바인더를 포함하는 분리막
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2015105365A1 (ko) 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2020111432A1 (ko) 내열층 조성물, 이로부터 형성된 내열층을 포함하는 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2016175605A1 (ko) 전해액 함침성이 향상된 전기화학소자용 세퍼레이터 및 상기 세퍼레이터를 포함하는 전기화학소자
WO2019139424A1 (ko) 리튬 전극을 포함하는 리튬 금속 이차전지의 제조방법
WO2020231121A1 (ko) 리튬 이차전지
WO2021045580A1 (ko) 음극 전극의 전소듐화 방법, 전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2021045581A1 (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2019022474A1 (ko) 불산을 저감하는 물질을 포함하는 전지 분리막
KR101288907B1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781772

Country of ref document: EP

Effective date: 20201001