WO2017159727A1 - ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置 - Google Patents

ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置 Download PDF

Info

Publication number
WO2017159727A1
WO2017159727A1 PCT/JP2017/010365 JP2017010365W WO2017159727A1 WO 2017159727 A1 WO2017159727 A1 WO 2017159727A1 JP 2017010365 W JP2017010365 W JP 2017010365W WO 2017159727 A1 WO2017159727 A1 WO 2017159727A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
group
solvent
resin
polymer
Prior art date
Application number
PCT/JP2017/010365
Other languages
English (en)
French (fr)
Inventor
賢吾 平田
高明 彦坂
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP17766723.5A priority Critical patent/EP3431524B1/en
Priority to CN201780017485.7A priority patent/CN108779238B/zh
Priority to JP2018505976A priority patent/JP6893205B2/ja
Priority to US16/085,459 priority patent/US10787541B2/en
Publication of WO2017159727A1 publication Critical patent/WO2017159727A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials

Definitions

  • the present invention relates to a polycarbonate resin, a method for producing a polycarbonate resin, a coating solution, an electrophotographic photosensitive member, and an electrophotographic apparatus.
  • Polycarbonate resins are applied to various applications because they are excellent in mechanical properties and transparency.
  • a polycarbonate resin produced using 3,3′-dimethyl-4,4′-dihydroxybiphenyl (hereinafter sometimes abbreviated as “OCBP”) as a raw material has excellent wear resistance, low gas permeability, And features such as high surface hardness.
  • Patent Document 1 describes that a polycarbonate resin can be suitably used as an electrophotographic photosensitive member.
  • An object of the present invention is to provide a polycarbonate resin with less coloring, a method for producing the polycarbonate resin, a coating solution, an electrophotographic photosensitive member, and an electrophotographic apparatus using the polycarbonate resin.
  • the polycarbonate resin according to one embodiment of the present invention has a structure represented by the following general formula (1), and the yellowness (YI) of the solid is 30 or less.
  • a method for producing a polycarbonate resin according to one embodiment of the present invention is a method for producing a polycarbonate resin according to one embodiment of the present invention by an interfacial polycondensation method using an alkaline aqueous solution, and polymerization is performed by polymerizing monomers to obtain a polymer. And a washing step of washing the polymer obtained by the polymerization step, wherein the oxygen concentration in at least one of the solvent used in the polymerization step and the solvent used in the washing step is a saturated dissolved amount. It is 1/5 or less.
  • the method for producing a polycarbonate resin according to another aspect of the present invention includes a step of obtaining a polymer liquid containing a polymer and a first solvent, the polymer liquid, and a second solvent alone or different from the first solvent. Mixing the second solvent and a mixed solvent of water to obtain a solid polycarbonate resin.
  • methanol is not used alone or as a main component as the second solvent.
  • a method for producing a polycarbonate resin according to another aspect of the present invention is a method for producing a polycarbonate resin having a structure represented by the following general formula (1) by an interfacial polycondensation method using an alkaline aqueous solution, which is a monomer
  • a polymerization step for polymerizing the polymer to obtain a polymer In a solvent used in the polymerization step and in a solvent used in the washing step, a polymerization step for polymerizing the polymer to obtain a polymer, and a washing step for washing the polymer obtained by the polymerization step
  • the oxygen concentration is less than 1/5 of the saturated dissolved amount.
  • the coating liquid according to one aspect of the present invention includes the polycarbonate resin according to one aspect of the present invention.
  • the electrophotographic photoreceptor according to one aspect of the present invention includes the polycarbonate resin according to one aspect of the present invention in a photosensitive layer.
  • the electrophotographic apparatus includes the electrophotographic photosensitive member according to an aspect of the present invention.
  • the present invention it is possible to provide a polycarbonate resin with little coloring, a method for producing the polycarbonate resin, a coating solution, an electrophotographic photosensitive member, and an electrophotographic apparatus using the polycarbonate resin.
  • PC resin a polycarbonate resin according to an embodiment of the present invention
  • a method for producing the polycarbonate resin, a coating solution using the PC resin, an electrophotographic photoreceptor, and The electrophotographic apparatus will be described in detail.
  • PC resin The PC resin according to one embodiment of the present invention is represented by the following general formula (1).
  • the yellowness (YI) of the solid is 30 or less. If the yellowness (YI) of the solid is 30 or less, it becomes a PC resin with much less coloring, and can be suitably used for, for example, an electrophotographic photoreceptor.
  • the yellowness (YI) of the solid matter of the PC resin is a value measured in a reflection mode using a spectroscopic color difference meter in accordance with ASTM E-313. For samples in the form of films, flakes, solids, and pellets, measurement is performed by cutting or crushing to a size of 3 mm square or less. About a solution, after removing a solvent by drying, it can measure by the method similar to the sample of shapes, such as the above-mentioned film shape.
  • the yellowness (YI) of the PC resin solid is preferably 25 or less, and more preferably 20 or less.
  • the yellowness (YI) of the PC resin solid is more preferably 15 or less, further preferably 10 or less, and further preferably 5 or less.
  • the lower limit is not particularly limited.
  • the PC resin is represented by the structure represented by the general formula (1) at 25 mol% or more and 65 mol% or less and the following general formula (2) when the PC resin is 100 mol%. It is preferable that the structure be a polycarbonate copolymer containing 35 mol% or more and 75 mol% or less (hereinafter, the polycarbonate copolymer is also simply referred to as “PC copolymer”).
  • the PC resin of the present embodiment may be a resin (copolymer) consisting only of the structure represented by the general formula (1) and the structure represented by the following general formula (2). It may be a resin (copolymer) including the structure represented by 1), the structure represented by the following general formula (2), and other structures.
  • Ar 1 is a divalent aromatic group. However, Ar 1 is not a divalent group derived from 3,3′-dimethyl-4,4′-biphenol.
  • the structure represented by the general formula (1) is 25 mol% or more, it becomes a PC resin (PC copolymer) having high hardness and low gas permeability. Moreover, if the structure represented by the general formula (1) is 65 mol% or less, the solubility of the PC resin (PC copolymer) in a solvent, particularly a non-halogen solvent, is improved.
  • the PC resin represented by the general formula (1) when the total of the structure represented by the general formula (1) and the structure represented by the general formula (2) is 100 mol%, the PC resin represented by the general formula (1) is represented.
  • the structure is 25 mol% or more and 65 mol% or less, and the structure represented by the general formula (2) is 35 mol% or more and 75 mol% or less.
  • Ar 1 is preferably a divalent group represented by any one of the following general formulas (11) to (13).
  • R 11 to R 14 are each independently Hydrogen atom, A halogen atom, A trifluoromethyl group, An alkyl group having 1 to 12 carbon atoms, A substituted or unsubstituted aryl group having 6 to 12 carbon atoms, Selected from the group consisting of an alkoxy group having 1 to 12 carbon atoms and a substituted or unsubstituted aryloxy group having 6 to 12 carbon atoms; A plurality of R 11 to R 14 may be added to one aromatic ring.
  • the plurality of R 11 may be the same group or different groups
  • the plurality of R 12 may be , May be the same group or different groups
  • the plurality of R 13 may be the same group or different groups
  • the plurality of R 14 may be the same group.
  • X 11 is a single bond or a linking group, and when X 11 is a linking group, the linking group is -O-, -S-, -SO-, -SO 2- , -CR 15 R 16- , A substituted or unsubstituted cycloalkylidene group having 5 to 20 carbon atoms, A substituted or unsubstituted bicyclohydrocarbon diyl group having 5 to 20 carbon atoms, A substituted or unsubstituted dicyclohydrocarbon diyl group having 5 to 20 carbon atoms, A substituted or unsubstituted ⁇ , ⁇ -alkylene group having 2 to 12 carbon atoms, A substituted or unsubstituted 9,9-fluorenylidene group, 1,8-menthanediyl group, 2,8-menthanediyl group, Selected from the group consisting of a substituted or unsubstituted arylene group having 6 to 12 carbon carbon atoms
  • Ar 1 is preferably a divalent group derived from bisphenols.
  • bisphenols constituting Ar 1 in the general formula (2) include biphenol compounds and bisphenol compounds.
  • the biphenol compound include 2,2′-dimethyl-4,4′-biphenol, 3,3′-diethyl-4,4′-biphenol, 2,2′-diethyl-4,4′-biphenol, 3 , 3′-dipropyl-4,4′-biphenol, 3,3′-dibutyl-4,4′-biphenol, 3,3′-bis (trifluoromethyl) -4,4′-biphenol, 2,2 ′ -Bis (trifluoromethyl) -4,4'-biphenol, 3,3'-bis (pentafluoroethyl) -4,4'-biphenol, and the like.
  • Examples of the bisphenol compound include 1,1-bis (3-methyl-4-hydroxyphenyl) methane, 1,1-bis (3-methyl-4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxy).
  • X 11 in the general formula (13) is a cycloalkylidene group, and a hydrocarbon having 6 or less carbon atoms in an aromatic ring to which a hydroxyl group is bonded.
  • a structure having a group is preferable, and 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane is more preferable.
  • concentration with respect to tetrahydrofuran is 5% or less. If the haze value of a solution in which PC resin is dissolved at a concentration of 10% by mass with respect to THF is 5% or less, it can be suitably used for applications requiring transparency. Moreover, when it is used as a binder resin for an electrophotographic photoreceptor, a good image can be obtained.
  • the haze value can be measured according to JIS K7105 using a fully automatic haze computer (HGM-2D) manufactured by Suga Test Instruments.
  • the amount of the compound represented by the following general formula (3-1) in the PC resin (PC copolymer) relative to the PC resin (PC copolymer) is X ( ⁇ g / g)
  • the amount of the compound represented by the general formula (3-2) with respect to the PC resin (PC copolymer) is Y ( ⁇ g / g)
  • the value of X + 20 ⁇ Y is preferably 400 or less.
  • the content of the compound represented by the following general formula (3-1) and the content of the compound represented by the following general formula (3-2) in the PC resin (PC copolymer) is LC (Liquid Chromatography). Can be measured.
  • the positional relationship of the methyl group includes both a cis-form compound and a trans-form compound.
  • R 1 and R 2 are each independently a methyl group or a hydroxyl group, m1 is 0 or 1, m2 is 0 or 1, and m1 + m2 is 1 or 2.
  • the yellowness (YI) of the solid can be made 30 or less.
  • the value of X + 20 ⁇ Y is more preferably 300 or less, and further preferably 100 or less.
  • Y is preferably 10 or less, and X is preferably 100 or less.
  • PC resin production method the manufacturing method of PC resin concerning one embodiment of the present invention is explained taking the 1st manufacturing method and the 2nd manufacturing method as an example.
  • the first production method is a method for producing a polycarbonate resin having a structure represented by the general formula (1) by an interfacial polycondensation method using an alkaline aqueous solution, A polymerization step of polymerizing monomers to obtain a polymer; And a washing step of washing the polymer obtained by the polymerization step.
  • the oxygen concentration in at least one of the solvent used in the polymerization step and the solvent used in the washing step is 1/5 or less of the saturated dissolved amount.
  • a PC resin with little coloration for example, a PC resin according to an embodiment of the present invention in which the solid yellowness (YI) is 30 or less
  • YI solid yellowness
  • a monomer as a raw material is polymerized by an interfacial polycondensation method to obtain a polymer.
  • at least 3,3′-dimethyl-4,4′-dihydroxybiphenyl is used as a raw material.
  • the oxygen concentration in the solvent used in at least one of the polymerization step and the washing step described later is not particularly limited as long as it is 1/5 or less of the saturated dissolved amount.
  • the monomer can be polymerized following the interfacial polycondensation method. Since the coloring of the PC resin can be more effectively prevented, it is preferable to use an antioxidant in the polymerization step. As the antioxidant, any of known antioxidants can be applied, but it is more preferable to use hydrosulfite. Moreover, it is preferable to perform monomer polymerization by an interfacial polycondensation method using an alkaline aqueous solution and a solvent that can dissolve the obtained PC resin and does not mix substantially uniformly with the alkaline aqueous solution.
  • the polymerization step is an oligomer preparation step in which an oligomer is prepared by polymerizing monomers, and a polymer in which the prepared oligomer and monomer are polymerized to prepare a polymer. It may be performed in two stages of the preparation process.
  • the dissolved oxygen can be measured using a dissolved oxygen meter of DO meter B-506 manufactured by Iijima Electronics Co., Ltd.
  • a method for reducing the oxygen concentration in the solvent to 1/5 or less of the saturated dissolved amount for example, A method of blowing a gas inert to the oxidation reaction into the solvent, a method of flowing a gas inert to the oxidation reaction into the gas layer of the reaction vessel, a method of degassing dissolved oxygen by reducing the pressure of the reaction solvent, and a physical Examples include a method of absorbing (adsorbing) oxygen by at least one of a method and a chemical method.
  • nitrogen and a rare gas for example, argon
  • these methods may be performed independently, may be performed simultaneously by combining a plurality of methods, or may be performed stepwise by combining a plurality of methods.
  • the amount of dissolved oxygen (oxygen concentration) in the solvent used in the polymerization step By reducing the amount of dissolved oxygen (oxygen concentration) in the solvent used in the polymerization step to one fifth or less of the saturated oxygen amount (saturated dissolved amount) of the solvent, OCBP is oxidized during the polymerization and colored substances (dimethyl It is possible to suppress the formation of diphenoquinone and the like.
  • the saturated oxygen concentration of water used for polymerization changes due to the influence of coexisting substances, but in this embodiment, the oxygen concentration reduction rate is calculated based on the saturated oxygen concentration of pure water. For the saturated concentration of pure water, a value described in a known document may be applied.
  • the amount of saturated dissolved oxygen generally decreases with an increase in temperature, but the rate of the oxidation reaction increases with an increase in temperature.
  • the oxygen concentration in the solvent used in at least one of the oligomer preparation process and the polymer process is not more than one-fifth of the saturated dissolved amount. If it is.
  • the oxygen concentration in the solvent is reduced to a saturated dissolved amount of 5 before the contact between the OCBP monomer and the solvent used in the polymerization step (before the start of polymerization). It is preferable to reduce it to 1 / min or less.
  • washing process the organic solvent solution of the polymer obtained in the polymerization step is washed using a liquid.
  • the liquid used in the washing step include an alkaline aqueous solution such as sodium hydroxide, an acidic aqueous solution such as hydrochloric acid, and pure water such as ion-exchanged water.
  • an alkaline aqueous solution such as sodium hydroxide
  • an acidic aqueous solution such as hydrochloric acid
  • pure water such as ion-exchanged water.
  • the oxygen concentration in the solvent used in at least one of the polymerization step and the washing step described above is not particularly limited as long as it is 1/5 or less of the saturated dissolved amount.
  • the polymer can be washed according to the washing method.
  • the reduction of dissolved oxygen is particularly effective in preventing coloring when it is carried out at a stage where a large amount of residual monomer is present in the organic solvent layer and the aqueous alkali solution, that is, at a stage where the number of washings using the aqueous alkali solution is small.
  • the organic layer and the aqueous layer are separated, and the organic layer is washed with an alkaline aqueous solution to remove excess OCBP that has not contributed to the polymerization reaction. Then, the amount of OCBP remaining in the aqueous layer is relatively large, and it becomes relatively small as cleaning with an aqueous alkali solution proceeds.
  • OCBP oxidized and colored substances (dimethyldimethyl) are oxidized. Generation of phenoquinone and the like) can be suppressed.
  • the oxygen concentration in at least one of the solvent used in the polymerization step and the solvent used in the washing step is preferably 2 mg / L or less.
  • the dissolved oxygen amount (oxygen concentration) of the solvent used between the polymerization step and the washing step is 2 mg / L or less.
  • the yellowness (YI) of the obtained PC resin is 30 regardless of the post-treatment method. The following can be suppressed.
  • the dissolved oxygen concentration in the water used in the polymerization step and the washing step is preferably 2 mg / L or less, more preferably 1 mg. / L or less, more preferably 0.5 mg / L or less.
  • the second manufacturing method is Obtaining a polymer liquid comprising a polymer and a first solvent; Mixing the polymer solution with a second solvent alone or a mixed solvent of the second solvent and water different from the first solvent to obtain a solid polycarbonate resin.
  • methanol is not used alone or as a main component as the second solvent.
  • Use of methanol alone or as a main component as the second solvent is not preferable because polymer decomposition by methanol occurs.
  • a solvent having methanol as a “main component” is a mixed solvent obtained by mixing methanol and another solvent, wherein the mixing ratio of methanol in the mixed solvent is 50% by mass or more.
  • methanol can also be applied by mixing another liquid so that polymer decomposition
  • the mixing ratio of methanol with respect to another liquid is less than 50 mass%, and it is more preferable that it is 30 mass% or less.
  • the “poor solvent” refers to a solvent in which the solubility (25 ° C.) of the PC resin is 1% by mass or less, preferably 0.1% by mass or less and the polymer is difficult to swell.
  • the ratio of the polymer solution to the poor solvent was obtained in the ratio of the polymer solution to the poor solvent at the end of mixing (dropping, etc.) depending on the type of solvent in the polymer solution, the type of poor solvent, and the temperature. What is necessary is just to set in the ratio which PC resin does not re-aggregate.
  • the volume of isopropanol is preferably 1.5 to 10 times the volume 1 of the polymer solution. If it is 1.5 times or more, the obtained resin is difficult to re-aggregate, and if it is 10 times or less, the volumetric efficiency in production is good, and the bulk density of the obtained resin does not become too low.
  • the ratio between the poor solvent and the polymer solution may be kept constant from the start of mixing to the end of mixing or may be changed.
  • the second solvent a poor solvent for the polymer is used, the polymer liquid, the second solvent alone or a mixed solvent of the second solvent and water, The mixed solution is heated to the boiling point of the first solvent or higher, and the first solvent is distilled off from the mixed solution to obtain a solid polycarbonate resin utilizing the difference in solubility of the polymer. It is also preferable.
  • the boiling point of the second solvent is The temperature is preferably 10 ° C. or more higher than the boiling point of the first solvent.
  • the boiling point of the second solvent is more preferably 20 ° C. or more higher than the boiling point of the first solvent, and more preferably 30 ° C. or more.
  • the boiling point of the second solvent is not too high.
  • the boiling point of the second solvent is preferably 120 ° C. or lower, more preferably 100 ° C. or lower, still more preferably 90 ° C. or lower, and even more preferably 80 ° C. or lower, at normal pressure.
  • the second solvent is preferably a poor solvent for the polymer.
  • a solvent having a low polymer solubility and an appropriate boiling point is preferred. Solvents that satisfy this condition are ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, t-butanol, acetone, methyl ethyl ketone (MEK), and hydrocarbons having 5 to 8 carbon atoms. Examples of the solvent include heptane and toluene. It is preferable that the 2nd solvent contains 1 or more types chosen from these solvents. Note that a solvent having a hydrocarbon having 5 to 8 carbon atoms as a “main component” refers to a solvent containing 50% by mass or more of hydrocarbons having 5 to 8 carbon atoms.
  • the present inventors have clarified the coloring mechanism by specifying the causative agent of coloring, and thereby devised means for preventing coloring, and a resin with low coloring (particularly, the yellowness (YI) is 30 or less) Resin) was established.
  • Specific methods for lowering the coloring degree include, for example, the following methods. (1) Reduce contact with oxygen in the resin synthesis (polymerization) step where OCBP and alkali come into contact with each other at a high concentration from the washing step (especially the washing step using an alkaline aqueous solution with a large amount of residual OCBP) (described above) First manufacturing method). (2) The colored substance present in the resin solution or in the solid resin is moved into the organic solvent to reduce the colored component (the above-described second production method).
  • the coating liquid which concerns on one Embodiment of this invention contains PC resin which concerns on one Embodiment of this invention. It is preferable that the coating liquid of this embodiment contains the solvent which can melt
  • the solubility, dispersibility, viscosity, evaporation rate, chemical stability, and stability against physical changes of the PC resin and other materials according to one embodiment of the present invention In consideration of the above, a single solvent or a mixture of a plurality of solvents can be used.
  • the solvent preferably includes an organic solvent.
  • organic solvent include, for example, aromatic hydrocarbon solvents (for example, benzene, toluene, xylene, and chlorobenzene), ketone solvents (for example, acetone, methyl ethyl ketone, cyclohexanone, cyclopentanone, and methyl isobutyl ketone).
  • Etc. ester solvents
  • ester solvents for example, ethyl acetate, ethyl cellosolve, and epsilon caprolactam, etc.
  • halogenated hydrocarbon solvents for example, carbon tetrachloride, carbon tetrabromide, chloroform, dichloromethane, tetrachloroethane, etc.
  • ether System solvents for example, tetrahydrofuran, dioxolane, and dioxane
  • amide solvents for example, dimethylformamide, and diethylformamide
  • sulfoxide solvents for example, dimethylsulfoxide.
  • Door can be.
  • an organic solvent having a boiling point of 160 ° C. or lower is preferable. These solvent may be used individually by 1 type, and may use 2 or more types as a mixed solvent.
  • the organic solvent preferably contains neither an amide-based organic solvent nor a halogen-based organic solvent from the viewpoints of environmental hygiene, evaporation, solubility, handleability, and economy.
  • the organic solvent preferably includes a non-halogen organic solvent.
  • the non-halogen organic solvent include ether solvents (for example, tetrahydrofuran, dioxane, dioxolane, etc.), aromatic hydrocarbon solvents (for example, paraxylene, toluene, etc.), and ketone solvents (for example, methyl ethyl ketone). , Cyclohexanone, cyclopentanone, etc.).
  • an organic solvent containing one or more of tetrahydrofuran, dioxolane, toluene, cyclohexanone, and cyclopentanone is preferable, and an organic solvent containing tetrahydrofuran is more preferable. preferable.
  • the concentration of the PC resin component according to one embodiment of the present invention in the coating liquid of the present embodiment may be a concentration that provides an appropriate viscosity according to the usage method of the coating liquid, and is 0.1 mass. % To 40% by mass, more preferably 1% to 35% by mass, and still more preferably 5% to 30% by mass. If it is 40 mass% or less, a coating property will become favorable, without a viscosity becoming high too much. If it is 0.1 mass% or more, a moderate viscosity can be maintained and a homogeneous film can be obtained. Also, the concentration is appropriate for shortening the drying time after coating and easily achieving the target film thickness.
  • the PC resin according to an embodiment of the present invention is a PC resin having a yellowness (YI) of 30 or less and less colored, when it is dissolved in the solvent, particularly a non-halogen organic solvent, Less solution can be obtained. Therefore, if the coating liquid of this embodiment containing the PC resin is used, a molded body with less coloring can be produced. Further, the fact that the solution is less colored indicates that the quinone compound that is the causative agent of the coloring is less. Therefore, the quinone in the coating liquid undergoes chemical action and physical action and changes in quality, so that the physical properties of the coating liquid are reduced. As a result, the physical and chemical properties of the coating liquid are reduced. Stability is improved.
  • YI yellowness
  • the coating liquid may contain additives in addition to the PC resin and the solvent according to one embodiment of the present invention.
  • additives include low molecular weight compounds, colorants (for example, dyes and pigments), functional compounds (for example, charge transport materials, electron transport materials, hole transport materials, and charge generation materials), packing Examples thereof include materials (for example, inorganic or organic fillers, fibers, and fine particles), antioxidants, ultraviolet absorbers, and acid scavengers.
  • the coating liquid may contain other resins other than the resin according to one embodiment of the present invention. As these additives and other resins, known substances can be used as substances contained in the PC resin.
  • the ratio of the PC resin and the charge transport material in the coating liquid of the present embodiment is preferably 20:80 to 80:20 by mass ratio. 30:70 to 70:30 is more preferable.
  • the PC resin of this embodiment may be used alone or in combination of two or more.
  • the coating solution of the present embodiment is usually suitably used for forming a charge transport layer of a multilayer electrophotographic photoreceptor in which the photosensitive layer includes at least a charge generation layer and a charge transport layer. Further, the coating solution can be used for forming a photosensitive layer of a single layer type electrophotographic photosensitive member by further containing the charge generating substance.
  • An electrophotographic photoreceptor according to an embodiment of the present invention includes a PC resin according to an embodiment of the present invention in a photosensitive layer. Since the PC resin according to one embodiment of the present invention is less colored, according to the electrophotographic photoreceptor of this embodiment, an electrophotographic photoreceptor having a less colored photosensitive layer can be obtained. In addition, a low degree of coloring means that there are few coloring-causing substances. For this reason, it is preferable to use the PC resin according to one embodiment of the present invention as a binder resin for an electrophotographic photosensitive member in that an increase in residual potential can be suppressed.
  • the electrophotographic photosensitive member of the present embodiment can be configured, for example, such that a photosensitive layer is provided on a conductive substrate.
  • the electrophotographic photosensitive member of this embodiment may have any configuration as well as various known types of electrophotographic photosensitive members as long as the photosensitive layer contains the PC resin according to one embodiment of the present invention.
  • a preferable electrophotographic photosensitive member is a laminated electrophotographic photosensitive member having a photosensitive layer having at least one charge generation layer and at least one charge transport layer, or a charge generation material in one layer.
  • the PC resin according to an embodiment of the present invention may be used in any part of the photosensitive layer. However, in order to fully exhibit the effects of the present invention, a binder of a charge transfer material in the charge transport layer. It is desirable to use it as a resin or as a binder resin for a single photosensitive layer.
  • the PC resin according to an embodiment of the present invention is desirably used not only as a photosensitive layer but also as a surface protective layer. In the case of a multilayer electrophotographic photosensitive member having two charge transport layers, the PC resin according to an embodiment of the present invention is preferably used for either or both of the charge transport layers.
  • the PC resin according to one embodiment of the present invention may be used alone or in combination of two or more. Moreover, you may contain binder resin components, such as another polycarbonate, in the range which does not inhibit the objective of this invention as desired. Furthermore, you may contain additives, such as antioxidant.
  • the electrophotographic photoreceptor of this embodiment has a photosensitive layer on a conductive substrate.
  • the charge transport layer may be laminated on the charge generation layer, or the charge generation layer may be laminated on the charge transport layer.
  • the photosensitive layer may contain a charge generating substance and a charge transporting substance in one layer.
  • a conductive or insulating protective film may be formed on the surface layer as necessary.
  • conductive substrate material used in the electrophotographic photosensitive member of the present embodiment various materials such as known materials can be used. Specifically, for example, aluminum, nickel, chromium, palladium, titanium, molybdenum, indium, gold, platinum, silver, copper, zinc, brass, stainless steel, lead oxide, tin oxide, indium oxide, ITO (indium tin oxide) : Tin-doped indium oxide), and plates, drums, and sheets made of graphite, etc., glass, cloth, and paper, plastic films, sheets, and papers subjected to conductive treatment (eg, coating by vapor deposition, sputtering, coating, etc.), and A seamless belt, a metal drum subjected to metal oxidation treatment by electrode oxidation, or the like can be used.
  • the charge generation layer has at least a charge generation material.
  • This charge generation layer is formed by forming a layer of a charge generation material on the conductive substrate serving as the base by vacuum deposition, sputtering, or the like, or binding the charge generation material on the base substrate using a binder resin. It can be obtained by forming a layer formed by wearing.
  • a method for forming the charge generation layer using the binder resin various methods such as a known method can be used. Usually, for example, a method in which a coating solution in which a charge generating material is dispersed or dissolved together with a binder resin in a suitable solvent is applied onto a substrate serving as a predetermined base and dried to obtain a wet molded body is a manufacturing cost viewpoint. Therefore, it is preferable.
  • the charge generation material in the charge generation layer various known materials can be used.
  • the compound include selenium alone (for example, amorphous selenium and trigonal selenium), a selenium alloy (for example, selenium-tellurium), a selenium compound or a selenium-containing composition (for example, As 2 Se).
  • metal-free phthalocyanine pigments for example, ⁇ -type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, etc.
  • metal phthalocyanine pigments for example, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type copper
  • Phthalocyanine X-type copper phthalocyanine, A-type titanyl phthalocyanine, B-type titanyl phthalocyanine, C Titanyl phthalocyanine, D-type titanyl phthalocyanine, E-type titanyl phthalocyanine, F-type titanyl phthalocyanine, G-type titanyl phthalocyanine, H-
  • the charge transport layer can be obtained as a wet molded body by forming a layer formed by binding a charge transport material with a binder resin on an underlying conductive substrate.
  • binder resin of an above described electric charge generation layer or an electric charge transport layer Well-known various resin can be used.
  • polystyrene polystyrene, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polyvinyl acetal, alkyd resin, acrylic resin, polyacrylonitrile, polycarbonate, polyurethane, epoxy resin, phenol resin, polyamide, Polyketone, polyacrylamide, butyral resin, polyester resin, vinylidene chloride-vinyl chloride copolymer, methacrylic resin, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer , Silicone resin, silicone alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, melamine resin, polyether resin, benzoguanamine resin, epoxy acrylate resin, urea Acrylate resin, poly-N-vinyl carbazole, polyviny
  • the charge transport material is dispersed or dissolved in an appropriate solvent together with the PC resin according to the embodiment of the present invention.
  • prescribed base, and drying and obtaining as a wet molded object is suitable.
  • the blending ratio of the charge transport material used for forming the charge transport layer and the PC resin according to one embodiment of the present invention is preferably 20:80 to 80:20, more preferably in mass ratio from the viewpoint of product performance. 30:70 to 70:30.
  • the PC resin according to one embodiment of the present invention can be used alone or in combination of two or more. Further, other binder resins can be used in combination with the PC resin according to an embodiment of the present invention as long as the object of the present invention is not impaired.
  • the thickness of the charge transport layer thus formed is preferably about 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m. If this thickness is 5 ⁇ m or more, the initial potential is not lowered, and if it is 100 ⁇ m or less, deterioration of electrophotographic characteristics can be prevented.
  • the charge transport material that can be used with the PC resin according to the embodiment of the present invention various known compounds can be used. Examples of such compounds include carbazole compounds, indole compounds, imidazole compounds, oxazole compounds, pyrazole compounds, oxadiazole compounds, pyrazoline compounds, thiadiazole compounds, aniline compounds, hydrazone compounds, aromatic amine compounds, and aliphatic amine compounds.
  • Stilbene compounds Fluorenone compounds, butadiene compounds, quinone compounds, quinodimethane compounds, thiazole compounds, triazole compounds, imidazolone compounds, imidazolidine compounds, bisimidazolidine compounds, oxazolone compounds, benzothiazole compounds, benzimidazole compounds, quinazoline compounds, benzofuran compounds , Acridine compound, phenazine compound, poly-N-vinylcarbazole, polyvinylpyrene, polyvinyl Anthracene, polyvinyl acridine, poly-9-vinylphenyl anthracene, pyrene - formaldehyde resins, ethylcarbazole resins and polymers such as having these structures in the main chain or side chain is preferably used.
  • These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • charge transport materials the compounds specifically exemplified in JP-A-11-172003 and the charge transport materials represented by the following structures are preferably used from the viewpoints of performance and safety.
  • the PC resin according to one embodiment of the present invention as a binder resin in at least one of the charge generation layer and the charge transport layer.
  • an undercoat layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • the undercoat layer include fine particles (for example, titanium oxide, aluminum oxide, zirconia, titanic acid, zirconic acid, lanthanum lead, titanium black, silica, lead titanate, barium titanate, tin oxide, indium oxide, and Components such as silicon oxide, polyamide resin, phenol resin, casein, melamine resin, benzoguanamine resin, polyurethane resin, epoxy resin, cellulose, nitrocellulose, polyvinyl alcohol, and polyvinyl butyral resin can be used.
  • the binder resin may be used, or the PC resin of this embodiment may be used.
  • These fine particles and resins can be used alone or in various mixtures. In the case of using these as a mixture, it is preferable to use inorganic fine particles and a resin together because a film having good smoothness is formed.
  • the thickness of this undercoat layer is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, more preferably 0.1 ⁇ m or more and 7 ⁇ m or less.
  • the undercoat layer can be formed uniformly, and when the thickness is 10 ⁇ m or less, it is possible to suppress deterioration of the electrophotographic characteristics.
  • a known blocking layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • this blocking layer the same kind of resin as the binder resin can be used.
  • PC resin which concerns on one Embodiment of this invention.
  • the thickness of this blocking layer is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less. When the thickness is 0.01 ⁇ m or more, the blocking layer can be formed uniformly, and when the thickness is 20 ⁇ m or less, the electrophotographic characteristics can be prevented from being deteriorated.
  • a protective layer may be laminated on the photosensitive layer in the electrophotographic photoreceptor of this embodiment.
  • the same kind of resin as the binder resin can be used.
  • PC resin which concerns on one Embodiment of this invention.
  • the thickness of the protective layer is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the protective layer contains a conductive material such as the charge generating substance, charge transporting substance, additive, metal or oxide thereof, nitride, salt, alloy, carbon black, or organic conductive compound. Also good.
  • the charge generation layer and the charge transport layer include, for example, a binder, a plasticizer, a curing catalyst, a fluidity imparting agent, a pinhole control agent, and a spectral sensitivity increase.
  • a sensitizer (sensitizing dye) or the like may be added.
  • the charge generation layer and the charge transport layer include various chemical substances, antioxidants, and surfactants. Additives such as anti-curl agents and leveling agents can be added.
  • binder examples include silicone resin, polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate copolymer, polystyrene resin, polymethacrylate resin, polyacrylamide resin, polybutadiene resin, polyisoprene resin, melamine.
  • Resin, benzoguanamine resin, polychloroprene resin, polyacrylonitrile resin, ethyl cellulose resin, nitrocellulose resin, urea resin, phenol resin, phenoxy resin, polyvinyl butyral resin, formal resin, vinyl acetate resin, vinyl acetate / vinyl chloride copolymer resin, and Polyester carbonate resin etc. are mentioned.
  • thermosetting resin and a photocurable resin can also be used.
  • the binder is not particularly limited as long as it is an electrically insulating resin that can form a film in a normal state and does not impair the effects of the present invention. From the viewpoint of product performance, the binder is preferably used at 80% by mass or less based on the charge transport material.
  • plasticizer examples include, for example, biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethylnaphthalene, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethylene glycol phthalate, triphenyl phosphate, diisobutyl adipate, dimethyl seba
  • plasticizer include, for example, biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethylnaphthalene, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethylene glycol phthalate, triphenyl phosphate, diisobutyl adipate, dimethyl seba
  • Examples thereof include Kate, dibutyl sebacate, butyl laurate, methyl phthalyl ethyl glycolate, dimethyl glycol phthalate, methyl naphthalene, benzo
  • the curing catalyst include, for example, methanesulfonic acid, dodecylbenzenesulfonic acid, and dinonylnaphthalenedisulfonic acid.
  • the fluidity-imparting agent include modaflow, acronal 4F, and the like.
  • the pinhole control agent include benzoin and dimethyl phthalate. From the viewpoint of production cost, these plasticizer, curing catalyst, fluidity imparting agent, and pinhole control agent are preferably used in an amount of 5% by mass or less based on the charge transport material.
  • a sensitizing dye for example, a triphenylmethane dye (for example, methyl violet, crystal violet, knight blue, and Victoria blue)
  • an acridine dye for example, erythrosine
  • An electron-accepting substance can be added to the photosensitive layer for the purpose of improving sensitivity, reducing residual potential, and reducing fatigue during repeated use.
  • Specific examples thereof include, for example, succinic anhydride, maleic anhydride, dibromomaleic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, Pyromellitic anhydride, anhydrous meritic acid, tetracyanoethylene, tetracyanoquinodimethane, o-dinitrobenzene, m-dinitrobenzene, 1,3,5-trinitrobenzene, p-nitrobenzonitrile, picryl chloride, quinone chloride Imido, chloranil, bromanyl, benzoquinone, 2,3-dichlorobenzoquinone, dichlorodicyanoparabenzoquinone, naphthoquinone
  • These compounds may be added to either the charge generation layer or the charge transport layer, and the blending ratio is preferably from the viewpoint of product performance when the amount of the charge generation material or the charge transport material is 100 parts by mass. It is 0.01 mass part or more and 200 mass parts or less, More preferably, it is 0.1 mass part or more and 50 mass parts or less.
  • tetrafluoroethylene resin for example, tetrafluoroethylene resin, trifluoroethylene chloride resin, tetrafluoroethylene hexafluoropropylene resin, vinyl fluoride resin, vinylidene fluoride resin, difluoroethylene dichloride Resins and their copolymers, and fluorine-based graft polymers may be used.
  • the blending ratio of these surface modifiers is preferably 0.1% by mass or more and 60% by mass or less, and more preferably 5% by mass or more and 40% by mass or less with respect to the binder resin. If the blending ratio is 0.1% by mass or more, surface modification such as surface durability and surface energy reduction is sufficient, and if it is 60% by mass or less, electrophotographic characteristics are not deteriorated. .
  • antioxidant for example, a hindered phenol antioxidant, an aromatic amine antioxidant, a hindered amine antioxidant, a sulfide antioxidant, and an organic phosphate antioxidant are preferable.
  • the blending ratio of these antioxidants is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 2% by mass or less with respect to the charge transport material from the viewpoint of product performance. is there.
  • the compounds represented by the chemical formulas [Chemical Formula 94] to [Chemical Formula 101] described in the specification of JP-A No. 11-172003 are preferable from the viewpoint of production cost and safety. is there.
  • These antioxidants may be used singly or in combination of two or more, and these may be added to the surface protective layer, the undercoat layer and the blocking layer in addition to the photosensitive layer. May be.
  • the solvent used in forming the charge generation layer and the charge transport layer include, for example, aromatic solvents (for example, benzene, toluene, xylene, and chlorobenzene), ketones (for example, acetone, Methyl ethyl ketone, cyclopentanone, and cyclohexanone), alcohols (eg, methanol, ethanol, and isopropanol), esters (eg, ethyl acetate, and ethyl cellosolve), halogenated hydrocarbons (eg, carbon tetrachloride, tetraodor) Carbonated, chloroform, dichloromethane, and tetrachloroethane), ethers (eg, tetrahydrofuran, dioxolane, and dioxane), and amides (eg, dimethylformamide, dimethylsulfoxide, and diethylformamide) ), And the like.
  • the photosensitive layer of the single-layer electrophotographic photosensitive member is easily formed by using the above-described charge generating material, charge transporting material, and additive and applying the PC resin according to one embodiment of the present invention as a binder resin. be able to. From the viewpoint of product performance, it is preferable to add at least one of the above-described hole transporting material and electron transporting material as the charge transporting material.
  • As the electron transport material an electron transport material exemplified in JP-A-2005-139339 can be preferably applied from the viewpoint of production cost and safety.
  • Each layer can be applied by using various kinds of application apparatuses such as a known apparatus. Specifically, for example, an applicator, a spray coater, a bar coater, a chip coater, a roll coater, a dip coater, a doctor blade, and the like are used. Can be done.
  • the thickness of the photosensitive layer in the electrophotographic photoreceptor is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 8 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the photosensitive layer is 5 ⁇ m or more, it is possible to prevent the initial potential from being lowered, and when it is 100 ⁇ m or less, it is possible to suppress deterioration of the electrophotographic characteristics.
  • the ratio of the charge generating material used in the production of the electrophotographic photosensitive member to the binder resin is preferably 1:99 to 30:70 in terms of mass ratio, and 3:97 to 15: More preferably, it is 85.
  • the ratio of the charge transport material: binder resin is preferably 10:90 to 80:20, more preferably 30:70 to 70:30, in terms of mass performance, from the viewpoint of product performance and production cost. .
  • the electrophotographic photosensitive member of this embodiment can be suitably used for an electrophotographic apparatus.
  • charging includes, for example, corona discharge (for example, corotron and scorotron) and contact charging (for example, charging roll and charging brush).
  • the charging roll include a DC charging method and an AC / DC superimposed charging method in which an AC voltage is superimposed.
  • any one of a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), an LED, and a photoreceptor internal exposure method may be employed.
  • a dry development system for example, cascade development, two-component magnetic brush development, one-component insulating toner development, one-component conductive toner development, etc.
  • a wet development method for example, an electrostatic transfer method (for example, corona transfer, roller transfer, and belt transfer), a pressure transfer method, an adhesive transfer method, or the like is used.
  • fixing for example, heat roller fixing, radiant flash fixing, open fixing, and pressure fixing are used.
  • a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, a blade cleaner, or the like is used for cleaning / static elimination. A cleaner-less method may be adopted.
  • the toner resin for example, a styrene resin, a styrene-acrylic copolymer resin, a polyester, an epoxy resin, a cyclic hydrocarbon polymer, and the like can be applied.
  • the shape of the toner may be spherical or irregular.
  • a toner controlled to have a certain shape spheroid shape, potato shape, etc.
  • the toner may be any one of a pulverized toner, a suspension polymerization toner, an emulsion polymerization toner, a chemical granulation toner, and an ester extension toner.
  • this invention is not limited to the above-mentioned embodiment, The change in the range which can achieve the objective of this invention, improvement, etc. are contained in this invention.
  • the oxygen concentration in the solvent is 1/5 of the saturated dissolved amount.
  • the coloring substance can be removed by performing washing or the like as a post-treatment.
  • Preparation Example 1 Preparation of polymer solution 1
  • An alkaline aqueous solution was prepared by dissolving 66.5 g of sodium hydroxide and 90.6 g of potassium hydroxide in 2330 g of ion-exchanged water whose amount of dissolved oxygen was reduced to 1.5 mg / L by blowing nitrogen gas.
  • To the alkaline aqueous solution prepared as described above 116.7 g of 1,1-bis (3-methyl-4-bidoxyphenyl) cyclohexane (BisOCZ) and 3,3′-dimethyl-4,4′-dihydroxybiphenyl (OCBP) 55.4 g was dissolved to obtain a solution.
  • BisOCZ 1,1-bis (3-methyl-4-bidoxyphenyl) cyclohexane
  • OCBP 3,3′-dimethyl-4,4′-dihydroxybiphenyl
  • oligomer solution 1 This solution was mixed with 1240 mL of methylene chloride in which the amount of dissolved oxygen was reduced to 1.5 mg / L by blowing nitrogen gas. While stirring, 191 g of phosgene was introduced into the solution over 60 minutes while cooling. A reaction solution was obtained. Subsequently, this reaction liquid was left and separated, and methylene chloride was distilled off under reduced pressure to obtain an oligomeric methylene chloride solution having a chloroformate group at the molecular terminal (solid content concentration: 165 g / L). Hereinafter, the obtained solution is referred to as “oligomer solution 1”.
  • the product was diluted with 1.5 L of methylene chloride, in which the dissolved oxygen amount was reduced to 1.5 mg / L by blowing nitrogen gas, and then the dissolved oxygen amount was reduced to 1.5 mg / L by blowing nitrogen gas.
  • 1.5 L of water reduced to L twice with 1 L of 0.05 N aqueous sodium hydroxide solution whose amount of dissolved oxygen has been reduced to 1.5 mg / L by blowing nitrogen gas, and with 1 L of 0.01 N hydrochloric acid
  • the polymer solution 1 was obtained by washing once with 1 L of water twice in this order.
  • the resin in the obtained polymer solution 1 was a polycarbonate resin (polycarbonate copolymer) having the following structure.
  • the structure represented by the general formula (1) was 50 mol%
  • the structure represented by the general formula (2) was 50 mol%.
  • the viscosity average molecular weight of the resin having the following structure was 55,000.
  • the saturated dissolved oxygen content of pure water at 20 ° C. was 8.84 mg / L.
  • Preparation Example 2 Preparation of oligomer solution 2] Suspend 60.0 kg (224 mol) of 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z) in 1080 L of methylene chloride in which the amount of dissolved oxygen is reduced to 1.5 mg / L by blowing nitrogen gas, 66.0 kg (667 mol) of phosgene was added and dissolved therein. A solution obtained by dissolving 44.0 kg (435 mol) of triethylamine in 120 L of methylene chloride whose dissolved oxygen amount was reduced to 1.5 mg / L by blowing nitrogen gas was added at 2.2 to 17.8 ° C. for 2 hours. It was added dropwise over 50 minutes.
  • oligomer solution 2 After stirring at 17.9 to 19.6 ° C. for 30 minutes, 900 L of methylene chloride was distilled off at 14 to 20 ° C. The residual liquid was washed by adding 210 L of pure water, 1.2 kg of concentrated hydrochloric acid, and 450 g of hydrosulfite, in which the amount of dissolved oxygen was reduced to 1.5 mg / L by blowing nitrogen gas. Thereafter, washing with 210 L of pure water was repeated 5 times to obtain a methylene chloride solution of a bisphenol Z oligomer having a chloroformate group at the molecular end. The resulting solution had a chloroformate concentration of 1.14 mol / L, a solid concentration of 0.23 kg / L, and an average number of monomers of 1.02. Hereinafter, this obtained solution is referred to as “oligomer solution 2”.
  • Preparation Example 3 Preparation of monomer solution 2] 20 mL of 2N sodium hydroxide aqueous solution in which the amount of dissolved oxygen was reduced to 1.5 mg / L by blowing nitrogen gas was cooled to room temperature or lower, and then 0.1 g of hydrosulfite as an antioxidant, 3, A monomer solution 2 was prepared by adding 3.0 g of 3′-dimethyl-4,4′-biphenol and dissolving completely.
  • Example 1 The amount of dissolved oxygen was reduced to 1.5 mg / L by blowing the oligomer solution 2 (24 mL) obtained in Preparation Example 2 and nitrogen gas into a reaction vessel equipped with a mechanical stirrer, stirring blades, and baffle plates. Methylene chloride (36 mL) was injected. To this was added p-tert-butylphenol (hereinafter abbreviated as “PTBP”) (0.04 g) as a terminal terminator, and the mixture was stirred so as to be thoroughly mixed. To this solution, the entire amount of the monomer solution 2 obtained in Preparation Example 3 was added and cooled until the temperature in the reaction vessel reached 15 ° C.
  • PTBP p-tert-butylphenol
  • reaction mixture After cooling, 0.2 mL of an aqueous triethylamine solution (7 vol%) was added with stirring, and stirring was continued for 1 hour while maintaining the temperature at 15 to 23 ° C. to obtain a reaction mixture. Obtained with 0.2 L of methylene chloride in which the amount of dissolved oxygen was reduced to 1.5 mg / L by blowing nitrogen gas and 0.1 L of water in which the amount of dissolved oxygen was reduced to 1.5 mg / L by blowing nitrogen gas The resulting reaction mixture was diluted and washed.
  • the structure represented by the general formula (1) was 40 mol%, and the structure represented by the general formula (2) was 60 mol%.
  • the saturated dissolved oxygen content of pure water at 23 ° C. was 8.39 mg / L.
  • the polymer solution 1 (0.2 L) obtained in Preparation Example 1 was added dropwise to the same reaction vessel while stirring with a mechanical stirrer. Thereafter, methylene chloride vaporized in the reaction vessel was aggregated in a cooling tube and distilled from the reaction vessel, whereby polymer flakes were precipitated in the reaction vessel.
  • IPA isopropanol
  • Example 3 A mechanical stirrer was installed in a 3 L jacketed reaction vessel, 2 L of IPA was added, and the IPA was heated to an internal temperature of 65 ° C.
  • the polymer solution 1 (0.2 L) obtained in Preparation Example 1 was added dropwise to the same reaction vessel while stirring with a mechanical stirrer. Thereafter, methylene chloride vaporized in the reaction vessel was aggregated in a cooling tube and distilled from the reaction vessel, whereby polymer flakes were precipitated in the reaction vessel. After the inside of the reaction vessel was cooled, the polymer flakes were taken out and dried to obtain a flaky polycarbonate resin (polycarbonate copolymer) (PC-C).
  • the obtained resin had a viscosity average molecular weight of 55,000.
  • Example 4 A mechanical stirrer was placed in a 3 L jacketed reaction vessel, 2 L of IPA was added, and the polymer solution 1 (0.2 L) obtained in Preparation Example 1 was added dropwise to the reaction vessel while stirring with a mechanical stirrer to obtain polymer flakes. Was precipitated. The obtained polymer flakes were taken out and dried to obtain a flaky polycarbonate resin (polycarbonate copolymer) (PC-D). The obtained resin had a viscosity average molecular weight of 55,000.
  • PC-D flaky polycarbonate resin
  • Example 5 A mechanical stirrer was installed in a 3 L jacketed reaction vessel, 2 L of acetone was added, and the polymer solution 1 (0.2 L) obtained in Preparation Example 1 was added dropwise to the reaction vessel while stirring with a mechanical stirrer at room temperature. The obtained polymer flakes were taken out and dried to obtain a flaky polycarbonate resin (polycarbonate copolymer) (PC-E). The obtained resin had a viscosity average molecular weight of 55,000.
  • PC-E flaky polycarbonate resin
  • Example 6 A mechanical stirrer was placed in a 3 L jacketed reaction vessel, the polymer solution (0.2 L) obtained in Preparation Example 1 was added, stirred while heating, and concentrated while removing methylene chloride. The concentrated contents were transferred to a vat and further heated at 80 ° C. under reduced pressure conditions to remove methylene chloride to obtain a resin dried in a foamed state. The obtained resin was pulverized with a mechanical pulverizer to obtain a flaky polycarbonate resin (polycarbonate copolymer) (PC-F). The obtained resin had a viscosity average molecular weight of 55,000.
  • PC-F flaky polycarbonate resin
  • Example 7 A mechanical stirrer was installed in a 3 L jacketed reaction vessel, 2 L of IPA was added, and then the resin obtained in Example 6 was added. After stirring for 2 hours with a mechanical stirrer, the polymer was taken out and dried to obtain a flaky polycarbonate resin (polycarbonate copolymer) (PC-G).
  • PC-G flaky polycarbonate resin
  • Example 8 A mechanical stirrer was installed in a 3 L jacketed reaction vessel, 2 L of methanol was added, and at room temperature, the polymer solution 1 (0.5 L) obtained in Preparation Example 1 was dropped into the reaction vessel while stirring with a mechanical stirrer. Polymer flakes were deposited. The obtained polymer flakes were taken out and dried to obtain a flaky polycarbonate resin (polycarbonate copolymer) (PC-H). The viscosity average molecular weight of the obtained resin was reduced to 45,000.
  • PC-H flaky polycarbonate resin
  • the polycarbonate resin (polycarbonate copolymer) obtained in the Examples has a yellowness (YI) of 30 or less and is a polycarbonate resin with little coloration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

下記一般式(1)で表される構造を有し、固形物の黄色度(YI)が30以下であることを特徴とするポリカーボネート樹脂。

Description

ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置
 本発明は、ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置に関する。
 ポリカーボネート樹脂は、機械的特性および透明性等に優れていることから、種々の用途に適用されている。
 例えば、3,3’-ジメチル-4,4’-ジヒドロキシビフェニル(以下、「OCBP」と略記することもある。)を原料として製造したポリカーボネート樹脂は、優れた耐摩耗性、低いガス透過性、および高い表面硬度等の特徴を有する。
 また、特許文献1には、ポリカーボネート樹脂を電子写真感光体として好適に使用できることが記載されている。
特開2012-51983号公報
 しかしながら、OCBPを原料として用いた場合、OCBPは重合中のアルカリ条件下で酸素と反応してキノンに変化し、得られるポリカーボネート樹脂が黄色~褐色系に着色する問題がある。着色したポリカーボネート樹脂では、適用できる用途に制限があることから、着色の少ない樹脂を要望する声もあった。
 本発明の目的は、着色の少ないポリカーボネート樹脂、当該ポリカーボネート樹脂の製造方法、並びに当該ポリカーボネート樹脂を用いた塗工液、電子写真感光体、および電子写真装置を提供することである。
 本発明の一態様に係るポリカーボネート樹脂は、下記一般式(1)で表される構造を有し、固形物の黄色度(YI)が30以下である。
Figure JPOXMLDOC01-appb-C000009
 本発明の一態様に係るポリカーボネート樹脂の製造方法は、アルカリ性水溶液を用いた界面重縮合法により本発明の一態様に係るポリカーボネート樹脂を製造する方法であって、モノマーを重合してポリマーを得る重合工程と、前記重合工程によって得られたポリマーを洗浄する洗浄工程とを含み、前記重合工程において使用する溶媒および前記洗浄工程において使用する溶媒の少なくともいずれかの溶媒中の酸素濃度が飽和溶存量の5分の1以下である。
 本発明の別の一態様に係るポリカーボネート樹脂の製造方法は、ポリマーおよび第一の溶媒を含むポリマー液を得る工程と、前記ポリマー液と、前記第一の溶媒とは異なる第二の溶媒単独または前記第二の溶媒および水の混合溶媒と、を混合して、固体状のポリカーボネート樹脂を得る工程とを含む。ただし、前記第二の溶媒として、メタノールを単独、または主成分としては用いない。
 本発明の別の一態様に係るポリカーボネート樹脂の製造方法は、アルカリ性水溶液を用いた界面重縮合法により下記一般式(1)で表される構造を有するポリカーボネート樹脂を製造する方法であって、モノマーを重合してポリマーを得る重合工程と、前記重合工程によって得られたポリマーを洗浄する洗浄工程とを含み、前記重合工程において使用する溶媒および前記洗浄工程において使用する溶媒の少なくともいずれかの溶媒中の酸素濃度が飽和溶存量の5分の1以下である。
Figure JPOXMLDOC01-appb-C000010
 本発明の一態様に係る塗工液は、本発明の一態様に係るポリカーボネート樹脂を含む。
 本発明の一態様に係る電子写真感光体は、本発明の一態様に係るポリカーボネート樹脂を感光層に含有してなる。
 本発明の一態様に係る電子写真装置は、本発明の一態様に係る電子写真感光体を有する。
 本発明によれば、着色の少ないポリカーボネート樹脂、当該ポリカーボネート樹脂の製造方法、並びに当該ポリカーボネート樹脂を用いた塗工液、電子写真感光体、および電子写真装置を提供することができる。
 以下に、本発明の一実施形態に係るポリカーボネート樹脂(以下、単に「PC樹脂」とも言う。)、当該ポリカーボネート樹脂の製造方法、並びに当該PC樹脂を用いた塗工液、電子写真感光体、および電子写真装置について、詳細に説明する。
[PC樹脂]
 本発明の一実施形態に係るPC樹脂は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000011
 本実施形態のPC樹脂は、固形物の黄色度(YI)が30以下である。固形物の黄色度(YI)が30以下であれば、より一層着色が少ないPC樹脂となり、例えば、電子写真感光体等に好適に用いることができる。
 なお、本明細書において、PC樹脂の固形物の黄色度(YI)は、ASTM E-313に準拠して、分光式色差計を用い、反射モードで測定した値である。
 フィルム状、フレーク状、固形物、およびペレット等の形状のサンプルについては、3mm角の大きさ以下に切断、または粉砕して測定する。溶液については、乾固により溶剤を除去した後、上述のフィルム状等の形状のサンプルと同様の方法で測定することができる。
 本実施形態において、PC樹脂の固形物の黄色度(YI)は、25以下であることが好ましく、20以下であることがより好ましい。PC樹脂の固形物の黄色度(YI)は、15以下であることがさらに好ましく、10以下であることがさらに好ましく、5以下であることがさらに好ましい。下限値は特に限定されない。
 本実施形態において、PC樹脂は、当該PC樹脂全体を100モル%とした場合、前記一般式(1)で表される構造25モル%以上65モル%以下と、下記一般式(2)で表される構造35モル%以上75モル%以下とを含むポリカーボネート共重合体(以下、ポリカーボネート共重合体を、単に「PC共重合体」とも言う。)であることが好ましい。本実施形態のPC樹脂は、前記一般式(1)で表される構造および下記一般式(2)で表される構造のみからなる樹脂(共重合体)であってもよく、前記一般式(1)で表される構造、下記一般式(2)で表される構造、およびその他の構造を含む樹脂(共重合体)であってもよい。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(2)において、Arは2価の芳香族基である。ただし、Arは3,3’-ジメチル-4,4’-ビフェノールから誘導される2価の基ではない。
 前記一般式(1)で表される構造が25モル%以上であれば、硬度が高く、ガス透過性の低いPC樹脂(PC共重合体)となる。また、前記一般式(1)で表される構造が65モル%以下であれば、溶媒、特に非ハロゲン系溶媒へのPC樹脂(PC共重合体)の溶解性が向上する。
 本実施形態のPC樹脂において、前記一般式(1)で表される構造および前記一般式(2)で表される構造の合計を100モル%とした場合、前記一般式(1)で表される構造が25モル%以上65モル%以下であり、前記一般式(2)で表される構造が35モル%以上75モル%以下であることが好ましい。
 前記一般式(2)において、Arは、下記一般式(11)~(13)のいずれかで表される二価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 前記一般式(11)~(13)中、
 R11~R14は、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  トリフルオロメチル基、
  炭素数1~12のアルキル基、
  置換もしくは無置換の炭素数6~12のアリール基、
  炭素数1~12のアルコキシ基、および
  置換もしくは無置換の炭素数6~12のアリールオキシ基からなる群から選択され、
 R11~R14は、一つの芳香環に複数付加していてもよく、この場合、複数のR11は、互いに同一の基であっても異なる基であってもよく、複数のR12は、互いに同一の基であっても異なる基であってもよく、複数のR13は、互いに同一の基であっても異なる基であってもよく、複数のR14は、互いに同一の基であっても異なる基であってもよく、
 X11は、単結合または連結基であり、X11が連結基である場合の連結基は、
  -O-、
  -S-、
  -SO-、
  -SO-、
  -CR1516-、
  置換もしくは無置換の炭素数5~20のシクロアルキリデン基、
  置換もしくは無置換の炭素数5~20のビシクロ炭化水素ジイル基、
  置換もしくは無置換の炭素数5~20のトリシクロ炭化水素ジイル基、
  置換もしくは無置換の炭素数2~12のα,ω-アルキレン基、
  置換もしくは無置換の9,9-フルオレニリデン基、
  1,8-メンタンジイル基、
  2,8-メンタンジイル基、
  置換もしくは無置換の炭素数6~12のアリーレン基、および
  α,ω-ビス(ポリアルキレン)ジメチルシリルポリジメチルシロキシ基からなる群から選択され、
 R15およびR16は、それぞれ独立に、
  水素原子、
  炭素数1~12のアルキル基、
  トリフルオロメチル基、および
  置換もしくは無置換の炭素数6~12のアリール基からなる群から選択される。
 前記一般式(2)において、Arは、ビスフェノール類から誘導される2価の基であることが好ましい。
 前記一般式(2)におけるArを構成するビスフェノール類としては、ビフェノール化合物およびビスフェノール化合物が挙げられる。
 ビフェノール化合物としては、例えば、2,2’-ジメチル-4,4’-ビフェノール、3,3’-ジエチル-4,4’-ビフェノール、2,2’-ジエチル-4,4’-ビフェノール、3,3’-ジプロピル-4,4’-ビフェノール、3,3’-ジブチル-4,4’-ビフェノール、3,3’-ビス(トリフルオロメチル)-4,4’-ビフェノール、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェノール、および3,3’-ビス(ペンタフルオロエチル)-4,4’-ビフェノール等が挙げられる。
 ビスフェノール化合物としては、例えば、1,1-ビス(3-メチル-4-ヒドロキシフェニル)メタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1,1-ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロデカン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-エチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)メタン、2,2-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)エタン、2,2-ビス(2-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)ブタン、1,1-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、および9,9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレン等が挙げられる。
 これらのビスフェノール類の中で、溶解性および耐摩耗性の観点から、前記一般式(13)におけるX11がシクロアルキリデン基であり、かつ水酸基が結合する芳香族環に炭素数6以下の炭化水素基を持つ構造であることが好ましく、中でも1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンがより好ましい。
 本実施形態において、PC樹脂をテトラヒドロフラン(以下、「THF」と略記することもある。)に対して10質量%濃度で溶解した溶液のヘイズ値が5%以下であることが好ましい。PC樹脂をTHFに対して10質量%濃度で溶解した溶液のヘイズ値が5%以下であれば、透明性が要求される用途に好適に用いることができる。また、電子写真感光体のバインダー樹脂として用いた場合に、良好な画像を得ることができる。
 なお、ヘイズ値は、スガ試験機製全自動ヘーズコンピュータ(HGM-2D)を用い、JIS K7105に準拠して測定することができる。
 本実施形態において、PC樹脂(PC共重合体)中、下記一般式(3-1)で表される化合物の、PC樹脂(PC共重合体)に対する存在量をX(μg/g)、下記一般式(3-2)で表される化合物の、PC樹脂(PC共重合体)に対する存在量をY(μg/g)とした時、X+20×Yの値が400以下であることが好ましい。PC樹脂(PC共重合体)中の下記一般式(3-1)で表される化合物の含有量および下記一般式(3-2)で表される化合物の含有量は、LC(Liquid Chromatography)により測定することができる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 前記一般式(3-1)および(3-2)において、メチル基の位置関係は、シス体の化合物およびトランス体の化合物のいずれも含む。
 前記一般式(3-2)において、RおよびRは、それぞれ独立に、メチル基またはヒドロキシル基であり、m1は0または1であり、m2は0または1であり、かつm1+m2は1または2である。
 前記X+20×Yの値が400以下であれば、固形物の黄色度(YI)を30以下にすることができる。
 PC樹脂(PC共重合体)の着色を抑える観点から、前記X+20×Yの値は、300以下であることがより好ましく、100以下であることがさらに好ましい。
 また、Yは10以下であることが好ましく、Xは100以下であることが好ましい。
[PC樹脂の製造方法]
 以下に、本発明の一実施形態に係るPC樹脂の製造方法について、第1の製造方法および第2の製造方法を例に挙げて説明する。
〔第1の製造方法〕
 第1の製造方法は、アルカリ性水溶液を用いた界面重縮合法により前記一般式(1)で表される構造を有するポリカーボネート樹脂を製造する方法であって、
 モノマーを重合してポリマーを得る重合工程と、
 前記重合工程によって得られたポリマーを洗浄する洗浄工程とを含む。
 前記重合工程において使用する溶媒および前記洗浄工程において使用する溶媒の少なくともいずれかの溶媒中の酸素濃度が飽和溶存量の5分の1以下である。
 第1の製造方法によれば、着色の少ないPC樹脂(例えば、固形物の黄色度(YI)が30以下の、本発明の一実施形態に係るPC樹脂)を容易に得ることができる。
(重合工程)
 重合工程では、原料となるモノマーを界面重縮合方法により重合して、ポリマーを得る。
 本実施形態において、少なくとも、3,3’-ジメチル-4,4’-ジヒドロキシビフェニルが原料として用いられる。その他に、モノマーとして、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンを用いることが好ましい。
 第1の製造方法において、重合工程および後述の洗浄工程の少なくともいずれかの工程で使用する溶媒中の酸素濃度が飽和溶存量の5分の1以下であれば、その他は特に限定されず、公知の界面重縮合法に倣ってモノマーを重合することができる。より効果的にPC樹脂の着色を防止できることから、酸化防止剤を重合工程で使用することが好ましい。酸化防止剤としては、公知の酸化防止剤のいずれも適用可能であるが、ハイドロサルファイトを用いることがより好ましい。
 また、得られるPC樹脂を溶解可能で、かつアルカリ性水溶液と実質的に均一に混じり合わない溶媒と、アルカリ性水溶液とを用いた界面重縮合法により、モノマーの重合を行うことが好ましい。
 第1の製造方法において、後述の調製例1のように、重合工程が、モノマーを重合してオリゴマーを調製するオリゴマー調製工程、および当該調製したオリゴマーとモノマーとを重合してポリマーを調製するポリマー調製工程の2段階で行われても良い。
 溶存酸素の測定は、飯島電子工業株式会社製DOメーターB-506の溶存酸素計を用いて行なうことができる。
 重合工程において、溶媒中の酸素濃度が飽和溶存量の5分の1以下の溶媒を使用する場合、溶媒中の酸素濃度を飽和溶存量の5分の1以下に低減する方法としては、例えば、酸化反応に不活性な気体を溶媒に吹き込む方法、酸化反応に不活性な気体を反応容器の気層に流入させる方法、反応溶媒を減圧にすることで溶存酸素を脱気する方法、並びに物理的方法および化学的方法の少なくともいずれかの方法により酸素を吸収(吸着)する方法等が挙げられる。酸化反応に不活性な気体としては、例えば、窒素、および希ガス(例えばアルゴン等)等を用いることができる。
 これらの方法は、単独で行ってもよく、複数の方法を組み合わせて同時に行っても、複数の方法を組み合わせて段階的に行ってもよい。
 重合工程において使用する溶媒中の溶存酸素量(酸素濃度)を同溶媒の飽和酸素量(飽和溶存量)の5分の1以下に低減することで、重合時にOCBPが酸化されて着色物質(ジメチルジフェノキノン等)が生成することを、抑制することができる。例えば、重合に用いる水の飽和酸素濃度は、共存する物質の影響で変化するが、本実施形態においては、純水の飽和酸素濃度を基準として酸素濃度の低減率を計算することとする。純水の飽和濃度は、既知の文献記載の値を適用すれば良い。また、飽和溶存酸素量は温度上昇により一般に低下するが、酸化反応の速度は温度上昇により上昇するため、より高温域ほど酸素濃度を低減することで着色防止に効果がある。このため、溶存酸素量としては重合中の最大温度における飽和溶存酸素量を基準としてその温度における飽和溶存酸素量の5分の1以下に設定することが好ましい。
 重合工程が、オリゴマー調製工程およびポリマー調製工程の2段階で行われる場合、オリゴマー調製工程およびポリマー工程の少なくともいずれかの工程で使用する溶媒中の酸素濃度が、飽和溶存量の5分の1以下であればよい。
 重合工程において、溶媒中の酸素濃度が飽和溶存量の5分の1以下の溶媒を使用する場合、重合反応開始段階で、当該酸素濃度を達成していれば良い。また、溶媒それぞれの溶存酸素を低減した後に使用しても良いし、反応容器内で混合した後に溶存酸素を低減しても良い。着色物質(ジメチルジフェノキノン等)生成の抑制効果を向上させる観点から、OCBPモノマーと重合工程で使用する溶媒との接触前(重合開始前)に、溶媒中の酸素濃度を飽和溶存量の5分の1以下に低減しておくことが好ましい。
(洗浄工程)
 洗浄工程では、重合工程で得られたポリマーの有機溶媒溶液を、液体を用いて洗浄する。
 洗浄工程において使用する液体としては、例えば、水酸化ナトリウム等のアルカリ性水溶液、塩酸等の酸性水溶液、およびイオン交換水等の純水等が挙げられる。水酸化ナトリウム等のアルカリ性水溶液での洗浄を繰り返すことで、重合工程で消費されなかった未反応のOCBPを除去できる。また、酸性水溶液で洗浄することで、触媒として使用したアミン化合物、並びに重合工程および洗浄工程で使用した水酸化ナトリウム等のアルカリ物質を除去できる。また、純水で洗浄することで、洗浄工程における上述の中和反応で生じた塩を除去できる。
 第1の製造方法において、上述の重合工程および洗浄工程の少なくともいずれかの工程で使用する溶媒中の酸素濃度が飽和溶存量の5分の1以下であれば、その他は特に限定されず、公知の洗浄方法に倣ってポリマーを洗浄することができる。
 溶存酸素の低減は、特に残留モノマーが有機溶媒層、およびアルカリ水溶液中に多く存在する段階、すなわち、アルカリ水溶液を用いた洗浄の回数が少ない段階で行うことが着色防止の効果が高い。本製造法では、重合後に有機層と水層を分離し、有機層をアルカリ性水溶液で洗浄することで、ポリマー化反応に寄与しなかった余剰のOCBPを除去しているが、最初の分液段階ではOCBPが水層に残存している量が相対的に多く、アルカリ水溶液を用いた洗浄を進めるに従い相対的に少なくなる。最初の分液時には希釈のため有機溶媒と、必要に応じて水を、重合工程で得たポリマー溶液に追加するのが一般的であるが、溶媒中に溶存酸素が含まれていると、OCBPが着色物質に変化する懸念が高まる。よって、希釈溶媒を反応容器に導入後、上述の重合工程において示した方法と同様の方法で溶存酸素を低減しても着色防止の効果は十分に得られるが、重合後、最初の分液時に添加する有機溶媒中、および水中の溶存酸素を予め低減することがより好ましい。
 洗浄工程において使用する溶媒中の溶存酸素量(酸素濃度)を、同溶媒の飽和酸素量(飽和溶存量)の5分の1以下に低減することで、OCBPが酸化されて着色物質(ジメチルジフェノキノン等)が生成することを、抑制することができる。
 本実施形態において、重合工程において使用する溶媒および洗浄工程において使用する溶媒の少なくともいずれかの溶媒中の酸素濃度は、2mg/L以下であることが好ましい。重合工程から洗浄工程までの間に使用する溶媒の溶存酸素量(酸素濃度)を2mg/L以下にすることで、後処理の方法に関係無く、得られるPC樹脂の黄色度(YI)を30以下に抑制できる。
 また、重合工程および洗浄工程の少なくともいずれかの工程において水を使用する場合、当該重合工程および洗浄工程において使用する水中の溶存酸素濃度は、2mg/L以下であることが好ましく、より好ましくは1mg/L以下であり、さらに好ましくは0.5mg/L以下である。
〔第2の製造方法〕
 第2の製造方法は、
 ポリマーおよび第一の溶媒を含むポリマー液を得る工程と、
 前記ポリマー液と、前記第一の溶媒とは異なる第二の溶媒単独または前記第二の溶媒および水の混合溶媒と、を混合して、固体状のポリカーボネート樹脂を得る工程とを含む。ただし、前記第二の溶媒としてメタノールを単独、または主成分としては用いない。
 第二の溶媒としてメタノールを単独、または主成分として用いると、メタノールによるポリマー分解が生じるため、好ましくない。メタノールが「主成分」の溶媒とは、メタノールと他の溶媒とを混合した混合溶媒であって、当該混合溶媒中のメタノールの混合割合が50質量%以上である溶媒のことである。
 なお、ポリマー分解が抑制できるように他の液体を混合することで、メタノールを適用することもできる。
 メタノールを適用する場合、他の液体に対するメタノールの混合割合は、50質量%未満であることが好ましく、30質量%以下であることがより好ましい。
 前記固体状のポリカーボネート樹脂を得る工程において、前記第二の溶媒として、前記ポリマーに対する貧溶媒を用いることが好ましい。
 本明細書において、「貧溶媒」とは、PC樹脂の溶解度(25℃)が1質量%以下、好ましくは0.1質量%以下であり、ポリマーを膨潤しにくい溶媒のことを言う。
 ポリマー溶液と貧溶媒の割合は、ポリマー溶液の溶媒の種類、貧溶媒の種類、および温度等に応じて、混合(滴下等)終了時点でのポリマー溶液と貧溶媒との比率において、得られたPC樹脂が再凝集しない割合で設定すればよい。例えばポリマーの塩化メチレン溶液を、イソプロパノール中に滴下する場合には、ポリマー溶液の容量1に対して、イソプロパノールの容量が1.5~10倍で実施することが好ましい。1.5倍以上であれば、得られた樹脂が再凝集し難くなり、10倍以下であれば、製造における容積効率が良く、得られた樹脂の嵩密度が低くなり過ぎることもない。貧溶媒とポリマー溶液との割合は、これらの混合開始時点から混合終了時点まで一定に保っても良いし、変化させても良い。
 前記固体状のポリカーボネート樹脂を得る工程において、前記第二の溶媒として、前記ポリマーに対する貧溶媒を用い、前記ポリマー液と、前記第二の溶媒単独または前記第二の溶媒および水の混合溶媒と、の混合溶液を、前記第一の溶媒の沸点以上に加熱して、前記混合溶液から前記第一の溶媒を留去することで、ポリマーの溶解度の差を利用して固体状のポリカーボネート樹脂を得ることも好ましい。
 前記ポリマー液と、前記第二の溶媒単独または前記第二の溶媒および水の混合溶媒と、の混合溶液を、第一の溶媒の沸点以上に加熱するためには、第二の溶媒の沸点は第一の溶媒の沸点より10℃以上高い温度であることが好ましい。第二の溶媒の沸点は第一の溶媒の沸点より20℃以上高い温度であることがより好ましく、30℃以上高い温度であることがさらに好ましい。また、得られたPC樹脂を乾燥するためには、第二の溶媒の沸点が高すぎないことが好ましい。第二の溶媒の沸点としては、常圧の場合、好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは90℃以下、さらにより好ましくは80℃以下である。
 第2の製造方法において、第二の溶媒は、ポリマーの貧溶媒であることが好ましい。
 また、ポリマーの溶解性が低く、沸点が適切な範囲の溶媒が好ましい。この条件を満たす溶媒としては、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、アセトン、メチルエチルケトン(MEK)、炭素数5~8の炭化水素を主成分とした溶媒、ヘプタン、およびトルエン等が挙げられる。
 第二の溶媒は、これらの溶媒から選ばれる1種以上を含んでいることが好ましい。
 なお、炭素数5~8の炭化水素を「主成分」とした溶媒とは、炭素数5~8の炭化水素を、全質量の50質量%以上含む溶媒のことを指す。
 OCBPを用い、電子写真感光体に好適に用いられる粘度平均分子量が3万を超えるような、粘度平均分子量が高い樹脂を得るためには、いわゆる「界面重縮合法」で製造するのが好ましい。しかしながら、従来公知の手順による界面重縮合法方法で、OCBPを原料として製造したPC樹脂は、黄色~褐色系に着色してしまう問題が知られていた。そして、なぜビスフェノールA等、他の原料を用いたポリカーボネート樹脂と比較して、顕著な着色が生じてしまうのか、従来解明されていなかった。
 本発明者らは着色の原因物質を特定することで着色のメカニズムを解明し、それにより着色を防止する手段を考案し、着色の少ない樹脂(特には、黄色度(YI)が30以下である樹脂)を得る方法を確立した。
 着色度を下げる具体的な方法としては、例えば、以下の方法がある。
(1)OCBPとアルカリが高濃度で接触する、樹脂合成(重合)工程から洗浄工程(特にOCBP残存量が多い、アルカリ水溶液を用いた洗浄工程)において、酸素との接触を低減する(上述の第1の製造方法)。
(2)樹脂溶液中、または固形状樹脂中に存在する着色物質を有機溶媒中に移動させ、着色成分を低減する(上述の第2の製造方法)。
[塗工液]
 本発明の一実施形態に係る塗工液は、本発明の一実施形態に係るPC樹脂を含む。
 本実施形態の塗工液は、本発明の一実施形態に係るPC樹脂を溶解または分散可能な溶媒を含むことが好ましい。
 本実施形態で使用される溶媒としては、本発明の一実施形態に係るPC樹脂およびその他の材料の、溶解性、分散性、粘度、蒸発速度、化学的安定性、および物理的変化に対する安定性等を考慮し、単独、あるいは複数の溶媒を混合して使用することができる。
 本実施形態において、取扱いの容易さの観点から、溶媒は、有機溶媒を含むことが好ましい。有機溶媒の具体例としては、例えば、芳香族炭化水素系溶媒(例えば、ベンゼン、トルエン、キシレン、およびクロロベンゼン等)、ケトン系溶媒(例えば、アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、およびメチルイソブチルケトン等)、エステル系溶媒(例えば、酢酸エチル、エチルセロソルブ、およびεカプロラクタム等)、ハロゲン化炭化水素系溶媒(例えば、四塩化炭素、四臭化炭素、クロロホルム、ジクロロメタン、およびテトラクロロエタン等)、エーテル系溶媒(例えば、テトラヒドロフラン、ジオキソラン、およびジオキサン等)、アミド系溶媒(例えば、ジメチルホルムアミド、およびジエチルホルムアミド等)、並びにスルホキシド系溶媒(例えば、ジメチルスルホキシド等)等を挙げることができる。プロセス適用性の観点から、好ましくは、沸点が、160℃以下の有機溶媒である。これらの溶媒は、1種単独で使用してもよく、2種以上を混合溶媒として使用してもよい。
 本実施形態において、有機溶媒は、環境衛生、蒸発性、溶解性、取り扱い性および経済性の観点から、アミド系有機溶媒およびハロゲン系有機溶媒のいずれも含まないことが好ましい。また、本実施形態において、安全性の観点から、有機溶媒は、非ハロゲン系有機溶媒を含むことが好ましい。
 非ハロゲン系有機溶媒としては、例えば、エーテル系溶媒(例えば、テトラヒドロフラン、ジオキサン、およびジオキソラン等)、芳香族炭化水素系溶媒(例えば、パラキシレン、およびトルエン等)、並びにケトン系溶媒(例えば、メチルエチルケトン、シクロヘキサノン、およびシクロペンタノン等)等を挙げることができる。中でも、本実施形態のPC樹脂の溶解性が高いことから、テトラヒドロフラン、ジオキソラン、トルエン、シクロヘキサノン、およびシクロペンタノンのうち、1種または2種以上含む有機溶媒が好ましく、テトラヒドロフランを含む有機溶媒がより好ましい。
 本実施形態の塗工液中の、本発明の一実施形態に係るPC樹脂成分の濃度は、同塗工液の使用法に合わせた適切な粘度となる濃度であればよく、0.1質量%以上40質量%以下であることが好ましく、1質量%以上35質量%以下であることがより好ましく、5質量%以上30質量%以下であることがさらに好ましい。40質量%以下であれば、粘度が高くなりすぎることもなく塗工性が良好となる。0.1質量%以上であれば、適度な粘度に保つことができ、均質な膜が得られる。また、塗工後の乾燥時間の短縮や、容易に目標とする膜厚とするのに適度な濃度となる。
 本発明の一実施形態に係るPC樹脂は黄色度(YI)が30以下の、より一層着色が少ないPC樹脂であるため、前記溶媒、特には非ハロゲン系有機溶媒に溶解した際に、着色の少ない溶液を得ることができる。従って、上記PC樹脂を含有する本実施形態の塗工液を用いれば、着色の少ない成形体を作製することができる。また、溶液の着色が少ないことは、着色の原因物質であるキノン化合物が少ないことを表す。よって、塗工液中のキノンが化学的作用および物理的作用を受けて変質することで塗工液としての物性が変化してしまうことが軽減され、結果として塗工液の物理的および化学的安定性が向上する。
 塗工液には、本発明の一実施形態に係るPC樹脂および溶媒以外に、添加剤が含まれていてもよい。添加剤としては、例えば、低分子化合物、着色剤(例えば、染料、および顔料等)、機能性化合物(例えば、電荷輸送材、電子輸送材、正孔輸送材、および電荷発生材等)、充填材(例えば、無機または有機のフィラー、ファイバー、および微粒子等)、酸化防止剤、紫外線吸収剤、並びに酸捕捉剤等が挙げられる。また、塗工液には、本発明の一実施形態に係る樹脂以外の他の樹脂が含まれていてもよい。
 これら添加剤や他の樹脂としては、PC樹脂に含まれる物質として公知の物質を用いることができる。
 また、電荷輸送物質を含む場合、製品性能の観点から、本実施形態の塗工液中のPC樹脂と電荷輸送物質との割合は、質量比で20:80~80:20であることが好ましく、30:70~70:30であることがより好ましい。
 本実施形態の塗工液中、本実施形態のPC樹脂は1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の塗工液は、通常、感光層が少なくとも電荷発生層と電荷輸送層とを含む積層型電子写真感光体の電荷輸送層の形成に好適に用いられる。また、上記塗工液に、さらに上記電荷発生物質を含有させることにより、単層型の電子写真感光体の感光層の形成に使用することも可能である。
[電子写真感光体]
 本発明の一実施形態に係る電子写真感光体は、本発明の一実施形態に係るPC樹脂を感光層に含有してなる。
 本発明の一実施形態に係るPC樹脂は着色が少ないため、本実施形態の電子写真感光体によれば、着色の少ない感光層を有する電子写真感光体を得ることができる。
 また、着色度が小さいことは、着色原因物質が少ないことを表す。そのため、本発明の一実施形態に係るPC樹脂を電子写真感光体のバインダー樹脂として使用することは、残留電位の上昇を抑制できる点で好ましい。
 本実施形態の電子写真感光体は、例えば、導電性基板上に感光層が設けられた構成とすることができる。
 本実施形態の電子写真感光体は、本発明の一実施形態に係るPC樹脂を感光層中に含有する限り、公知の種々の形式の電子写真感光体はもとより、どのような構成としてもよい。
 製造コストの観点から、好ましい電子写真感光体は、感光層が、少なくとも1層の電荷発生層と少なくとも1層の電荷輸送層とを有する積層型電子写真感光体、または、一層に電荷発生物質と電荷輸送物質とを有する単層型電子写真感光体である。
 本発明の一実施形態に係るPC樹脂は、感光層中のどの部分にも使用してもよいが、本発明の効果を十分に発揮するためには、電荷輸送層中において電荷移動物質のバインダー樹脂として使用するか、単一の感光層のバインダー樹脂として使用することが望ましい。また、本発明の一実施形態に係るPC樹脂は、感光層のみならず、表面保護層として使用することが望ましい。電荷輸送層を2層有する多層型の電子写真感光体の場合には、本発明の一実施形態に係るPC樹脂は、そのいずれか、または両方の電荷輸送層に使用することが好ましい。
 本実施形態の電子写真感光体において、本発明の一実施形態に係るPC樹脂は、1種単独で使用してもよいし、2種以上を組合せて用いてもよい。また、所望に応じて本発明の目的を阻害しない範囲で、他のポリカーボネート等のバインダー樹脂成分を含有させてもよい。さらに、酸化防止剤等の添加物を含有させてもよい。
 本実施形態の電子写真感光体は、感光層を導電性基板上に有する。感光層が電荷発生層と電荷輸送層とを有する場合、電荷発生層上に電荷輸送層が積層されていてもよく、また電荷輸送層上に電荷発生層が積層されていてもよい。また、一層中に電荷発生物質と電荷輸送物質を同時に含む感光層であってもよい。さらにまた、必要に応じて表面層に導電性または絶縁性の保護膜が形成されていてもよい。感光体のいずれかの層に本発明の一実施形態に係るPC樹脂を用いることで、電子写真プロセスにおける感度や電気特性に実用上問題のない電子写真感光体を得ることができる。
 さらに、各層間の接着性を向上させるための接着層あるいは電荷のブロッキングの役目を果すブロッキング層等の中間層等が形成されていてもよい。
 本実施形態の電子写真感光体に用いられる導電性基板材料としては、公知の材料等各種の材料を使用することができる。具体的には、例えば、アルミニウム、ニッケル、クロム、パラジウム、チタン、モリブデン、インジウム、金、白金、銀、銅、亜鉛、真鍮、ステンレス鋼、酸化鉛、酸化錫、酸化インジウム、ITO(インジウムチンオキサイド:錫ドープ酸化インジウム)、およびグラファイト等からなる板、ドラム、およびシート、導電処理(例えば、蒸着、スパッタリング、および塗布等によるコーティング等)したガラス、布、および紙、プラスチックのフィルム、シート、およびシームレスベルト、ならびに電極酸化等により金属酸化処理した金属ドラム等を使用することができる。
 前記電荷発生層は少なくとも電荷発生材料を有する。この電荷発生層はその下地となる導電性基板上に真空蒸着、スパッタ法等により電荷発生材料の層を形成するか、またはその下地となる基板上に電荷発生材料を、バインダー樹脂を用いて結着してなる層を形成することによって得ることができる。バインダー樹脂を用いる電荷発生層の形成方法としては公知の方法等各種の方法を使用することができる。通常、例えば、電荷発生材料をバインダー樹脂と共に適当な溶媒により分散または溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥せしめて湿式成形体として得る方法が、製造コストの観点から、好適である。
 前記電荷発生層における電荷発生材料としては、公知の各種の材料を使用することができる。具体的な化合物としては、例えば、セレン単体(例えば、非晶質セレン、および三方晶セレン等)、セレン合金(例えば、セレン-テルル等)、セレン化合物もしくはセレン含有組成物(例えば、AsSe等)、酸化亜鉛、周期律表第12族および第16族元素からなる無機材料(例えば、CdS-Se等)、酸化物系半導体(例えば、酸化チタン等)、シリコン系材料(例えば、アモルファスシリコン等)、無金属フタロシアニン顔料(例えば、τ型無金属フタロシアニン、およびχ型無金属フタロシアニン等)、金属フタロシアニン顔料(例えば、α型銅フタロシアニン、β型銅フタロシアニン、γ型銅フタロシアニン、ε型銅フタロシアニン、X型銅フタロシアニン、A型チタニルフタロシアニン、B型チタニルフタロシアニン、C型チタニルフタロシアニン、D型チタニルフタロシアニン、E型チタニルフタロシアニン、F型チタニルフタロシアニン、G型チタニルフタロシアニン、H型チタニルフタロシアニン、K型チタニルフタロシアニン、L型チタニルフタロシアニン、M型チタニルフタロシアニン、N型チタニルフタロシアニン、Y型チタニルフタロシアニン、オキソチタニルフタロシアニン、X線回折図におけるブラック角2θが27.3±0.2度に強い回折ピークを示すチタニルフタロシアニン、およびガリウムフタロシアニン等)、シアニン染料、アントラセン顔料、ビスアゾ顔料、ピレン顔料、多環キノン顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、ピリリウム染料、スクアリウム顔料、アントアントロン顔料、ベンズイミダゾール顔料、アゾ顔料、チオインジゴ顔料、キノリン顔料、レーキ顔料、オキサジン顔料、ジオキサジン顔料、トリフェニルメタン顔料、アズレニウム染料、トリアリールメタン染料、キサンチン染料、チアジン染料、チアピリリウム染料、ポリビニルカルバゾール、並びにビスベンゾイミダゾール顔料等が挙げられる。これら化合物は、1種を単独であるいは2種以上の化合物を混合して、電荷発生物質として用いることができる。これら電荷発生物質の中でも、性能および安全性の観点から、好適な電荷発生物質としては、特開平11-172003号公報に具体的に記載の電荷発生物質が挙げられる。
 前記電荷輸送層は、下地となる導電性基板上に、電荷輸送物質をバインダー樹脂で結着してなる層を形成することによって、湿式成形体として得ることができる。
 前記した電荷発生層や電荷輸送層のバインダー樹脂としては、特に制限はなく、公知の各種の樹脂を使用することができる。具体的には、例えば、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、ポリビニルアセタール、アルキッド樹脂、アクリル樹脂、ポリアクリロニトリル、ポリカーボネート、ポリウレタン、エポキシ樹脂、フェノール樹脂、ポリアミド、ポリケトン、ポリアクリルアミド、ブチラール樹脂、ポリエステル樹脂、塩化ビニリデン-塩化ビニル共重合体、メタクリル樹脂、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体、シリコン樹脂、シリコンアルキッド樹脂、フェノール-ホルムアルデヒド樹脂、スチレン-アルキッド樹脂、メラミン樹脂、ポリエーテル樹脂、ベンゾグアナミン樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリ-N-ビニルカルバゾール、ポリビニルブチラール、ポリビニルホルマール、ポリスルホン、カゼイン、ゼラチン、ポリビニルアルコール、エチルセルロース、ニトロセルロース、カルボキシ-メチルセルロース、塩化ビニリデン系ポリマーラテックス、アクリロニトリル-ブタジエン共重合体、ビニルトルエン-スチレン共重合体、大豆油変性アルキッド樹脂、ニトロ化ポリスチレン、ポリメチルスチレン、ポリイソプレン、ポリチオカーボネート、ポリアリレート、ポリハロアリレート、ポリアリルエーテル、ポリビニルアクリレート、およびポリエステルアクリレート等が挙げられる。
 これらは、1種を単独で用いることもできるし、また、2種以上を混合して用いることもできる。なお、前述した理由から、電荷発生層や電荷輸送層におけるバインダー樹脂としては、前記した本実施形態のPC樹脂を使用することが好適である。
 電荷輸送層の形成方法としては、公知の各種の方式を使用することができるが、製造コストの観点から、電荷輸送物質を本発明の一実施形態に係るPC樹脂とともに適当な溶媒に分散若しくは溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥して湿式成形体として得る方法が好適である。電荷輸送層形成に用いられる電荷輸送物質と、本発明の一実施形態に係るPC樹脂との配合割合は、製品性能の観点から、好ましくは質量比で20:80~80:20、より好ましくは30:70~70:30である。
 この電荷輸送層において、本発明の一実施形態に係るPC樹脂は1種単独で用いることもでき、また2種以上混合して用いることもできる。また、本発明の目的を阻害しない範囲で、他のバインダー樹脂を、本発明の一実施形態に係るPC樹脂と併用することも可能である。
 このようにして形成される電荷輸送層の厚さは、好ましくは5μm以上100μm以下程度、より好ましくは10μm以上30μm以下である。この厚さが5μm以上であれば、初期電位が低くなることもなく、100μm以下であれば、電子写真特性の低下を防ぐことができる。
 本発明の一実施形態に係るPC樹脂と共に使用できる電荷輸送物質としては、公知の各種の化合物を使用することができる。このような化合物としては、例えば、カルバゾール化合物、インドール化合物、イミダゾール化合物、オキサゾール化合物、ピラゾール化合物、オキサジアゾール化合物、ピラゾリン化合物、チアジアゾール化合物、アニリン化合物、ヒドラゾン化合物、芳香族アミン化合物、脂肪族アミン化合物、スチルベン化合物、フルオレノン化合物、ブタジエン化合物、キノン化合物、キノジメタン化合物、チアゾール化合物、トリアゾール化合物、イミダゾロン化合物、イミダゾリジン化合物、ビスイミダゾリジン化合物、オキサゾロン化合物、ベンゾチアゾール化合物、ベンズイミダゾール化合物、キナゾリン化合物、ベンゾフラン化合物、アクリジン化合物、フェナジン化合物、ポリ-N-ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリビニルアクリジン、ポリ-9-ビニルフェニルアントラセン、ピレン-ホルムアルデヒド樹脂、エチルカルバゾール樹脂、およびこれらの構造を主鎖や側鎖に有する重合体等が好適に用いられる。これら化合物は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これら電荷輸送物質の中でも、特開平11-172003号公報において具体的に例示されている化合物、および以下の構造で表される電荷輸送物質が、性能および安全性の観点から、好適に用いられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 なお、前述した理由から、本実施形態の電子写真感光体においては、電荷発生層および電荷輸送層の少なくともいずれかに本発明の一実施形態に係るPC樹脂をバインダー樹脂として用いることが好適である。
 本実施形態の電子写真感光体においては、前記導電性基板と感光層との間に、通常使用されるような下引き層を設けることができる。この下引き層としては、例えば、微粒子(例えば、酸化チタン、酸化アルミニウム、ジルコニア、チタン酸、ジルコン酸、ランタン鉛、チタンブラック、シリカ、チタン酸鉛、チタン酸バリウム、酸化錫、酸化インジウム、および酸化珪素等)、ポリアミド樹脂、フェノール樹脂、カゼイン、メラミン樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、エポキシ樹脂、セルロース、ニトロセルロース、ポリビニルアルコール、並びにポリビニルブチラール樹脂等の成分を使用することができる。また、この下引き層に用いる樹脂として、前記バインダー樹脂を用いてもよいし、本実施形態のPC樹脂を用いてもよい。これら微粒子および樹脂は、単独または種々混合して用いることができる。これらの混合物として用いる場合には、無機質微粒子と樹脂を併用すると、平滑性のよい皮膜が形成されることから好適である。
 この下引き層の厚みは、好ましくは0.01μm以上10μm以下、より好ましくは0.1μm以上7μm以下である。この厚みが0.01μm以上であると、下引き層を均一に形成することが可能となり、また10μm以下であると電子写真特性が低下することを抑制できる。
 また、前記導電性基板と感光層との間には、通常使用されるような公知のブロッキング層を設けることができる。このブロッキング層としては、前記のバインダー樹脂と同種の樹脂を用いることができる。また本発明の一実施形態に係るPC樹脂を用いてもよい。このブロッキング層の厚みは、好ましくは0.01μm以上20μm以下、より好ましくは0.1μm以上10μm以下である。この厚みが0.01μm以上であると、ブロッキング層を均一に形成することが可能となり、また20μm以下であると電子写真特性が低下することを抑制できる。
 さらに、本実施形態の電子写真感光体には、感光層の上に、保護層を積層してもよい。この保護層には、前記のバインダー樹脂と同種の樹脂を用いることができる。また、本発明の一実施形態に係るPC樹脂を用いることが好ましい。製品性能の観点から、この保護層の厚みは、好ましくは0.01μm以上20μm以下、より好ましくは0.1μm以上10μm以下である。そして、この保護層には、前記電荷発生物質、電荷輸送物質、添加剤、金属やその酸化物、窒化物、塩、合金、カーボンブラック、有機導電性化合物等の導電性材料を含有していてもよい。
 さらに、この電子写真感光体の性能向上のために、前記電荷発生層および電荷輸送層には、例えば、結合剤、可塑剤、硬化触媒、流動性付与剤、ピンホール制御剤、および分光感度増感剤(増感染料)等を添加してもよい。また、繰り返し使用に対しての残留電位の増加、帯電電位の低下、感度の低下を防止する目的で、前記電荷発生層および電荷輸送層には、種々の化学物質、酸化防止剤、界面活性剤、カール防止剤、およびレベリング剤等の添加剤を添加することができる。
 前記結合剤としては、例えば、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート共重合体、ポリスチレン樹脂、ポリメタクリレート樹脂、ポリアクリルアミド樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ポリクロロプレン樹脂、ポリアクリロニトリル樹脂、エチルセルロース樹脂、ニトロセルロース樹脂、尿素樹脂、フェノール樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、ホルマール樹脂、酢酸ビニル樹脂、酢酸ビニル/塩化ビニル共重合樹脂、およびポリエステルカーボネート樹脂等が挙げられる。また、熱硬化性樹脂および光硬化性樹脂の少なくとも一方も使用できる。いずれにしても、電気絶縁性を有し、通常の状態で皮膜を形成し得る樹脂であり、本発明の効果を損なわない範囲であれば、結合剤としては特に制限はない。製品性能の観点から、結合剤は、前記電荷輸送物質に対して、80質量%以下で用いることが好ましい。
 前記可塑剤の具体例としては、例えば、ビフェニル、塩化ビフェニル、o-ターフェニル、ハロゲン化パラフィン、ジメチルナフタレン、ジメチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジエチレングリコールフタレート、トリフェニルフォスフェート、ジイソブチルアジペート、ジメチルセバケート、ジブチルセバケート、ラウリル酸ブチル、メチルフタリールエチルグリコレート、ジメチルグリコールフタレート、メチルナフタレン、ベンゾフェノン、ポリプロピレン、ポリスチレン、およびフルオロ炭化水素等が挙げられる。
 前記硬化触媒の具体例としては、例えば、メタンスルホン酸、ドデシルベンゼンスルホン酸、およびジノニルナフタレンジスルホン酸等が挙げられ、流動性付与剤としては、例えば、モダフロー、およびアクロナール4F等が挙げられ、ピンホール制御剤としては、例えば、ベンゾイン、およびジメチルフタレート等が挙げられる。
 製造コストの観点から、これら可塑剤、硬化触媒、流動性付与剤、およびピンホール制御剤は、前記電荷輸送物質に対して、5質量%以下で用いることが好ましい。
 また、分光感度増感剤としては、増感染料を用いる場合には,例えば、トリフェニルメタン系染料(例えば、メチルバイオレット、クリスタルバイオレット、ナイトブルー、およびビクトリアブルー等)、アクリジン染料(例えば、エリスロシン、ローダミンB、ローダミン3R、アクリジンオレンジ、およびフラペオシン等)、チアジン染料(例えば、メチレンブルー、およびメチレングリーン等)、オキサジン染料(例えば、カプリブルー、およびメルドラブルー等)、シアニン染料、メロシアニン染料、スチリル染料、ピリリウム塩染料、並びにチオピリリウム塩染料等が、製造コストおよび安全性の観点から適している。
 感光層には、感度の向上、残留電位の減少、および反復使用時の疲労低減等の目的で、電子受容性物質を添加することができる。その具体例としては、例えば、無水コハク酸、無水マレイン酸、ジブロモ無水マレイン酸、無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、無水メリット酸、テトラシアノエチレン、テトラシアノキノジメタン、o-ジニトロベンゼン、m-ジニトロベンゼン、1,3,5-トリニトロベンゼン、p-ニトロベンゾニトリル、ピクリルクロライド、キノンクロルイミド、クロラニル、ブロマニル、ベンゾキノン、2,3-ジクロロベンゾキノン、ジクロロジシアノパラベンゾキノン、ナフトキノン、ジフェノキノン、トロポキノン、アントラキノン、1-クロロアントラキノン、ジニトロアントラキノン、4-ニトロベンゾフェノン、4,4’-ジニトロベンゾフェノン、4-ニトロベンザルマロンジニトリル、α-シアノ-β-(p-シアノフェニル)アクリル酸エチル、9-アントラセニルメチルマロンジニトリル、1-シアノ-(p-ニトロフェニル)-2-(p-クロロフェニル)エチレン、2,7-ジニトロフルオレノン、2,4,7-トリニトロフルオレノン、2,4,5,7-テトラニトロフルオレノン、9-フルオレニリデン-(ジシアノメチレンマロノニトリル)、ポリニトロ-9-フルオレニリデン-(ジシアノメチレンマロノジニトリル)、ピクリン酸、o-ニトロ安息香酸、p-ニトロ安息香酸、3,5-ジニトロ安息香酸、ペンタフルオロ安息香酸、5-ニトロサリチル酸、3,5-ジニトロサリチル酸、フタル酸、およびメリット酸等の電子親和力の大きい化合物が好ましい。これら化合物は電荷発生層、および電荷輸送層のいずれに加えてもよく、その配合割合は、製品性能の観点から、電荷発生物質または電荷輸送物質の量を100質量部としたときに、好ましくは0.01質量部以上200質量部以下、より好ましくは0.1質量部以上50質量部以下である。
 また、表面性の改良のため、例えば、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、四フッ化エチレン六フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂およびそれらの共重合体、並びにフッ素系グラフトポリマー等を用いてもよい。これら表面改質剤の配合割合は、前記バインダー樹脂に対して、好ましくは0.1質量%以上60質量%以下、より好ましくは5質量%以上40質量%以下である。この配合割合が0.1質量%以上であれば、表面耐久性、および表面エネルギー低下等の表面改質が充分であり、60質量%以下であれば、電子写真特性の低下を招くこともない。
 前記酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、芳香族アミン系酸化防止剤、ヒンダードアミン系酸化防止剤、スルフィド系酸化防止剤、および有機リン酸系酸化防止剤等が好ましい。これら酸化防止剤の配合割合は、製品性能の観点から、前記電荷輸送物質に対して、好ましくは0.01質量%以上10質量%以下、より好ましくは0.1質量%以上2質量%以下である。
 このような酸化防止剤の具体例としては、特開平11-172003号公報の明細書に記載された化学式[化94]~[化101]の化合物が、製造コストおよび安全性の観点から好適である。
 これら酸化防止剤は、1種単独で用いてもよく、2種以上を混合して用いてもよい、そして、これらは前記感光層のほか、表面保護層や下引き層、ブロッキング層に添加してもよい。
 前記電荷発生層、および電荷輸送層の形成の際に使用する前記溶媒の具体例としては、例えば、芳香族系溶媒(例えば、ベンゼン、トルエン、キシレン、およびクロロベンゼン等)、ケトン(例えば、アセトン、メチルエチルケトン、シクロペンタノン、およびシクロヘキサノン等)、アルコール(例えば、メタノール、エタノール、およびイソプロパノール等)、エステル(例えば、酢酸エチル、およびエチルセロソルブ等)、ハロゲン化炭化水素(例えば、四塩化炭素、四臭化炭素、クロロホルム、ジクロロメタン、およびテトラクロロエタン等)、エーテル(例えば、テトラヒドロフラン、ジオキソラン、およびジオキサン等)、並びにアミド(例えば、ジメチルホルムアミド、ジメチルスルホキシド、およびジエチルホルムアミド等)等を挙げることができる。これらの溶媒は、1種単独で使用してもよく、あるいは、2種以上を混合溶媒として使用してもよい。
 単層型電子写真感光体の感光層は、前記の電荷発生物質、電荷輸送物質、および添加剤を用い、本発明の一実施形態に係るPC樹脂をバインダー樹脂として適用することで容易に形成することができる。また、製品性能の観点から、電荷輸送物質としては前述したホール輸送性物質および電子輸送物質の少なくとも一方を添加することが好ましい。電子輸送物質としては、特開2005-139339号公報に例示される電子輸送物質が、製造コストおよび安全性の観点から好ましく適用できる。
 各層の塗布は公知の装置等各種の塗布装置を用いて行うことができ、具体的には、例えば、アプリケーター、スプレーコーター、バーコーター、チップコーター、ロールコーター、ディップコーター、およびドクタブレード等を用いて行うことができる。
 電子写真感光体における感光層の厚さは、好ましくは5μm以上100μm以下、より好ましくは8μm以上50μm以下である。感光層の厚さが5μm以上であると、初期電位が低くなることを防ぐことができ、100μm以下であると電子写真特性が低下することを抑制することができる。電子写真感光体の製造に用いられる電荷発生物質:バインダー樹脂の比率は、製品性能および製造コストの観点から、質量比で1:99~30:70であることが好ましく、3:97~15:85であることがより好ましい。また、電荷輸送物質:バインダー樹脂の比率は、製品性能および製造コストの観点から、質量比で10:90~80:20であることが好ましく、30:70~70:30であることがより好ましい。
[電子写真装置]
 本実施形態の電子写真感光体は、電子写真装置に好適に用いることができる。
 なお、本実施形態の電子写真感光体を使用するにあたっては、帯電には、例えば、コロナ放電(例えば、コロトロン、およびスコロトロン等)、並びに接触帯電(例えば、帯電ロール、および帯電ブラシ等)等が用いられる。帯電ロールとしては、例えば、DC帯電方式、およびAC電圧を重畳させたAC/DC重畳帯電方式等が挙げられる。また、露光には、ハロゲンランプ、蛍光ランプ、レーザー(半導体、He-Ne)、LED、および感光体内部露光方式のいずれを採用してもよい。現像には、例えば、乾式現像方式(例えば、カスケード現像、二成分磁気ブラシ現像、一成分絶縁トナー現像、および一成分導電トナー現像等)、並びに湿式現像方式等が用いられる。転写には、例えば、静電転写法(例えば、コロナ転写、ローラ転写、およびベルト転写等)、圧力転写法、並びに粘着転写法等が用いられる。定着には、例えば、熱ローラ定着、ラジアントフラッシュ定着、オープン定着、および圧力定着等が用いられる。さらに、クリーニング・除電には、例えば、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、およびブレードクリーナー等が用いられる。なお、クリーナーレス方式を採用してもよい。また、トナー用の樹脂としては、例えば、スチレン系樹脂、スチレン-アクリル系共重合樹脂、ポリエステル、エポキシ樹脂、および環状炭化水素の重合体等が適用できる。トナーの形状は、球形でも不定形でもよい。一定の形状(回転楕円体状、ポテト状等)に制御されたトナーも適用できる。トナーは、粉砕型トナー、懸濁重合トナー、乳化重合トナー、ケミカル造粒トナー、あるいはエステル伸長トナーのいずれでもよい。
[変形例]
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更および改良等は、本発明に含まれる。
 PC樹脂の製造方法において、第1の製造方法では、着色物質の生成を抑制するため、重合工程および洗浄工程の少なくともいずれかの工程において、溶媒中の酸素濃度が飽和溶存量の5分の1以下の溶媒を用いているが、例えば、固体状のPC樹脂を得た後に、後処理としての洗浄等を行うことで、着色物質を取り除くこともできる。
 次に、本発明を実施例および比較例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の思想を逸脱しない範囲での種々の変形および応用が可能である。
[調製例1:ポリマー溶液1の調製]
(オリゴマー溶液1の調製)
 窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減したイオン交換水2330gに、水酸化ナトリウム66.5gおよび水酸化カリウム90.6gを溶解してアルカリ性水溶液を調整した。
 上記で調整したアルカリ水溶液に、1,1-ビス(3-メチル-4-ビドロキシフェニル)シクロヘキサン(BisOCZ)116.7g、および3,3’-ジメチル-4,4’-ジヒドロキシビフェニル(OCBP)55.4gを溶解し、溶液を得た。この溶液と、窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した塩化メチレン1240mLとを混合し、撹拌しながら、冷却下、液中にホスゲン191gを60分かけて導入し、反応液を得た。次いで、この反応液を静置分離し、塩化メチレンを減圧下留去することで、分子末端にクロロホルメート基を有するオリゴマーの塩化メチレン溶液(固形分濃度:165g/L)を得た。以後、この得られた溶液を「オリゴマー溶液1」と言う。
(モノマー溶液1の調製)
 窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した8質量%濃度の水酸化ナトリウム水溶液260mLに、3,3’-ジメチル-4,4’-ジヒドロキシビフェニル25gを溶解し、モノマー溶液1を調製した。
(ポリマー溶液1の調製)
 前記調製したオリゴマー溶液1(480mL)に、分子量調節剤であるp-tert-ブチルフェノール0.9gを加えて溶解した後、前記調製したモノマー溶液1を加えて混合し、この混合液を激しく撹拌しながら触媒として7質量%濃度のトリエチルアミン水溶液を3mL加え、10~20℃に保った状態で撹拌を続けながら界面重縮合反応を1時間行った。反応終了後、窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した塩化メチレン1.5Lで生成物を希釈し、次いで、窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した水1.5Lで1回、窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した0.05規定水酸化ナトリウム水溶液1Lで2回、0.01規定塩酸1Lで1回、水1Lで2回の順で洗浄して、ポリマー溶液1を得た。得られたポリマー溶液1中の樹脂は、下記構造のポリカーボネート樹脂(ポリカーボネート共重合体)であった。下記構造のポリカーボネート樹脂において、前記一般式(1)で表される構造は50モル%であり、前記一般式(2)で表される構造は50モル%であった。下記構造の樹脂の粘度平均分子量は5.5万であった。
 なお、20℃における純水の飽和溶存酸素量は8.84mg/Lであった。
Figure JPOXMLDOC01-appb-C000032
[調製例2:オリゴマー溶液2の調製]
 窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した塩化メチレン1080Lで、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)60.0kg(224モル)を懸濁し、そこにホスゲン66.0kg(667モル)を加えて溶解した。これに、窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した塩化メチレン120Lにトリエチルアミン44.0kg(435モル)を溶解した液を、2.2~17.8℃で2時間50分かけて滴下した。17.9℃~19.6℃で30分間撹拌後、14~20℃で塩化メチレン900Lを留去した。残液に、窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した純水210L、濃塩酸1.2kg、ハイドロサルファイト450gを加えて洗浄した。その後、純水210Lで5回洗浄を繰り返し、分子末端にクロロホーメート基を有するビスフェノールZオリゴマーの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は1.14モル/L、固形物濃度は0.23kg/L、平均量体数は1.02であった。以後この得られた溶液を「オリゴマー溶液2」と言う。
[調製例3:モノマー溶液2の調製]
 窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した2Nの水酸化ナトリウム水溶液20mLを調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.1g、3,3’-ジメチル-4,4’-ビフェノール3.0gを添加し、完全に溶解して、モノマー溶液2を調製した。
[実施例1]
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、前記調製例2で得られたオリゴマー溶液2(24mL)、および窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した塩化メチレン(36mL)を注入した。これに末端停止剤としてp-tert-ブチルフェノール(以下、「PTBP」と略記する。)(0.04g)を添加し、十分に混合されるように撹拌した。
 この溶液に、前記調製例3で得られたモノマー溶液2を全量添加し、反応容器内の温度が15℃になるまで冷却した。冷却後、撹拌しながらトリエチルアミン水溶液(7vol%)を0.2mL添加し、15~23℃に保った状態で1時間撹拌を継続して反応混合物を得た。
 窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した塩化メチレン0.2L、および窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した水0.1Lで、得られた反応混合物を希釈して洗浄を行った。下層を分離し、さらに窒素ガスを吹き込むことで溶存酸素量を1.5mg/Lに低減した0.05規定水酸化ナトリウム水溶液0.1Lで1回、0.03N塩酸0.1Lで1回、水0.1Lで5回の順で洗浄を行った。洗浄後、得られた塩化メチレン溶液を、撹拌下温水中に滴下投入し、塩化メチレンを蒸発させると共に樹脂固形分を得た。得られた樹脂固形分をろ過した後に乾燥することにより、下記構造のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-A)を製造した。
 下記構造のポリカーボネート樹脂(PC-A)において、前記一般式(1)で表される構造は40モル%であり、前記一般式(2)で表される構造は60モル%であった。
 なお、23℃における純水の飽和溶存酸素量は8.39mg/Lであった。
Figure JPOXMLDOC01-appb-C000033
[比較例1]
 溶存酸素量が8mg/Lの塩化メチレンと、8mg/Lの水を用いた以外は実施例1と同様にして、ポリカーボネート共重合体(PC-z)を製造した。
[実施例2]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、水:イソプロパノール(以下、「IPA」と略記する。)=3:2(容量比)の混合溶媒を2L加え、混合溶媒の内温が70℃になるまで加温した。前記調製例1で得たポリマー溶液1(0.2L)を同反応容器にメカニカルスターラーで撹拌しながら滴下した。その後、反応容器内で気化した塩化メチレンを、冷却管で凝集し反応容器から留去させることで、反応容器内にポリマーのフレークを析出させた。反応容器内を冷却後、ポリマーフレークを取り出し、乾燥することでフレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-B)を得た。得られた樹脂の粘度平均分子量は5.5万であった。
[実施例3]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、IPAを2L加え、IPAの内温が65℃になるまで加温した。前記調製例1で得たポリマー溶液1(0.2L)を同反応容器にメカニカルスターラーで撹拌しながら滴下した。その後、反応容器内で気化した塩化メチレンを、冷却管で凝集し反応容器から留去させることで、反応容器内にポリマーのフレークを析出させた。反応容器内を冷却後、ポリマーフレークを取り出し、乾燥することでフレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-C)を得た。得られた樹脂の粘度平均分子量は5.5万であった。
[実施例4]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、IPAを2L加え、前記調製例1で得たポリマー溶液1(0.2L)を同反応容器にメカニカルスターラーで撹拌しながら滴下し、ポリマーのフレークを析出させた。得られたポリマーフレークを取り出し、乾燥することでフレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-D)を得た。得られた樹脂の粘度平均分子量は5.5万であった。
[実施例5]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、アセトンを2L加え、室温で前記調製例1で得たポリマー溶液1(0.2L)を同反応容器にメカニカルスターラーで撹拌しながら滴下した。得られたポリマーフレークを取り出し、乾燥することでフレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-E)を得た。得られた樹脂の粘度平均分子量は5.5万であった。
[実施例6]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、前記調製例1で得たポリマー溶液(0.2L)を入れ、加熱しながら撹拌し、塩化メチレンを除去しながら濃縮した。濃縮された内容物をバットに移し、さらに減圧条件、80℃で加熱し塩化メチレンを除去し、発泡状態のまま乾燥された樹脂を得た。得られた樹脂を機械式粉砕機で粉砕し、フレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-F)を得た。得られた樹脂の粘度平均分子量は5.5万であった。
[実施例7]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、IPAを2L加えた後、実施例6で得た樹脂を加えた。メカニカルスターラーで2時間撹拌した後、ポリマーを取り出し、乾燥することでフレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-G)を得た。
[実施例8]
 3Lのジャケット付き反応容器にメカニカルスターラーを設置し、メタノールを2L加え、室温で、前記調製例1で得たポリマー溶液1(0.5L)を同反応容器にメカニカルスターラーで撹拌しながら滴下し、ポリマーのフレークを析出させた。得られたポリマーフレークを取り出し、乾燥することでフレーク状のポリカーボネート樹脂(ポリカーボネート共重合体)(PC-H)を得た。得られた樹脂の粘度平均分子量は、4.5万まで低下していた。
 実施例1~8、および比較例1で得られた各々のポリカーボネート樹脂(ポリカーボネート共重合体)について、以下の評価1~4を行った。
[評価1:樹脂(固体状)の黄色度(YI)測定]
 樹脂をフレークのまま分光色差計の反射モードで黄色度(YI)を測定した。なお、分光色差計として、日本電色工業株式会社製分光色差計SE6000を用いた。結果を表1に示す。
[評価2:キノン含有量の定量]
 下記方法により、着色原因物質の構造決定および着色原因物質(前記一般式(3-1)で表される化合物および前記一般式(3-2)で表される化合物)の定量を行った。結果を表1に示す。
(1)前処理
 樹脂0.5gをジクロロメタン10mLに溶解した後、ノルマルヘキサン30mLをジクロロメタン溶液に滴下し、30分間撹拌した。上澄み20mLを採取した後、濃縮乾固した。乾固物にアセトニトリル1mLを加え、固形分をフィルター除去してLCMS/HPLC測定溶液とした。
(2)LC-MS
 下記条件で測定を行い、着色成分(着色原因物質)の構造を決定した。
 機器名:(LC部)Acquity UHPLC
     (MS部)Waters Xevo G2 Q-tof MS
・ カラム:HSS T3 (2.1×100mm, 1.8μm)
・ 移動相:A) 2mM酢酸アンモニウム水、B) MeCN、C)THF
・ グラジエント
  0min.  A)30%  B)70%  C)0%
  5min.  A)30%  B)70%  C)0%
  11min. A)5%   B)20%  C)75%
  13min. A)30%  B)70%  C)0%
  15min. A)30%  B)70%  C)0%
・ 注入量:1μl
・ 流速:0.5ml/min.
・ 検出器1:四重極-飛行時間型質量分析装置 検出モード:ESI positive
・ 検出器2:PDA
 ピーク1:溶出時間=0.60(min)m/z213.091=ジメチルジフェノキノン+H
 ピーク2:溶出時間=0.69(min)m/z213.091=ジメチルジフェノキノン+H
 ピーク3:溶出時間=0.86(min)m/z227.107=トリフェニルジフェノキノン+H
(3)HPLC
 上記(2)で得たピーク1~3について、標準物質(3,3’、5,5’-テトラ-tert-ブチルジフェノキノン)の濃度を振った検量線を基準として下記方法で定量した。
 機器名:(LC部)Acquity UHPLC
・ カラム:HSS T3 (2.1×100mm, 1.8μm)
・ 移動相:A)H2O、B) MeCN、C)THF
・ グラジエント
  0min.  A)30%  B)70%  C)0%
  5min.  A)30%  B)70%  C)0%
  11min. A)5%   B)20%  C)75%
  13min. A)30%  B)70%  C)0%
  15min. A)30%  B)70%  C)0%
・ 注入量:1μL
・ 流速:0.5mL/min.
・ 検出器:PDA
・ 定量解析:波長350-450nmの積算クロマトグラムのピーク面積
 この測定で得たピーク1、ピーク2の合計を化合物(3-1)の含有量(μg/g)とし、ピーク3を化合物(3-2)の含有量(μg/g)として算出した。
[評価3:ヘイズ値の測定]
 樹脂2gをTHF18gに溶解し、光路長10mmでヘイズ値を測定した。ヘイズ値が5%以下の場合をAとし、5%を超える場合をBとして評価した。結果を表1に示す。
[評価4:残留電位の測定]
(塗工液および電子写真感光体の製造)
 導電性基体としてアルミニウム箔(膜厚:50μm)を用い、その表面に、電荷発生層と電荷輸送層とを順次積層して積層型感光層を形成した電子写真感光体を製造した。電荷発生物質としてオキソチタニウムフタロシアニン0.5gを用い、バインダー樹脂としてブチラール樹脂0.5gを用いた。これらを、溶媒としての塩化メチレン19gに加え、ボールミルにて分散し、この分散液をバーコーターにより、前記導電性基体フィルム表面に塗工し、乾燥させることにより、膜厚約0.5μmの電荷発生層を形成した。
 次に、電荷輸送物質として下記式(CTM-1)で表される化合物0.5g、および前記樹脂0.5gを10mLのテトラヒドロフランに分散させて、塗工液を調製した。この塗工液をアプリケーターにより、前記電荷発生層の上に塗布し、乾燥し、膜厚約20μmの電荷輸送層を形成した。
 得られた感光体を直径60mmのアルミ製ドラムに張り付け、アルミドラムと感光体の電気導通が良好であることを確認した。
Figure JPOXMLDOC01-appb-C000034
 次に、上記で得たアルミドラムに貼りつけた電子写真感光体の電子写真特性を静帯電試験装置CYNTHIA54IM(ジェンテック株式会社製)を用い、EVモード、初期帯電量-700Vの条件で評価を行ったところ、いずれのサンプルも光照射により表面電位が低下する光減衰は生じ、感光体として機能することが確認された。本評価において、十分な露光を行った後に電位が変化しなくなった時の電位を「残留電位」として評価した。残留電位:50V以下をC、50Vを超えるものをDとした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000035
 表1に示すように、実施例で得られたポリカーボネート樹脂(ポリカーボネート共重合体)は、黄色度(YI)が30以下であり、着色の少ないポリカーボネート樹脂であることがわかる。

Claims (18)

  1.  ポリカーボネート樹脂であって、
     下記一般式(1)で表される構造を有し、固形物の黄色度(YI)が30以下である
     ことを特徴とするポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000001
  2.  請求項1に記載のポリカーボネート樹脂であって、
     前記ポリカーボネート樹脂をテトラヒドロフランに対して10質量%濃度で溶解した溶液のヘイズ値が5%以下である
     ことを特徴とするポリカーボネート樹脂。
  3.  請求項1または請求項2に記載のポリカーボネート樹脂であって、
     前記一般式(1)で表される構造25モル%以上65モル%以下と、下記一般式(2)で表される構造35モル%以上75モル%以下とを含む
     ことを特徴とするポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(2)において、Arは2価の芳香族基であり、ただし、Arは3,3’-ジメチル-4,4’-ビフェノールから誘導される2価の基ではない。)
  4.  請求項3に記載のポリカーボネート樹脂であって、
     前記一般式(2)中のArが、下記一般式(11)~(13)のいずれかで表される二価の基
     であることを特徴とするポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

     (前記一般式(11)~(13)中、
     R11~R14は、それぞれ独立に、
      水素原子、
      ハロゲン原子、
      トリフルオロメチル基、
      炭素数1~12のアルキル基、
      置換もしくは無置換の炭素数6~12のアリール基、
      炭素数1~12のアルコキシ基、および
      置換もしくは無置換の炭素数6~12のアリールオキシ基からなる群から選択され、
     R11~R14は、一つの芳香環に複数付加していてもよく、この場合、複数のR11は、互いに同一の基であっても異なる基であってもよく、複数のR12は、互いに同一の基であっても異なる基であってもよく、複数のR13は、互いに同一の基であっても異なる基であってもよく、複数のR14は、互いに同一の基であっても異なる基であってもよく、
     X11は、単結合または連結基であり、X11が連結基である場合の連結基は、
      -O-、
      -S-、
      -SO-、
      -SO-、
      -CR1516-、
      置換もしくは無置換の炭素数5~20のシクロアルキリデン基、
      置換もしくは無置換の炭素数5~20のビシクロ炭化水素ジイル基、
      置換もしくは無置換の炭素数5~20のトリシクロ炭化水素ジイル基、
      置換もしくは無置換の炭素数2~12のα,ω-アルキレン基、
      置換もしくは無置換の9,9-フルオレニリデン基、
      1,8-メンタンジイル基、
      2,8-メンタンジイル基、
      置換もしくは無置換の炭素数6~12のアリーレン基、および
      α,ω-ビス(ポリアルキレン)ジメチルシリルポリジメチルシロキシ基からなる群から選択され、
     R15およびR16は、それぞれ独立に、
      水素原子、
      炭素数1~12のアルキル基、
      トリフルオロメチル基、および
      置換もしくは無置換の炭素数6~12のアリール基からなる群から選択される。)
  5.  請求項1から請求項4のいずれか1項に記載のポリカーボネート樹脂であって、
     前記ポリカーボネート樹脂中、下記一般式(3-1)で表される化合物の、前記ポリカーボネート樹脂に対する存在量をX(μg/g)とし、下記一般式(3-2)で表される化合物の、前記ポリカーボネート樹脂に対する存在量をY(μg/g)とした時、X+20×Yの値が400以下である
     ことを特徴とするポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    (前記一般式(3-1)および(3-2)において、メチル基の位置関係は、シス体の化合物およびトランス体の化合物のいずれも含む。
     前記一般式(3-2)において、RおよびRは、それぞれ独立に、メチル基またはヒドロキシル基であり、m1は0または1であり、m2は0または1であり、かつm1+m2は1または2である。)
  6.  アルカリ性水溶液を用いた界面重縮合法により請求項1から請求項5のいずれか1項に記載のポリカーボネート樹脂を製造する方法であって、
     モノマーを重合してポリマーを得る重合工程と、
     前記重合工程によって得られたポリマーを洗浄する洗浄工程とを含み、
     前記重合工程において使用する溶媒および前記洗浄工程において使用する溶媒の少なくともいずれかの溶媒中の酸素濃度が飽和溶存量の5分の1以下である
     ことを特徴とするポリカーボネート樹脂の製造方法。
  7.  請求項6に記載のポリカーボネート樹脂の製造方法であって、
     前記重合工程が、モノマーを重合してオリゴマーを調製するオリゴマー調製工程、および当該調製したオリゴマーとモノマーとを重合してポリマーを調製するポリマー調製工程の2段階で行われる
     ことを特徴とするポリカーボネート樹脂の製造方法。
  8.  請求項6または請求項7に記載のポリカーボネート樹脂の製造方法であって、
     前記酸素濃度が2mg/L以下である
     ことを特徴とするポリカーボネート樹脂の製造方法。
  9.  請求項1から請求項5のいずれか1項に記載のポリカーボネート樹脂を製造する方法であって、
     ポリマーおよび第一の溶媒を含むポリマー液を得る工程と、
     前記ポリマー液と、前記第一の溶媒とは異なる第二の溶媒単独または前記第二の溶媒および水の混合溶媒と、を混合して、固体状のポリカーボネート樹脂を得る工程とを含み、
     ただし、前記第二の溶媒として、メタノールを単独、または主成分としては用いない
     ことを特徴とするポリカーボネート樹脂の製造方法。
  10.  請求項9に記載のポリカーボネート樹脂の製造方法であって、
     前記固体状のポリカーボネート樹脂を得る工程において、
     前記第二の溶媒として、前記ポリマーに対する貧溶媒を用いる
     ことを特徴とするポリカーボネート樹脂の製造方法。
  11.  請求項9に記載のポリカーボネート樹脂の製造方法であって、
     前記固体状のポリカーボネート樹脂を得る工程において、
     前記第二の溶媒として、前記ポリマーに対する貧溶媒を用い、
     前記ポリマー液と、前記第二の溶媒単独または前記第二の溶媒および水の混合溶媒と、の混合溶液を、前記第一の溶媒の沸点以上に加熱して、前記混合溶液から前記第一の溶媒を留去することで、ポリマーの溶解度の差を利用して固体状のポリカーボネート樹脂を得る
     ことを特徴とするポリカーボネート樹脂の製造方法。
  12.  請求項9から請求項11のいずれか1項に記載のポリカーボネート樹脂の製造方法であって、
     前記第二の溶媒が、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、アセトン、メチルエチルケトン、炭素数5~8の炭化水素を主成分とした溶媒、ヘプタン、およびトルエンから選ばれる1種以上を含んでいる
     ことを特徴とするポリカーボネート樹脂の製造方法。
  13.  アルカリ性水溶液を用いた界面重縮合法により下記一般式(1)で表される構造を有するポリカーボネート樹脂を製造する方法であって、
     モノマーを重合してポリマーを得る重合工程と、
     前記重合工程によって得られたポリマーを洗浄する洗浄工程とを含み、
     前記重合工程において使用する溶媒および前記洗浄工程において使用する溶媒の少なくともいずれかの溶媒中の酸素濃度が飽和溶存量の5分の1以下である
     ことを特徴とするポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000008
  14.  請求項13に記載のポリカーボネート樹脂の製造方法であって、
     前記重合工程が、モノマーを重合してオリゴマーを調製するオリゴマー調製工程、および当該調製したオリゴマーとモノマーとを重合してポリマーを調製するポリマー調製工程の2段階で行われる
     ことを特徴とするポリカーボネート樹脂の製造方法。
  15.  請求項13または請求項14に記載のポリカーボネート樹脂の製造方法により製造された
     ことを特徴とするポリカーボネート樹脂。
  16.  請求項1から請求項5のいずれか1項に記載のポリカーボネート樹脂を含む
     ことを特徴とする塗工液。
  17.  請求項1から請求項5のいずれか1項に記載のポリカーボネート樹脂を感光層に含有してなる
     ことを特徴とする電子写真感光体。
  18.  請求項17に記載の電子写真感光体を有する
     ことを特徴とする電子写真装置。
PCT/JP2017/010365 2016-03-15 2017-03-15 ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置 WO2017159727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17766723.5A EP3431524B1 (en) 2016-03-15 2017-03-15 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device
CN201780017485.7A CN108779238B (zh) 2016-03-15 2017-03-15 聚碳酸酯树脂、聚碳酸酯树脂的制造方法、涂敷液、电子照相感光体和电子照相装置
JP2018505976A JP6893205B2 (ja) 2016-03-15 2017-03-15 ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置
US16/085,459 US10787541B2 (en) 2016-03-15 2017-03-15 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051723 2016-03-15
JP2016-051723 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159727A1 true WO2017159727A1 (ja) 2017-09-21

Family

ID=59850912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010365 WO2017159727A1 (ja) 2016-03-15 2017-03-15 ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置

Country Status (5)

Country Link
US (1) US10787541B2 (ja)
EP (1) EP3431524B1 (ja)
JP (1) JP6893205B2 (ja)
CN (1) CN108779238B (ja)
WO (1) WO2017159727A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090034A (ko) * 2019-01-18 2020-07-28 주식회사 엘지화학 그래뉼 폴리카보네이트의 제조 방법
JP2022510575A (ja) * 2019-01-18 2022-01-27 エルジー・ケム・リミテッド 粒状ポリカーボネートの製造方法
CN115466392A (zh) * 2022-09-13 2022-12-13 中国科学技术大学 一种苝酰亚胺笼型聚倍半硅氧烷聚合物材料及其制备和荧光调控方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136109A (ja) * 1992-10-22 1994-05-17 Nippon G Ii Plast Kk 共重合ポリカーボネートの製造方法
JPH06228300A (ja) * 1992-12-11 1994-08-16 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH06234845A (ja) * 1992-12-15 1994-08-23 Nippon G Ii Plast Kk 芳香族ポリカーボネートの製造法
JPH06329786A (ja) * 1993-05-18 1994-11-29 Teijin Ltd 芳香族ポリカーボネートの製造方法
JPH0726010A (ja) * 1993-07-06 1995-01-27 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH0967445A (ja) * 1995-08-31 1997-03-11 Idemitsu Petrochem Co Ltd ポリカーボネート固相重合用オリゴマー粒状体の製造方法
JPH10130384A (ja) * 1996-10-30 1998-05-19 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH11199664A (ja) * 1997-11-13 1999-07-27 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
JP2002241484A (ja) * 2001-02-20 2002-08-28 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JP2003034723A (ja) * 2001-07-24 2003-02-07 Asahi Kasei Corp 芳香族ポリカーボネートの安定製造法
JP2005082677A (ja) * 2003-09-08 2005-03-31 Teijin Chem Ltd ポリカーボネート樹脂の製造方法
JP2005336332A (ja) * 2004-05-27 2005-12-08 Teijin Chem Ltd 分岐状ポリカーボネート樹脂の製造方法
WO2005121212A1 (ja) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation 芳香族ポリカーボネートの安定的製造方法
JP2006267886A (ja) * 2005-03-25 2006-10-05 Mitsubishi Gas Chem Co Inc 電子写真感光体
JP2008106214A (ja) * 2006-03-09 2008-05-08 Toray Ind Inc 密閉容器用熱可塑性樹脂
JP2008121009A (ja) * 2006-10-18 2008-05-29 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、その製造方法および電子写真感光体
JP2012051983A (ja) * 2010-08-31 2012-03-15 Teijin Chem Ltd 電子写真感光体バインダー用ポリカーボネート共重合体
JP2012162048A (ja) * 2011-02-09 2012-08-30 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂ペレットの製造方法
WO2012115088A1 (ja) * 2011-02-24 2012-08-30 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、電子写真感光体、およびポリカーボネート共重合体の製造方法
JP2012185206A (ja) * 2011-03-03 2012-09-27 Mitsubishi Chemicals Corp 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2012214774A (ja) * 2011-03-30 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法
JP2015067687A (ja) * 2013-09-27 2015-04-13 三菱化学株式会社 ポリカーボネート樹脂およびその組成物、ならびにそれらの製造方法
JP2015169800A (ja) * 2014-03-07 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955373B2 (ja) 1997-12-12 2007-08-08 出光興産株式会社 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP3980547B2 (ja) 2003-11-07 2007-09-26 京セラミタ株式会社 ポリカーボネート樹脂、電子写真感光体および画像形成装置

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136109A (ja) * 1992-10-22 1994-05-17 Nippon G Ii Plast Kk 共重合ポリカーボネートの製造方法
JPH06228300A (ja) * 1992-12-11 1994-08-16 Daicel Chem Ind Ltd ポリカーボネートの製造法
JPH06234845A (ja) * 1992-12-15 1994-08-23 Nippon G Ii Plast Kk 芳香族ポリカーボネートの製造法
JPH06329786A (ja) * 1993-05-18 1994-11-29 Teijin Ltd 芳香族ポリカーボネートの製造方法
JPH0726010A (ja) * 1993-07-06 1995-01-27 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH0967445A (ja) * 1995-08-31 1997-03-11 Idemitsu Petrochem Co Ltd ポリカーボネート固相重合用オリゴマー粒状体の製造方法
JPH10130384A (ja) * 1996-10-30 1998-05-19 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JPH11199664A (ja) * 1997-11-13 1999-07-27 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
JP2002241484A (ja) * 2001-02-20 2002-08-28 Idemitsu Petrochem Co Ltd ポリカーボネートの製造方法
JP2003034723A (ja) * 2001-07-24 2003-02-07 Asahi Kasei Corp 芳香族ポリカーボネートの安定製造法
JP2005082677A (ja) * 2003-09-08 2005-03-31 Teijin Chem Ltd ポリカーボネート樹脂の製造方法
JP2005336332A (ja) * 2004-05-27 2005-12-08 Teijin Chem Ltd 分岐状ポリカーボネート樹脂の製造方法
WO2005121212A1 (ja) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation 芳香族ポリカーボネートの安定的製造方法
JP2006267886A (ja) * 2005-03-25 2006-10-05 Mitsubishi Gas Chem Co Inc 電子写真感光体
JP2008106214A (ja) * 2006-03-09 2008-05-08 Toray Ind Inc 密閉容器用熱可塑性樹脂
JP2008121009A (ja) * 2006-10-18 2008-05-29 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、その製造方法および電子写真感光体
JP2012051983A (ja) * 2010-08-31 2012-03-15 Teijin Chem Ltd 電子写真感光体バインダー用ポリカーボネート共重合体
JP2012162048A (ja) * 2011-02-09 2012-08-30 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂ペレットの製造方法
WO2012115088A1 (ja) * 2011-02-24 2012-08-30 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、電子写真感光体、およびポリカーボネート共重合体の製造方法
JP2012185206A (ja) * 2011-03-03 2012-09-27 Mitsubishi Chemicals Corp 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2012214774A (ja) * 2011-03-30 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法
JP2015067687A (ja) * 2013-09-27 2015-04-13 三菱化学株式会社 ポリカーボネート樹脂およびその組成物、ならびにそれらの製造方法
JP2015169800A (ja) * 2014-03-07 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431524A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090034A (ko) * 2019-01-18 2020-07-28 주식회사 엘지화학 그래뉼 폴리카보네이트의 제조 방법
JP2022510575A (ja) * 2019-01-18 2022-01-27 エルジー・ケム・リミテッド 粒状ポリカーボネートの製造方法
EP3878892A4 (en) * 2019-01-18 2022-02-09 Lg Chem, Ltd. PROCESS FOR PRODUCTION OF POLYCARBONATE GRANULES
JP7082714B2 (ja) 2019-01-18 2022-06-08 エルジー・ケム・リミテッド 粒状ポリカーボネートの製造方法
KR102530453B1 (ko) 2019-01-18 2023-05-08 주식회사 엘지화학 그래뉼 폴리카보네이트의 제조 방법
CN115466392A (zh) * 2022-09-13 2022-12-13 中国科学技术大学 一种苝酰亚胺笼型聚倍半硅氧烷聚合物材料及其制备和荧光调控方法
CN115466392B (zh) * 2022-09-13 2023-07-14 中国科学技术大学 一种苝酰亚胺笼型聚倍半硅氧烷聚合物材料及其制备和荧光调控方法

Also Published As

Publication number Publication date
CN108779238A (zh) 2018-11-09
EP3431524A4 (en) 2019-10-23
EP3431524B1 (en) 2023-06-07
US10787541B2 (en) 2020-09-29
CN108779238B (zh) 2021-10-29
US20190085120A1 (en) 2019-03-21
EP3431524A1 (en) 2019-01-23
JP6893205B2 (ja) 2021-06-23
JPWO2017159727A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6441793B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体
WO2008050669A1 (en) Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
JP5680887B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2017204339A1 (ja) 樹脂組成物、電子写真感光体、および電子写真装置
JP6893205B2 (ja) ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法、塗工液、電子写真感光体、および電子写真装置
JP5349709B1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP5014390B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
WO2013191174A1 (ja) ポリカーボネート共重合体、それを用いた塗工液、および電子写真感光体
TWI702243B (zh) 聚碳酸酯共聚物,塗佈液,電子照相感光體及電氣機器
JP2004354759A (ja) 電子写真感光体
JP5680886B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP2001206943A (ja) 電子写真感光体
JP4800468B2 (ja) 電子写真感光体
EP3392235B1 (en) Bischloroformate composition, bischloroformate composition production method, bischloroformate composition containing solution, polycarbonate resin, polycarbonate resin production method, coating liquid, electrophotographic photoreceptor, and electrophotographic device
JP6853860B2 (ja) ポリカーボネート−ポリエステル共重合樹脂およびポリカーボネート−ポリエステル共重合樹脂の製造方法
JP2001215739A (ja) 電子写真感光体
JP2001255674A (ja) 電子写真感光体
WO2021201225A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
WO2018116960A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、電子写真装置、及びポリカーボネート共重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505976

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766723

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766723

Country of ref document: EP

Kind code of ref document: A1