WO2017150410A1 - ポリアミド樹脂及びそれからなるフィルム - Google Patents

ポリアミド樹脂及びそれからなるフィルム Download PDF

Info

Publication number
WO2017150410A1
WO2017150410A1 PCT/JP2017/007345 JP2017007345W WO2017150410A1 WO 2017150410 A1 WO2017150410 A1 WO 2017150410A1 JP 2017007345 W JP2017007345 W JP 2017007345W WO 2017150410 A1 WO2017150410 A1 WO 2017150410A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
acid
weight
diamine
unit
Prior art date
Application number
PCT/JP2017/007345
Other languages
English (en)
French (fr)
Inventor
前田 修一
知之 中川
秀作 和田
康成 花岡
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US16/073,045 priority Critical patent/US20190055403A1/en
Priority to EP17759876.0A priority patent/EP3424981A4/en
Priority to CN201780015003.4A priority patent/CN108779245A/zh
Priority to JP2018503121A priority patent/JP6897664B2/ja
Publication of WO2017150410A1 publication Critical patent/WO2017150410A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a polyamide resin and a film comprising the same.
  • Polyamide resins are used as food packaging materials for retort foods and the like because they are excellent in mechanical strength, thermal properties, chemical properties and gas barrier properties.
  • the required characteristics are diversified and advanced.
  • processed meat products such as ham and sausage, which are one of the food packaging applications, and in water food packaging applications, shrink the packaging material by heating while maintaining thin and practical mechanical strength and gas barrier properties.
  • a polyamide film having an excellent heat shrinkability that enables easy packing of the contents.
  • polyamide resin and the polyamide film which can improve the heat shrinkability of a polyamide film are indicated.
  • a polyamide resin whose heat shrinkability can be improved a polyamide copolymer comprising ⁇ -caprolactam, an aliphatic diamine such as hexamethylene diamine, and an aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid is disclosed (for example, , Patent Document 1).
  • An object of the present invention is to provide a polyamide resin excellent in heat shrinkability and a film comprising the same.
  • the inventors of the present invention have found that a specific polyamide resin having a unit derived from a diamine or dicarboxylic acid having an alicyclic structure in a molecular chain is excellent in heat shrinkability, and reached the present invention.
  • a polyamide resin containing three or more types of units (A) a unit derived from a lactam and / or an aminocarboxylic acid and (B) a unit derived from an equimolar salt of a diamine and a dicarboxylic acid,
  • the unit derived from the equimolar salt of (B) diamine and dicarboxylic acid is It is a polyamide resin including a unit having no (B-1) alicyclic structure and a unit having (B-2) an alicyclic structure.
  • the present invention it is possible to provide a polyamide resin excellent in heat shrinkability and a film comprising the same.
  • the film made of the polyamide resin of the present invention has good stretchability.
  • the stretched film made of the polyamide resin of the present invention has good heat shrinkability, and thus can be suitably used as a packaging material, particularly as a food packaging material.
  • a numerical range indicated using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.
  • the polyamide resin of the present invention is a polyamide resin containing three or more types of units, (A) a unit derived from a lactam and / or an aminocarboxylic acid and (B) a unit derived from an equimolar salt of a diamine and a dicarboxylic acid,
  • the unit derived from the equimolar salt of (B) diamine and dicarboxylic acid is It is a polyamide resin including a unit having no (B-1) alicyclic structure and a unit having (B-2) an alicyclic structure.
  • a unit derived from (A) lactam and / or amino carboxylic acid The unit derived from (A) lactam and / or amino carboxylic acid contained in the polyamide resin can be introduced into the polyamide resin by subjecting the lactam and / or amino carboxylic acid to polymerization.
  • lactams include ⁇ -caprolactam, ⁇ -enantholactam, ⁇ -undecalactam, ⁇ -dodecalactam, 2-pyrrolidone and the like, and at least one selected from the group consisting of these is preferable.
  • aminocarboxylic acid examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, etc. At least one selected is preferred.
  • lactams and aminocarboxylic acids may be used alone or in combination of two or more. When a lactam and an aminocarboxylic acid are used in combination, they can be used as a mixture in any ratio.
  • the content of units derived from (A) lactam and / or amino carboxylic acid contained in all units of the polyamide resin is, for example, 50 to 98% by weight, preferably 55 to 90% by weight, and more preferably It is 60 to 88% by weight. If the content of units derived from lactam and / or aminocarboxylic acid is at least the above lower limit, mechanical strength tends to be further improved. There exists a tendency for extending
  • the polyamide resin contains, as units derived from equimolar salts of (B) diamine and dicarboxylic acid, (B-1) a unit having no alicyclic structure and (B-2) a unit having an alicyclic structure .
  • a unit derived from an equimolar salt of diamine and dicarboxylic acid is a unit formed by polymerizing an equimolar salt or equimolar mixture of diamine and dicarboxylic acid, and one kind of diamine and one kind of dicarboxylic acid It is regarded as one type of unit by combination of.
  • the diamine and dicarboxylic acid constituting the unit may be directly condensed, or may be condensed through another unit or a diamine or dicarboxylic acid constituting another unit.
  • the unit having no alicyclic structure contained in the polyamide resin (B-1) has an alicyclic structure derived from an equimolar salt or equimolar mixture of diamine and dicarboxylic acid
  • diamines other than diamines having an alicyclic structure examples include linear aliphatic diamines such as ethylenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine, undecamethylenediamine and dodecamethylenediamine; 1-butyl-1, 2 -Ethanediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4 -Butanediamine, 1,4-dimethyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentane Diamine, 2,2-dimethyl-1,6-hexanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4- Methyl-1,6-hexanediamine, 3,3-di
  • dicarboxylic acids other than dicarboxylic acids having an alicyclic structure include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, Linear aliphatic dicarboxylic acids such as hexadecanedioic acid, octadecanedioic acid, eicosandioic acid; dimethylmalonic acid, 3,3-dimethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, 3- Methyl adipic acid, trimethyl adipic acid, 2-butyl octadioic acid, 2,3-dibutyl butane dioic acid, 8-ethyl octadecane
  • the unit having an alicyclic structure contained in the polyamide resin (B-2) is derived from an equimolar salt or equimolar mixture of diamine and dicarboxylic acid, and the diamine and dicarboxylic acid An equimolar salt or equimolar mixture of a dicarboxylic acid and a diamine having an alicyclic structure, or an equimolar salt or equimolar mixture of a diamine and a dicarboxylic acid having an alicyclic structure. Formed by polymerizing.
  • diamine having an alicyclic structure cyclopropanediamine, cyclopropyldiaminomethyl, cyclobutyldiaminomethyl, cyclopentyldiaminomethyl, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane, 1,2-cyclohexane
  • Alicyclic diamines such as diamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane and the like; 1-amino-3-aminomethyl-3 5,5-trimethylcyclohexane (hereinafter, also referred to as “isophorone diamine”), 5-amino-2,2,4-trimethyl-1-cyclopentanemethylamine, 5-amino-1,3,3-trimethylcyclohexane Methylamine, (4-amino
  • At least one selected from the group consisting of these is preferred, at least one selected from branched alicyclic diamines is more preferred, and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane is preferred. More preferable.
  • 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane which is a branched alicyclic diamine, is a stereoisomer generally referred to as a cis form or a trans form according to the conformation.
  • diamines having an alicyclic structure include cis-1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane and trans-1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane It is preferable to include at least one. These diamines may be used alone or in combination of two or more.
  • dicarboxylic acids having an alicyclic structure examples include alicyclic dicarboxylic acids such as 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and dicyclohexylmethane-4,4'-dicarboxylic acid.
  • An acid is mentioned, at least one is preferred, and 1,4-cyclohexanedicarboxylic acid is more preferred.
  • 1,4-cyclohexanedicarboxylic acid which is an alicyclic dicarboxylic acid has a stereoisomer generally referred to as a cis form or a trans form depending on the conformation, but any may be present. Both may be mixed and used by an appropriate ratio. That is, the dicarboxylic acid having an alicyclic structure preferably contains at least one of cis-1,4-cyclohexanedicarboxylic acid and trans-1,4-cyclohexanedicarboxylic acid, and the cis / trans ratio is 100/0 to More preferably, it is 51/49. These dicarboxylic acids may be used alone or in combination of two or more.
  • the cis / trans ratio which is the isomer ratio of diamine and dicarboxylic acid having an alicyclic structure used in the present invention, can be determined by nuclear magnetic resonance spectroscopy (NMR) or liquid chromatography.
  • NMR nuclear magnetic resonance spectroscopy
  • HPLC high performance liquid chromatography
  • the total content of units derived from equimolar salts of (B) diamine and dicarboxylic acid contained in all units of the polyamide resin is, for example, 2 to 50% by weight, preferably 10 to 45% by weight, Preferably, it is 12 to 40% by weight.
  • the stretchability and heat shrinkability tend to be further improved. If the content is less than the above upper limit, crystallinity and film physical properties tend to be further improved, and it tends to be easier to obtain an industrially advantageous stretched film.
  • the total content of (A) the content of units derived from lactam and / or amino carboxylic acid and the total content of units derived from equimolar salts of diamine and dicarboxylic acid in all units of the polyamide resin is practically From the viewpoint of physical properties, it is preferably 90 to 100% by weight, more preferably 95 to 100% by weight, and still more preferably 97 to 100% by weight.
  • the (B-2) unit having an alicyclic structure contained in all units of the polyamide resin The content is, for example, 0.1 to 49% by weight, preferably 0.5 to 49% by weight, more preferably 1 to 49% by weight, and still more preferably 1.5 to 20% by weight. .
  • the content of the unit having an alicyclic structure is at least the above lower limit, the stretchability and the heat shrinkage tend to be further improved. If the content is less than the above upper limit, practical physical properties such as mechanical strength tend to be further improved.
  • the content of the unit having an alicyclic structure (B-2) can be determined as follows.
  • the proportion of the unit having an alicyclic structure (B-2) is a dicarboxylic acid having no alicyclic structure equivalent to the weight of the diamine unit. It is the sum (weight%) with the weight of the unit.
  • the proportion of the unit having an alicyclic structure (B-2) is an alicyclic structure having an equimolar amount with the weight of the dicarboxylic acid unit.
  • the weight (% by weight) with the weight of diamine units not having is both a diamine unit and a dicarboxylic acid unit
  • the ratio of the unit having an alicyclic structure (B-2) is the weight of the diamine unit and the ratio of the dicarboxylic acid unit It is the sum (weight%) of the weight of the part which is equimolar to the weight.
  • a unit having an alicyclic structure contained in the polyamide resin is both a diamine unit and a dicarboxylic acid unit, and when the diamine unit and the dicarboxylic acid unit are not equimolar, a unit having an alicyclic structure (B-2)
  • the ratio of is the sum of the weight of both equimolar parts (% by weight), the sum of the weight of the unit having the remaining alicyclic structure and the weight of the unit not having the same molar alicyclic structure ((% by weight) % By weight).
  • (B) When the total content of units derived from equimolar salts of diamine and dicarboxylic acid is 10 to 45% by weight, it has no (B-1) alicyclic structure contained in all units of the polyamide resin
  • the unit content is 1 to 44.9% by weight, preferably 1 to 44.5% by weight, and more preferably 1 to 44% by weight.
  • practical physical properties such as mechanical strength tend to be further improved.
  • stretchability and heat shrinkability to improve more as it is below the said upper limit.
  • the unit having (B-2) alicyclic structure contained in all units of polyamide resin The content is, for example, 0.1 to 44% by weight, preferably 0.5 to 44% by weight, and more preferably 1 to 44% by weight.
  • the content of the unit having an alicyclic structure is at least the above lower limit, the stretchability and the heat shrinkage tend to be further improved. If the content is less than the above upper limit, practical physical properties such as mechanical strength tend to be further improved.
  • the unit having (B-2) an alicyclic structure contained in all units of the polyamide resin The content is, for example, 0.1 to 39% by weight, preferably 0.5 to 39% by weight, and more preferably 1 to 39% by weight.
  • the content of the unit having an alicyclic structure is at least the above lower limit, the stretchability and the heat shrinkage tend to be further improved. If the content is less than the above upper limit, practical physical properties such as mechanical strength tend to be further improved.
  • Content ratio of units having an alicyclic structure [(B-2) to total content of units derived from a lactam and / or an aminocarboxylic acid and a unit not having an alicyclic structure (B-1) B-2) / ⁇ (A) + (B-1) ⁇ ⁇ 100] is, for example, 0.1 to 97% by weight, preferably 0.5 to 97% by weight, and more preferably 1 to It is 97% by weight.
  • the percentage of units having an alicyclic structure is at least the above lower limit, stretchability and heat shrinkage tend to be further improved. If the content is less than the above upper limit, practical physical properties such as mechanical strength tend to be further improved.
  • the production of the polyamide resin can be carried out batchwise or continuously, and a batch type reaction kettle, a single tank type or multi tank type continuous reaction apparatus, a tubular continuous reaction apparatus, a single screw type kneading extruder, a twin screw type kneading extruder, etc.
  • a well-known polyamide manufacturing apparatus such as a kneading reaction extruder, can be used.
  • the polymerization method known methods such as melt polymerization, solution polymerization and solid phase polymerization can be used. These polymerization methods can be used alone or in combination as appropriate.
  • the polyamide resin can be produced, for example, by charging (A) a lactam and / or aminocarboxylic acid, (B) equimolar salts of diamine and dicarboxylic acid, and water in a pressure container and sealing at 200 to 350 ° C. In the temperature range, after polycondensation under pressure, the pressure is lowered, and the polycondensation reaction is continued in the temperature range of 200 to 350 ° C. under atmospheric pressure or under reduced pressure to obtain a target polyamide resin by increasing the molecular weight. It can be manufactured. In this case, equimolar salts of (B) diamine and dicarboxylic acid are dissolved by mixing approximately equimolar diamine and dicarboxylic acid with water, alcohol, etc.
  • nylon salt and the solution state as it is, concentration Alternatively, it may be charged as a solid nylon salt obtained by recrystallization.
  • approximately equimolar diamine and dicarboxylic acid may be charged as they are into the pressure container.
  • (B-1) diamine and dicarboxylic acid constituting a unit not having an alicyclic structure are charged as equimolar salts thereof, and (B-2) diamine and a dicarboxylic acid constituting a unit having an alicyclic structure
  • the pressure vessel may be charged as it is.
  • the equimolar mixture of approximately equimolar diamine and dicarboxylic acid substantially corresponds to an equimolar salt.
  • water used in the method for producing a polyamide resin it is desirable to use ion-exchanged water from which oxygen has been removed, distilled water, etc. It is a weight part.
  • phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid and alkali metal salts thereof can be added to promote polymerization and prevent oxidation.
  • the amount of the phosphorus-based compound added is usually 50 to 3,000 ppm relative to the polyamide resin to be obtained.
  • the polyamide resin may be manufactured by adding at least one molecular weight modifier selected from the group consisting of adipic acid, isophthalic acid, and dicarboxylic acids such as terephthalic acid. These molecular weight modifiers may be added alone or in combination of two or more.
  • the amount used varies depending on the reactivity of the molecular weight modifier and the polymerization conditions, but the relative viscosity of the polyamide to be finally obtained is in the range of 1.5 to 5.0 It is decided as appropriate.
  • the molecular weight of the polyamide resin is such that the relative viscosity ( ⁇ pair) measured by the method described in JIS K6810 is in the range of 1.5 to 5.0, preferably 2.0 to 4.5. There are no particular restrictions on the type of end groups of the polyamide resin and the concentration and molecular weight distribution thereof.
  • the high molecular weight polyamide resin is usually extracted from the reaction vessel in a molten state, cooled with water or the like, and then processed into pellets.
  • the main component is a polyamide resin containing a large amount of non-reacted monomers such as nylon 6, it is preferable to further remove the non-reacted monomers and the like by hot water washing or the like and then use for film production.
  • Polyamide resins can be suitably used for film production.
  • the invention encompasses the use of polyamide resin in the production of films.
  • a method for producing a film from a polyamide resin a known method for producing a film, for example, a production method such as a T-die method using a melt extruder, an inflation method, a tubular method, a solvent casting method, or a heat pressing method is applied. be able to.
  • the melting temperature of the polyamide in the method using a melt extruder is, for example, not less than the melting point of the polyamide used and not more than 320 ° C.
  • the film made of a polyamide resin may be a stretched film.
  • the invention encompasses the use of polyamide resins in the manufacture of oriented films.
  • a stretched film can be produced, for example, by stretching the above-mentioned film.
  • the stretching may be at least uniaxial, and may be appropriately selected according to the use of the film, such as uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching.
  • a resin composition is obtained
  • the resin composition is melt-extruded with an extruder equipped with a T-die to form an unstretched film.
  • the unstretched film may be subsequently stretched in a continuous process, or may be wound once stretched.
  • Stretching is carried out at a temperature above the glass transition temperature (hereinafter referred to as Tg) of the polyamide resin used.
  • Tg glass transition temperature
  • the first stage of sequential biaxial stretching (primary stretching) is stretched in the temperature direction of Tg or more (Tg + 50) ° C. to a draw ratio of 2 to 5 times, preferably 2.5 to 4 times in the extrusion direction of the film
  • the second stage of drawing (secondary drawing) performed in the direction perpendicular to the extrusion direction of the film is carried out at the same temperature as the primary drawing or at a slightly higher temperature, with a draw ratio of 2 to 5 times, preferably 2.5 to 4 times It is drawn.
  • a sequentially biaxially stretched film is manufactured.
  • the stretched film made of the polyamide resin of the present invention preferably has a hot water shrinkage of 20 to 60%, more preferably 22 to 60%, still more preferably 25 to 60%.
  • the stretched film made of the polyamide resin of the present invention can be suitably used as a packaging material, particularly as a food packaging material, by taking advantage of the high hot water shrinkage rate.
  • the heat stabilizer With respect to the polyamide resin, the heat stabilizer, the ultraviolet light absorber, the light stabilizer, the antioxidant, the antistatic agent, the tackifier, the sealability improver, the antifogging agent, and the release within the range that the effect of the present invention is not inhibited.
  • Additives, impact modifiers, plasticizers, pigments, dyes, perfumes, reinforcements and the like can be added.
  • Example 1 1064.01 g (82 wt%) of ⁇ -caprolactam in a 5-liter pressure vessel equipped with a stirrer, thermometer, torque meter, pressure gauge, nitrogen gas inlet, pressure relief port, pressure regulator and polymer outlet Equimolar salt of diamine (HMD) and adipic acid (AA) 50% aqueous solution 416.50 g (equimolar salt of HMD and AA: 16% by weight), 10.46 g of HMD, 1,4-cyclohexanedicarboxylic acid (CHDA: Tokyo Chemical Industry Co., Ltd., 15.49 g (the molar ratio of HMD and CHDA is 1: 1) (2 wt%) of cis / trans ratio 77/23, and sodium hypophosphite 0.065 g are charged.
  • HMD diamine
  • AA adipic acid
  • CHDA 1,4-cyclohexanedicarboxylic acid
  • CHDA 1,4-cyclohexanedicarboxylic
  • Nitrogen pressurization and depressurization were repeated several times, and the inside of the pressure vessel was purged with nitrogen and then heated gradually. Stirring was performed at a speed of 50 rpm. The temperature is raised from room temperature to 240 ° C. over 2 hours, polymerized at 240 ° C. for 2 hours, released to a gauge pressure of 0 MPa, and subsequently polymerized at 240 ° C. for 2.7 hours while flowing nitrogen gas at 260 ml / min. To obtain a polyamide. After completion of the polymerization, the stirring was stopped, and a colorless and transparent polyamide in a molten state was drawn out in a string from the polymer outlet, cooled with water, and pelletized to obtain pellets. The pellet was washed by stirring in hot water for 6 hours to remove unreacted monomer, and then vacuum dried at 110 ° C. for 72 hours. The ⁇ r of the obtained polyamide was 3.8.
  • Example 2 106 6.00 g (82% by weight) of ⁇ -caprolactam, 416.05 g of an equimolar salt solution of HMD and AA in water (416.05 g of an equimolar salt of HMD and AA: 16% by weight), isophorone diamine (IPD: Huls Japan Ltd.)
  • the product was manufactured under the trade name VESTAMIN IPD (12.93 g) and CHDA 13.06 g (the molar ratio of IPD to CHDA is 1: 1) (2% by weight).
  • the procedure of Example 1 was repeated to obtain a polyamide.
  • the ⁇ r of this polyamide was 4.1.
  • An unstretched film and a stretched film were produced from this polyamide in the same manner as in Example 1, and the hot water shrinkage was measured to be 24%.
  • Table 1 The results are shown in Table 1.
  • Example 3 1065.99 g (82 wt%) of ⁇ -caprolactam, 208.13 g of a 50% equimolar salt solution of HMD and AA (equimolar salt of HMD and AA: 8 wt%), 64.68 g of IPD, 65.41 g of CHDA (IPD
  • the molar ratio of 1 to CHDA was 1: 1) (10% by weight), and carried out in the same manner as in Example 1 to obtain a polyamide.
  • the ⁇ r of this polyamide was 3.8.
  • An unstretched film and a stretched film were produced from this polyamide by the same method as in Example 1, and the hot water shrinkage was measured to be 29%. The results are shown in Table 1.
  • Example 4 975.00 g (75% by weight) of ⁇ -caprolactam, 597.95 g of an equimolar salt solution of HMD and AA (59.95 g of an equimolar salt of HMD and AA: 23% by weight), 10.48 g of HMD, 15.52 g of CHDA (HMD The molar ratio of 1 to CHDA was 1: 1) (2% by weight), and the procedure of Example 1 was repeated to obtain a polyamide.
  • the ⁇ r of this polyamide was 4.1.
  • An unstretched film and a stretched film were produced from this polyamide in the same manner as in Example 1, and the hot water shrinkage was measured to be 28%. The results are shown in Table 1.
  • Example 5 99.0.03 g (75% by weight) of ⁇ -caprolactam, 607.22 g of a 50% equimolar salt solution of HMD and AA (23% by weight of equimolar salt of HMD and AA), 14.21 g of IPD, 12.19 g of AA (IPD
  • the molar ratio of A to AA was 1: 1) (2% by weight), and carried out in the same manner as in Example 1 to obtain a polyamide.
  • the ⁇ r of this polyamide was 4.3.
  • An unstretched film and a stretched film were produced from this polyamide in the same manner as in Example 1, and the hot water shrinkage was measured to be 27%. The results are shown in Table 1.
  • Example 6 101.50 g (75 wt%) of ⁇ -caprolactam, 624.68 g of a 50% equimolar salt solution of HMD and AA (23 wt% equimolar salt of HMD and AA), 13.51 g of IPD, 13.64 g of CHDA
  • the molar ratio of 1 to CHDA was 1: 1) (2% by weight), and the procedure of Example 1 was repeated to obtain a polyamide.
  • the ⁇ r of this polyamide was 3.9.
  • An unstretched film and a stretched film were produced from this polyamide in the same manner as in Example 1, and the hot water shrinkage was measured to be 26%. The results are shown in Table 1.
  • Example 7 ⁇ -caprolactam 912.80 g (70% by weight), equimolar salt of HMD and AA 50% aqueous solution 730.18 g (equimolar salt of HMD and AA: 28% by weight), IPD 12.97 g, CHDA 13.11 g (IPD The molar ratio of 1 to CHDA was 1: 1) (2% by weight), and the procedure of Example 1 was repeated to obtain a polyamide.
  • the ⁇ r of this polyamide was 4.3. An unstretched film and a stretched film were produced from this polyamide in the same manner as in Example 1, and the hot water shrinkage was measured to be 36%. The results are shown in Table 1.
  • Example 8 A 70-liter pressure-resistant container equipped with a stirrer, thermometer, pressure gauge, pressure controller, nitrogen gas inlet, outlet and polymer outlet: ⁇ -caprolactam 18859 g (82% by weight), equimolar between HMD and AA 3679 g of a 50% aqueous salt solution (equimolar salt of HMD and AA: 8% by weight), 1146 g of IPD, 1157 g of CHDA (1: 1 molar ratio of IPD to CHDA) (10% by weight), 1.2 g of sodium hypophosphite 2161 g of distilled water was charged, nitrogen pressurization and depressurization were repeated several times, and the inside of the pressure resistant container was purged with nitrogen and then heated up to 240 ° C.
  • the obtained polyamide was melt extruded from a T die at a molding temperature of 260 ° C. in a ⁇ 40 mm T die casting apparatus made of PLABO and cooled at a first roll temperature of 40 ° C. to produce unstretched films with a total film thickness of 50 ⁇ m and 100 ⁇ m.
  • the 50 ⁇ m unstretched film was measured for the puncture strength as it was.
  • For 100 ⁇ m using a BIX 703 laboratory stretching machine manufactured by Iwamoto Seisakusho, after performing simultaneous biaxial stretching to a stretching speed of 150 mm / sec, a stretching temperature of 80 ° C., and a stretching ratio of 2.7 ⁇ 2.7 times, heated air at 120 ° C. The heat treatment was performed to prepare a 25 ⁇ m thick biaxially stretched film. The stretched film was left to stand in an atmosphere of 23 ° C. and 50% RH overnight, and the hot water shrinkage was measured to be 39%. The results are shown in Table 2.
  • Example 9 1-5000 g (75% by weight) of ⁇ -caprolactam, 4000 g of a 50% equimolar salt solution of HMD and AA (equi-molar salt of HMD and AA: 10% by weight), 1615 g of IPD, 1385 g of AA (molar ratio of IPD to AA 1: 1) (15% by weight), 1.2 g of sodium hypophosphite and 2000 g of distilled water were charged, and carried out in the same manner as in Example 8 to obtain a polyamide.
  • the ⁇ r of this polyamide was 3.7.
  • An unstretched film and a stretched film were produced from this polyamide by the same method as in Example 8, and the hot water shrinkage was measured to be 46%.
  • Table 2 The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polyamides (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

熱収縮性に優れるポリアミド樹脂を提供する。 3種以上の単位を含み、(A)ラクタム及び/又はアミノカルボン酸に由来する単位並びに(B)ジアミン及びジカルボン酸の等モル塩に由来する単位を含み、前記(B)ジアミン及びジカルボン酸の等モル塩に由来する単位は、(B-1)脂環構造を有さない単位及び(B-2)脂環構造を有する単位を含むポリアミド樹脂である。

Description

ポリアミド樹脂及びそれからなるフィルム
 本発明はポリアミド樹脂及びそれからなるフィルムに関する。
 ポリアミド樹脂は機械的強度、熱的性質、化学的性質やガスバリヤー性に優れているため、レトルト食品などの食品包装用材料として使用されている。近年、これら食品包装用途の拡大に伴い、要求特性が多様化、高度化している。食品包装用途の一つであるハム、ソーセージなどの加工食肉製品や水物食品包装用途では、薄く、且つ実用的な機械的強度及びガスバリヤー性を維持しつつ、加熱によって包装材料を収縮させることで内容物の緊密包装が容易に可能となるような熱収縮性に優れたポリアミドフィルムが求められている。
 これまで、ポリアミドフィルムの熱収縮性が改良できるポリアミド樹脂やポリアミドフィルムが開示されている。熱収縮性が改良できるポリアミド樹脂としては、ε-カプロラクタムと、ヘキサメチレンジアミンなどの脂肪族ジアミン及びテレフタル酸、イソフタル酸などの芳香族ジカルボン酸とからなるポリアミド共重合体が開示されている(例えば、特許文献1参照)。
特開昭62-227626号公報
 しかしながら、内容物との緊密性をより向上させることができるポリアミドフィルムとそのフィルムが提供できるポリアミド樹脂が求められている。
 本発明の目的は、熱収縮性に優れるポリアミド樹脂とそれからなるフィルムを提供することにある。
 本発明者は、分子鎖中に脂環構造を有するジアミンもしくはジカルボン酸に由来する単位を有する特定のポリアミド樹脂が熱収縮性に優れることを見出し、本発明に至った。
 即ち、本発明は、
 3種以上の単位を含むポリアミド樹脂であって、
 (A)ラクタム及び/又はアミノカルボン酸に由来する単位並びに
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位を含み、
 前記(B)ジアミン及びジカルボン酸の等モル塩に由来する単位は、
 (B-1)脂環構造を有さない単位及び
 (B-2)脂環構造を有する単位
を含むポリアミド樹脂である。
 本発明により、熱収縮性に優れるポリアミド樹脂とそれからなるフィルムを提供することができる。本発明のポリアミド樹脂からなるフィルムは、延伸性が良好である。本発明のポリアミド樹脂からなる延伸フィルムは、熱収縮性が良好なので、包装用材料、特に、食品包装用材料として好適に使用できる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本発明のポリアミド樹脂は、3種以上の単位を含むポリアミド樹脂であって、
 (A)ラクタム及び/又はアミノカルボン酸に由来する単位並びに
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位を含み、
 前記(B)ジアミン及びジカルボン酸の等モル塩に由来する単位は、
 (B-1)脂環構造を有さない単位及び
 (B-2)脂環構造を有する単位
を含むポリアミド樹脂である。
[(A)ラクタム及び/又はアミノカルボン酸に由来する単位]
 ポリアミド樹脂に含まれる(A)ラクタム及び/又はアミノカルボン酸に由来する単位は、ラクタム及び/又はアミノカルボン酸を重合に供することでポリアミド樹脂中に導入することができる。
 ラクタムとしては、ε-カプロラクタム、ω-エナントラクタム、ω-ウンデカラクタム、ω-ドデカラクタム、2-ピロリドンなどが挙げられ、これらからなる群から選択される少なくとも1種が好ましい。
 アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸などが挙げられ、これらからなる群から選択される少なくとも1種が好ましい。
 これらのラクタム及びアミノカルボン酸は単独で使用してもよく、2種類以上を適宜組み合わせて使用してもよい。ラクタムとアミノカルボン酸を併用する場合、任意の割合で混合して使用することができる。
 ポリアミド樹脂の全単位中に含まれる(A)ラクタム及び/又はアミノカルボン酸に由来する単位の含有率は、例えば50~98重量%であり、好ましくは55~90重量%であり、より好ましくは60~88重量%である。ラクタム及び/又はアミノカルボン酸に由来する単位の含有率が上記下限以上であると機械的強度がより向上する傾向がある。上記上限以下であると延伸性や熱収縮性がより向上する傾向がある。
[(B)ジアミン及びジカルボン酸の等モル塩に由来する単位]
 ポリアミド樹脂は、(B)ジアミン及びジカルボン酸の等モル塩に由来する単位として、(B-1)脂環構造を有さない単位と、(B-2)脂環構造を有する単位とを含む。ここで、ジアミン及びジカルボン酸の等モル塩に由来する単位は、ジアミン及びジカルボン酸の等モル塩又は等モル混合物を重合して形成される単位であり、1種類のジアミン及び1種類のジカルボン酸の組合せで1種類の単位とみなす。なお、当該単位を構成するジアミン及びジカルボン酸は直接縮合していても、他の単位又は他の単位を構成するジアミン若しくはジカルボン酸を介して縮合していてもよい。
(B-1)脂環構造を有さない単位
 ポリアミド樹脂に含まれる(B-1)脂環構造を有さない単位は、ジアミン及びジカルボン酸の等モル塩又は等モル混合物に由来する脂環構造を有さない単位であり、脂環構造を有するジアミン以外のジアミンと、脂環構造を有するジカルボン酸以外のジカルボン酸とを重合することで形成される。
 脂環構造を有するジアミン以外のジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどの直鎖状脂肪族ジアミン;1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、1,3-ジメチル-1,4-ブタンジアミン、1,4-ジメチル-1,4-ブタンジアミン、2,3-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2-ジメチル-1,6-ヘキサンジアミン、2,5-ジメチル-1,6-ヘキサンジアミン、2,4-ジメチル-1,6-ヘキサンジアミン、3,3-ジメチル-1,6-ヘキサンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2,4-ジエチル-1,6-ヘキサンジアミン、2-メチル-1,7-ヘプタンジアミン、2,2-ジメチル-1,7-ヘプタンジアミン、2,3-ジメチル-1,7-ヘプタンジアミン、2,4-ジメチル-1,7-ヘプタンジアミン、2,5-ジメチル-1,7-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、3-メチル-1,8-オクタンジアミン、4-メチル-1,8-オクタンジアミン、1,4-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、3,4-ジメチル-1,8-オクタンジアミン、4,5-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、3,3-ジメチル-1,8-オクタンジアミン、4,4-ジメチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミンなどの分岐状脂肪族ジアミン;p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、2,3-ジアミノナフタレン、2,6-ジアミノナフタレン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチル-5,5’-ジエチルジフェニルメタン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(4-アミノ-3-メチルフェニル)プロパン、2,2’-ビス(4-アミノ-3-エチルフェニル)プロパン、2,2’-ビス(4-アミノ-3,5-ジメチルフェニル)プロパン、2,2’-ビス(4-アミノ-3,5-ジエチルフェニル)プロパン、2,2’-ビス(4-アミノ-3-メチル-5-エチルフェニル)プロパンなどの芳香族ジアミンが挙げられ、これらからなる群から選択される少なくとも1種が好ましく、直鎖状脂肪族ジアミンから選択される少なくとも1種がより好ましい。
 これらのジアミンは1種類で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
 脂環構造を有するジカルボン酸以外のジカルボン酸としては、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸などの直鎖状脂肪族ジカルボン酸;ジメチルマロン酸、3,3-ジメチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、3-メチルアジピン酸、トリメチルアジピン酸、2-ブチルオクタジオン酸、2,3-ジブチルブタンジオン酸、8-エチルオクタデカンジオン酸、8,13-ジメチルエイコサジオン酸、2-オクチルウンデカンジオン酸、2-ノニルデカンジオン酸などの分岐状脂肪族カルボン酸;イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、ジフェニルメタン-2,4-ジカルボン酸、ジフェニルメタン-3,3’-ジカルボン酸、ジフェニルメタン-3,4’-ジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸などの芳香族ジカルボン酸が挙げられ、これらからなる群から選択される少なくとも1種が好ましく、直鎖状脂肪族ジカルボン酸から選択される少なくとも1種がより好ましい。
 これらのジカルボン酸は1種類で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
(B-2)脂環構造を有する単位
 ポリアミド樹脂に含まれる(B-2)脂環構造を有する単位は、ジアミン及びジカルボン酸の等モル塩又は等モル混合物に由来し、ジアミン及びジカルボン酸の少なくとも一方に脂環構造を有する単位であり、例えば、ジカルボン酸及び脂環構造を有するジアミンの等モル塩若しくは等モル混合物、又はジアミン及び脂環構造を有するジカルボン酸の等モル塩若しくは等モル混合物を重合することで形成される。
 脂環構造を有するジアミンとしては、シクロプロパンジアミン、シクロプロピルジアミノメチル、シクロブチルジアミノメチル、シクロペンチルジアミノメチル、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサンなどの脂環族ジアミン;1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン(以下、「イソホロンジアミン」ともいう。)、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)プロパン、ビス(4-アミノ-3-エチルシクロヘキシル)メタン、ビス(4-アミノ-3,5-ジメチルシクロヘキシル)メタン、ビス(4-アミノ-3,5-ジメチルシクロヘキシル)プロパン、ビス(4-アミノ-3-エチルシクロヘキシル)メタン、ビス(4-アミノ-3-エチルシクロヘキシル)プロパン、ビス(4-アミノ-3,5-ジエチルシクロヘキシル)メタン、ビス(4-アミノ-3,5-ジエチルシクロヘキシル)プロパン、ビス(4-アミノ-3-メチル-5-エチルシクロヘキシル)メタン、ビス(4-アミノ-3-メチル-5-エチルシクロヘキシル)プロパンなどの分岐状脂環族ジアミンが挙げられ、これらからなる群から選択される少なくとも1種が好ましく、分岐状脂環族ジアミンから選択される少なくとも1種がより好ましく、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサンが更に好ましい。
 ここで、分岐状脂環族ジアミンである1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサンは、立体配座によりシス体、トランス体と一般的に称される立体異性体が存在するが、いずれであってもよく、両者を適宜の比率で混合して使用してもよい。すなわち、脂環構造を有するジアミンは、シス-1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン及びトランス-1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサンの少なくとも一方を含むことが好ましい。
 これらのジアミンは1種類で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
 脂環構造を有するジカルボン酸としては、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ジシクロヘキシルメタン-4,4’-ジカルボン酸などの脂環族ジカルボン酸が挙げられ、少なくとも1種が好ましく、1,4-シクロヘキサンジカルボン酸がより好ましい。
 ここで、脂環族ジカルボン酸である1,4-シクロヘキサンジカルボン酸は、立体配座によりシス体、トランス体と一般的に称される立体異性体が存在するが、いずれであってもよく、両者を適宜の比率で混合して使用してもよい。すなわち、脂環構造を有するジカルボン酸は、シス-1,4-シクロヘキサンジカルボン酸及びトランス-1,4-シクロヘキサンジカルボン酸の少なくとも一方を含むことが好ましく、シス体/トランス体比が100/0~51/49であることがより好ましい。
 これらのジカルボン酸は1種類で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
 本発明で使用される脂環構造を有するジアミン及びジカルボン酸の異性体比である、シス体/トランス体比は核磁気共鳴分光法(NMR)や液体クロマトグラフィーにより求めることができる。ここでは高速液体クロマトグラフィー(HPLC)により求めたシス体/トランス体比(重量%比)を指すものとする。
 ポリアミド樹脂の全単位中に含まれる(B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率は、例えば2~50重量%であり、好ましくは10~45重量%であり、より好ましくは12~40重量%である。ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が上記下限以上であると延伸性及び熱収縮性がより向上する傾向がある。上記上限以下であると結晶性及びフィルム物性がより向上し、工業的に有利な延伸フィルムを得ることがより容易になる傾向がある。
 ポリアミド樹脂の全単位中における(A)ラクタム及び/又はアミノカルボン酸に由来する単位の含有率と(B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率との合計は、実用的な物性の観点から、90~100重量%となることが好ましく、95~100重量%となることがより好ましく、97~100重量%となることがさらに好ましい。
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が、2~50重量%の場合、ポリアミド樹脂の全単位中に含まれる(B-1)脂環構造を有さない単位の含有率は、1~49.9重量%であり、好ましくは1~49.5重量%であり、より好ましくは1~49重量%である。脂環構造を有さない単位の含有率が、上記下限以上であると機械的強度など実用的な物性がより向上する傾向がある。上記上限以下であると延伸性及び熱収縮性がより向上する傾向がある。
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が、2~50重量%の場合、ポリアミド樹脂の全単位中に含まれる(B-2)脂環構造を有する単位の含有率は、例えば0.1~49重量%であり、好ましくは0.5~49重量%であり、より好ましくは1~49重量%であり、さらに好ましくは1.5~20重量%である。脂環構造を有する単位の含有率が、上記下限以上であると延伸性及び熱収縮性がより向上する傾向がある。上記上限以下であると機械的強度など実用的な物性がより向上する傾向がある。
 (B-2)脂環構造を有する単位の含有率は、次のようにして求められる。
 ポリアミド樹脂に含まれる脂環構造を有する単位がジアミン単位のみの場合、(B-2)脂環構造を有する単位の割合は、当該ジアミン単位の重量と等モルの脂環構造を有しないジカルボン酸単位の重量との和(重量%)である。同様に、ポリアミド樹脂に含まれる脂環構造を有する単位がジカルボン酸単位のみの場合、(B-2)脂環構造を有する単位の割合は、当該ジカルボン酸単位の重量と等モルの脂環構造を有しないジアミン単位の重量との和(重量%)である。ポリアミド樹脂に含まれる脂環構造を有する単位がジアミン単位とジカルボン酸単位の両方である場合、(B-2)脂環構造を有する単位の割合は、当該ジアミン単位の重量と当該ジカルボン酸単位の重量の等モルである部分の重量の和(重量%)である。ポリアミド樹脂に含まれる脂環構造を有する単位がジアミン単位とジカルボン酸単位の両方である場合で、当該ジアミン単位と当該ジカルボン酸単位が等モルでない場合、(B-2)脂環構造を有する単位の割合は、両方の等モルである部分の重量の和(重量%)に、残余の脂環構造を有する単位の重量とこれと等モルの脂環構造を有しない単位の重量との和(重量%)を加えたものである。 
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が、10~45重量%の場合、ポリアミド樹脂の全単位中に含まれる(B-1)脂環構造を有さない単位の含有率は、1~44.9重量%であり、好ましくは1~44.5重量%であり、より好ましくは1~44重量%である。脂環構造を有さない単位の含有率が、上記下限以上であると機械的強度など実用的な物性がより向上する傾向がある。上記上限以下であると延伸性及び熱収縮性がより向上する傾向がある。
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が、10~45重量%の場合、ポリアミド樹脂の全単位中に含まれる(B-2)脂環構造を有する単位の含有率は、例えば0.1~44重量%であり、好ましくは0.5~44重量%であり、より好ましくは1~44重量%である。脂環構造を有する単位の含有率が、上記下限以上であると延伸性及び熱収縮性がより向上する傾向がある。上記上限以下であると機械的強度など実用的な物性がより向上する傾向がある。
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が、12~40重量%の場合、ポリアミド樹脂の全単位中に含まれる(B-1)脂環構造を有さない単位の含有率は、1~39.9重量%であり、好ましくは1~39.5重量%であり、より好ましくは1~39重量%である。脂環構造を有さない単位の含有率が、上記下限以上であると機械的強度など実用的な物性がより向上する傾向がある。上記上限以下であると延伸性及び熱収縮性がより向上する傾向がある。
 (B)ジアミン及びジカルボン酸の等モル塩に由来する単位の総含有率が、12~40重量%の場合、ポリアミド樹脂の全単位中に含まれる(B-2)脂環構造を有する単位の含有率は、例えば0.1~39重量%であり、好ましくは0.5~39重量%であり、より好ましくは1~39重量%である。脂環構造を有する単位の含有率が、上記下限以上であると延伸性及び熱収縮性がより向上する傾向がある。上記上限以下であると機械的強度など実用的な物性がより向上する傾向がある。
 (A)ラクタム及び/又はアミノカルボン酸に由来する単位及び(B-1)脂環構造を有さない単位の総含有量に対する、(B-2)脂環構造を有する単位の含有率[(B-2)/{(A)+(B-1)}×100]は、例えば、0.1~97重量%であり、好ましくは0.5~97重量%であり、より好ましくは1~97重量%である。脂環構造を有する単位の百分率が、上記下限以上であると延伸性及び熱収縮性がより向上する傾向がある。上記上限以下であると機械的強度など実用的な物性がより向上する傾向がある。
 ポリアミド樹脂の製造は回分式でも、連続式でも実施でき、バッチ式反応釜、一槽式又は多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機などの混練反応押出機など、公知のポリアミド製造装置を用いることができる。重合方法としては溶融重合、溶液重合や固相重合などの公知の方法を用いることができる。これらの重合方法は単独で、あるいは適宜、組み合わせて用いることができる。
 ポリアミド樹脂の製造方法は、例えば、(A)ラクタム及び/又はアミノカルボン酸と、(B)ジアミン及びジカルボン酸の等モル塩と、水とを耐圧容器に仕込み、密封状態で200~350℃の温度範囲で、加圧下において重縮合した後、圧力を下げて、大気圧下又は減圧下で200~350℃の温度範囲で重縮合反応を続け、高分子量化することにより、目的のポリアミド樹脂を製造することができる。この際(B)ジアミン及びジカルボン酸の等モル塩は、ほぼ等モルのジアミンとジカルボン酸を水、アルコール等と混合して、溶解させた後、ナイロン塩を生成させ、そのままの溶液状態、濃縮した溶液状態、又は、再結晶により得られる固体状のナイロン塩として仕込んでもよい。また、ジアミン及びジカルボン酸の等モル塩の代わりに、ほぼ等モルのジアミン及びジカルボン酸をそのまま耐圧容器に仕込んでもよい。例えば(B-1)脂環構造を有しない単位を構成するジアミンとジカルボン酸とをこれらの等モル塩として仕込み、(B-2)脂環構造を有する単位を構成するジアミンとジカルボン酸とをそのまま耐圧容器仕込んでもよい。なお、ほぼ等モルのジアミン及びジカルボン酸の等モル混合物は実質的に等モル塩に相当する。
 ポリアミド樹脂の製造方法で使用する水は、酸素を除去したイオン交換水、蒸留水等を使用することが望ましく、その使用量はポリアミド樹脂を構成する原料100重量部に対して、例えば1~150重量部である。
 ポリアミド樹脂を製造する際、必要ならば、重合促進や酸化防止のため、リン酸、亜リン酸、次亜リン酸、ポリリン酸及びこれらのアルカリ金属塩などのリン系化合物を添加することができる。これらリン系化合物の添加量は、通常、得ようとするポリアミド樹脂に対して50~3,000ppmである。また、分子量調節や成形加工時の溶融粘度安定化のため、ラウリルアミン、ステアリルアミンなどのモノアミン;ヘキサメチレンジアミン、メタキシリレンジアミンなどのジアミン;酢酸、ステアリン酸、安息香酸などのモノカルボン酸;アジピン酸、イソフタル酸、テレフタル酸などのジカルボン酸からなる群から選択される少なくとも1種の分子量調節剤を添加してポリアミド樹脂を製造してもよい。これらの分子量調節剤は1種類を添加してもよいし、2種類以上を適宜組み合わせて添加してもよい。分子量調節剤を使用する場合、その使用量は、分子量調節剤の反応性や重合条件により異なるが、最終的に得ようとするポリアミドの相対粘度が、1.5~5.0の範囲になるように適宜決められる。
 ポリアミド樹脂の分子量は、JIS K6810に記載の方法で測定される相対粘度(η対)が1.5~5.0の範囲、好ましくは2.0~4.5のものである。なお、ポリアミド樹脂の末端基の種類及びその濃度や分子量分布には特別の制約は無い。
 高分子量化されたポリアミド樹脂は、通常、溶融状態で反応容器から抜き出され、水などで冷却された後、ペレット状に加工される。ナイロン6など未反応モノマーを多く含有するポリアミド樹脂が主成分のペレットの場合、さらに、熱水洗浄などにより未反応モノマーなどを除去した後、フィルムの製造等に使用することが好ましい。
 ポリアミド樹脂はフィルム製造に好適に用いることができる。すなわち、本発明はポリアミド樹脂のフィルムの製造における使用を包含する。
 ポリアミド樹脂からのフィルムの製造方法には、公知のフィルム製造方法、例えば、溶融押出機を用いたTダイ法、インフレーション法、チューブラー法、溶剤キャスト法、熱プレス法などの製造方法を適用することができる。溶融押出機を用いた方法でのポリアミドの溶融温度は、例えば、使用するポリアミドの融点以上320℃以下である。
 ポリアミド樹脂からなるフィルムは延伸フィルムであってもよい。すなわち、本発明はポリアミド樹脂の延伸フィルムの製造における使用を包含する。延伸フィルムは例えば、上記フィルムを延伸することで製造することができる。
 延伸については、少なくとも一軸方向であればよく、フィルムの使用用途に合わせて適宜、一軸延伸法、同時二軸延伸法、逐次二軸延伸法など選択することができる。中でも逐次二軸延伸法でフィルムを製造する場合、ポリアミド樹脂に必要に応じてステアリン酸カルシウム、ビスアミド化合物、シリカ、タルクなどの滑剤、スリップ剤、核剤などを添加して樹脂組成物を得た後、Tダイを備えた押出機で樹脂組成物を溶融押出して、未延伸フィルムを成形する。未延伸フィルムは引き続き、連続した工程で延伸してもよいし、一旦巻き取ってから延伸してもよい。
 延伸は使用するポリアミド樹脂のガラス転移温度(以下、Tgと記載する)以上の温度で実施される。逐次二軸延伸の一段目の延伸(一次延伸)はフィルムの押出方向へ、Tg以上(Tg+50)℃以下の温度範囲で延伸倍率2~5倍、好ましくは2.5~4倍に延伸され、次いでフィルムの押出方向と直角の方向に行う二段目の延伸(二次延伸)は、一次延伸と同じ温度かやや高い温度で、延伸倍率2~5倍、好ましくは2.5~4倍に延伸される。その後、150℃以上の温度で熱固定する工程を経て、逐次二軸延伸フィルムは製造される。
本発明のポリアミド樹脂からなる延伸フィルムは、好ましくは20~60%、より好ましくは22~60%、さらに好ましくは25~60%の熱水収縮率を有する。本発明のポリアミド樹脂からなる延伸フィルムは、高い熱水収縮率を生かして、包装用材料、特に、食品包装用材料として好適に使用できる。
 ポリアミド樹脂には、本発明の効果が阻害されない範囲で、熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、耐衝撃性改良剤、可塑剤、顔料、染料、香料、補強材などを添加することができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例等により何等の限定を受けるものではない。尚、実施例及び比較例中に示した測定値は以下の方法で測定した。
(1)ポリアミド樹脂のηr(相対粘度)の測定
 JIS K6810に準じ、96重量%の濃硫酸を溶媒として、1重量/容量%のポリアミド濃度で、ウベローデ粘度計を用い、25℃の温度で測定した。
(2)熱水収縮率の測定
 フィルムに記した標線間距離(=L)を測定後、無緊張状態で90℃の熱水中に1分間放置し、標線間の縮み量(=ΔL)を測定し、収縮率(%)=ΔL/L×100として算出した。
(3)突刺強度の測定
 試験片を23℃、50%RH条件下で24時間調湿し、同条件下で、TOYO BALDWIN社製テンシロンUTM-III-200を使用して、先端直径0.5mmの針が50mm/minの速度で試験片を突き抜けた時の最大荷重を測定し、試験片厚み(mm)で除した数値として算出した。
(実施例1)
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、放圧口、圧力調整装置及びポリマー取り出し口を備えた5リットルの圧力容器にε-カプロラクタム1064.01g(82重量%)、ヘキサメチレンジアミン(HMD)とアジピン酸(AA)との等モル塩50%水溶液416.50g(HMDとAAとの等モル塩:16重量%)、HMD10.46g、1,4-シクロヘキサンジカルボン酸(CHDA:東京化成工業株式会社製、シス体/トランス体比が77/23)15.49g(HMDとCHDAのモル比が1:1)(2重量%)、次亜リン酸ナトリウム0.065gを仕込み、窒素加圧と放圧を数回繰り返し、圧力容器内を窒素置換してから徐々に加熱を行った。撹拌は速度50rpmで行った。2時間かけて室温から240℃まで昇温し、240℃で2時間重合させた後、ゲージ圧力0MPaまで放圧し、引き続き、窒素ガスを260ml/分で流しながら、240℃で2.7時間重合を行い、ポリアミドを得た。重合終了後、撹拌を停止し、ポリマー取り出し口から溶融状態の無色透明のポリアミドを紐状に抜き出し、水冷した後、ペレタイズしてペレットを得た。このペレットを熱水中、6時間撹拌洗浄し、未反応モノマーを除去した後、110℃で72時間真空乾燥した。得られたポリアミドのηrは3.8であった。
 得られたポリアミド約2gを260℃の条件でプレス成型機を用いて、厚さ100μmの未延伸フィルムを作製した。
 この未延伸フィルムから切り出した縦90mm、横10mmの試料に標線(50mm間隔)を引いて引張試験機(オリエンテック製テンシロンRTA-10KN)に取り付け、80℃の雰囲気温度(延伸時温度)で約1分間予熱した後、同温度下、変形速度150mm/分でフィルムの縦方向に2.7倍に延伸した。この延伸フィルムを23℃、50%RHの雰囲気中に一昼夜放置した後、熱水収縮率を測定したところ、23%であった。その結果を表1に示す。
(実施例2)
 ε-カプロラクタム1066.00g(82重量%)、HMDとAAとの等モル塩50%水溶液416.05g(HMDとAAとの等モル塩:16重量%)、イソホロンジアミン(IPD:ヒュルスジャパン社製、商品名VESTAMIN IPD)12.93g、CHDA13.06g(IPDとCHDAのモル比が1:1)(2重量%)を仕込み、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.1であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、24%であった。その結果を表1に示す。
(実施例3)
 ε-カプロラクタム1065.99g(82重量%)、HMDとAAとの等モル塩50%水溶液208.13g(HMDとAAとの等モル塩:8重量%)、IPD64.68g、CHDA65.41g(IPDとCHDAのモル比が1:1)(10重量%)を仕込み、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは3.8であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、29%であった。その結果を表1に示す。
(実施例4)
 ε-カプロラクタム975.00g(75重量%)、HMDとAAとの等モル塩50%水溶液597.95g(HMDとAAとの等モル塩:23重量%)、HMD10.48g、CHDA15.52g(HMDとCHDAのモル比が1:1)(2重量%)を仕込み、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.1であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、28%であった。その結果を表1に示す。
(実施例5)
 ε-カプロラクタム990.03g(75重量%)、HMDとAAとの等モル塩50%水溶液607.22g(HMDとAAとの等モル塩:23重量%)、IPD14.21g、AA12.19g(IPDとAAのモル比が1:1)(2重量%)を仕込み、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.3であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、27%であった。その結果を表1に示す。
(実施例6)
 ε-カプロラクタム1018.50g(75重量%)、HMDとAAとの等モル塩50%水溶液624.68g(HMDとAAとの等モル塩:23重量%)、IPD13.51g、CHDA13.64g(IPDとCHDAのモル比が1:1)(2重量%)を仕込み、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは3.9であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、26%であった。その結果を表1に示す。
(実施例7)
 ε-カプロラクタム912.80g(70重量%)、HMDとAAとの等モル塩50%水溶液730.18g(HMDとAAとの等モル塩:28重量%)、IPD12.97g、CHDA13.11g(IPDとCHDAのモル比が1:1)(2重量%)を仕込み、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.3であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、36%であった。その結果を表1に示す。
(比較例1)
 ε-カプロラクタム1066.00g(82重量%)、HMDとAAとの等モル塩50%水溶液468.00g(HMDとAAとの等モル塩:18重量%)を仕込み、脂環構造を有するジアミン及びジカルボン酸を使用しない以外は、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.0であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、19%であった。その結果を表1に示す。
(比較例2)
 ε-カプロラクタム975.00g(75重量%)、HMDとAAとの等モル塩50%水溶液650.00g(HMDとAAとの等モル塩:25重量%)を仕込み、脂環構造を有するジアミン及びジカルボン酸を使用しない以外は、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.4であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、22%であった。その結果を表1に示す。
(比較例3)
 ε-カプロラクタム910.00g(70重量%)、HMDとAAとの等モル塩50%水溶液780.00g(HMDとAAとの等モル塩:30重量%)を仕込み、脂環構造を有するジアミン及びジカルボン酸を使用しない以外は、実施例1と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.0であった。このポリアミドから実施例1と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、30%であった。その結果を表1に示す。
(実施例8)
 攪拌機、温度計、圧力計、圧力制御装置、窒素ガス導入口、放圧口及びポリマー取り出し口を備えた70リットルの耐圧容器にε-カプロラクタム18859g(82重量%)、HMDとAAとの等モル塩50%水溶液3679g(HMDとAAとの等モル塩:8重量%)、IPD1146g、CHDA1157g(IPDとCHDAのモル比が1:1)(10重量%)、次亜リン酸ナトリウム1.2g及び蒸留水2161gを仕込み、窒素加圧と放圧を数回繰り返し、耐圧容器内を窒素置換してから240℃まで昇温した。240℃で2時間重合させた後、ゲージ圧力0MPaまで放圧し、引き続き、窒素ガスを260L/hで流しながら、240℃で2.9時間重合を行い、ポリアミドを得た。重合終了後、撹拌を停止し、ポリマー取り出し口から溶融状態の無色透明のポリアミドを紐状に抜き出し、水冷した後、ペレタイズしてペレットを得た。このペレットを熱水流通下、12時間洗浄し、未反応モノマーを除去した後、110℃で12時間真空乾燥した。得られたポリアミドのηrは3.9であった。
 得られたポリアミドをPLABO製φ40mmTダイキャスティング装置にて、成形温度260℃でTダイより溶融押出しし、第一ロール温度40℃で冷却後、フィルム総厚み50μmと100μmの未延伸フィルムを作製した。50μmの未延伸フィルムはそのまま突刺強度を測定した。100μmについては、岩本製作所製BIX703ラボ延伸機を使用して、延伸速度150mm/sec、延伸温度80℃、延伸倍率2.7×2.7倍に同時二軸延伸した後、120℃の加熱空気で熱処理を行い、厚み25μmの二軸延伸フィルムを作製した。この延伸フィルムを23℃、50%RHの雰囲気中に一昼夜放置した後、熱水収縮率を測定したところ、39%であった。その結果を表2に示す。
(実施例9)
 ε-カプロラクタム15000g(75重量%)、HMDとAAとの等モル塩50%水溶液4000g(HMDとAAとの等モル塩:10重量%)、IPD1615g、AA1385g(IPDとAAのモル比が1:1)(15重量%)、次亜リン酸ナトリウム1.2g及び蒸留水2000gを仕込み、実施例8と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは3.7であった。このポリアミドから実施例8と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、46%であった。その結果を表2に示す。
(比較例4)
 ε-カプロラクタム18860g(82重量%)、HMDとAAとの等モル塩50%水溶液8280g(HMDとAAとの等モル塩:18重量%)を仕込み、脂環構造を有するジアミン及びジカルボン酸を使用しない以外は、実施例8と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.0であった。このポリアミドから実施例8と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、35%であった。その結果を表2に示す。
(比較例5)
 ε-カプロラクタム17250g(75重量%)、HMDとAAとの等モル塩50%水溶液11500g(HMDとAAとの等モル塩:25重量%)を仕込み、脂環構造を有するジアミン及びジカルボン酸を使用しない以外は、実施例8と同様の方法で実施し、ポリアミドを得た。このポリアミドのηrは4.4であった。このポリアミドから実施例8と同様の方法で未延伸フィルム、延伸フィルムを作製し熱水収縮率を測定したところ、41%であった。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (14)

  1.  3種以上の単位を含むポリアミド樹脂であって、
     (A)ラクタム及び/又はアミノカルボン酸に由来する単位並びに
     (B)ジアミン及びジカルボン酸の等モル塩に由来する単位を含み、
     前記(B)ジアミン及びジカルボン酸の等モル塩に由来する単位は、
     (B-1)脂環構造を有さない単位及び
     (B-2)脂環構造を有する単位
    を含むポリアミド樹脂。
  2.  ポリアミド樹脂の全単位中に、
     前記(A)ラクタム及び/又はアミノカルボン酸に由来する単位を50~98重量%、
     前記(B-2)脂環構造を有する単位を1~49重量%含む請求項1に記載のポリアミド樹脂。
  3.  前記(B-1)脂環構造を有さない単位が、ヘキサメチレンジアミン及びアジピン酸の等モル塩に由来する単位である請求項1又は2に記載のポリアミド樹脂。
  4.  前記(B-2)脂環構造を有する単位が、分岐状脂環族ジアミンに由来する部分構造を含む請求項1~3のいずれかに記載のポリアミド樹脂。
  5.  前記分岐状脂環族ジアミンが、シス-1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン及び/又はトランス-1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサンを含む請求項4に記載のポリアミド樹脂。
  6.  前記(B-2)脂環構造を有する単位が、シス-1,4-シクロヘキサンジカルボン酸及び/又はトランス-1,4-シクロヘキサンジカルボン酸に由来する部分構造を含む請求項1~5のいずれかに記載のポリアミド樹脂。
  7.  請求項1~6のいずれかに記載のポリアミド樹脂からなるフィルム。
  8.  請求項7に記載のフィルムからなる熱収縮性に優れたフィルム。
  9.  請求項1~6のいずれかに記載のポリアミド樹脂からなる延伸フィルム。
  10.  請求項9に記載の延伸フィルムからなる熱収縮性に優れた延伸フィルム。
  11.  請求項7に記載のフィルムを延伸してなる延伸フィルム。
  12.  請求項11に記載の延伸フィルムからなる熱収縮性に優れた延伸フィルム。
  13.  熱水収縮率が20~60%である請求項11に記載の延伸フィルム。
  14. 請求項13に記載の延伸フィルムからなる包装用材料。
PCT/JP2017/007345 2016-03-03 2017-02-27 ポリアミド樹脂及びそれからなるフィルム WO2017150410A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/073,045 US20190055403A1 (en) 2016-03-03 2017-02-27 Polyamide resin and film comprising the same
EP17759876.0A EP3424981A4 (en) 2016-03-03 2017-02-27 POLYAMIDE RESIN AND FILM COMPRISING SAME
CN201780015003.4A CN108779245A (zh) 2016-03-03 2017-02-27 聚酰胺树脂和由其形成的薄膜
JP2018503121A JP6897664B2 (ja) 2016-03-03 2017-02-27 ポリアミド樹脂及びそれからなるフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016040705 2016-03-03
JP2016-040705 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017150410A1 true WO2017150410A1 (ja) 2017-09-08

Family

ID=59742960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007345 WO2017150410A1 (ja) 2016-03-03 2017-02-27 ポリアミド樹脂及びそれからなるフィルム

Country Status (6)

Country Link
US (1) US20190055403A1 (ja)
EP (1) EP3424981A4 (ja)
JP (1) JP6897664B2 (ja)
CN (1) CN108779245A (ja)
TW (1) TW201800442A (ja)
WO (1) WO2017150410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111888A1 (ja) * 2017-12-05 2019-06-13 宇部興産株式会社 熱収縮性ポリアミドフィルム及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040009A1 (ja) * 2018-08-21 2020-02-27 三菱瓦斯化学株式会社 非晶性ポリアミド樹脂の製造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227626A (ja) 1986-03-31 1987-10-06 Kohjin Co Ltd 収縮性ポリアミドフイルム及びその製造法
JPH06299415A (ja) * 1993-04-14 1994-10-25 Toray Ind Inc ポリアミドモノフィラメント
JPH1143542A (ja) * 1997-05-28 1999-02-16 Toray Ind Inc ポリアミド樹脂、ポリアミド樹脂組成物および成形体
JP2004175996A (ja) * 2002-11-28 2004-06-24 Ube Ind Ltd ポリアミド及びそれを用いたポリアミド成形物
JP2007178660A (ja) * 2005-12-27 2007-07-12 Fuji Electric Device Technology Co Ltd 電子写真感光体
WO2013002075A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 ダイレクトブローボトル
WO2013002081A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 チューブ状容器
WO2013002079A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 積層材及び紙容器
WO2013002077A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 シート
WO2013002078A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 積層材及び紙容器
WO2013002073A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 多層インジェクション成形体
WO2013002076A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 多層シート
JP2014005343A (ja) * 2012-06-22 2014-01-16 Asahi Kasei Chemicals Corp 共重合ポリアミド
JP2015131438A (ja) * 2014-01-14 2015-07-23 三菱瓦斯化学株式会社 多層インジェクション成形体
WO2015114017A1 (en) * 2014-01-28 2015-08-06 Radicifil S.P.A. Three-component copolymers having high transparency and low gas permeability and process for the production thereof
JP2015142986A (ja) * 2014-01-31 2015-08-06 三菱瓦斯化学株式会社 多層インジェクション成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161753A (ja) * 1989-11-20 1991-07-11 Fuji Photo Film Co Ltd 湿し水不要感光性平版印刷版
JP2739387B2 (ja) * 1991-04-25 1998-04-15 富士写真フイルム株式会社 水無し平版印刷版及びその製版方法
US6297345B1 (en) * 1999-05-27 2001-10-02 Ube Industries, Ltd. Polyamide having excellent stretching properties
JP2003138012A (ja) * 2001-11-08 2003-05-14 Ube Ind Ltd 延伸性に優れたポリアミド
WO2012093722A1 (ja) * 2011-01-07 2012-07-12 旭化成ケミカルズ株式会社 共重合ポリアミド
WO2014096241A1 (en) * 2012-12-20 2014-06-26 Dsm Ip Assets B.V. Process for producing multilayer blown film and film obtained by the process
JP6137065B2 (ja) * 2014-06-23 2017-05-31 コニカミノルタ株式会社 画像形成装置及び画像形成制御プログラム並びに画像形成制御方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227626A (ja) 1986-03-31 1987-10-06 Kohjin Co Ltd 収縮性ポリアミドフイルム及びその製造法
JPH06299415A (ja) * 1993-04-14 1994-10-25 Toray Ind Inc ポリアミドモノフィラメント
JPH1143542A (ja) * 1997-05-28 1999-02-16 Toray Ind Inc ポリアミド樹脂、ポリアミド樹脂組成物および成形体
JP2004175996A (ja) * 2002-11-28 2004-06-24 Ube Ind Ltd ポリアミド及びそれを用いたポリアミド成形物
JP2007178660A (ja) * 2005-12-27 2007-07-12 Fuji Electric Device Technology Co Ltd 電子写真感光体
WO2013002075A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 ダイレクトブローボトル
WO2013002081A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 チューブ状容器
WO2013002079A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 積層材及び紙容器
WO2013002077A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 シート
WO2013002078A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 積層材及び紙容器
WO2013002073A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 多層インジェクション成形体
WO2013002076A1 (ja) * 2011-06-27 2013-01-03 三菱瓦斯化学株式会社 多層シート
JP2014005343A (ja) * 2012-06-22 2014-01-16 Asahi Kasei Chemicals Corp 共重合ポリアミド
JP2015131438A (ja) * 2014-01-14 2015-07-23 三菱瓦斯化学株式会社 多層インジェクション成形体
WO2015114017A1 (en) * 2014-01-28 2015-08-06 Radicifil S.P.A. Three-component copolymers having high transparency and low gas permeability and process for the production thereof
JP2015142986A (ja) * 2014-01-31 2015-08-06 三菱瓦斯化学株式会社 多層インジェクション成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111888A1 (ja) * 2017-12-05 2019-06-13 宇部興産株式会社 熱収縮性ポリアミドフィルム及びその製造方法

Also Published As

Publication number Publication date
EP3424981A1 (en) 2019-01-09
EP3424981A4 (en) 2019-10-23
CN108779245A (zh) 2018-11-09
JP6897664B2 (ja) 2021-07-07
TW201800442A (zh) 2018-01-01
US20190055403A1 (en) 2019-02-21
JPWO2017150410A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
EP1055695B1 (en) Polyamide having excellent stretching properties
JP2004083817A (ja) ポリアミド
JPH0253823A (ja) ブロックコポリアミドの製造法
JP3589088B2 (ja) 逐次二軸延伸フィルム
WO2017150410A1 (ja) ポリアミド樹脂及びそれからなるフィルム
JP7180604B2 (ja) ポリアミド樹脂及びそれからなるフィルム
JP2017505364A (ja) 高い透明性および低いガス透過性を有する三成分コポリマーならびにその製造方法
JP2003138012A (ja) 延伸性に優れたポリアミド
JP3994562B2 (ja) 延伸性に優れたポリアミド
JP6040985B2 (ja) 二軸延伸物
JP2005088344A (ja) ポリアミド多層フィルム
EP0982342B1 (en) Polyamide having excellent stretching properties
US20150329672A1 (en) Polyamide Production Method
JP3589094B2 (ja) 逐次二軸延伸フィルム
JP2004175996A (ja) ポリアミド及びそれを用いたポリアミド成形物
JP3589101B2 (ja) 逐次二軸延伸フィルム
JP4154803B2 (ja) ポリアミド共重合体及びその製造法
JP2018070828A (ja) ポリアミド樹脂及びそれを用いたフィルム
JP2003138013A (ja) 延伸性に優れたポリアミド
JP2019182930A (ja) 透明ポリアミド、透明ポリアミド組成物および透明ポリアミド成形体
US20240174806A1 (en) High temperature resistant semi-aromatic polyamide resin, preparation method, composition and article thereof
JP4292394B2 (ja) ポリアミド組成物及びポリアミドフィルム
JP2005113032A (ja) ポリアミド組成物及びポリアミドフィルム
JP2000239375A (ja) 延伸性に優れたポリアミド
EP4368656A1 (en) High-temperature-resistant semi-aromatic polyamide and preparation method therefor, composition, and molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503121

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759876

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759876

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759876

Country of ref document: EP

Kind code of ref document: A1