WO2017150318A1 - ロボットアーム機構及び直動伸縮機構 - Google Patents

ロボットアーム機構及び直動伸縮機構 Download PDF

Info

Publication number
WO2017150318A1
WO2017150318A1 PCT/JP2017/006721 JP2017006721W WO2017150318A1 WO 2017150318 A1 WO2017150318 A1 WO 2017150318A1 JP 2017006721 W JP2017006721 W JP 2017006721W WO 2017150318 A1 WO2017150318 A1 WO 2017150318A1
Authority
WO
WIPO (PCT)
Prior art keywords
frames
rollers
robot arm
drive unit
roller unit
Prior art date
Application number
PCT/JP2017/006721
Other languages
English (en)
French (fr)
Inventor
尹 祐根
Original Assignee
ライフロボティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライフロボティクス株式会社 filed Critical ライフロボティクス株式会社
Priority to CN201780013868.7A priority Critical patent/CN108698236A/zh
Priority to JP2018503079A priority patent/JP6725640B2/ja
Priority to DE112017001033.0T priority patent/DE112017001033T5/de
Publication of WO2017150318A1 publication Critical patent/WO2017150318A1/ja
Priority to US16/115,806 priority patent/US20180372194A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/06Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member
    • F16H19/0636Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member the flexible member being a non-buckling chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/025Arms extensible telescopic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/06Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member
    • F16H19/0645Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member the flexible push or pull member having guiding means, i.e. the flexible member being supported at least partially by a guide to transmit the reciprocating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/18Chains having special overall characteristics
    • F16G13/20Chains having special overall characteristics stiff; Push-pull chains

Definitions

  • Embodiments of the present invention relate to a robot arm mechanism and a linear motion extension mechanism.
  • the linear motion expansion / contraction mechanism has a plurality of plate-shaped pieces that are flexibly connected and a plurality of U-shaped grooves that are also flexibly connected on the bottom side, and these are joined to each other. By doing so, a columnar arm portion that is straightened and has a certain rigidity is formed.
  • the motor of the linear motion expansion / contraction mechanism rotates forward, the arm portion that has become a columnar body is fed out from the feeding mechanism, and when it rotates in the reverse direction, the arm portion is pulled back. Behind the feed mechanism, the joined state of the frames is released and the rigid state is restored to the bent state.
  • the two types of pieces recovered to the bent state are bent in the same direction, and are accommodated together in the support column.
  • rollers that firmly sandwich the two types of frames.
  • These rollers are made of, for example, a self-lubricating resin.
  • the rollers are subjected to a load from the arm portion, the hand provided on the arm portion, and the work gripped by the hand, are most likely to be damaged, and are relatively frequently replaced. It can be said.
  • the purpose is to improve the workability of exchanging the rollers constituting the linear motion expansion / contraction mechanism.
  • a support column having a rotating rotary joint is supported on a base, and a undulation having a undulating rotary joint is placed on the support, and the undulating unit is directly mounted on the undulating unit.
  • a linear motion expansion / contraction mechanism provided with a dynamic elastic arm portion is provided.
  • a wrist part to which an end effector can be attached is provided at the tip of the arm part.
  • the wrist is equipped with at least one rotary joint for changing the posture of the end effector.
  • the linear motion expansion / contraction mechanism has a plurality of first pieces having a flat plate shape and a plurality of second pieces having a groove shape having a U-shaped cross section.
  • the first frames are connected to bendable at the front and rear ends.
  • the plurality of second frames are connected to each other so that they can be bent at the front and rear ends of the bottom plate.
  • the heads of the plurality of first frames and the heads of the plurality of second frames are coupled to the coupling unit.
  • the feeding mechanism includes a plurality of rollers that firmly hold the first and second frames and support them so as to be movable back and forth in order to secure the joined state of the first and second frames, and a first frame separated behind the rollers.
  • a drive gear that feeds the first frame forward and pulls it backward.
  • the feed-out mechanism is composed of a separate roller unit equipped with a roller and a drive unit equipped with a drive gear.
  • the drive unit is fixed to the rotating part of the undulating part.
  • the roller unit is configured to be detachable from the drive unit.
  • FIG. 1 is an external perspective view of a robot arm mechanism according to the present embodiment.
  • FIG. 2 is a side view of the robot arm mechanism of FIG.
  • FIG. 3 is a view of the internal structure of the robot arm mechanism of FIG. 1 as viewed from the cross-sectional direction.
  • FIG. 4 is a diagram showing the configuration of the robot arm mechanism of FIG.
  • FIG. 5 is a perspective view of the arm delivery mechanism of FIG.
  • a polar coordinate type robot arm mechanism provided with a linear motion expansion / contraction mechanism will be described as a robot arm mechanism according to the present embodiment, but other types of robot arm mechanisms may be used.
  • FIG. 1 is a perspective view of a polar coordinate type robot arm mechanism according to the present embodiment
  • FIG. 2 is a side view thereof
  • FIG. 3 is a side view of the robot arm mechanism with a side cover removed.
  • FIG. 4 shows the configuration of the robot arm mechanism in graphical symbols.
  • the base 1 of the robot arm mechanism is typically provided with a column portion 2 that forms a cylindrical body vertically.
  • the strut portion 2 accommodates a first joint portion J1 as a turning and rotating joint portion.
  • the first joint portion J1 includes a torsional rotation axis RA1.
  • the rotation axis RA1 is parallel to the vertical direction.
  • the arm portion 5 pivots horizontally by the rotation of the first joint portion J1.
  • the column part 2 includes a lower part 2-1 and an upper part 2-2.
  • the lower part 2-1 is connected to the fixed part of the first joint part J1.
  • the upper part 2-2 is connected to the rotating part of the first joint part J1, and rotates about the rotation axis RA1.
  • the first and second top rows of the third joint portion J3 serving as a linear motion expansion / contraction mechanism, which will be described later, are housed in the hollow interior of the column portion 2 that forms a cylindrical body.
  • a undulating part 4 for accommodating the second joint part J2 as the undulating rotary joint part is installed in the upper part 2-2 of the column part 2.
  • the second joint portion J2 is a bending rotation joint.
  • the rotation axis RA2 of the second joint portion J2 is perpendicular to the rotation axis RA1.
  • the second joint portion J2 is placed on the upper portion 2-2 of the column portion 2.
  • the arm portion 5 undulates up and down by the rotation of the second joint portion J2.
  • the third joint portion J3 is provided by a linear motion expansion / contraction mechanism. Although details will be described later, the linear motion expansion / contraction mechanism has a structure newly developed by the inventors, and is clearly distinguished from a so-called linear motion joint in terms of a movable range.
  • the arm portion 5 of the third joint portion J3 is freely bendable, the bending is limited when the arm portion 5 is fed forward along the central axis (extension / contraction center axis RA3) from the base feed mechanism 56 of the arm portion 5, and linear rigidity is thus achieved. Is secured. When the arm part 5 is pulled back, the bending is recovered.
  • the arm unit 5 includes a first frame row 51 and a second frame row 52.
  • the first frame row 51 is composed of a plurality of first frames 53 that are connected to be freely bent.
  • the first frame 53 is formed in a substantially flat plate shape.
  • the second frame row 52 includes a plurality of second frames 54.
  • the second frame 54 forms a groove-like body having a U-shaped cross section.
  • the second frame 54 is connected to be bent by a connecting shaft of the bottom plate.
  • the bending of the second frame row 52 is limited at a position where the end surfaces of the side plates of the second frame 54 come into contact with each other. At that position, the second frame row 52 is linearly arranged.
  • the first first frame 53 in the first frame sequence 51 and the first second frame 54 in the second frame sequence 52 are connected by a combined frame 55.
  • the combined frame 55 has a shape obtained by combining the first frame 53 and the second frame 54.
  • the first and second frame rows 51 and 52 are pressed and joined to each other when passing between a plurality of rollers 59 arranged vertically. By joining, the first and second frame rows 51 and 52 exhibit linear rigidity and constitute a columnar arm portion 5.
  • a drive gear 56 is provided behind the roller 59.
  • the drive gear 56 is connected to a stepping motor via a speed reducer (not shown).
  • a linear gear is formed at the center of the inner surface of the first frame 53 along the connecting direction. When the plurality of first frames 53 are arranged in a straight line, adjacent linear gears are connected in a straight line to form a long linear gear.
  • the drive gear 56 is meshed with the linear gear of the first frame 53 pressed by the guide roller 57.
  • the linear gear connected in a straight line forms a rack and pinion mechanism together with the drive gear 56.
  • the drive gear 56 rotates forward
  • the first and second frame rows 51 and 52 are fed forward from the roller 59.
  • the drive gear 56 rotates in the reverse direction
  • the first and second frame rows 51 and 52 are pulled back to the back of the roller 59.
  • the pulled back first and second frame rows 51 and 52 are separated between the roller 59 and the drive gear 56.
  • the separated first and second frame rows 51 and 52 are returned to a bendable state.
  • the first and second frame rows 51, 52 that have returned to the bendable state are both bent in the same direction (inner side), and are stored vertically in the column portion 2.
  • the first frame row 51 is stored in a state of being substantially aligned with the second frame row 52 substantially in parallel.
  • the wrist part 6 is attached to the tip of the arm part 5.
  • the wrist 6 is equipped with fourth to sixth joints J4 to J6.
  • the fourth to sixth joints J4 to J6 are each provided with three orthogonal rotation axes RA4 to RA6.
  • the fourth joint portion J4 is a torsional rotary joint centered on a fourth rotation axis RA4 that substantially coincides with the expansion / contraction center axis RA3, and the end effector is swung and rotated by the rotation of the fourth joint portion J4.
  • the fifth joint portion J5 is a bending rotation joint about the fifth rotation axis RA5 arranged perpendicular to the fourth rotation axis RA4, and the end effector is tilted back and forth by the rotation of the fifth joint portion J5.
  • the sixth joint portion J6 is a torsional rotational joint about the sixth rotational axis RA6 that is arranged perpendicular to the fourth rotational axis RA4 and the fifth rotational axis RA5. By the rotation of the sixth joint portion J6, The end effector is pivoted.
  • the end effector (hand effector) is attached to an adapter 7 provided at the lower part of the rotating part of the sixth joint part J6 of the wrist part 6.
  • the end effector is a part having a function of directly acting on a work target (work) by the robot, and various tools such as a gripping part, a vacuum suction part, a nut fastener, a welding gun, and a spray gun exist.
  • the end effector is moved to an arbitrary position by the first, second, and third joint portions J1, J2, and J3, and is disposed in an arbitrary posture by the fourth, fifth, and sixth joint portions J4, J5, and J6.
  • the length of the expansion / contraction distance of the arm portion 5 of the third joint portion J3 enables the end effector to reach a wide range of objects from the proximity position of the base 1 to the remote position.
  • the third joint portion J3 is a characteristic point that is different from the conventional linear motion joint in the linear expansion / contraction operation realized by the linear motion expansion / contraction mechanism constituting the third joint portion J3 and the length of the expansion / contraction distance.
  • the first joint portion J1 has a cylindrical or annular rotating pedestal 23.
  • the rotating pedestal 23 is connected to the base 1 of the support column 2.
  • the rotating frame 24 that is rotatably supported on the rotating base 23 has a cylindrical shape or an annular shape.
  • the pulled back first and second frame rows 51 and 52 are housed in the hollow interior of the rotating frame 24.
  • a rotary shaft of a motor (not shown) is connected to the rotary frame 24 directly or jointly via a power transmission mechanism.
  • a pair of side frames 50 as a fixing portion (supporting portion) of the second joint portion J2 is placed.
  • a pair of side frames 50 supports a drum body 60 as a rotating portion that also serves as a motor housing.
  • One end of the drum body 60 is rotatably supported by one side frame 50.
  • a motor unit including a motor and a gear box is fixed inside the drum body 60.
  • An output shaft (drive shaft) of the motor unit is fixed to the other side frame 50. As the output shaft rotates, the drum body 60 rotates about the rotation axis RA2.
  • a delivery mechanism 56 is attached to the peripheral surface of the drum body 60. As the drum body 60 rotates, the delivery mechanism 56 rotates, and the arm portion 5 supported by the delivery mechanism 56 rises and falls.
  • the feed mechanism 56 includes a plurality of upper and lower rollers 59, a plurality of left and right rollers 62, a drive gear 64, and a guide roller 69. This is the main structure of the three joints J3).
  • the number of the upper and lower rollers 59 is eight, for example, four of which are arranged on the upper side and the remaining four are arranged on the lower side.
  • the four rollers 59 on the upper side and the lower side are arranged in a row so that the rotation axes are parallel to each other.
  • the upper four rollers 59 and the lower four rollers 59 are separated by a distance equivalent to the total thickness of the joined first and second frames 53 and 54.
  • the first and second frames 53 and 54 can be joined, firmly sandwiched from above and below, and supported so as to be movable back and forth.
  • the three rollers 62 on the left side and the right side are arranged linearly in parallel to each other and in a direction perpendicular to the rotation axis.
  • the three rollers 62 on the left side and the three rollers 62 on the right side are separated by a distance equivalent to the width of the first and second frames 53 and 54.
  • the first and second frames 53 and 54 are firmly sandwiched from the left and right and supported so as to be movable back and forth.
  • rollers 59 and 62 have, for example, polyacetal (POM), polyamide (PA), polytetrafluoroethylene (polyacetal (POM), polyamide (PA), lower durability than aluminum so as not to damage the first and second frames 53 and 54 made of, for example, aluminum.
  • a cylinder made of a self-lubricating resin such as PTFE (fluorine resin) or an aluminum cylinder whose outer periphery is coated with a self-lubricating resin. Therefore, the service life of the rollers 59 and 62 is shorter than that of the first and second frames 53 and 54, and the replacement frequency is relatively high.
  • a drive gear 64 is disposed with the guide roller 69 behind the rollers 59 and 62.
  • the guide roller 69 is separated from the drive gear 64 by a distance equivalent to the thickness of the first frame 53.
  • the first frame 53 is pressed against the drive gear 64 by the guide roller 69.
  • the drive gear 64 is meshed with a linear gear formed on the inner surface of the first frame 53.
  • the rotation shaft of the drive gear 64 is connected to a drive shaft of a motor (not shown).
  • the drive gear 64 sends out the first frame 53 forward when the motor rotates forward, and pulls it back backward when the motor rotates backward.
  • the rollers 59 and 62 are relatively replaced more frequently than the first and second frames 53 and 54.
  • the relative position of the drive gear 64 and the guide roller 69 that sandwich the first frames 53 arranged in a straight line with respect to the rollers 59 and 62 is required to be accurate. Therefore, in the past, the rollers 59 and 62, the drive gear 64, and the guide are required.
  • the feeding mechanism 56 equipped with the roller 69 is configured integrally with a single frame.
  • the delivery mechanism 56 is fixed to the peripheral surface of the drum body 60 of the undulating portion 4, and the drum body 60 of the undulating portion 4 is disposed at a place where the internal structure such as the side frame 57 is involved. Further, the drive gear 64 and the guide roller 69 sandwich the first frame 53.
  • the entire feeding mechanism 56 is removed from the drum body 60 of the undulating portion 4, and the first and second frame rows 51 and 52 are disassembled and pulled out from the feeding mechanism 56. was required and the workability was very low.
  • the feed mechanism 56 includes a roller unit 58 equipped with rollers 59 and 62, and a drive unit 63 equipped with a drive gear 64 and a guide roller 69 as structurally separate bodies. is doing.
  • the drive unit 63 is fixed to the drum body 60 of the undulating portion 4.
  • a roller unit 58 equipped with rollers 59 and 62 with respect to the drive unit 63 is configured to be detachable. When maintenance such as replacement of the rollers 59 and 62 becomes necessary, the roller unit 58 is removed from the drive unit 63 while the drive unit 63 is fixed to the drum body 60 of the undulating portion 4.
  • roller unit 58 can be removed while the drive gear 64 of the drive unit 63 and the guide roller 69 sandwich the first frame 53, it is not necessary to disassemble the first and second frame rows 51 and 52. .
  • the arm portion 5 is inserted through the rollers 59 and 62 of the roller unit 58, and the roller unit 58 is separated from the arm portion 5.
  • the damaged rollers 59 and 62 can be easily replaced by taking out.
  • the shaft of the roller 59 is held by screwing from both sides to a pair of opposing side plates 61.
  • Each side plate 61 has a rectangular cutout, and right and left rollers 62 are fitted into the cutout, and the shaft is fixed by screwing.
  • the drive unit 63 is also a pair of side plates 66 and holds the shaft of the guide roller 69 from both sides by screwing, and supports the drive gear 64 below the guide roller 69 with a distance equivalent to the thickness of the first frame 53. .
  • the side plate 66 is configured with the same thickness as the side plate 61.
  • the roller unit 58 and the drive unit 63 are joined in a stepped shape in which the step 67 is alternately meshed at the rear edge of the side plate 61 and the front edge of the side plate 66, and the side plate 61 of the roller unit 58 is connected to the drive unit 63 at the joined portion 68.
  • the side plate 66 is fastened with screws 65 at a plurality of positions, here, at four positions.
  • a step 67 at the rear end of the side plate 61 of the roller unit 58 is formed to 1 ⁇ 2 of the thickness of the side plate 61, and a step at the front end of the side plate 66 of the drive unit 63 is also formed to 1 ⁇ 2 of the thickness of the side plate 66.
  • the thickness of the joint portion 68 is equivalent to the thickness of the side plate 61 of the roller unit 58 and the side plate 66 of the drive unit 63.
  • the roller unit 58 and the drive unit 63 are joined in a step-like manner, and the joining portion 68 is fastened with a screw 65, so that the roller unit 58 can be firmly joined to the drive unit 63 without rattling.
  • the roller unit 58 can be easily removed from the drive unit 63 by removing the eight screws 65.
  • the side plate 61 of the roller unit 58 is configured in a tapered shape whose width gradually decreases toward the rear.
  • the rear edge of the side plate 61 of the roller unit 58 is joined to the front edge of the side plate 66 of the drive unit 63 at two sides 71 and 73 that intersect at 135 degrees as an obtuse angle.
  • One joining side 71 is orthogonal to the center line 100 of the region through which the arm portion 5 is defined by the row of the upper rollers 59 and the row of the lower rollers 62.
  • the other joint side 73 is inclined with respect to the center line 100 at an acute angle, for example, 45 degrees.
  • roller unit 58 Since the roller unit 58 is joined to the roller unit 58 at the obtuse two sides 71 and 73, the workability of the positioning especially for mounting the roller unit 58 on the roller unit 58 is improved.
  • the rollers 59 and 62 can be accurately arranged at a predetermined relative position with respect to the accuracy, that is, the drive gear 64 and the guide roller 69.
  • the workability of exchanging the rollers constituting the linear motion expansion / contraction mechanism of the robot arm mechanism is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

ロボットアーム機構の直動伸縮機構を構成するローラを交換する作業性を向上することを目的とする。 ロボットアーム機構に装備される直動伸縮機構はそれぞれ屈曲可能に連結される第1、第2コマ(51,52)を有する。送り出し機構(56)は、第1、第2コマ(51,52)を強固に挟み込み且つ前後移動自在に支持する複数のローラ(59,62)と、ローラ(59,62)の後方で第1コマ(51)のリニアギアに噛合され、第1コマ(51)を前方に送り出し、後方に引き戻すドライブギア(64)とを有する。送り出し機構はローラ(59,62)を装備するローラユニット(58)と、ドライブギア(64)を装備するドライブユニット(63)とに別体で構成される。ドライブユニット(63)は起伏部(4)のドラム体(60)に固定される。ローラユニット(58)はドライブユニット(63)に対して着脱可能に構成される。

Description

ロボットアーム機構及び直動伸縮機構
 本発明の実施形態はロボットアーム機構及び直動伸縮機構に関する。
 従来から多関節ロボットアーム機構が産業用ロボットなど様々な分野で用いられている。発明者らは直動伸縮機構の実用化を達成した。この直動伸縮機構は、肘関節を不要とし、特異点解消を実現する今後非常に有益な構造である。
 直動伸縮機構は、屈曲自在に連結された複数の平板形状のコマと、同様に屈曲自在に底部側で連結された複数のコ字溝形状のコマとを有してなり、これらが互いに接合することで直線状に硬直され一定の剛性を有する柱状のアーム部が構成される。直動伸縮機構のモータが順回転すると柱状体となったアーム部が送り出し機構から送り出され、逆回転するとアーム部は引き戻される。送り出し機構の後方ではコマの接合状態は解除され、硬直状態から屈曲状態に回復する。屈曲状態に回復した2種類のコマは同方向に屈曲され、支柱部内部に揃って収容される。
 直動伸縮機構において2種類のコマとともに重要な構造体としては2種類のコマを強固に挟み込む複数のローラである。これらローラは例えば自己潤滑性樹脂製であり、これらローラにアーム部及びアーム部に設けられたハンド、さらにハンドで把持するワークから荷重がかかり、最も破損が発生しやすく、比較的交換頻度が高いといえる。
 目的は、直動伸縮機構を構成するローラを交換する作業性を向上することにある。
 本実施形態に係るロボットアーム機構は、基台に旋回回転関節部を備えた支柱部が支持され、支柱部上には起伏回転関節部を備えた起伏部が載置され、起伏部には直動伸縮性のアーム部を備えた直動伸縮機構が設けられる。アーム部の先端にはエンドエフェクタを装着可能な手首部が装備される。手首部にはエンドエフェクタの姿勢を変更するための少なくとも一の回転関節部が装備されてなる。直動伸縮機構は、平板形状の複数の第1コマと、断面コ字形の溝形状を有する複数の第2コマとを有する。第1コマは互いに前後端において屈曲可能に連結される。複数の第2コマは互いに底板前後端において屈曲可能に連結される。複数の第1コマの先頭と複数の第2コマの先頭とは結合部に結合される。第1、第2コマが接合されたとき直線状に硬直してアーム部を構成し、第1、第2コマは互いに分離されたとき屈曲状態に復帰する。送り出し機構は、第1、第2コマの接合状態を確保するために第1、第2コマを強固に挟み込み且つ前後移動自在に支持する複数のローラと、ローラの後方で分離された第1コマのリニアギアに噛合され、第1コマを前方に送り出し、後方に引き戻すドライブギアとを有する。送り出し機構は、ローラを装備するローラユニットと、ドライブギアを装備するドライブユニットとに別体で構成される。ドライブユニットは起伏部の回転部に固定される。ローラユニットはドライブユニットに対して着脱可能に構成される。
図1は、本実施形態に係るロボットアーム機構の外観斜視図である。 図2は、図1のロボットアーム機構の側面図である。 図3は、図1のロボットアーム機構の内部構造を断面方向から見た図である。 図4は、図1のロボットアーム機構の構成を図記号表現により示す図である。 図5は、図3のアーム送り出し機構の斜視図である。
 以下、図面を参照しながら本実施形態に係るロボットアーム機構を説明する。本実施形態に係るロボットアーム機構としてここでは直動伸縮機構を備えた極座標型のロボットアーム機構を説明するが、他のタイプのロボットアーム機構であってもよい。
 図1は本実施形態に係る極座標型のロボットアーム機構の斜視図、図2はその側面図、図3は側面カバーを取り外したロボットアーム機構の側面図をそれぞれ示している。図4はロボットアーム機構の構成を図記号表現により示している。当該ロボットアーム機構の基台1には円筒体をなす支柱部2が典型的には鉛直に設置される。支柱部2は旋回回転関節部としての第1関節部J1を収容する。第1関節部J1はねじり回転軸RA1を備える。回転軸RA1は鉛直方向に平行である。第1関節部J1の回転によりアーム部5は水平に旋回する。支柱部2は下部2-1と上部2-2とからなる。下部2-1は第1関節部J1の固定部に接続される。上部2-2は第1関節部J1の回転部に接続され、回転軸RA1を中心に軸回転する。円筒体をなす支柱部2の内部中空には後述する直動伸縮機構としての第3関節部J3の第1、第2コマ列が収納される。支柱部2の上部2-2には起伏回転関節部としての第2関節部J2を収容する起伏部4が設置される。第2関節部J2は曲げ回転関節である。第2関節部J2の回転軸RA2は回転軸RA1に垂直である。第2関節部J2は支柱部2の上部2-2に載置される。第2関節部J2の回転によりアーム部5は上下に起伏する。
 第3関節部J3は直動伸縮機構により提供される。詳細は後述するが、直動伸縮機構は発明者らが新規に開発した構造を備えており、可動範囲の観点でいわゆる直動関節とは明確に区別される。第3関節部J3のアーム部5は屈曲自在であるが、中心軸(伸縮中心軸RA3)に沿ってアーム部5の根元の送り出し機構56から前方に送り出されるときには屈曲が制限され、直線的剛性が確保される。アーム部5は後方に引き戻されるときには屈曲が回復される。アーム部5は第1コマ列51と第2コマ列52とを有する。第1コマ列51は屈曲自在に連結された複数の第1コマ53からなる。第1コマ53は略平板形に構成される。第2コマ列52は複数の第2コマ54からなる。第2コマ54は横断面コ字形状の溝状体をなす。第2コマ54は底板の連結軸で屈曲自在に連結される。第2コマ列52の屈曲は、第2コマ54の側板の端面どうしが当接する位置で制限される。その位置では第2コマ列52は直線的に配列する。第1コマ列51のうち先頭の第1コマ53と、第2コマ列52のうち先頭の第2コマ54とは結合コマ55により接続される。例えば、結合コマ55は第1コマ53と第2コマ54とを合成した形状を有している。
 第1、第2コマ列51,52は上下に配列された複数のローラ59の間を通過する際に互いに押圧されて接合する。接合により第1、第2コマ列51,52は直線的剛性を発揮し、柱状のアーム部5を構成する。ローラ59の後方にはドライブギア56が設けられる。ドライブギア56は図示しない減速器を介してステッピングモータに接続される。第1コマ53の内側の面の幅中央には連結方向に沿ってリニアギアが形成されている。複数の第1コマ53が直線状に整列されたときに隣合うリニアギアは直線状につながって、長いリニアギアを構成する。ドライブギア56は、ガイドローラ57で押圧された第1コマ53のリニアギアに噛み合わされる。直線状につながったリニアギアはドライブギア56とともにラックアンドピニオン機構を構成する。ドライブギア56が順回転するとき第1、第2コマ列51,52はローラ59から前方に送り出される。ドライブギア56が逆回転するとき第1、第2コマ列51,52はローラ59の後方に引き戻される。引き戻された第1、第2コマ列51,52はローラ59とドライブギア56との間で分離される。分離された第1、第2コマ列51,52はそれぞれ屈曲可能な状態に復帰する。屈曲可能な状態に復帰した第1、第2コマ列51,52は、ともに同じ方向(内側)に屈曲し、支柱部2の内部に鉛直に収納される。このとき、第1コマ列51は第2コマ列52に略平行にほぼ揃った状態で収納される。
 アーム部5の先端には手首部6が取り付けられる。手首部6は第4~第6関節部J4~J6を装備する。第4~第6関節部J4~J6はそれぞれ直交3軸の回転軸RA4~RA6を備える。第4関節部J4は伸縮中心軸RA3と略一致する第4回転軸RA4を中心としたねじり回転関節であり、この第4関節部J4の回転によりエンドエフェクタは揺動回転される。第5関節部J5は第4回転軸RA4に対して垂直に配置される第5回転軸RA5を中心とした曲げ回転関節であり、この第5関節部J5の回転によりエンドエフェクタは前後に傾動回転される。第6関節部J6は第4回転軸RA4と第5回転軸RA5とに対して垂直に配置される第6回転軸RA6を中心としたねじり回転関節であり、この第6関節部J6の回転によりエンドエフェクタは軸回転される。
 エンドエフェクタ(手先効果器)は、手首部6の第6関節部J6の回転部下部に設けられたアダプタ7に取り付けられる。エンドエフェクタはロボットが作業対象(ワーク)に直接働きかける機能を持つ部分であり、例えば把持部、真空吸着部、ナット締め具、溶接ガン、スプレーガンなどのタスクに応じて様々なツールが存在する。エンドエフェクタは、第1、第2、第3関節部J1,J2,J3により任意位置に移動され、第4、第5、第6関節部J4,J5,J6により任意姿勢に配置される。特に第3関節部J3のアーム部5の伸縮距離の長さは、基台1の近接位置から遠隔位置までの広範囲の対象にエンドエフェクタを到達させることを可能にする。第3関節部J3はそれを構成する直動伸縮機構により実現される直線的な伸縮動作とその伸縮距離の長さとが従前の直動関節と異なる特徴的な点である。
 第1関節部J1は円筒形状又は円環形状の回転台座23を有する。回転台座23は、支柱部2の基台1に接続される。回転台座23上に回転自在に支持される回転フレーム24は円筒形状又は円環形状をなす。回転フレーム24の内部中空には、引き戻された第1、第2コマ列51,52が収納される。回転フレーム24には、図示しないモータの回転軸が直接又は動力伝達機構を介して関節的に接続される。
 回転フレーム24上には、第2関節部J2の固定部(支持部)としての一対のサイドフレーム50が載置される。一対のサイドフレーム50にモータハウジングを兼用する回転部としてのドラム体60が支持される。ドラム体60の一端は一方のサイドフレーム50に回転自在に軸支されている。ドラム体60の内部にはモータとギアボックスとを備えたモータユニットが固定される。モータユニットの出力軸(駆動軸)が他方のサイドフレーム50に固定されている。出力軸の回転に伴ってドラム体60が回転軸RA2を中心として回転する。
 ドラム体60の周面には、送り出し機構56が取り付けられる。ドラム体60の軸回転に伴って送り出し機構56は回動し、送り出し機構56に支持されたアーム部5が起伏する。図5に示すように送り出し機構56は複数の上下ローラ59、複数の左右ローラ62、ドライブギア64、ガイドローラ69を装備する、第1、第2コマ列51,52とともに直動伸縮機構(第3関節部J3)の主要な構造体である。上下ローラ59は例えば8個であり、そのうち4個が上側に、残りの4個が下側に配設される。上側、下側それぞれの4個のローラ59は回転軸が互いに平行になるよう一列に配列される。上側の4個のローラ59と、下側の4個のローラ59は、接合された第1、第2コマ53,54の合計厚に等価な距離を隔てられる。それにより第1、第2コマ53,54を接合し、上下から強固に挟み込み且つ前後移動自在に支持することができる。左右ローラ62は例えば6個であり、そのうち3個が左側に、残りの3個が右側に配設される。左側、右側それぞれの3個のローラ62は互いに平行に、回転軸に垂直な方向に直線的に配列される。左側の3個のローラ62と、右側の3個のローラ62は、第1、第2コマ53,54の幅に等価な距離を隔てられる。それにより第1、第2コマ53,54を左右から強固に挟み込み且つ前後移動自在に支持する。
 これらローラ59、62は例えばアルミニウム製の第1、第2コマ53,54を損傷しないよう、アルミニウムより硬度が低く、耐久性の低い例えばポリアセタール(POM)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE;ふっ素樹脂)などの自己潤滑性樹脂製の円柱体、又は外周を自己潤滑性樹脂で被覆されたアルミニウム製の円柱体である。従ってローラ59、62の耐用期間は第1、第2コマ53,54のそれより短く、比較的交換頻度が高い。
 ローラ59、62の後方には、ドライブギア64がガイドローラ69とともに配置される。ガイドローラ69はドライブギア64に対して第1コマ53の厚さに等価な距離を隔てられる。第1コマ53はガイドローラ69によりドライブギア64に押圧される。ドライブギア64は第1コマ53の内側面に形成されたリニアギアに噛合される。ドライブギア64の回転軸は図示しないモータのドライブシャフトに接続されており、ドライブギア64はモータが順回転するとき、第1コマ53を前方に送り出し、モータが逆回転するとき、後方に引き戻す。
 上述のようにローラ59、62は第1、第2コマ53,54より比較的交換頻度が高い。このローラ59、62に対して、一直線状に並ぶ第1コマ53を挟み込むドライブギア64とガイドローラ69の相対位置には精度が求められ、従って従前においてはローラ59、62、ドライブギア64及びガイドローラ69を装備する送り出し機構56は、単一のフレームに一体として構成されていた。送り出し機構56は起伏部4のドラム体60の周面に固定されており、起伏部4のドラム体60はサイドフレーム57等の内部構造に入り組んだ箇所に配置される。さらにドライブギア64とガイドローラ69は第1コマ53を挟み込んでいる。従って、ローラ59,62を交換するには、送り出し機構56の全体を起伏部4のドラム体60から取り外し、且つ第1、第2コマ列51,52を分解して送り出し機構56から引き抜く作業工程が必要とされ、非常に作業性が低いものであった。
 本実施形態では、この作業性を向上させるために、送り出し機構56をローラ59,62を装備するローラユニット58と、ドライブギア64及びガイドローラ69を装備するドライブユニット63とを構造上別体に構成している。ドライブユニット63は起伏部4のドラム体60に固定される。このドライブユニット63に対してローラ59,62を装備するローラユニット58は着脱自在に構成される。ローラ59,62の交換等のメンテナンスが必要となったとき、ドライブユニット63を起伏部4のドラム体60に固定させた状態のまま、ローラユニット58をドライブユニット63から取り外す。ドライブユニット63のドライブギア64とガイドローラ69とが第1コマ53を挟み込んでいる状態のままでローラユニット58を取り外すことができるので、第1、第2コマ列51,52を分解する必要がない。アーム部5の先端から手首部6を取り外すことにより、アーム部5をローラユニット58のローラ59,62を挿通させて、ローラユニット58をアーム部5から分離させて、ローラユニット58だけを単独で取り出して、損傷したローラ59,62を容易に交換することができる。
 ローラユニット58の構造としては、対向する一対の側板61にローラ59のシャフトを両側からネジ留めにより保持させている。各側板61には矩形に切り欠きが形成されており、その切り欠きに左右のローラ62がはめ込まれそのシャフトがネジ留めにより固定される。ドライブユニット63も一対の側板66で、ガイドローラ69のシャフトを両側からネジ留めにより保持し、ガイドローラ69の下方に第1コマ53の厚さに等価な距離を隔ててドライブギア64を軸支する。側板66は側板61と同じ厚さで構成される。ローラユニット58とドライブユニット63とはそれらの側板61の後縁と側板66の前縁において互い違いに段差67が噛み合う段継ぎ状に接合され、この接合部分68においてローラユニット58の側板61がドライブユニット63の側板66に対して複数個所、ここでは4箇所においてネジ65により締結される。ローラユニット58の側板61の後端の段差67は側板61の厚さの1/2に形成され、ドライブユニット63の側板66の前端の段差も側板66の厚さの1/2に形成され、それにより接合部分68の厚さをローラユニット58の側板61及びドライブユニット63の側板66の厚さと等価に構成する。
 ローラユニット58とドライブユニット63とを段継ぎ状に接合し、この接合部分68をネジ65で締結することで、ローラユニット58をドライブユニット63に対してガタツキ無く、強固に接合させることができ、また両側で8箇所のネジ65を外すことによりローラユニット58をドライブユニット63から簡単に取り外すことができる。
 ローラユニット58の側板61は、後方に向かって幅が徐々に狭くなるテーパー形状に構成される。ローラユニット58の側板61の後縁は、ドライブユニット63の側板66の前縁に対して、鈍角として例えば135度で交わる二辺71,73で接合される。一方の接合辺71は、上側のローラ59の列と下側のローラ62の列とに規定されるアーム部5が挿通する領域の中心線100に対して直交する。他方の接合辺73は中心線100に対して鋭角、例えば45度傾斜する。
 ローラユニット58がローラユニット58に対して鈍角の二辺71,73において接合されることにより、ローラユニット58に対してローラユニット58を装着する特に位置合わせの作業性が向上し、その装着位置の精度、つまりドライブギア64とガイドローラ69に対してローラ59、62を規定の相対位置に正確に配置させることができる。
 以上のように本実施形態によれば、ロボットアーム機構の直動伸縮機構を構成するローラを交換する作業性が向上する。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1…基部、2…アーム部、3…手先効果器、J1,J2,J4,J5,J6…回転関節部、J3…直動伸縮関節部(直動伸縮機構)、53…第1コマ、54…第2コマ、56…送り出し機構、58…ローラユニット、59、62…ローラ、61、66…側板、63…ドライブユニット、64…ドライブギア、67…段差、68…接合部分、69…ガイドローラ。

Claims (6)

  1.  基台に旋回回転関節部を備えた支柱部が支持され、前記支柱部上には起伏回転関節部を備えた起伏部が載置され、前記起伏部には直動伸縮性のアーム部を備えた直動伸縮機構が設けられ、前記アーム部の先端にはエンドエフェクタを装着可能な手首部が装備され、前記手首部には前記エンドエフェクタの姿勢を変更するための少なくとも一の回転関節部が装備されてなるロボットアーム機構において、
     前記直動伸縮機構は、
     平板形状の複数の第1コマと、前記第1コマは互いに前後端において屈曲可能に連結される、
     断面コ字形の溝形状を有する複数の第2コマと、前記第2コマは互いに底板前後端において屈曲可能に連結される、
     前記複数の第1コマの先頭と前記複数の第2コマの先頭とを結合する結合部と、前記第1、第2コマが接合されたとき直線状に硬直して前記アーム部を構成し、前記第1、第2コマは互いに分離されたとき屈曲状態に復帰する、
     前記第1、第2コマの接合状態を確保するために前記第1、第2コマを強固に挟み込み且つ前後移動自在に支持する複数のローラと、前記ローラの後方で前記分離された第1コマのリニアギアに噛合され、前記第1コマを前方に送り出し、後方に引き戻すドライブギアとを有する送り出し機構とを具備し、
     前記送り出し機構は、前記ローラを装備するローラユニットと、前記ドライブギアを装備するドライブユニットとに別体で構成され、前記ドライブユニットは前記起伏部の回転部に固定され、前記ローラユニットは前記ドライブユニットに対して着脱可能に構成されることを特徴とするロボットアーム機構。
  2.  前記ローラユニットを構成する側板と前記ドライブユニットを構成する側板とは互い違いに段差が噛み合う段継ぎ状に接合され、この接合部分において前記ローラユニットの側板と前記ドライブユニットの側板とがネジで締結されることを特徴とする請求項1記載のロボットアーム機構。
  3.  前記接合部分の厚さは前記ローラユニットの側板及び前記ドライブユニットの側板の他の部分の厚さと等価であることを特徴とする請求項2記載のロボットアーム機構。
  4.  前記ローラユニットの側板はテーパー形状に形成されることを特徴とする請求項2記載のロボットアーム機構。
  5.  前記ローラユニットは前記ドライブユニットに対して鈍角で交わる二辺で接合されることを特徴とする請求項2記載のロボットアーム機構。
  6.  平板形状の複数の第1コマと、前記第1コマは互いに前後端において屈曲可能に連結される、
     断面コ字形の溝形状を有する複数の第2コマと、前記第2コマは互いに底板前後端において屈曲可能に連結される、
     前記複数の第1コマの先頭と前記複数の第2コマの先頭とを結合する結合部と、前記第1、第2コマが接合されたとき直線状に硬直し、前記第1、第2コマは互いに分離されたとき屈曲状態に復帰する、
     前記第1、第2コマの接合状態を確保するために前記第1、第2コマを強固に挟み込み且つ前後移動自在に支持する複数のローラと、前記ローラの後方で前記分離された第1コマのリニアギアに噛合され、前記第1コマを前方に送り出し、後方に引き戻すドライブギアとを有する送り出し機構とを具備し、
     前記送り出し機構は、前記ローラを装備するローラユニットと、前記ドライブギアを装備するドライブユニットとに別体で構成され、前記ローラユニットは前記ドライブユニットに対して着脱可能に構成されることを特徴とする直動伸縮機構。
PCT/JP2017/006721 2016-02-29 2017-02-23 ロボットアーム機構及び直動伸縮機構 WO2017150318A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780013868.7A CN108698236A (zh) 2016-02-29 2017-02-23 机械臂机构及直动伸缩机构
JP2018503079A JP6725640B2 (ja) 2016-02-29 2017-02-23 ロボットアーム機構及び直動伸縮機構
DE112017001033.0T DE112017001033T5 (de) 2016-02-29 2017-02-23 Roboterarmmechanismus und linearer aus- und einfahrmechanismus
US16/115,806 US20180372194A1 (en) 2016-02-29 2018-08-29 Robot arm mechanism and linear extension and retraction mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038464 2016-02-29
JP2016038464 2016-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/115,806 Continuation US20180372194A1 (en) 2016-02-29 2018-08-29 Robot arm mechanism and linear extension and retraction mechanism

Publications (1)

Publication Number Publication Date
WO2017150318A1 true WO2017150318A1 (ja) 2017-09-08

Family

ID=59742839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006721 WO2017150318A1 (ja) 2016-02-29 2017-02-23 ロボットアーム機構及び直動伸縮機構

Country Status (5)

Country Link
US (1) US20180372194A1 (ja)
JP (1) JP6725640B2 (ja)
CN (1) CN108698236A (ja)
DE (1) DE112017001033T5 (ja)
WO (1) WO2017150318A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124887A (ja) * 1993-10-29 1995-05-16 Fanuc Ltd 産業用ロボットのケーブル処理装置
JP2002010441A (ja) * 2000-06-15 2002-01-11 Sumitomo Wiring Syst Ltd 網チューブへの端子付き電線の貫通方法および貫通用治具
WO2004024403A1 (ja) * 2002-09-12 2004-03-25 Mitsubishi Denki Kabushiki Kaisha グリッパー
JP2005131734A (ja) * 2003-10-30 2005-05-26 Kawada Kogyo Kk 歩行型ロボットの配線構造
JP2008208730A (ja) * 2007-02-23 2008-09-11 Naka Ind Ltd 可搬型ポンプ装置
JP2009213653A (ja) * 2008-03-10 2009-09-24 Terumo Corp マニピュレータ
JP2010207967A (ja) * 2009-03-10 2010-09-24 Olympus Corp パラレルリンクステージの調整方法、基準位置決め治具、およびパラレルリンクステージ
JP2014079863A (ja) * 2012-10-17 2014-05-08 Iai Corp 産業用ロボット
WO2015137171A1 (ja) * 2014-03-14 2015-09-17 ライフロボティクス株式会社 伸縮アーム機構及びロボットアーム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284379A (ja) * 1985-06-06 1986-12-15 本田技研工業株式会社 ロボツト装置
EP0643002B1 (de) * 1993-09-06 1997-10-29 Focke & Co. (GmbH & Co.) Handhabungsvorrichtung mit Teleskopteil
JP3100889B2 (ja) * 1995-10-27 2000-10-23 株式会社椿本チエイン ケーブルドラグチェーンの回転角規制ストッパ衝接音抑止機構
US6065787A (en) * 1998-04-20 2000-05-23 Jarosch; Robert M. Retriever tool
DE10063149C1 (de) * 2000-12-18 2002-06-06 Kubein Meesenburg Dietmar Statische Gelenkkette
US20030145674A1 (en) * 2002-02-07 2003-08-07 Applied Materials, Inc. Robot
US7258521B2 (en) * 2005-05-31 2007-08-21 Scriptpro Llc Chain-driven robotic arm
US8925405B2 (en) * 2008-12-19 2015-01-06 Kawabuchi Mechanical Engineering Laboratory, Inc. Linear-motion telescopic mechanism and robot arm having linear-motion telescopic mechanism
WO2011152265A1 (ja) * 2010-05-31 2011-12-08 独立行政法人産業技術総合研究所 直動伸縮アーム機構および当該直動伸縮アーム機構を備えたロボットアーム
JP6468804B2 (ja) * 2014-10-30 2019-02-13 ライフロボティクス株式会社 ロボットアーム機構
JP6399591B2 (ja) * 2014-10-31 2018-10-03 ライフロボティクス株式会社 ロボットアーム機構及びステッピングモータ制御装置
JP6508704B2 (ja) * 2014-11-29 2019-05-08 ライフロボティクス株式会社 ロボットアーム機構
JP2016117127A (ja) * 2014-12-20 2016-06-30 ライフロボティクス株式会社 ロボットアーム機構
JP2016117126A (ja) * 2014-12-20 2016-06-30 ライフロボティクス株式会社 ロボットアーム機構
JP2016120586A (ja) * 2014-12-25 2016-07-07 ライフロボティクス株式会社 ロボットシステム及びロボット装置
JP2016124069A (ja) * 2014-12-27 2016-07-11 ライフロボティクス株式会社 ロボットアーム機構及び直動伸縮機構
JP2016124068A (ja) * 2014-12-27 2016-07-11 ライフロボティクス株式会社 ロボットアーム機構及び直動伸縮機構
JP2016125588A (ja) * 2014-12-29 2016-07-11 ライフロボティクス株式会社 直動伸縮機構及びロボットアーム機構
JP2016136059A (ja) * 2015-01-24 2016-07-28 ライフロボティクス株式会社 連結コマ、直動伸縮機構及びロボットアーム機構
JP2016136060A (ja) * 2015-01-24 2016-07-28 ライフロボティクス株式会社 直動伸縮機構及びロボットアーム機構
JP6605847B2 (ja) * 2015-06-05 2019-11-13 ライフロボティクス株式会社 ロボットアーム機構
JP6717838B2 (ja) * 2015-09-11 2020-07-08 ライフロボティクス株式会社 直動伸縮機構
CN108368916B (zh) * 2015-11-30 2020-04-21 生活机器人学股份有限公司 直动伸缩机构
JP6725541B2 (ja) * 2016-01-30 2020-07-22 ライフロボティクス株式会社 ロボットアーム機構
JP6901828B2 (ja) * 2016-02-26 2021-07-14 川崎重工業株式会社 基板搬送ロボットおよび基板搬送装置
JP6703091B2 (ja) * 2016-02-29 2020-06-03 ライフロボティクス株式会社 直動伸縮機構及びそれを備えたロボットアーム機構
DE112017001036T5 (de) * 2016-02-29 2018-12-20 Life Robotics Inc. Linearer aus- und einfahrmechanismus und roboterarmmechanismus
CN108884919A (zh) * 2016-03-29 2018-11-23 生活机器人学股份有限公司 直动伸缩机构及机械臂机构
JP6725645B2 (ja) * 2016-03-29 2020-07-22 ライフロボティクス株式会社 ロボットアーム機構
WO2017170306A1 (ja) * 2016-03-29 2017-10-05 ライフロボティクス株式会社 直動伸縮機構及びロボットアーム機構
JP6711911B2 (ja) * 2016-05-31 2020-06-17 ライフロボティクス株式会社 直動伸縮機構
JP6659846B2 (ja) * 2016-07-30 2020-03-04 ライフロボティクス株式会社 ロボットアーム機構
WO2018034251A1 (ja) * 2016-08-14 2018-02-22 ライフロボティクス株式会社 食器洗浄システム及びロボット装置
JP6794800B2 (ja) * 2016-11-29 2020-12-02 セイコーエプソン株式会社 ロボット

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124887A (ja) * 1993-10-29 1995-05-16 Fanuc Ltd 産業用ロボットのケーブル処理装置
JP2002010441A (ja) * 2000-06-15 2002-01-11 Sumitomo Wiring Syst Ltd 網チューブへの端子付き電線の貫通方法および貫通用治具
WO2004024403A1 (ja) * 2002-09-12 2004-03-25 Mitsubishi Denki Kabushiki Kaisha グリッパー
JP2005131734A (ja) * 2003-10-30 2005-05-26 Kawada Kogyo Kk 歩行型ロボットの配線構造
JP2008208730A (ja) * 2007-02-23 2008-09-11 Naka Ind Ltd 可搬型ポンプ装置
JP2009213653A (ja) * 2008-03-10 2009-09-24 Terumo Corp マニピュレータ
JP2010207967A (ja) * 2009-03-10 2010-09-24 Olympus Corp パラレルリンクステージの調整方法、基準位置決め治具、およびパラレルリンクステージ
JP2014079863A (ja) * 2012-10-17 2014-05-08 Iai Corp 産業用ロボット
WO2015137171A1 (ja) * 2014-03-14 2015-09-17 ライフロボティクス株式会社 伸縮アーム機構及びロボットアーム

Also Published As

Publication number Publication date
JP6725640B2 (ja) 2020-07-22
JPWO2017150318A1 (ja) 2018-12-27
CN108698236A (zh) 2018-10-23
DE112017001033T5 (de) 2019-01-03
US20180372194A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6725645B2 (ja) ロボットアーム機構
JP6711911B2 (ja) 直動伸縮機構
JP6734364B2 (ja) 直動伸縮機構及びロボットアーム機構
JP6717838B2 (ja) 直動伸縮機構
WO2016195105A1 (ja) ロボットアーム機構
WO2017150315A1 (ja) 直動伸縮機構及びそれを備えたロボットアーム機構
JP6740339B2 (ja) 直動伸縮機構及びロボットアーム機構
WO2016098815A1 (ja) ロボットアーム機構
JP2016117127A (ja) ロボットアーム機構
JP2016124069A (ja) ロボットアーム機構及び直動伸縮機構
WO2017170304A1 (ja) ねじり回転関節機構、ロボットアーム機構および片持ち回転機構
WO2017208870A1 (ja) 直動伸縮機構
WO2017150318A1 (ja) ロボットアーム機構及び直動伸縮機構
WO2018052143A1 (ja) 直動伸縮機構及びロボットアーム機構
WO2017150316A1 (ja) ロボットアーム機構及び直動伸縮機構
WO2016199703A1 (ja) ロボットアーム機構
WO2017188406A1 (ja) 回転関節機構
WO2018025726A1 (ja) ロボットアーム機構
JP6573417B2 (ja) 直動伸縮機構
WO2017208871A1 (ja) 直動伸縮機構
JP2016160964A (ja) 直動伸縮機構及びロボットアーム機構

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503079

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759784

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759784

Country of ref document: EP

Kind code of ref document: A1