WO2017122821A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2017122821A1
WO2017122821A1 PCT/JP2017/001138 JP2017001138W WO2017122821A1 WO 2017122821 A1 WO2017122821 A1 WO 2017122821A1 JP 2017001138 W JP2017001138 W JP 2017001138W WO 2017122821 A1 WO2017122821 A1 WO 2017122821A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
mass
pneumatic tire
carcass
Prior art date
Application number
PCT/JP2017/001138
Other languages
English (en)
French (fr)
Inventor
正起 ▲柳▼岡
宏行 横倉
真希子 米元
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US16/069,606 priority Critical patent/US20190023083A1/en
Priority to JP2017561209A priority patent/JPWO2017122821A1/ja
Priority to EP17738573.9A priority patent/EP3403854A4/en
Priority to CN201780006594.9A priority patent/CN108473008A/zh
Publication of WO2017122821A1 publication Critical patent/WO2017122821A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/08Electric-charge-dissipating arrangements
    • B60C19/088Electric-charge-dissipating arrangements using conductive beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/08Electric-charge-dissipating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/08Electric-charge-dissipating arrangements
    • B60C19/082Electric-charge-dissipating arrangements comprising a conductive tread insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/005Reinforcements made of different materials, e.g. hybrid or composite cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1835Rubber strips or cushions at the belt edges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L17/00Compositions of reclaimed rubber
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/005Compositions of the bead portions, e.g. clinch or chafer rubber or cushion rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0614Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the chafer or clinch portion, i.e. the part of the bead contacting the rim

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire with improved conductivity (hereinafter also simply referred to as “tire”).
  • Patent Document 1 discloses at least one carcass cord and a breaker cord of a carcass ply closest to a breaker among carcass plies as a conductive tire that can smoothly ground static electricity generated in a vehicle body to a road surface.
  • a conductive tire formed by an assembly of metal filaments and a large number of organic fiber filaments is disclosed.
  • Patent Document 2 discloses a chafer or clinching rubber composition having excellent low heat buildup and high strength, and a pneumatic tire using the same, and is modified with a predetermined compound.
  • a technique for containing 10 to 150 parts by mass of silica with respect to 100 parts by mass of a rubber component including butadiene rubber is disclosed.
  • JP-A-3-169711 (claims, etc.) JP 2010-116447 A (Claims etc.)
  • the electrical resistance can be lowered by blending a conductive material in a tire skin member such as a tread or a sidewall.
  • a conductive material such as carbon nanotube (CNT) or ketjen black
  • CNT carbon nanotube
  • ketjen black a conductive material such as carbon nanotube (CNT) or ketjen black
  • Patent Document 1 when a metal fiber is used for the carcass cord, there are problems such as a decrease in durability and a significant deterioration in productivity due to the application of a fiber that does not stretch. Therefore, establishment of a technique capable of reducing the electrical resistance of a tire without greatly changing various performances and manufacturing processes required for the tire has been demanded.
  • Patent Document 2 although both low loss and anti-rim friction resistance can be achieved, there is room for improvement in extrusion characteristics and moldability such as tack.
  • an object of the present invention is to reduce the electrical resistance without adversely affecting other performances such as tire durability and the manufacturing process even when the above-described problems are solved and the loss of the rubber member of the tire is reduced. It is to provide a pneumatic tire that can.
  • the present inventors have found that the electrical conductivity of the tire can be improved by disposing a composite fiber including conductive fibers and non-conductive fibers inside the tire.
  • the present inventors may expose the composite fiber to at least one surface of the carcass ply and mix a predetermined carbon black with the rubber chafer.
  • the composite fiber in this application refers to the fiber which consists of a several different kind of fiber.
  • the present invention uses a carcass composed of at least one carcass ply extending in a toroidal shape across a pair of bead portions as a skeleton, and at least one of the carcass crown portions disposed radially outside the tire.
  • a pneumatic tire comprising a belt layer and having a rubber chafer disposed on an outer surface in the tire width direction of the bead portion
  • a cushion rubber and a tread rubber forming a tread surface portion are sequentially disposed on the outer side in the tire radial direction of the belt layer, and at least from the bead portion to the outer end portion in the tire width direction of the cushion rubber or the belt layer.
  • a composite fiber including a conductive fiber and a non-conductive fiber is disposed so as to be exposed on at least one of the outer side and the inner side of the tire of the carcass up to a position in contact with the disposed belt undercushion.
  • the rubber chafer contains carbon black having a nitrogen adsorption specific surface area of 30 to 43 m 2 / g.
  • the rubber chafer preferably contains recycled rubber. Further, in the present invention, the rubber chafer preferably contains 64 to 73 parts by mass of the carbon black with respect to 100 parts by mass of the rubber component, and with respect to 100 parts by mass of the rubber component of the rubber chafer. It is also preferable that 3 to 10 parts by mass of the recycled rubber is contained. Further, preferably, the composite fiber is disposed so as to be exposed on both the outer and inner surfaces of the carcass. Furthermore, in the present invention, it is preferable that a portion of the composite fiber exposed on the tire outer side and a portion exposed on the tire inner side are electrically connected at least at one or more locations.
  • the nonconductive fiber is an organic substance, and the composite fiber contains 50% by mass or more of the nonconductive fiber.
  • the conjugate fiber is preferably sewn into the carcass.
  • the stitching pitch of the conjugate fiber is preferably 2 to 40 mm.
  • the stitching pitch in the present application refers to a distance for one stitch when stitching into the carcass, and corresponds to ⁇ in FIG. As long as the stitching pitch is within the above range, the pitch may be uniform or not uniform, but it is desirable that the stitching pitch be uniform. Unless otherwise specified, the stitching pitch in the present application indicates an average value of individual pitches.
  • the conjugate fiber is wound around the carcass.
  • the conjugate fiber is in the tire width direction of the cushion rubber or the belt undercushion with respect to the carcass. Winding from the position in contact with the end of one side to the other end in the tire width direction of the cushion rubber or the belt undercushion through the bead portion, passing through the inside of the tire of the carcass It is preferable.
  • a rubber chafer is disposed on the outer surface in the tire width direction of the bead portion, and the carcass is embedded in the body portion extending between the pair of bead portions and the pair of bead portions, respectively.
  • the rubber chafer passes through the outer side of the tire of the carcass and the outer side in the tire width direction of the folded portion on the other side.
  • the wire is wound up to a position where it contacts.
  • the composite fiber may be spirally wound around the carcass. In this case, the winding pitch of the composite fiber is preferably 1 to 12 turns / m.
  • the winding pitch in this application has shown how many said composite fibers are wound per unit length along the tire circumferential direction of a carcass ply.
  • the measurement of the winding pitch is performed at the ply end when the composite fiber is wound only at the tire width direction end of the carcass, and when the composite fiber is wound around the entire tire width direction, It is performed on the surface of the ply on the tire equator line CL.
  • the measurement starting point is on the composite fiber.
  • it is preferable that the composite fibers are arranged with a driving number of 0.04 / 5 cm or more in the tire circumferential direction.
  • the number of driving in this application has shown how many said composite fibers exist per unit length in the tire circumferential direction.
  • the composite fiber When the composite fiber is wound only on the end portion in the tire width direction of the carcass, measurement of the number of driving is performed at the ply end portion, and when the composite fiber is wound around the entire tire width direction, the tire is On the surface of the ply on the equator line CL.
  • the measurement starting point is on the composite fiber.
  • the composite fiber when the composite fiber is sewn into the ply as shown in FIG. 2A described later, it exists on the measurement line regardless of whether the composite fiber appears on the ply surface. When it does, it becomes a measuring object.
  • a bleeder cord is disposed at least from the bead portion to a position in contact with the cushion rubber or the belt undercushion, and the composite fiber includes 3 of the bleeder cord. It may be arranged instead of ⁇ 100% by mass.
  • the fineness of the composite fiber is preferably 20 to 1000 dtex.
  • the composite fiber is preferably disposed at an angle of 30 to 150 ° with respect to the tire circumferential direction, more preferably at an angle of 50 to 130 ° with respect to the tire circumferential direction. It shall be. More preferably, it is arranged at an angle of 80 to 100 ° with respect to the tire circumferential direction.
  • the conductive fiber preferably contains any one or more of metal-containing fiber, carbon-containing fiber and metal oxide-containing fiber, and the non-conductive fiber is cotton, It is also preferable to include any one or more of nylon, polyester and polypropylene.
  • the breaking elongation Eb of the composite fiber is preferably 5% or more, and the resistance value of the composite fiber is preferably 1.0 ⁇ 10 7 ⁇ / cm or less.
  • the rubber chafer contains carbon nanotubes in an amount of 0.5 to 4 parts by mass with respect to 100 parts by mass of the rubber component.
  • the ply coating rubber of the carcass ply, the belt coating rubber of the belt layer, the squeegee rubber between the carcass plies, the cushion rubber, the belt undercushion, and the pair of bead parts respectively.
  • the bead filler rubber disposed outside the embedded bead core in the radial direction of the tire at least one member is composed of 20 to 40 parts by mass of styrene butadiene rubber and 60 to 80 parts by mass of natural rubber with respect to 100 parts by mass of the rubber component.
  • a tire rubber composition comprising 35 to 50 parts by mass of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 30 to 43 m 2 / g and 5 parts by mass or less of oil is used. preferable.
  • the tire rubber composition includes 0.1 to 6 parts by mass of at least one of ketjen black and carbon nanotubes with respect to 100 parts by mass of the rubber component.
  • the rubber composition for tires preferably contains at least one of ketjen black and carbon nanotubes in 2 to 15% by mass of the filler.
  • the amount of styrene butadiene rubber in the tire rubber composition is A part by mass, and the amount of natural rubber is B part by mass
  • Carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 30 to 43 m 2 / g contained in the tire rubber composition is A * 100 / (A + B) (mass%) with respect to A part by mass of styrene butadiene rubber.
  • the blended rubber composition is rubber composition X, Carbon black with a nitrogen adsorption specific surface area (N 2 SA) of 30 to 43 m 2 / g contained in the tire rubber composition is blended at B * 100 / (A + B) (mass%) with respect to parts by weight of natural rubber B.
  • Rubber composition Y When the rubber composition for tires is a rubber composition Z, When the moduli at 50% elongation of the rubber compositions X, Y, and Z are respectively Mdx, Mdy, and Mdz (MPa), it is preferable that Mdx, Mdy, and Mdz satisfy the following formula (I). 0.9 ⁇ ⁇ Mdx * A / (A + B) + Mdy * B / (A + B) ⁇ ⁇ Mdz (I)
  • the illustrated pneumatic tire extends between a pair of bead portions 11, a pair of sidewall portions 12 that are continuous from the pair of bead portions 11 to the outside in the tire radial direction, and a pair of sidewall portions 12.
  • the tread portion 13 is formed.
  • the illustrated tire has a carcass 1 composed of at least one, for example, one to three, for example, one carcass ply, extending in a toroid shape across a pair of bead portions 11,
  • the belt includes at least one belt layer 2 disposed on the outer side in the radial direction of the crown tire, for example, 1 to 4, particularly 2 to 4, and in the illustrated example, two belt layers 2.
  • a rubber chafer 4 is disposed on the outer surface of the bead portion in the tire width direction. Furthermore, on the outer side of the belt layer 2 in the tire radial direction, a cushion rubber 13C and a tread rubber 13G forming a tread surface portion are sequentially arranged. 1 and 7 show the same embodiment except that a belt undercushion 14 is provided at the outer end of the belt layer 2 in the tire width direction.
  • the point that the fibers 3 are disposed is important.
  • the composite fiber 3 is disposed so as to be exposed on at least one of the outer side and the inner side of the tire of the carcass 1.
  • the rubber chafer 4 contains carbon black having a nitrogen adsorption specific surface area of 30 to 43 m 2 / g. That is, in the present invention, the rubber chafer 4 contains carbon black having a nitrogen adsorption specific surface area in the above range, so that the wear resistance of the rubber chafer 4 can be reduced even when the loss of the tire is reduced. A conductive path from the inside of the tire to the rim side can be secured through the rubber chafer 4 without deteriorating. Furthermore, the rubber chafer 4 used in the present invention has not only wear resistance but also moldability.
  • the carbon black has a nitrogen adsorption specific surface area of 30 to 43 m 2 / g, preferably 33 to 40 m 2 / g.
  • the nitrogen adsorption specific surface area is too small, the hysteresis loss is increased, and if it is too large, the wear resistance is deteriorated. In any case, the desired effect of the present invention cannot be obtained.
  • Examples of such carbon black include FEF.
  • the blending amount of the carbon black in the rubber chafer 4 is preferably 64 to 73 parts by mass, more preferably 66 to 70 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber chafer 4 contains carbon nanotubes (CNT) in addition to the carbon black because both wear resistance and reduction of electric resistance can be achieved better.
  • the rubber chafer 4 contains carbon nanotubes in an amount of 0.5 to 4 parts by mass, particularly 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • Carbon nanotubes have the characteristics that the interaction with rubber is smaller than that of carbon black, the elastic modulus decreases in the high strain region of the stress strain curve, and the breaking elongation Eb increases. It is preferable that the Eb of the rubber is large when the crack progresses, because the energy at the crack tip is relaxed and the wear resistance and rim displacement are improved.
  • the carbon nanotube is a conductive material having a rod-like or thread-like structure in which the graphene sheet is rounded.
  • Examples of commercially available products include C100 manufactured by Arkema, NC7000 manufactured by Nanocyl, and the like. Vapor growth carbon fiber can also be used.
  • the rubber chafer 4 contains recycled rubber.
  • recycled rubber refers to rubber obtained by desulfurizing vulcanized rubber such as waste tires.
  • the composite fiber 3 is preferably disposed so as to be exposed on both the outer and inner surfaces of the carcass 1.
  • the continuity with the tire tread surface portion is ensured at the portion exposed to the tire outer surface of the carcass 1 and the rim is formed via the rubber chafer 4 at the turn-up portion 1B at the portion exposed to the tire inner surface of the carcass 1.
  • the composite fiber 3 includes non-conductive fibers as well as conductive fibers. Therefore, unlike conventional metal fibers and carbon fibers, it is possible to ensure a certain degree of elongation. It will not break even when strain is input during driving or when the vehicle is running.
  • the conjugate fiber 3 is not arranged in place of a skeleton member such as a carcass ply, there is no problem of impairing tire durability. Therefore, according to the present invention, the electrical resistance can be reduced without adversely affecting other performances and manufacturing processes. Therefore, even if the fuel consumption is reduced by reducing the loss of the tire rubber member, the electrical resistance is increased. It is possible to realize a pneumatic tire that does not cause a problem due to.
  • the composite fiber 3 used in the present invention only needs to contain conductive fibers and non-conductive fibers.
  • the conductive fiber include a metal-containing fiber, a carbon-containing fiber, and a metal oxide-containing fiber, and any one or more of these can be used.
  • the metal-containing fiber refers to a fiber having a metal content of 5 to 100% by mass, and examples of the metal and metal oxide include stainless steel, steel, aluminum, copper, and oxides thereof.
  • the non-conductive fiber include cotton, nylon, polyester such as polyethylene terephthalate, and organic substances such as polypropylene, and any one or more of these can be used.
  • a composite fiber composed of these conductive fibers and non-conductive fibers is preferable because it has good elongation and excellent adhesion.
  • the ratio of the conductive fiber and the nonconductive fiber in the conjugate fiber 3 used in the present invention is not particularly limited, but preferably contains 50% by mass or more, for example, 80 to 98% by mass of the nonconductive fiber. Shall. By including non-conductive fibers in the above ratio, the elongation of the composite fiber 3 can be secured satisfactorily, which is preferable.
  • conjugate fiber 3 in the present invention examples include, for example, Bequinox (registered trademark) manufactured by Bekaert Japan Co., Ltd., and Kurabobo (registered trademark) KC-500R, KC- manufactured by Kuraray Trading Co., Ltd. 793R or the like can be used.
  • the fineness of the composite fiber 3 is preferably 20 to 1000 dtex, more preferably 150 to 600 dtex, from the viewpoint of achieving both air bleedability, conductivity and durability.
  • the breaking elongation Eb can be 5 to 15%, for example.
  • the breaking elongation Eb of the composite fiber 3 can be measured at 23 ° C. in accordance with the measuring method of “elongation at cutting” defined in JIS K6251: 2010.
  • the resistance value of the composite fiber 3 is preferably 1.0 ⁇ 10 7 ⁇ / cm or less, more preferably 1.0 ⁇ 10 3 ⁇ / cm or less, and further preferably 10 to 1.0. ⁇ 10 3 ⁇ / cm. From the viewpoint of ensuring a conductive path, the resistance value of the composite fiber 3 is preferably within the above range.
  • the composite fiber 3 needs to be disposed at least from the bead portion 11 to a position in contact with the cushion rubber 13C or the belt undercushion 14, and preferably from the bead portion 11 to the tread portion 13 as illustrated. It is arranged over. Since conductive rubber is usually used for the cushion rubber 13C and the belt undercushion 14, if the composite fiber 3 is disposed at least from the bead portion 11 to a position in contact with the cushion rubber 13C or the belt undercushion 14, a conductive path is formed.
  • the composite fiber 3 is preferably disposed from the bead portion 11 to the tread portion 13.
  • the cushion rubber 13C is a rubber disposed between the tread rubber 13G and the coating rubber of the belt layer 2 (or the coating rubber of the cap layer when a cap layer is provided) at least on the tire equator line CL.
  • the belt undercushion 14 is a conductive rubber member disposed at the outer end portion in the tire width direction of the belt layer 2 and is in contact with the cushion rubber 13C and positioned on the inner side in the tire radial direction as shown in the figure. . More specifically, the belt undercushion 14 is more than at least one belt layer, in particular, all the belt layers around the outer end portion in the tire width direction of the belt member including a plurality of belt layers and a belt cord covering rubber. It is a conductive rubber member that is disposed on the inner side in the tire radial direction and on the outer side in the tire radial direction than the carcass 1. Providing the belt undercushion 14 can improve the cushioning property of the disposed portion.
  • the arrangement positions of the end portions in the tire width direction of the cushion rubber 13C and the belt undercushion 14 can be appropriately determined in relation to other members.
  • the belt undercushion 14 is disposed on the inner side in the tire radial direction and the cushion rubber 13 ⁇ / b> C is disposed on the outer side in the tire radial direction so as to cover the outer end portion in the tire width direction of the belt layer 2.
  • FIGS. 8 to 10 are explanatory views showing variations in the positional relationship between the end portions in the tire width direction of the cushion rubber 13C and the belt undercushion 14.
  • FIG. Reference numeral 15 in the figure denotes a side rubber.
  • the belt undercushion 14 extends to the inside in the tire radial direction of the belt layer 2 located on the innermost side in the tire radial direction from the outer end portion in the tire width direction of the belt layer 2 to the outer side in the tire width direction.
  • the cushion rubber 13 ⁇ / b> C is disposed outside the belt layer 2 in the tire radial direction.
  • the belt undercushion extends from the outer side in the tire width direction of the belt layer 2 to the outer side in the tire width direction to the inner side in the tire radial direction of the belt layer 2 located on the innermost side in the tire radial direction.
  • 8 is the same as in FIG. 8, but the cushion rubber 13 ⁇ / b> C is disposed on the outer side in the tire radial direction of the belt layer 2 and the belt undercushion 14 up to a position in contact with the side rubber 15.
  • the belt undercushion extends to the inner side in the tire radial direction of the belt layer 2 located on the innermost side in the tire radial direction and further to the outer side in the tire width direction than the outer end portion in the tire width direction of the belt layer 2.
  • the cushion rubber 13C is disposed on the outer side in the tire radial direction of the belt layer 2 and the belt undercushion 14, and the end portion of the cushion rubber 13C in the tire width direction is disposed.
  • the cushion rubber 13 ⁇ / b> C extends to the outer side in the tire width direction than the belt undercushion 14, and the end portion in the tire width direction of the cushion rubber 13 ⁇ / b> C enters the inner side in the tire width direction of the side rubber 15. Since the composite fiber 3 is disposed from the bead portion 11 to a position in contact with the cushion rubber 13C below the side rubber 15, conduction can be ensured with the shortest arrangement length.
  • the conductive rubber portion 5 can be provided on the entire circumference in the tire circumferential direction from the tread tread surface portion to the outer surface in the tire radial direction of the cushion rubber 13C. That is, the conductive rubber portion 5 is provided so as to penetrate the tread rubber 13G from the tread tread portion.
  • the composite fiber 3 needs to be disposed so as to be exposed on at least one of the outer side and the inner side of the tire of the carcass 1, and preferably both the outer side and the inner side of the tire. It arrange
  • FIG. 2 is an explanatory view showing a specific example of the arrangement state of the composite fibers 3 with respect to the carcass street 21 before molding. 2A to 2E and 2G, the longitudinal direction of the carka street 21 (the vertical direction in the figure) corresponds to the tire circumferential direction. Specifically, for example, as shown in FIG. 1 and FIG. 2A, the conjugate fiber 3 can be sewn to the carcass 1 in the form of a so-called seamless stitch.
  • the composite fiber 3 penetrates the carcass 1 along the extending direction, and is disposed on both the outer and inner surfaces of the carcass 1.
  • the composite fiber 3 is reliably exposed to the rubber chafer 4 side regardless of the size of the tire or member, and a conductive path can be reliably ensured.
  • the stitching pitch of the composite fiber 3 can be usually 2 to 40 mm, particularly 5 to 25 mm along the extending direction of the composite fiber 3. This range is preferable from the viewpoint of ensuring the conductive path more reliably.
  • the composite fiber 3 can be wound around the carcass 1 as shown in FIG. That is, in this case, the composite fiber 3 is wound around the carcass street 21 before molding along the width direction thereof, that is, in the same direction as the carcass ply cord, and arranged on the outer periphery thereof. This also ensures that the composite fiber 3 is exposed to the rubber chafer 4 side in the carcass turn-up portion 1B regardless of the size of the tire or member, and a conductive path can be reliably ensured.
  • the composite fiber 3 may be wound around the carcass 1 in a spiral shape as shown in FIG.
  • the composite fiber 3 is inclined with respect to the width direction of the carcass street 21 before molding, that is, wound around the carcass ply cord and disposed on the outer periphery thereof. Since it can wind continuously, there exists a merit which manufacturing efficiency improves rather than the form of FIG.2 (b). This also ensures that the composite fiber 3 is exposed to the rubber chafer 4 side in the carcass turn-up portion 1B regardless of the size of the tire or member, and a conductive path can be reliably ensured.
  • the composite fiber 3 is the bead part 11 along the width direction with respect to the carcass street 21 before shaping
  • the composite fiber 3 can be wound around the carcass as shown in FIG. 2 (e) as a modification of FIG. 2 (b).
  • 3 and 4 are cross-sectional views on one side in the width direction showing another example of the pneumatic tire of the present invention, corresponding to FIG.
  • the composite fiber 3 is partially wound around the carcass street 21 before molding along the width direction thereof, that is, in the same direction as the carcass ply cord.
  • the composite fiber 3 is connected to the carcass 1 from a position in contact with one end in the tire width direction of the cushion rubber 13 ⁇ / b> C or the belt undercushion via the bead portion 11.
  • the carcass 1 is folded back from the tire inner side to the outer side around the main body portion 1 ⁇ / b> A extending between the pair of bead portions 11 and the bead core 6 embedded in each of the pair of bead portions 11.
  • the composite fiber 3 is located on the outer side in the tire width direction of the folded portion 1B on one side with respect to the carcass 1 and from the position in contact with the rubber chafer 4 from the folded portion 1B.
  • the composite fiber 3 is knitted with the upper thread 3a and the lower thread 3b with respect to the carcass 1 by a sewing mechanism as shown in FIG. 2F. It can also be stitched. Also in this case, the conjugate fiber 3 is disposed on both the outer and inner surfaces of the carcass 1 through the carcass 1 along the extending direction. As a result, in the carcass folding portion 1B, the composite fiber 3 is reliably exposed to the rubber chafer 4 side regardless of the size of the tire or member, and a conductive path can be reliably ensured. Furthermore, as shown in FIG. 2G, the composite fiber 3 may be disposed on one side surface of the carka street 21 so as to be parallel to the tire width direction. In the present invention, from the viewpoint of ease of manufacture, among the above, the arrangement forms shown in FIGS. 2A, 2C, and 2E are preferable. In particular, FIGS. 2A and 2E are more preferable.
  • the winding pitch of the composite fiber 3 is usually 1 to 12 turns / m, particularly 2 to 5 along the longitudinal direction of the carcass street 21, that is, the direction orthogonal to the extending direction of the carcass ply cord. Times / m. This range is preferable from the viewpoint of ensuring the conductive path more reliably.
  • the number of driving of the composite fiber 3 depends on the resistance value of the composite fiber 3, but from the viewpoint of ensuring a conductive path in the tire circumferential direction, it is arranged at 0.04 pieces / 5 cm or more in the tire circumferential direction. More preferably, it is 0.1 piece / 5 cm or more, for example, 0.1 to 0.2 piece / 5 cm.
  • the arrangement angle of the composite fiber 3 is preferably 30 to 150 ° with respect to the tire circumferential direction, more preferably 50 to 130 °, and still more preferably 80 to 100 °. It is an angle to make. If the extending direction of the composite fiber 3 is too close to the tire circumferential direction, the conductive path becomes longer, which is not preferable.
  • the composite fiber 3 is not limited to a linear arrangement as shown in FIG. 2, and may be arranged in a zigzag shape or a wave shape, for example. In this case as well, the composite fiber 3 extends as a whole.
  • the existing direction is defined as the extending direction of the composite fiber 3.
  • the composite fiber 3 can be replaced with a bleeder cord that has been conventionally arranged for the purpose of bleeding the carcass ply during vulcanization.
  • the bleeder cord is a cord member that is disposed on one or both sides of a carcass or a belt layer for the purpose of reducing defective air entry that occurs in a tire production process, and is generally made of cotton yarn, polyester yarn, or the like.
  • the bleeder cord absorbs and permeates air contained in the tire in the tire production process, and can reduce air entry defects.
  • the bleeder cord is usually arranged at least from the bead portion 11 to a position in contact with the cushion rubber 13C or the belt undercushion 14, by replacing a part or all of the bleeder cord with the composite fiber 3,
  • positioning of the composite fiber 3 can be acquired, without adding an additional member.
  • the desired effect of the present invention can be obtained even when the composite fiber 3 is additionally arranged without changing the bleeder cord.
  • the composite fiber 3 When the composite fiber 3 is disposed in place of a conventional bleeder cord, the composite fiber 3 can be disposed in place of 3 to 100% by mass, preferably 20 to 50% by mass of the bleeder cord. If this number is replaced with the composite fiber 3, the expected effect of the present invention can be obtained with certainty.
  • the composite fiber 3 used in the present invention may be either a spun yarn or a filament yarn, but is preferably a spun yarn (mixed yarn) formed by spinning short fibers.
  • a dip treatment with an adhesive for ensuring the adhesion between the organic fiber and the rubber. If the composite fiber 3 is provided with a surface coating of an adhesive by dipping, the air bleeding property through the composite fiber 3 is deteriorated. Therefore, when the composite fiber 3 is disposed in place of the bleeder cord, it is preferable to perform only a part of the dip treatment, and more preferably not to perform the dip treatment.
  • the use of spun yarn is preferable in that the anchor effect of the short fiber can ensure adhesion with rubber without dip treatment, and the air bleeding property can be maintained.
  • the number of twists is preferably 10 times / 10 cm or more, for example, 30 to 60 times / 10 cm. can do.
  • the composite fiber 3 may be dip-treated, but from the viewpoint of ensuring the degree of design freedom, such as replacing all bleeder cords with the composite fiber 3, it may not be dip-treated. preferable.
  • the rubber composition used for the tire case member such as the coating rubber of the carcass ply is lower than the conventional tire structure.
  • a lost rubber composition can be used, thereby improving the fuel efficiency of the tire.
  • the carcass 1 is folded around the bead core 6 and wound up outward in the tire radial direction to form a folded portion 1B. 7 is arranged.
  • a cap layer that covers the entire belt layer 2 or a layer layer that covers only the end of the belt layer 2 is formed on the outer side in the tire radial direction of the belt layer 2 as necessary.
  • One or more of each can be arranged.
  • an inner liner is usually disposed on the innermost surface of the tire.
  • the coating rubber of the carcass ply preferably contains carbon black having a nitrogen adsorption specific surface area of 30 to 43 m 2 / g, particularly 33 to 40 m 2 / g.
  • carbon black having a nitrogen adsorption specific surface area of 30 to 43 m 2 / g, particularly 33 to 40 m 2 / g.
  • the rubber composition for tires described in detail below is preferably used.
  • the tire rubber composition according to the present invention has a nitrogen adsorption specific surface area (N 2 SA) of 30 with respect to 100 parts by mass of a rubber component containing 20 to 40 parts by mass of styrene butadiene rubber and 60 to 80 parts by mass of natural rubber. It is obtained by blending 35 to 50 parts by mass of carbon black of ⁇ 43 m 2 / g and 5 parts by mass or less of oil.
  • N 2 SA nitrogen adsorption specific surface area
  • Examples of the rubber component used in the present invention include at least styrene butadiene rubber (SBR) and natural rubber (NR).
  • SBR styrene butadiene rubber
  • NR natural rubber
  • the content of styrene butadiene rubber is preferably 20 to 40 parts by mass in 100 parts by mass of the rubber component.
  • styrene butadiene rubber examples include solution polymerized styrene butadiene rubber, emulsion polymerized styrene butadiene rubber, and modified styrene butadiene rubber.
  • the content of natural rubber is preferably 60 to 80 parts by mass in 100 parts by mass of the rubber component.
  • the content of natural rubber is preferably 60 to 80 parts by mass in 100 parts by mass of the rubber component.
  • natural rubber include those used in the tire industry, such as RSS # 3, TSR20, SIR20.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • IIR butyl rubber
  • CR chloroprene rubber
  • acrylonitrile as necessary.
  • At least one of butadiene rubber (NBR) and ethylene propylene diene terpolymer (EPDM) can be used.
  • the carbon black used in the present invention has a nitrogen adsorption specific surface area (N 2 SA, measured according to JIS K 6217-2: 2001) of 30 to 43 m 2 / g.
  • the reason why the nitrogen adsorption specific surface area (N 2 SA) of the carbon black is limited to the above range is to improve the dispersibility of the carbon black by using the carbon black having a large particle size.
  • the nitrogen adsorption specific surface area (N 2 SA) is 33 to 40 m 2 / g.
  • FEF, GPF, SRF and the like can be used.
  • the content of the carbon black is preferably 35 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the carbon black is preferably 35 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
  • Examples of the oil used in the present invention include at least one selected from paraffinic oil, naphthenic oil, aromatic oil, and aromatic oil, and commercially available products can be used.
  • paraffinic oil commercially available products such as “Super Oil Y22” manufactured by JX Nippon Oil & Energy Corporation can be used.
  • the naphthenic oil may be hydrogenated or non-hydrogenated.
  • commercially available products such as “straight asphalt-containing naphthenic oil Sankyo Yuka Kogyo Co., Ltd.” and trade name “A / O MIX” can be used.
  • the content of the oil is 5 parts by mass or less (including 0 parts by mass) with respect to 100 parts by mass of the rubber component. By setting the content of the oil to 5 parts by mass or less, the mechanical strength of the rubber can be improved. Even when the oil is not included (0 part by mass), the compounding agent such as carbon black is sufficiently dispersed, and necessary rubber physical properties can be obtained.
  • the oil content is preferably 0 to 3 parts by mass.
  • the tire rubber composition according to the present invention is further made of ketjen black and carbon nanotubes (CNT) from the viewpoint of further lowering electrical resistance by imparting electrical conductivity and further improving durability. It is preferable to include at least one kind.
  • Examples of carbon nanotubes (CNT) that can be used include rod-like or round-like graphene sheets, vapor-grown carbon fibers (VGCF), etc., and these commercially available products C100 (manufactured by Arkemaya), Or NC7000 (made by Nanocyl) etc. can be used.
  • CNT carbon nanotubes
  • These carbon nanotubes (CNT) further impart electrical conductivity and, unlike the carbon black, have a small interaction with rubber, and the elastic modulus decreases in the high strain region of the high strain curve of the stress strain curve, When the elongation at break (Eb) is increased and the Eb of the rubber is large at the time of crack propagation, the energy at the crack tip is relaxed and the crack propagation resistance is improved.
  • ketjen black hollow shell-like particles exist, and various grades of ketjen black having high conductivity can be used.
  • examples of ketjen black that can be used include ketjen black EC300J (granular), ketjen black EC600JD (granular), carbon ECP (powder product of ketjen black EC300J), carbon ECP600JD [ketjen black] manufactured by Lion. [Chen Black EC600JD powder product] and at least one of lionite.
  • the total amount of these ketjen black and carbon nanotubes is preferably 0.1 to 6 parts by mass, more preferably 1.0 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • carbon black, ketjen black and carbon nanotubes having a nitrogen adsorption specific surface area (N 2 SA) satisfying the above range are used as fillers, and further impart excellent conductivity, and From the viewpoint of further improving the durability by further improving the crack resistance, it is preferable that at least one of ketjen black and carbon nanotubes is blended in 2 to 15% by mass of the filler, More preferably, it is 2.5 to 12.5% by mass.
  • silica, clay, talc, calcium carbonate, or the like can be used as a filler other than the carbon black, the ketjen black, and the carbon nanotube as long as the effects of the present invention are not impaired.
  • other components can be appropriately selected and blended with the tire rubber composition as needed within the range not impairing the effects of the present invention.
  • Other components include, for example, sulfur vulcanizing agents, thiazole and sulfenamide vulcanization accelerators, vulcanization aids, zinc oxide (zinc white), stearic acid, anti-aging agents, and antioxidants.
  • sulfur vulcanizing agents thiazole and sulfenamide vulcanization accelerators
  • vulcanization aids zinc oxide (zinc white), stearic acid, anti-aging agents, and antioxidants.
  • additives such as agents, ozone degradation inhibitors, colorants, lubricants, silane coupling agents, foaming agents, foaming aids, and the like, various known compounding chemicals commonly used in the tire industry are included. These can use a commercial item.
  • the rubber composition for a tire is blended with the above-described rubber component, such as carbon black and oil having the above characteristics, and in addition to ketjen black and carbon nanotubes, zinc white, stearic acid, anti-aging agent, sulfur, It can be prepared by kneading a vulcanization accelerator and other additives appropriately selected according to the purpose or necessity.
  • the kneading conditions are not particularly limited. For the purpose of various conditions such as the input volume of the kneading apparatus, the rotational speed of the rotor, the ram pressure, the kneading temperature, the kneading time, and the type of the kneading apparatus. It can be appropriately selected depending on the case. Examples of such a kneading apparatus include a Banbury mixer, an intermix, a kneader, and a roll that are usually used for kneading a rubber composition.
  • the styrene butadiene rubber is used for the tire.
  • a rubber composition in which carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 30 to 43 m 2 / g contained in the rubber composition is blended at A * 100 / (A + B) (mass%) is rubber composition X, natural Carbon black with a nitrogen adsorption specific surface area (N 2 SA) of 30 to 43 m 2 / g contained in the tire rubber composition was blended at B * 100 / (A + B) (mass%) with respect to rubber B mass parts.
  • the moduli at 50% elongation of the rubber compositions X, Y, and Z are Mdx, Mdy, and Mdz, respectively.
  • Mdx, Mdy, Mdz that satisfies the following formula (I) preferred. 0.9 ⁇ ⁇ Mdx * A / (A + B) + Mdy * B / (A + B) ⁇ ⁇ Mdz (I)
  • the tire rubber composition includes at least a ply coating rubber for a carcass ply, a belt coating rubber for a belt layer, a squeegee rubber between carcass plies, a cushion rubber, a belt undercushion, and a bead filler rubber. It is applied to one member. Preferably, it is applied to ply coating rubber from the point that the amount of rubber used is large and the influence on the loss characteristics to the entire tire is large, and that it is located at the center of the conductive path from the rim to the tread. preferable. Thereby, it can be set as the pneumatic tire in which low loss, crack resistance and reinforcement, and conductivity are compatible.
  • the natural rubber (NR) amount is set within a specific range, thereby improving the durability performance in a high strain region and specifying the styrene butadiene rubber (SBR) amount.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is limited to the above range in order to improve the durability of low distortion without deteriorating the loss and to reduce the loss of rubber.
  • the oil amount is set to a predetermined amount or less, so that it has the same reinforceability and durability performance as conventional products, while suppressing an increase in electrical resistance and low rolling resistance. And can contribute to the realization of a tire having excellent durability.
  • a rubber composition for tires is provided that further improves electrical conductivity without deteriorating poor dispersion and low loss. Is done.
  • conductive materials have poor dispersibility, low loss, and weak interaction with rubber, but in the present invention, examination of the type and number of parts of conductive materials
  • conductivity can be further imparted without deteriorating poor dispersion and low loss, and the reinforcing property of the conductive material can be improved.
  • a rubber composition for a tire that is further excellent in durability performance is provided.
  • the extrusion direction and the tire width direction are arranged to coincide with each other. It is preferable to do.
  • the tire rubber composition containing carbon nanotubes (CNT) is blended, strength anisotropy is obtained when stretched in a certain direction, so that the carbon nanotubes are oriented by extruding in a certain direction.
  • the manufacturing method of the pneumatic tire which applied the said rubber composition for tires to the said case member for tires It can manufacture according to a conventionally well-known manufacturing method. That is, the tire rubber composition is kneaded and extruded into a predetermined cross-sectional shape, or a fiber cord or the like is coated to a predetermined thickness and processed into a desired tire molding rubber member. After being attached to the tire, a pneumatic tire can be produced by vulcanization molding in a predetermined mold under a predetermined temperature and pressure.
  • This tire was provided with a bleeder cord made of Bekinox (Bekernox (registered trademark)) from the bead portion to the tread portion so as to be exposed on both the outer and inner surfaces of the carcass.
  • the bleeder cord was arranged so as to be sewn into the carcass at an angle of 90 ° with respect to the tire circumferential direction at a stitching pitch of 20 mm.
  • the rubber compound shown in the following table was applied to the rubber chafer.
  • the electrical resistance value was evaluated for each of the obtained tires. The results are shown in the table below.
  • BF drum test Using a drum tester with a drum surface of smooth steel and a diameter of 1.707 m, the ambient temperature is controlled to 30 ⁇ 3 ° C., and a rim with a standard rim size specified by JATMA is used. A running test was conducted until a failure occurred under a load twice the maximum load capacity of the JATMA standard. The travel distance of each tire was displayed as an index with the travel distance of the tire of Comparative Example 1-1 as 100. Higher values indicate tires with better durability.
  • the electrical resistance of the tire was measured as shown in FIG. 6 using a model HP4394A high resistance meter manufactured by Hewlett Packard in accordance with WdK 110 sheet 3 of GERMAN ASSOCIATION OF RUBBER INDUSTY.
  • reference numeral 111 is a tire
  • 112 is a steel plate
  • 113 is an insulator
  • 114 is a high resistance meter. Measurement was performed by passing a current of 1000 V between the steel plate 112 on the insulating plate 113 and the rim of the tire 111.
  • the composite fiber including the conductive fiber and the non-conductive fiber is disposed so as to be exposed on at least one surface of the carcass from the bead portion to a position in contact with the cushion rubber, and the rubber.
  • the electric resistance of the tire was reduced without adversely affecting other performance such as tire durability while reducing the loss. It was confirmed that it was declining.
  • Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-5 Preparation of rubber compositions for tires
  • Each compounding formulation shown in the following Table 2 was kneaded by a conventional method with a Banbury mixer to prepare rubber compositions for tires.
  • loss characteristics (tan-delta) and storage elastic modulus (E ') were evaluated by the following each method.
  • a pneumatic tire (test tire) of size 195 / 65R15 having the structure shown in FIG. 1 was prepared using each of the obtained tire rubber compositions as a coating rubber for a carcass ply having the following carcass ply cord.
  • Cord material PET
  • This tire was provided with a bleeder cord made of Bekinox (Bekernox (registered trademark)) from the bead portion to the tread portion so as to be exposed on both the outer and inner surfaces of the carcass.
  • the bleeder cord was arranged so as to be sewn into the carcass at an angle of 90 ° with respect to the tire circumferential direction at a stitching pitch of 20 mm.
  • the compounded rubber of Example 1-3 shown in Table 1 was applied to the rubber chafer.
  • Example 2 For each of the obtained test tires, the electrical resistance, durability performance (BF drum test), and low loss performance (RRC drum) were measured and evaluated in the same manner as in Example 1-1. Durability performance and low loss performance were both evaluated based on Comparative Example 2-1. These results are shown in Table 2 below.
  • * 2-1 to * 2-11 in the above Table 2 are as follows.
  • Carbon nanotube (CNT) * 2-6: Nitrogen adsorption specific surface area (N 2 SA: 800 m 2 / g) Ketjen Black EC300J, manufactured by LION * 2-7: Silica: “Nip Seal AQ” manufactured by Tosoh Silica Co., Ltd. (BET 200 m 2 / G) * 2-8: Silane coupling agent: “Si69” manufactured by Degussa * 2-9: Process oil (TDAE), manufactured by Shin Nippon Petrochemical Co., Ltd. * 2-10: MBTS (di-2-benzothiazolyl disulfide) * 2-11: BBS (N-tert-butyl-2-benzothiazolesulfenamide)
  • the pneumatic tires using the tire rubber compositions of Examples 2-1 to 2-4 are the same as the tire rubber compositions of Comparative Examples 2-1 to 2-5. As compared with the used pneumatic tire, it was confirmed that the increase in electrical resistance was suppressed, the rolling resistance of the tire was reduced, and the durability was excellent.
  • Examples 2-1 to 2-4 using large particle size carbon are superior in loss characteristics and more conductive than conventional high-grade carbon black and silica blends. It can be said that when the material is added, both excellent loss characteristics and conductivity can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

タイヤのゴム部材の低ロス化を図った場合でも、タイヤ耐久性等の他性能や製造工程に悪影響を及ぼすことなく、電気抵抗を低下させることができる空気入りタイヤを提供する。 カーカス1のクラウン部タイヤ半径方向外側に配置されたベルト層2を備え、ビード部のタイヤ幅方向外表面にゴムチェーファー4が配設されている空気入りタイヤである。ベルト層のタイヤ半径方向外側に、クッションゴム13Cおよびトレッドゴム13Gが順次配設されており、少なくともビード部からクッションゴムに接する位置またはベルト層のタイヤ幅方向外端部に配設されたベルトアンダークッションに接する位置まで、カーカスの、タイヤ外側および内側のうちの少なくとも一方の表面に露出するように、導電性繊維と非導電性繊維とを含む複合繊維3が配設されるとともに、ゴムチェーファーが、窒素吸着比表面積30~43m/gのカーボンブラックを含有する。

Description

空気入りタイヤ
 本発明は空気入りタイヤに関し、詳しくは、導電性を改良した空気入りタイヤ(以下、単に「タイヤ」とも称する)に関する。
 近年、タイヤの低燃費性への要求の高まりに伴い、タイヤのゴム部材について、トレッドゴムのみならずサイドゴム等のケース部材についても、低ロス化による転がり抵抗の低下が進んできている。しかし、タイヤ用ゴムの低ロス化のために、カーボンブラックに代えてシリカを高部数で配合したり、カーボンブラックを大粒径化して配合量を低部数とすると、ゴムの電気抵抗値が上昇してしまう。よって、タイヤに使用するゴム組成物全体の低ロス化を進めると、タイヤの電気抵抗が上昇して、ラジオノイズや、車両のドアを開閉する際の静電気発生等につながるため、タイヤの電気抵抗を低下させる技術が必要となる。
 タイヤの電気抵抗を下げるためには、一部の部材を高ロス部材にすることが考えられるが、その場合、転がり抵抗が悪化してしまうため、ゴムの低ロス化と電気抵抗とのバランスの改善が望まれている。これに対し、従来、導電性繊維を配置することによりタイヤの電気抵抗を下げる試みが種々なされてきている。例えば、特許文献1には、車体に発生する静電気を円滑に路面にアースできる導電タイヤとして、カーカスプライのうちブレーカに最も近い側のカーカスプライのカーカスコードとブレーカコードとを、それぞれ少なくとも1本の金属フィラメントと多数本の有機繊維フィラメントとの集合体で形成した導電タイヤが開示されている。
 また、特許文献2には、優れた低発熱性および高い強度を有するチェーファーまたはクリンチ用ゴム組成物、および、これを用いた空気入りタイヤを提供することを目的として、所定の化合物により変性されたブタジエンゴムを含むゴム成分100質量部に対し、シリカ10~150質量部を含有させる技術が開示されている。
特開平3-169711号公報(特許請求の範囲等) 特開2010-116447号公報(特許請求の範囲等)
 上述のように、従来、タイヤの電気抵抗を低下させる試みは多数なされているが、十分なものではなかった。例えば、トレッドやサイドウォールなどのタイヤ外皮部材に導電性材料を配合することで電気抵抗を下げることはできるが、一般に、耐亀裂進展性が必要なゴムチェーファーの場合、HAF等の高級カーボンを配合した場合、電気抵抗は下がるが低ロス性が悪化してしまう。一方でカーボンナノチューブ(CNT)やケッチェンブラック等の導電性材料を配合すると、耐摩耗性が低下し、リムずれ性が悪化して、タイヤとしての耐久性が悪化してしまうという問題があった。また、シリカを高部数配合した場合、低ロス性と耐摩擦性との両立は図れるが、押出特性や成型特性(タック性)等に改善の余地があった。
 また、例えば、上記特許文献1におけるように、カーカスコードに金属繊維を用いた場合、耐久性の低下や、伸びのない繊維を適用したことによる生産性の著しい悪化などの問題が生ずる。よって、タイヤに求められる各種性能や製造工程を大きく変えることなく、タイヤの電気抵抗を低下できる技術の確立が求められていた。また、特許文献2では、低ロス性と対リムの耐摩擦性とは両立できるものの、押出し特性や、タック等の成型性に改善の余地があった。
 そこで本発明の目的は、上記問題を解消して、タイヤのゴム部材の低ロス化を図った場合でも、タイヤ耐久性等の他性能や製造工程に悪影響を及ぼすことなく、電気抵抗を低下させることができる空気入りタイヤを提供することにある。
 本発明者らは鋭意検討した結果、タイヤ内部に、導電性繊維と非導電性繊維とを含む複合繊維を配設することで、タイヤの導電性を改善できることを見出した。また、本発明者らは、タイヤ内部における導電パスを確保するためには、この複合繊維を、カーカスプライの少なくとも一方の表面に露出させるとともに、ゴムチェーファーに所定のカーボンブラックを配合することが重要となることを見出して、本発明を完成するに至った。なお、本願における複合繊維とは、複数の異なる種類の繊維からなる繊維を指す。
 すなわち、本発明は、一対のビード部間に跨ってトロイド状に延在する少なくとも1枚のカーカスプライからなるカーカスを骨格とし、該カーカスのクラウン部タイヤ半径方向外側に配置された少なくとも一枚のベルト層を備え、前記ビード部のタイヤ幅方向外表面にゴムチェーファーが配設されている空気入りタイヤにおいて、
 前記ベルト層のタイヤ半径方向外側に、クッションゴム、および、踏面部を形成するトレッドゴムが順次配設されており、少なくとも前記ビード部から該クッションゴムまたは前記ベルト層のタイヤ幅方向外端部に配設されたベルトアンダークッションに接する位置まで、前記カーカスの、タイヤ外側および内側のうちの少なくとも一方の表面に露出するように、導電性繊維と非導電性繊維とを含む複合繊維が配設されるとともに、前記ゴムチェーファーが、窒素吸着比表面積30~43m/gのカーボンブラックを含有することを特徴とするものである。
 本発明においては、前記ゴムチェーファーが再生ゴムを含有することが好ましい。また、本発明においては、前記ゴムチェーファーが、ゴム成分100質量部に対し、前記カーボンブラックを64~73質量部にて含有することが好ましく、前記ゴムチェーファーのゴム成分100質量部に対し、前記再生ゴムが3~10質量部含まれていることも好ましい。さらに、好適には、前記複合繊維が、前記カーカスの、タイヤ外側および内側の両表面に露出するように配設されているものとする。さらにまた、本発明においては、前記複合繊維の、タイヤ外側に露出した部分と、タイヤ内側に露出した部分とが、少なくとも1箇所以上で導通していることが好ましい。
 さらにまた、本発明においては、前記非導電性繊維が有機物であって、前記複合繊維が該非導電性繊維を50質量%以上含有することが好ましい。また、本発明において、前記複合繊維は、前記カーカスに縫い込まれていることが好ましく、この場合、前記複合繊維の縫込みピッチは、好適には2~40mmである。なお、本願における縫込みピッチとは、カーカスに縫い込んだ際の一縫い分の距離を指し、後述する図2(f)におけるαに相当する。縫込みピッチは前記範囲内であればピッチが均等であっても、均等でなくても構わないが、均等であることが望ましい。また、特に断りのない限り、本願における縫込みピッチは個々のピッチの平均値を示す。さらに、本発明において、前記複合繊維は、前記カーカスに対し巻き付けられていることも好ましく、具体的には、前記複合繊維が、前記カーカスに対し、前記クッションゴムまたは前記ベルトアンダークッションのタイヤ幅方向の一方側の端部に接する位置から、前記ビード部を経由して、該カーカスのタイヤ内側を通り、該クッションゴムまたは該ベルトアンダークッションのタイヤ幅方向の他方側の端部まで巻き付けられていることが好ましい。また、前記ビード部のタイヤ幅方向外表面にゴムチェーファーが配設されており、前記カーカスが、前記一対のビード部間に延在する本体部と、該一対のビード部にそれぞれ埋設されたビードコアの周りに内側から外側に折り返され巻き上げられた折返し部とからなり、前記複合繊維が、該カーカスに対し、一方側の該折返し部のタイヤ幅方向外側であって前記ゴムチェーファーと接する位置から、該折返し部のタイヤ幅方向内側および該本体部のタイヤ幅方向外側を経由して、該カーカスのタイヤ外側を通り、他方側の該折返し部のタイヤ幅方向外側であって前記ゴムチェーファーと接する位置まで巻き付けられていることも好ましい。前記複合繊維は、前記カーカスに対し螺旋状に巻き付けられているものとすることもできる。この場合、前記複合繊維の巻付けピッチは、好適には1~12回/mである。なお、本願における巻付けピッチとは、カーカスプライのタイヤ周方向に沿った単位長さあたりに、何本の前記複合繊維が巻き付けられているかを示している。巻付けピッチの測定は、前記複合繊維が前記カーカスのタイヤ幅方向端部にのみ巻き付けられている場合はプライ端部において行い、前記複合繊維がタイヤ幅方向全体に巻きつけられている場合は、タイヤ赤道線CL上におけるプライの表面上にて行う。また、測定の開始点は前記複合繊維上とする。さらにまた、本発明においては、前記複合繊維が、タイヤ周方向において打込み数0.04本/5cm以上で配置されていることが好ましい。なお、本願における打込み数とは、タイヤ周方向において単位長さあたりに何本の前記複合繊維が存在しているかを示している。打込み数の測定は、前記複合繊維が前記カーカスのタイヤ幅方向端部にのみ巻き付けられている場合はプライ端部において行い、前記複合繊維がタイヤ幅方向全体に巻きつけられている場合は、タイヤ赤道線CL上におけるプライの表面上にて行う。また、測定の開始点は前記複合繊維上とする。なお、前記複合繊維が、後述する図2(a)に示すようにプライに縫い込まれている場合は、前記複合繊維がプライ表面上に現れていても現れていなくても、測定線上に存在する場合には測定対象となる。
 さらにまた、本発明のタイヤにおいては、少なくとも前記ビード部から前記クッションゴムまたは前記ベルトアンダークッションに接する位置まで、ブリーダーコードが配設されてなり、かつ、前記複合繊維が、該ブリーダーコードのうち3~100質量%に代えて配設されているものとすることができる。
 さらにまた、本発明において、前記複合繊維の繊度は、好適には20~1000dtexである。さらにまた、前記複合繊維は、タイヤ周方向に対し30~150°をなす角度で配設されていることが好ましく、より好ましくは、タイヤ周方向に対し50~130°をなす角度で配設されているものとする。より好ましくは、タイヤ周方向に対し80~100°をなす角度で配設されているものとする。
 さらにまた、本発明においては、前記導電性繊維が、金属含有繊維、カーボン含有繊維および金属酸化物含有繊維のうちのいずれか1種以上を含むことが好ましく、前記非導電性繊維が、綿、ナイロン、ポリエステルおよびポリプロピレンのうちのいずれか1種以上を含むことも好ましい。さらにまた、本発明において、前記複合繊維の破断伸びEbは、好適には5%以上であり、前記複合繊維の抵抗値は、好適には1.0×10Ω/cm以下である。さらにまた、本発明においては、前記ゴムチェーファーが、ゴム成分100質量部に対し、カーボンナノチューブを0.5~4質量部にて含有することが好ましい。
 さらにまた、本発明においては、前記カーカスプライのプライコーティングゴム、前記ベルト層のベルトコーティングゴム、該カーカスプライ間のスキージーゴム、前記クッションゴム、前記ベルトアンダークッション、および、前記一対のビード部にそれぞれ埋設されたビードコアのタイヤ半径方向外側に配置されたビードフィラーゴムのうち、少なくとも一部材に、スチレンブタジエンゴムを20~40質量部、天然ゴムを60~80質量部含むゴム成分100質量部に対して、窒素吸着比表面積(NSA)30~43m/gのカーボンブラックを35~50質量部と、オイルを5質量部以下配合してなるタイヤ用ゴム組成物が用いられていることが好ましい。
 さらにまた、本発明においては、前記タイヤ用ゴム組成物が、前記ゴム成分100質量部に対し、ケッチェンブラックおよびカーボンナノチューブのうち少なくとも1種を0.1~6質量部含むことが好ましく、前記タイヤ用ゴム組成物が、充填材のうち2~15質量%にて、ケッチェンブラックおよびカーボンナノチューブの少なくとも1種を含むことも好ましい。
 さらにまた、本発明においては、前記タイヤ用ゴム組成物における、スチレンブタジエンゴムの配合量をA質量部、天然ゴムの配合量をB質量部としたとき、
 スチレンブタジエンゴムA質量部に対し、前記タイヤ用ゴム組成物に含まれる窒素吸着比表面積(NSA)30~43m/gのカーボンブラックをA*100/(A+B)(質量%)にて配合したゴム組成物をゴム組成物X、
 天然ゴムB質量部に対し、前記タイヤ用ゴム組成物に含まれる窒素吸着比表面積(NSA)30~43m/gのカーボンブラックをB*100/(A+B)(質量%)にて配合したゴム組成物をゴム組成物Y、
 前記タイヤ用ゴム組成物をゴム組成物Zとした場合に、
 前記ゴム組成物X、Y、Zの50%伸長時のモジュラスを各々Mdx,Mdy,Mdz(MPa)とすると、Mdx,Mdy,Mdzが下記式(I)を満たすことが好ましい。
 0.9×{Mdx*A/(A+B)+Mdy*B/(A+B)}≧Mdz……(I)
 本発明によれば、タイヤのゴム部材の低ロス化を図った場合でも、タイヤ耐久性等の他性能や製造工程に悪影響を及ぼすことなく、電気抵抗を低下できる空気入りタイヤを実現することが可能となった。
本発明の空気入りタイヤの一例を示す幅方向片側断面図である。 成形前のカーカストリートに対する複合繊維の配置状態の具体例を示す説明図である。 本発明の空気入りタイヤの他の例を示す幅方向片側断面図である。 本発明の空気入りタイヤのさらに他の例を示す幅方向片側断面図である。 ゴムの体積固有抵抗率の測定方法に係る説明図である。 タイヤの電気抵抗値の測定方法に係る説明図である。 本発明の空気入りタイヤのさらに他の例を示す幅方向片側断面図である。 クッションゴムおよびベルトアンダークッションのタイヤ幅方向端部の位置関係のバリエーションを示す説明図である。 クッションゴムおよびベルトアンダークッションのタイヤ幅方向端部の位置関係の他のバリエーションを示す説明図である。 クッションゴムおよびベルトアンダークッションのタイヤ幅方向端部の位置関係のさらに他のバリエーションを示す説明図である。
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
 図1,7に、本発明の空気入りタイヤの一例を示す幅方向片側断面図を示す。図示する空気入りタイヤは、一対のビード部11と、一対のビード部11からそれぞれタイヤ半径方向外側に連なる一対のサイドウォール部12と、一対のサイドウォール部12間に跨って延びて接地部を形成するトレッド部13とからなる。また、図示するタイヤは、一対のビード部11間に跨ってトロイド状に延在する少なくとも1枚、例えば1~3枚、図示する例では1枚のカーカスプライからなるカーカス1を骨格とし、そのクラウン部タイヤ半径方向外側に配置された少なくとも1枚、例えば1~4枚、特には2~4枚、図示する例では2枚のベルト層2と、を備えている。さらに、ビード部のタイヤ幅方向外表面には、ゴムチェーファー4が配設されている。さらにまた、ベルト層2のタイヤ半径方向外側には、クッションゴム13C、および、踏面部を形成するトレッドゴム13Gが、順次配設されている。図1と図7とは、ベルト層2のタイヤ幅方向外端部に、ベルトアンダークッション14が配設されているかいないかという点を除き、同じ実施形態を示している。
 本発明においては、少なくともビード部11からクッションゴム13Cまたはベルト層2のタイヤ幅方向外端部に配設されたベルトアンダークッション14に接する位置まで、導電性繊維と非導電性繊維とを含む複合繊維3が配設されている点が重要である。この複合繊維3は、カーカス1の、タイヤ外側および内側のうちの少なくとも一方の表面に露出するように配設されている。このように複合繊維3を配設したことで、タイヤ内部における導電パスを確保することができ、タイヤの電気抵抗を低下させることができる。
 また、本発明においては、ゴムチェーファー4が、窒素吸着比表面積30~43m/gのカーボンブラックを含有する点が重要である。すなわち、本発明においては、ゴムチェーファー4に上記範囲の窒素吸着比表面積を有するカーボンブラックを含有させたことで、タイヤの低ロス化を図った場合でも、ゴムチェーファー4の耐摩耗性を悪化させることなく、ゴムチェーファー4を介して、タイヤ内部からリム側への導電パスを確保することができる。さらに、本発明に用いるゴムチェーファー4は、耐摩耗性のみならず、成型性も良好である。上記カーボンブラックの窒素吸着比表面積は、30~43m/gであることが必要であり、好適には33~40m/gである。窒素吸着比表面積が小さすぎると、ヒステリシスロスが高くなり、大きすぎると耐摩耗性が悪化してしまい、いずれにしても本発明の所期の効果が得られない。このようなカーボンブラックとしては、例えば、FEF等を挙げることができる。
 本発明において、ゴムチェーファー4中の上記カーボンブラックの配合量としては、ゴム成分100質量部に対し、好適には64~73質量部、より好適には66~70質量部である。カーボンブラックの配合量を上記範囲とすることで、タイヤの低ロス化と、電気抵抗の低下とを、良好に両立させることができる。
 本発明において、ゴムチェーファー4は、上記カーボンブラックに加えて、カーボンナノチューブ(CNT)を含有することが、耐摩耗性と電気抵抗の低減とをより良好に両立できることから、好ましい。好適には、ゴムチェーファー4が、ゴム成分100質量部に対し、カーボンナノチューブを0.5~4質量部、特には1~3質量部にて含有するものとする。カーボンナノチューブは、カーボンブラックよりもゴムとの相互作用が小さく、応力歪曲線の高歪領域で弾性率が低下し、破断伸びEbが上がるという特性を有する。亀裂進展時にゴムのEbが大きいと、亀裂先端のエネルギーが緩和されて、耐摩耗性およびリムずれ性が向上するため、好ましい。ここで、カーボンナノチューブとは、グラフェンシートが丸まった棒状もしくは糸状の構造を有する導電性材料であり、市販品としては、例えば、Arkema社製のC100、Nanocyl社製のNC7000等が挙げられる。また、気相成長カーボンファイバーを用いることもできる。
 また、本発明において、ゴムチェーファー4は、再生ゴムを含有することも、好ましい。好適には、ゴムチェーファー4のゴム成分100質量部に対し、再生ゴムが3~10質量部、特には5~10質量部含まれているものとする。ここで、再生ゴムとは、廃タイヤ等の加硫ゴムを再利用するために、これらを脱硫処理して得られるゴムをいう。ゴムチェーファー4中に再生ゴムを含有させることにより、リサイクル材料比率を上げられることで、環境に配慮した製品を提供することができるとの効果が得られるため、好ましい。
 本発明においては、複合繊維3が、カーカス1の、タイヤ外側および内側の両表面に露出するように配設されていることが好ましい。これにより、カーカス1のタイヤ外側表面に露出する部分でタイヤ踏面部との導通を確保するとともに、カーカス1のタイヤ内側表面に露出する部分で、折返し部1Bにおいて、ゴムチェーファー4を介してリム20との導通を確保することができ、結果として、タイヤ内部における導電パスを確保することができるものとなる。
 また、本発明において、複合繊維3は導電性繊維とともに非導電性繊維を含むので、従来の金属繊維やカーボンファイバーとは異なり、ある程度の伸びを確保することができることから、タイヤ製造工程における応力負荷時や車両走行時における歪入力時にも破断することがない。また、本発明において、複合繊維3はカーカスプライ等の骨格部材に代えて配置するものではないため、タイヤ耐久性を損なう等の問題も生じない。よって、本発明によれば、他性能や製造工程に悪影響を及ぼすことなく電気抵抗を低下させることができるので、タイヤゴム部材を低ロス化することにより低燃費化を図っても、電気抵抗の上昇による不具合を生じない空気入りタイヤを実現することができる。
 本発明に用いる複合繊維3は、導電性繊維と非導電性繊維とを含むものであればよい。具体的には例えば、導電性繊維としては、金属含有繊維、カーボン含有繊維、および、金属酸化物含有繊維などを挙げることができ、これらのうちのいずれか1種以上を用いることができる。ここで、本発明において金属含有繊維とは、金属含有量が5~100質量%である繊維をいい、金属および金属酸化物としては、例えば、ステンレス、スチール、アルミ、銅およびこれらの酸化物等が挙げられる。また、非導電性繊維としては、綿、ナイロン、ポリエチレンテレフタレート等のポリエステル、および、ポリプロピレンなどの有機物を挙げることができ、これらのうちのいずれか1種以上を用いることができる。これらの導電性繊維と非導電性繊維とからなる複合繊維は、良好な伸びを有し、密着性にも優れることから、好ましい。
 本発明に用いる複合繊維3における導電性繊維と非導電性繊維との比率としては、特に制限されないが、好適には、非導電性繊維を50質量%以上、例えば、80~98質量%含有するものとする。非導電性繊維を上記比率で含むことで、複合繊維3の伸びを良好に確保することができ、好ましい。
 本発明における複合繊維3としては、具体的には例えば、べカルトジャパン(株)製のベキノックス(Bekinox、登録商標)や、クラレトレーディング(株)製のクラカーボ(登録商標)KC-500R、KC-793R等を用いることができる。
 また、複合繊維3の繊度としては、エア抜き性と導電性、耐久性を両立させる観点から、20~1000dtexとすることが好ましく、より好ましくは150~600dtexとする。
 複合繊維3としては、破断伸びEbが、5%以上であれば製造時における破断を抑制することができるため好ましく、6%以上であれば、タイヤ使用時の異常入力時にも破断しにくいため、より好ましい。破断伸びEbは、例えば、5~15%とすることができる。ここで、複合繊維3の破断伸びEbは、23℃において、JISK6251:2010に規定の「切断時伸び」の測定方法に準拠して測定することができる。
 また、複合繊維3の抵抗値は、好適には1.0×10Ω/cm以下であり、より好適には1.0×10Ω/cm以下、さらに好適には10~1.0×10Ω/cmである。導電パスを確実に確保する観点から、複合繊維3の抵抗値は上記範囲であることが好ましい。
 本発明において複合繊維3は、少なくともビード部11からクッションゴム13Cまたはベルトアンダークッション14に接する位置まで配設することが必要であり、好ましくは、図示するように、ビード部11からトレッド部13までにわたって配設する。クッションゴム13Cおよびベルトアンダークッション14には、通常、導電性ゴムを使用するため、少なくともビード部11からクッションゴム13Cまたはベルトアンダークッション14に接する位置まで複合繊維3を配設すれば、導電パスを確保することができるが、クッションゴム13Cからトレッド踏面部までの導電パスは、通常タイヤ赤道線CLの近傍に設けられる、導電性ゴム部5により確保するため、導電パスを短くする観点からは、複合繊維3をビード部11からトレッド部13までにわたって配設することが好ましい。ここで、本発明においてクッションゴム13Cは、少なくともタイヤ赤道線CL上において、トレッドゴム13Gとベルト層2のコーティングゴム(キャップ層を設ける場合はキャップ層のコーティングゴム)との間に配置されるゴム部材であり、通常、タイヤショルダー部付近まで延在しており、トレッドゴム13G、および、配設形態によってはサイドウォールゴムにも覆われるため、タイヤ外表面には露出しないゴム部材である。また、ベルトアンダークッション14とは、ベルト層2のタイヤ幅方向外端部に配設された導電ゴム部材であり、図示するように、クッションゴム13Cに接して、そのタイヤ半径方向内側に位置する。ベルトアンダークッション14は、より詳しくは、複数層のベルト層およびベルトコードの被覆ゴムを含むベルト部材のタイヤ幅方向外端部周辺において、少なくとも1層のベルト層、特にはすべてのベルト層よりもタイヤ半径方向内側、かつ、カーカス1よりもタイヤ半径方向外側に配置される導電ゴム部材である。ベルトアンダークッション14を設けることで、配置した部位のクッション性を向上させることができる。
 本発明において、クッションゴム13Cおよびベルトアンダークッション14のタイヤ幅方向端部の配置箇所は、他の部材との関係で適宜決定することができる。例えば、図7では、ベルト層2のタイヤ幅方向外端部を覆うようにして、タイヤ半径方向内側にベルトアンダークッション14が、タイヤ半径方向外側にクッションゴム13Cが、それぞれ配置されている。
 図8~10に、クッションゴム13Cおよびベルトアンダークッション14のタイヤ幅方向端部の位置関係のバリエーションを示す説明図を示す。図中の符号15はサイドゴムを示す。図8においては、最もタイヤ半径方向内側に位置するベルト層2のタイヤ半径方向内側に、ベルト層2のタイヤ幅方向外端部よりもタイヤ幅方向外側まで延在して、ベルトアンダークッション14が配置され、ベルト層2のタイヤ半径方向外側にクッションゴム13Cが配置されている。また、図9においては、最もタイヤ半径方向内側に位置するベルト層2のタイヤ半径方向内側に、ベルト層2のタイヤ幅方向外端部よりもタイヤ幅方向外側まで延在して、ベルトアンダークッション14が配置されている点は図8と同様であるが、ベルト層2およびベルトアンダークッション14のタイヤ半径方向外側に、サイドゴム15に接する位置まで、クッションゴム13Cが配置されている。さらに、図10においては、最もタイヤ半径方向内側に位置するベルト層2のタイヤ半径方向内側に、ベルト層2のタイヤ幅方向外端部よりもタイヤ幅方向外側まで延在して、ベルトアンダークッション14が配置されている点は図8,9と同様であるが、ベルト層2およびベルトアンダークッション14のタイヤ半径方向外側にクッションゴム13Cが配置されており、クッションゴム13Cのタイヤ幅方向端部は、サイドゴム15のタイヤ幅方向内側に潜り込むように配置されている。
 図7~9に示す実施形態では、複合繊維3を、ビード部11からベルトアンダークッション14に接する位置まで配設することで、最短の配設長さで導通を確保することができる。一方、図10に示す実施形態では、クッションゴム13Cがベルトアンダークッション14よりもタイヤ幅方向外側まで延在し、かつ、クッションゴム13Cのタイヤ幅方向端部がサイドゴム15のタイヤ幅方向内側に潜り込むように配置されているので、複合繊維3は、ビード部11からサイドゴム15下のクッションゴム13Cに接する位置まで配設することで、最短の配設長さで導通を確保することができる。
 ここで、導電性ゴム部5は、図示するように、トレッド踏面部からクッションゴム13Cのタイヤ半径方向外側面までにわたり、タイヤ周方向の全周に設けることができる。すなわち、導電性ゴム部5は、トレッド踏面部から、トレッドゴム13Gを貫通するように設ける。
 また、本発明において、複合繊維3は、カーカス1の、タイヤ外側および内側のうちの少なくとも一方の表面に露出するように配設することが必要であり、好適には、タイヤ外側および内側の両表面に露出するように配設する。図2は、成形前のカーカストリート21に対する複合繊維3の配置状態の具体例を示す説明図である。図2(a)~(e),(g)については、カーカストリート21の長手方向(図中の上下方向)が、タイヤ周方向に相当する。複合繊維3は、具体的には例えば、図1および図2(a)に示すように、カーカス1に対し、いわゆるなみ縫いの形態で、縫い込まれているものとすることができる。縫い込む形態については、カーカス1の両表面のうちの少なくとも一方に複合繊維が露出するものであれば、特に制限はない。この場合、複合繊維3は、その延在方向に沿って、カーカス1を貫通して、カーカス1の外側および内側の両表面に配設される。これにより、カーカスの折返し部1Bにおいて、タイヤや部材のサイズにかかわらず、ゴムチェーファー4側に複合繊維3が確実に露出するものとなり、導電パスを確実に確保することができる。
 この場合、複合繊維3の縫込みピッチは、複合繊維3の延在方向に沿って、通常2~40mm、特には5~25mmとすることができる。導電パスをより確実に確保する観点から、この範囲が好ましい。
 また、複合繊維3は、図2(b)に示すように、カーカス1に対し巻き付けられているものとすることもできる。すなわち、この場合、成形前のカーカストリート21に対し複合繊維3を、その幅方向に沿って、つまり、カーカスプライコードと同じ方向に少なくとも一周分巻き付けて、その外周に配置する。これによっても、カーカスの折返し部1Bにおいて、タイヤや部材のサイズにかかわらず、ゴムチェーファー4側に複合繊維3が確実に露出するものとなり、導電パスを確実に確保することができる。
 さらに、複合繊維3は、図2(c)に示すように、カーカス1に対し螺旋状に巻き付けられているものとすることもできる。この場合は、成形前のカーカストリート21に対し複合繊維3を、その幅方向に対し傾斜させて、つまり、カーカスプライコードに対して傾斜する方向に巻き付けてその外周に配置するが、螺旋状に連続して巻き付けることができるので、図2(b)の形態よりも製造効率が良くなるメリットがある。これによっても、カーカスの折返し部1Bにおいて、タイヤや部材のサイズにかかわらず、ゴムチェーファー4側に複合繊維3が確実に露出するものとなり、導電パスを確実に確保することができる。
 なお、複合繊維3は、図2(d)に示すように、成形前のカーカストリート21に対し複合繊維3を、その幅方向に沿って、つまり、カーカスプライコードと同じ方向に、ビード部11からクッションゴム13Cまたはベルトアンダークッション14に接する位置までの範囲に位置するように、幅方向両端部について巻き付けて、その外周に配置するものとしてもよい。すなわちこの場合、タイヤ赤道線CL近傍には複合繊維3は配設されない。これによっても、カーカスの折返し部1Bにおいて、タイヤや部材のサイズにかかわらず、ゴムチェーファー4側に複合繊維3が確実に露出するものとなり、導電パスを確実に確保することができる。
 さらにまた、複合繊維3は、図2(b)の変形例として、図2(e)に示すようにカーカスに対し巻き付けられているものとすることもできる。図3,4に、図2(e)に対応する、本発明の空気入りタイヤの他の例を示す幅方向片側断面図を示す。この場合、成形前のカーカストリート21に対し複合繊維3を、その幅方向に沿って、つまり、カーカスプライコードと同じ方向に、部分的に巻き付けている。図3に示す例では、複合繊維3が、カーカス1に対し、クッションゴム13Cまたはベルトアンダークッションのタイヤ幅方向の一方側の端部に接する位置から、ビード部11を経由して、カーカス1のタイヤ内側を通り、クッションゴム13Cまたはベルトアンダークッションのタイヤ幅方向の他方側の端部まで巻き付けられている。また、図4に示す例では、カーカス1を、一対のビード部11間に延在する本体部1Aと、一対のビード部11にそれぞれ埋設されたビードコア6の周りにタイヤ内側から外側に折り返され巻き上げられた折返し部1Bとからなるものとしたとき、複合繊維3が、カーカス1に対し、一方側の折返し部1Bのタイヤ幅方向外側であってゴムチェーファー4と接する位置から、折返し部1Bのタイヤ幅方向内側および本体部1Aのタイヤ幅方向外側を経由して、カーカス1のタイヤ外側を通り、さらに、他方側の本体部1Aのタイヤ幅方向外側および折返し部1Bのタイヤ幅方向内側を経由して、折返し部1Bのタイヤ幅方向外側であってゴムチェーファー4と接する位置まで、巻き付けられている。これによっても、カーカス1の折返し部1Bにおいて、タイヤや部材のサイズにかかわらず、ゴムチェーファー4側に複合繊維3が確実に露出するものとなり、導電パスを確実に確保することができる。
 さらにまた、複合繊維3は、図2(a)の変形例として、図2(f)に示すように、カーカス1に対し、ミシン機構により、上糸3aと下糸3bとで編込むように縫い込まれているものとすることもできる。この場合も、複合繊維3は、その延在方向に沿って、カーカス1を貫通して、カーカス1の外側および内側の両表面に配設される。これにより、カーカスの折返し部1Bにおいて、タイヤや部材のサイズにかかわらず、ゴムチェーファー4側に複合繊維3が確実に露出するものとなり、導電パスを確実に確保することができる。さらにまた、複合繊維3は、図2(g)に示すように、カーカストリート21の片側表面に、タイヤ幅方向に平行に載せて配置するものであってもよい。
 本発明においては、製造のしやすさの観点から、上記のうちでも、図2(a),(c)、(e)に示す配置形態が好ましい。特に、図2(a)、(e)がより好ましい。
 この場合、複合繊維3の巻付けピッチは、カーカストリート21の長手方向、すなわち、カーカスプライコードの延在方向に対し直交する方向に沿って、通常1~12回/m、特には2~5回/mとすることができる。導電パスをより確実に確保する観点から、この範囲が好ましい。
 本発明において、複合繊維3は、カーカス1の、タイヤ外側および内側のうちの少なくとも一方の表面に露出するように配設されているものであればよく、両表面に露出している場合には、複合繊維3の、タイヤ外側に露出した部分と、タイヤ内側に露出した部分とが、少なくとも1箇所以上で導通していることが好ましい。これにより、導電パスを確保することができる。ここで、導通しているとは、複合繊維3の、タイヤ外側に露出した部分と、タイヤ内側に露出した部分とが、物理的に接続されていなくても、電気的に接続されていればよいことを意味する。
 また、複合繊維3の打込み数としては、複合繊維3の抵抗値にもよるが、導電パスをタイヤ周方向にわたり確実に確保する観点から、タイヤ周方向において、0.04本/5cm以上で配置されていることが好ましく、より好ましくは0.1本/5cm以上であり、例えば、0.1~0.2本/5cmとすることができる。
 さらに、複合繊維3の配設角度としては、タイヤ周方向に対し30~150°をなす角度で配設されていることが好ましく、より好ましくは50~130°、さらに好ましくは80~100°をなす角度である。複合繊維3の延在方向がタイヤ周方向に近づきすぎると、導電パスが長くなるため好ましくない。なお、複合繊維3は、図2に示すように直線的に配設する場合に限られず、例えば、ジグザグ状または波状に配設してもよいが、この場合も、複合繊維3が全体として延在する方向を、複合繊維3の延在方向とする。
 本発明において、複合繊維3は、従来より加硫時におけるカーカスプライのエア抜き目的で配置されているブリーダーコードに置換して設けることができる。ブリーダーコードは、タイヤの生産工程で発生するエア入り不良を低減することを目的として、カーカスやベルト層の片面または両面に配置されるコード部材であり、一般に、綿糸やポリエステル糸等からなる。ブリーダーコードは、タイヤ生産工程においてタイヤ内に包含された空気を吸着、透過させ、エア入り不良を低減できるものである。ブリーダーコードは、通常、少なくともビード部11からクッションゴム13Cまたはベルトアンダークッション14に接する位置まで配設されるため、このブリーダーコードのうちの一部または全部を複合繊維3に置換することで、新たな部材の追加なしで、複合繊維3の配置による効果を得ることができる。もちろん、ブリーダーコードはそのままで、複合繊維3を追加して配置するものであっても、本発明の所期の効果を得ることができる。
 複合繊維3を、従来のブリーダーコードに代えて配置する場合、複合繊維3は、ブリーダーコードのうち3~100質量%、好適には20~50質量%に代えて配設することができる。この程度の本数を複合繊維3に置き換えれば、本発明の所期の効果を確実に得ることができる。
 本発明に用いる複合繊維3は、紡績糸およびフィラメント糸のいずれであってもよいが、好適には、短繊維を紡績してなる紡績糸(混紡糸)とする。複合繊維3とゴムとの接着性を確保するためには、複合繊維3に対し、有機繊維とゴムとの間の接着を確保するための接着剤によるディップ処理を施すことが必要となるが、ディップ処理により複合繊維3に接着剤の表面被覆を設けると、複合繊維3を介してのエア抜き性が悪化する。そのため、複合繊維3をブリーダーコードに代えて配置する際には、ディップ処理を一部分のみ施すことが好ましく、ディップ処理を施さないことがより好ましい。しかし、接着剤の表面被覆がない場合、複合繊維3と未加硫ゴムとの密着力が小さくなって、製造時に抜け落ちてしまうことがある。この場合、紡績糸(混紡糸)を用いることで、短繊維のアンカー効果により、ディップ処理なしでもゴムとの密着性が確保でき、エア抜き性も維持される点で好ましい。なお、フィラメント糸を用いる場合には、エア抜き性を保持するために撚りを加えることが好ましく、この場合の撚り数は、好適には10回/10cm以上、例えば、30~60回/10cmとすることができる。
 一方、ブリーダーコードのうちの一部を複合繊維3に置き換えるような場合には、例えば綿糸からなる残りのブリーダーコードにより、エア抜き性を確保することができるので、複合繊維3がディップ処理されていても、ゴムとの密着性とエア抜き性とを両立することができる。よって、本発明においては、複合繊維3は、ディップ処理されていてもよいが、ブリーダーコードをすべて複合繊維3に置き換えるなど、設計の自由度を確保する観点からは、ディップ処理されていないことが好ましい。
 本発明においては、上記複合繊維3を配設した点のみが重要であり、これにより、本発明の所期の効果を得ることができるものであって、タイヤ構造の他の部分については、上方に従い適宜構成することができ、特に制限されるものではない。
 例えば、本発明においては、複合繊維3の配置により、タイヤの電気抵抗を低下させることができるので、カーカスプライのコーティングゴム等のタイヤケース部材に用いるゴム組成物として、従来のタイヤ構造よりも低ロス化したゴム組成物を用いることができ、これによりタイヤの低燃費性を向上することができる。
 また、図示するタイヤにおいて、カーカス1はビードコア6の周りで折り返されタイヤ半径方向外側に巻き上げられて折返し部1Bを形成しており、ビードコア6のタイヤ半径方向外側には、断面先細り状のビードフィラー7が配置されている。さらに、図示はしないが、本発明のタイヤにおいては必要に応じ、ベルト層2のタイヤ半径方向外側に、ベルト層2の全体を覆うキャップ層や、ベルト層2の端部のみを覆うレイヤー層を、それぞれ1枚以上で配置することもできる。さらにまた、図示はしないが、タイヤの最内面には、通常、インナーライナーが配設されている。
 なお、本発明において、カーカスプライのコーティングゴムには、窒素吸着比表面積が30~43m/g、特には33~40m/gであるカーボンブラックを含有させることが好ましい。これにより、より確実に導電パスを確保することができる。このようなカーボンブラックとしては、例えば、FEF、GPF等を挙げることができる。
 また、本発明においては、特に、カーカスプライのプライコーティングゴム、ベルト層のベルトコーティングゴム、カーカスプライ間のスキージーゴム、クッションゴム、ベルトアンダークッション、および、ビードフィラーゴムのうち、少なくとも一部材に、以下に詳述するタイヤ用ゴム組成物が用いられていることが好ましい。これにより、補強性、耐久性能を損なうことなく、電気抵抗の上昇を抑制し、低い転がり抵抗と、優れた耐久性を備える空気入りタイヤを実現することができる。
<タイヤ用ゴム組成物>
 本発明に係る上記タイヤ用ゴム組成物は、スチレンブタジエンゴムを20~40質量部、天然ゴムを60~80質量部含むゴム成分100質量部に対して、窒素吸着比表面積(NSA)30~43m/gのカーボンブラックを35~50質量部と、オイルを5質量部以下配合してなるものである。
 本発明に用いるゴム成分としては、少なくともスチレンブタジエンゴム(SBR)、天然ゴム(NR)が挙げられる。
 スチレンブタジエンゴムの含有量は、ゴム成分100質量部中、20~40質量部とすることが好ましい。スチレンブタジエンゴムの含有量を20質量部以上とすることにより、低歪性の耐亀裂進展性を向上して、未加硫ゴムの加工性を改善することができ、一方、40質量部以下とすることにより、低ロス化を向上することができる。
 用いることができるスチレンブタジエンゴムとしては、溶液重合スチレンブタジエンゴム、乳化重合スチレンブタジエンゴム、変性スチレンブタジエンゴムなどが挙げられる。
 また、天然ゴムの含有量は、ゴム成分100質量部中、60~80質量部とすることが好ましい。天然ゴムの含有量を60質量部以上とすることにより、高歪性の耐亀裂進展性を向上させることができ、一方、80質量部以下とすることにより、未加硫ゴムの加工性を改善したり、コスト削減効果を得ることができる。
 天然ゴムとしては、RSS#3、TSR20、SIR20など、タイヤ工業において用いられるものが挙げられる。
 上記天然ゴム(NR)、スチレンブタジエンゴム(SBR)以外にも、必要に応じて、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンジエン三元共重合体(EPDM)の少なくとも1種を用いることができる。
 本発明に用いるカーボンブラックは、窒素吸着比表面積(NSA、JIS K 6217-2:2001に準拠して測定する)が30~43m/gとなるものが用いられる。このカーボンブラックの窒素吸着比表面積(NSA)を上記範囲に限定したのは、粒径の大きいカーボンブラックを使用することで、カーボンブラックの分散性を向上させるためである。好ましくは、上記窒素吸着比表面積(NSA)を33~40m/gとすることが望ましい。
 このような物性を有するカーボンブラックとしてはFEF、GPF、SRFなどを用いることができる。
 上記カーボンブラックの含有量は、ゴム成分100質量部に対して、35~50質量部とすることが好ましい。
 上記カーボンブラックの含有量を35質量部以上とすることにより、ゴムの機械的強度を確保することができ、一方、この含有量を50質量部以下とすることにより、低ロス性のゴムを得ることができる。
 本発明に用いるオイルとしては、例えば、パラフィン系オイル、ナフテン系オイル、アロマチック系オイルおよび芳香族系オイルから選択された少なくとも1種が挙げられ、これらは市販品を用いることができる。
 例えば、パラフィン系オイルとしては、JX日鉱日石エネルギー株式会社製、商品名「スーパーオイル Y22」などの市販品を使用することができる。また、ナフテン系オイルは、水添されたものであってもよいし、未水添のものであってもよい。ナフテン系オイルとしては、「ストレートアスファルト含有ナフテン系オイル三共油化工業株式会社製」、商品名「A/O MIX」などの市販品を使用することができる。
 上記オイルの含有量は、ゴム成分100質量部に対して、5質量部以下(0質量部を含む)である。
 上記オイルの含有量を5質量部以下とすることにより、ゴムの機械的強度を向上することができる。また、上記オイルを含まない(0質量部)場合にも、カーボンブラック等の配合剤は十分に分散され、必要なゴム物性を得ることができる。特には、オイルの含有量を0~3質量部とすることが好ましい。
 本発明に係る上記タイヤ用ゴム組成物は、さらに導電性を付与して電気抵抗をより低下せしめる点、および、耐久性能のさらなる向上の点から、さらに、ケッチェンブラックおよびカーボンナノチューブ(CNT)の少なくとも1種を含むことが好ましい。
 用いることができるカーボンナノチューブ(CNT)としては、グラフェンシートが丸まった棒状、若しくは糸状のもの、気相成長カーボンファイバー(VGCF)などが挙げられ、これらの市販品であるC100(Arkemasya社製)、若しくはNC7000(Nanocyl社製)などを用いることができる。これらのカーボンナノチューブ(CNT)は、さらに導電性を付与するとともに、上記カーボンブラックとは異なり、ゴムとの相互作用が小さく、応力歪曲線の高歪曲線の高歪領域で弾性率が低下し、破断伸び(Eb)が上がり、亀裂進展時に、ゴムのEbが大きいと、亀裂先端のエネルギーが緩和されて耐亀裂進展性が向上することとなる。
 ケッチェンブラックとしては、中空のシェル状粒子が存在し、高い導電性を有する種々のグレードのケッチェンブラックが使用可能である。用いることができるケッチェンブラックとしては、例えば、ライオン社製のケッチェンブラックEC300J〔顆粒状〕、ケッチェンブラックEC600JD〔顆粒状〕、カーボンECP〔ケッチェンブラックEC300Jの粉末品〕、カーボンECP600JD〔ケッチェンブラックEC600JDの粉末品〕、ライオナイト等の少なくとも1種が挙げられる。
 これらのケッチェンブラックおよびカーボンナノチューブの合計配合量は、ゴム成分100質量部に対して、好ましくは0.1~6質量部、さらに好ましくは1.0~5質量部である。
 このケッチェンブラックおよびカーボンナノチューブの合計配合量を0.1質量部以上とすることにより、ゴム配合に導電性を付与することができ、一方、この含有量を6質量部以下とすることにより、ゴムの低ロス特性の低下を防止することができる。
 本発明において、窒素吸着比表面積(NSA)が上記範囲を満足するカーボンブラック、ケッチェンブラックおよびカーボンナノチューブは充填材として用いられるものであるが、さらに良好な導電性を付与する点、および、耐亀裂進展性のさらなる向上により耐久性能をさらに良化する点から、充填材のうち2~15質量%にて、ケッチェンブラックおよびカーボンナノチューブの少なくとも1種が配合されていることが好ましく、より好ましくは2.5~12.5質量%である。
 なお、本発明の効果を損なわない範囲で、上記カーボンブラック、ケッチェンブラック、カーボンナノチューブ以外の充填材として、シリカ、クレー、タルク、炭酸カルシウムなどを用いることができる。
 上記タイヤ用ゴム組成物には、前述した成分の他に、本発明の効果を損なわない範囲で、目的ないし必要に応じて、その他の成分を適宜に選択して配合することができる。その他の成分としては、例えば、硫黄等の加硫剤、チアゾール系やスルフェンアミド系等の加硫促進剤、加硫助剤、酸化亜鉛(亜鉛華)、ステアリン酸、老化防止剤、酸化防止剤、オゾン劣化防止剤、着色剤、滑剤、シランカップリング剤、発泡剤、発泡助剤等の添加剤の他、タイヤ業界で通常用いられる各種の公知配合薬品等が挙げられる。これらは、市販品を使用することができる。
 上記タイヤ用ゴム組成物は、前述したゴム成分に、上記特性を有するカーボンブラック、オイルなどを配合し、さらに、ケッチェンブラック、カーボンナノチューブの他、亜鉛華、ステアリン酸、老化防止剤、硫黄、加硫促進剤、その他、目的あるいは必要に応じて適宜に選択した添加剤を混練りすることなどにより調製することができる。
 上記混練りの条件としては、特に制限はなく、混練り装置の投入体積やローターの回転速度、ラム圧等、および混練り温度や混練り時間、混練り装置の種類等の諸条件について目的に応じて適宜に選択することができる。このような混練り装置としては、通常、ゴム組成物の混練りに用いるバンバリーミキサーやインターミックス、ニーダー、ロール等が挙げられる。
 また、好ましくは、上記タイヤ用ゴム組成物における、スチレンブタジエンゴムの配合量をA質量部、天然ゴムの配合量をB質量部とした場合において、スチレンブタジエンゴムA質量部に対し、上記タイヤ用ゴム組成物に含まれる窒素吸着比表面積(NSA)30~43m/gのカーボンブラックをA*100/(A+B)(質量%)にて配合したゴム組成物をゴム組成物X、天然ゴムB質量部に対し、上記タイヤ用ゴム組成物に含まれる窒素吸着比表面積(NSA)30~43m/gのカーボンブラックをB*100/(A+B)(質量%)にて配合したゴム組成物をゴム組成物Y、上記タイヤ用ゴム組成物をゴム組成物Zとした場合に、ゴム組成物X、Y、Zの50%伸長時のモジュラスを各々Mdx,Mdy,Mdz(MPa)とすると、Mdx,Mdy,Mdzが下記式(I)を満たすことが好ましい。
 0.9×{Mdx*A/(A+B)+Mdy*B/(A+B)}≧Mdz……(I)
 上記式(I)を満たすタイヤ用ゴム組成物とすることにより、補強性および耐久性能を損なうことなく、電気抵抗の上昇がさらに抑制され、転がり抵抗がより低減されるとともに、耐久性にさらに優れたものとなる。
 前述したように、上記タイヤ用ゴム組成物は、カーカスプライのプライコーティングゴム、ベルト層のベルトコーティングゴム、カーカスプライ間のスキージーゴム、クッションゴム、ベルトアンダークッション、および、ビードフィラーゴムのうち、少なくとも一部材に適用されるものである。好ましくは、使用ゴム量が大きく、タイヤ全体へのロス特性への影響が大きいという点、および、リムからトレッドへの導電パスの中心に位置するという点から、プライコーティングゴムに適用されることが好ましい。これにより、低ロス化、耐亀裂性・補強性、導電性が両立される空気入りタイヤとすることができる。
 このように構成される上記タイヤ用ゴム組成物によれば、天然ゴム(NR)量を特定範囲とすることにより、高歪領域の耐久性能を向上させるとともに、スチレンブタジエンゴム(SBR)量を特定範囲とすることにより、低ロス化を悪化させることなく、低歪性の耐久性能を向上させ、ゴムの低ロス化のため、カーボンブラックの窒素吸着比表面積(NSA)を上記範囲に限定したものを使用し、さらに補強性改善のためオイル量を所定量以下とすることにより、従来品と同等の補強性および耐久性能を有しつつ、電気抵抗の上昇を抑制して、低い転がり抵抗と優れた耐久性とを備えるタイヤの実現に寄与することができる。
 また、ケッチェンブラックおよびカーボンナノチューブの少なくとも1種を0.1~6質量部含むことにより、分散不良や低ロス性を悪化させることなく、導電性がさらに良好となるタイヤ用ゴム組成物が提供される。一般的に、導電性材料等は分散性が悪く、低ロス性を悪化させたり、ゴムとの相互作用が弱いことが知られているが、本発明では、導電性材料の種類や部数の検討の結果、ケッチェンブラックおよびカーボンナノチューブの少なくとも1種を特定部数配合することで、分散不良や低ロス化を悪化させることなく、導電性をさらに付与でき、また、上記導電性材料の補強性の低さを利用することで、さらに耐久性能に優れるタイヤ用ゴム組成物が提供される。
 さらに、上記タイヤ用ゴム組成物において、充填材のうち2~15質量%にて、ケッチェンブラックおよびカーボンナノチューブの少なくとも1種を配合したものでは、上記低ロス化・補強性を維持しつつ、さらなる導電性の付与と、耐久性能がさらに良好となる利点を有する。
 ここで、本発明においては、上記タイヤ用ゴム組成物をプライコーティングゴムとして用いて作製したカーカスプライを用いたものにあっては、押し出し方向とタイヤ幅方向とが一致するように配置した構成とすることが好ましい。例えば、カーボンナノチューブ(CNT)を含む上記タイヤ用ゴム組成物を配合したものでは、一定方向に伸長させると強度に異方性が得られるので、一定の方向に押出すことでカーボンナノチューブなどを配向させたタイヤ部材を応力方向を考慮して配置することで、より耐久性能に優れた空気入りタイヤを得ることができるものとなる。
 なお、上記タイヤ用ゴム組成物を上記タイヤ用ケース部材に適用した空気入りタイヤの製造方法については、特に制限はなく、従来より公知の製造方法に従って製造することができる。すなわち、上記タイヤ用ゴム組成物を混練りして所定の断面形状に押し出す、あるいは、繊維コード等を所定の厚みに被覆して、所望のタイヤ成型用ゴム部材に加工し、グリーンタイヤの所定箇所に貼り付けた後、所定のモールド内で所定の温度および圧力の下で加硫成型することにより、空気入りタイヤを製造することができる。
 以下、本発明を、実施例を用いてより詳細に説明する。
 タイヤサイズ195/65R15にて、一対のビード部間に跨ってトロイド状に延在する1枚のカーカスプライからなるカーカスを骨格とし、そのクラウン部タイヤ半径方向外側に配置された2枚のベルト層を備え、ビード部のタイヤ幅方向外表面にゴムチェーファーが配設されている空気入りタイヤを製造した。
 このタイヤには、ビード部からトレッド部までにわたって、カーカスの、タイヤ外側および内側の両表面に露出するように、ベキノックス(Bekaert社製、Bekinox(登録商標))よりなるブリーダーコードを配設した。ブリーダーコードは、タイヤ周方向に対し90°をなす角度で、縫込みピッチ20mmにて、カーカスに縫い込むようにして配置した。また、ゴムチェーファーには、下記の表中に示す配合ゴムを適用した。
 得られた各供試タイヤについて、電気抵抗値を評価した。その結果を、下記の表中に示す。
(損失正接tanδおよび動的貯蔵弾性率E’の測定)
 上島製作所製スペクトロメーター(動的粘弾性測定試験機)を用いて、厚さ2mm、幅5mm、長さ20mmのゴム試験片に初期荷重160gを与え、周波数52Hz、初期歪10%、測定温度60℃、動歪1%で、損失正接tanδおよび動的貯蔵弾性率E’の測定を行った。
(ピコ摩耗試験)
 JIS K6264-2:2005「ピコ摩耗試験」に準拠し、23℃でピコ摩耗試験機を用いて測定した。比較例1-1の加硫ゴム組成物の摩耗容積の逆数を100として、各サンプルの指数で表した。数値の大きい程、耐縁石こすれ性が良好であることを示す。
 耐縁石こすれ性指数={(比較例1-1の加硫ゴム組成物の摩耗容積)/(供試加硫ゴム組成物の摩耗容積)}×100  
(体積固有抵抗率の測定)
 円盤形状のゴムサンプルを作製し、半径r=2.5cm、厚さt=0.2cmの部分の電気抵抗値Rを、図5に示すアドバンス社製絶縁抵抗試験箱を用いて測定し、次式により体積固有抵抗率ρを計算した。
ρ=(a/t)R
 式中、aは断面積(=π×r)、tは厚さである。また、図中、Aは主電極、Bは対電極、Cはガード電極、tは試料の厚さを示す。
(BFドラム試験)
 ドラム表面が平滑な鋼鉄製で直径が1.707mであるドラム試験機を使用して、周辺温度を30±3℃に制御し、JATMAで定める標準リムサイズのリムを用い、JATMA規格の最大内圧において、JATMA規格の最大負荷能力の2倍の荷重をかけて、故障に至るまで走行試験を行った。比較例1-1のタイヤの走行距離を100として各タイヤの走行距離を指数として表示した。数値が高い方が耐久性に優れたタイヤであることを示す。
(RRCドラム試験)
 各タイヤをリムに装着して、タイヤを装着する車両毎に規定される最大荷重を負荷し、ドラム回転速度100km/hの条件にて、転がり抵抗を測定した。結果は、比較例1-1のタイヤの転がり抵抗値の逆数を100として、各タイヤの転がり抵抗値の逆数を指数で表した。数値の大きい程、転がり抵抗性に優れ燃費が良好であることを示す。 
 低転がり抵抗指数={(比較例1-1のタイヤの転がり抵抗値)/(供試加硫タイヤの転がり抵抗値)}×100 
(タイヤの電気抵抗)
 タイヤの電気抵抗は、GERMAN ASSOCIATION OF RUBBER INDUSTRYのWdK 110シート3に準拠して、ヒューレットパッカード(HEWLETT PACKARD)社製のモデルHP4394Aハイレジスタンスメーターを使用し、図6に示すようにして測定した。図中、符号111はタイヤ、112は鋼板、113は絶縁体、114はハイレジスタンスメーターであり、絶縁板113上の鋼板112とタイヤ111のリムとの間に1000Vの電流を流して測定した。
Figure JPOXMLDOC01-appb-T000001
*1-1)カーボンブラック(FEF),窒素吸着比表面積40m/g
*1-2)カーボンブラック(GPF),窒素吸着比表面積35m/g
*1-3)カーボンナノチューブ(CNT)
*1-4)カーボンブラック(ケッチェンブラック),窒素吸着比表面積800m/g、ケッチェンブラックEC300J、LION社製
*1-5)カーボンブラック(HAF),窒素吸着比表面積78m/g
 上記表中に示すように、導電性繊維と非導電性繊維とを含む複合繊維を、ビード部からクッションゴムに接する位置まで、カーカスの少なくとも一方の表面に露出するように配設するとともに、ゴムチェーファーに、所定のカーボンブラックを含有させた各実施例の供試タイヤにおいては、低ロス化を図りつつ、かつ、タイヤ耐久性等の他性能に悪影響を及ぼすことなく、タイヤの電気抵抗が低下していることが確かめられた。
〔実施例2-1~2-4および比較例2-1~2-5:タイヤ用ゴム組成物の調製〕
 下記表2に示す各配合処方をバンバリーミキサーで常法により混練して各タイヤ用ゴム組成物を調製した。
 得られた各タイヤ用ゴム組成物について、下記各方法により、ロス特性(tanδ)、貯蔵弾性率(E’)について評価した。
 得られた各タイヤ用ゴム組成物を下記カーカスプライコードを有するカーカスプライのコーティングゴムとして用いて、図1に示す構造を有するサイズ195/65R15の空気入りタイヤ(試験用タイヤ)を作製した。
(カーカスプライコード)
 コード角度:90度(タイヤ周方向を0度とする。)、コード材料:PET
 このタイヤには、ビード部からトレッド部までにわたって、カーカスの、タイヤ外側および内側の両表面に露出するように、ベキノックス(Bekaert社製、Bekinox(登録商標))よりなるブリーダーコードを配設した。ブリーダーコードは、タイヤ周方向に対し90°をなす角度で、縫込みピッチ20mmにて、カーカスに縫い込むようにして配置した。また、ゴムチェーファーには、上記表1に示す実施例1-3の配合ゴムを適用した。
 得られた各試験用タイヤについて、実施例1-1等と同様にして、電気抵抗、耐久性能(BFドラム試験)、および、低ロス性能(RRCドラム)について測定評価した。耐久性能、および、低ロス性能については、いずれも比較例2-1を基準として評価した。
 これらの結果を下記表2に示す。
〔ロス特性(tanδ)の評価方法〕
 上島製作所製スペクトロメーター(動的粘弾性測定試験機)を用い、周波数52Hz、初期歪10%、測定温度60℃、動歪1%で測定し、tanδの数値を、比較例2-1のtanδを100として下記式にて指数表示した。tanδは、指数値が大きい程、低発熱性であり、ヒステリシスロスが小さいことを示す。
 低発熱性指数={(比較例2-1の加硫ゴム組成物のtanδ)/(供試加硫ゴム組成物のtanδ)}×100
〔貯蔵弾性率(E’)の評価方法〕
 上島製作所製スペクトロメーター(動的粘弾性測定試験機)を用い、周波数52Hz、初期歪10%、測定温度25℃、動歪1%で測定し、貯蔵弾性率(E’)の数値を、比較例2-1のE’を100として下記式にて指数表示した。E’は、指数値が大きい程、弾性率が高いことを示す。
 貯蔵弾性率指数=〔(比較例2-1の加硫ゴム組成物のE’)/(供試加硫ゴム組成物のE’)〕×100
   
Figure JPOXMLDOC01-appb-T000002
 上記表2中の*2-1~*2-11は下記のとおりである。
 *2-1:RSS#3
 *2-2:SBR、JSR社製
 *2-3:窒素吸着比表面積(NSA:35m/g)、N660、旭カーボン社製
 *2-4:窒素吸着比表面積(NSA:78m/g)、N330、旭カーボン社製
 *2-5:カーボンナノチューブ(CNT)
 *2-6:窒素吸着比表面積(NSA:800m/g)ケッチェンブラックEC300J、LION社製
 *2-7:シリカ:東ソー・シリカ(株)製「ニップシールAQ」(BET=200m/g)
 *2-8:シランカップリング剤:デグッサ社製「Si69」
 *2-9:プロセスオイル(TDAE)、新日本石油化学社製
 *2-10:MBTS(ジ-2-ベンゾチアゾリルジスルフィド)
 *2-11:BBS(N-tert-ブチル-2-ベンゾチアゾールスルフェンアミド)
 上記表2の結果から明らかなように、実施例2-1~2-4のタイヤ用ゴム組成物を用いた空気入りタイヤは、比較例2-1~2-5のタイヤ用ゴム組成物を用いた空気入りタイヤに較べて、電気抵抗の上昇を抑制し、タイヤの転がり抵抗の低減と、耐久性に優れることが確認できた。
〔試験例1:タイヤ用ゴム組成物の調製〕
 前記実施例2-4,比較例2-1の各タイヤ用ゴム組成物において、上述したゴム組成物X、Y、Zの50%伸長時のモジュラスを各々Mdx,Mdy,Mdz(MPa)とした場合、式(I)を満たすか否かについて、試験を行った。
 すなわち、下記表3および表4に示すように、実施例2-4、実施例2-4のNR相の再現およびSBR相の再現、並びに、比較例2-1、比較例2-1のNR相の再現およびSBR相の再現における、下記測定方法により、50%伸長時のモジュラスを測定評価した。
 表3および表4における実施例2-4,比較例2-1におけるNR相の再現およびSBR相の再現は、実施例2-4の配合および比較例2-1の配合が、それぞれポリマー質量比に基づいてカーボンブラック等の配合剤を均等に分配したと仮定し、各配合を再現配合として作成した。
 これらの結果を下記表3および表4に示す。また、下記表5に、表3および表4の各測定値と、下記方法による配合全体の計算値、(計算値-実測値)の値(Δ)、その百分率(実測値/計算値)を示す。
(50%伸長時のモジュラスの測定方法、<S-S引っ張り試験>)
 インストロン-1125を用いて、温度:20~24℃、引っ張り速度:100mm/min、形状:Din3号、歪読み取り:自動計測の条件で、各加硫ゴムシートの50%伸長時の引張り応力:50%モジュラス(S-S Mod50%)を測定した。
(表5における配合全体の計算値の算出方法)
 実施例および比較例におけるNR相やSBR相を再現した配合を混練し、その各々の50%モジュラスを測定した。配合内容は、NRやSBRの質量比に比例してCBや加硫促進剤等のゴム薬品が配合されているものと仮定して、再現配合を調製した。測定により得られた各々の50%モジュラスに、実施例2-4または比較例2-1におけるNRやSBRの配合割合(例えば、実施例2-4であればNRは0.7、SBRは0.3)を乗じて、配合全体の50%モジュラスの計算値(予測値)を算出した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上記表3~表5の結果から明らかなように、従来の高級カーボンブラックやシリカ配合に比べ、大粒径カーボンを使用した実施例2-1~2-4はロス特性に優れ、さらに導電性材料を添加すると優れたロス特性および導電性を両立できると言える。
1 カーカス
1A 本体部
1B 折返し部
2 ベルト層
3 複合繊維
3a 上糸
3b 下糸
4 ゴムチェーファー
5 導電性ゴム部
6 ビードコア
7 ビードフィラー
11 ビード部
12 サイドウォール部
13 トレッド部
13G トレッドゴム
13C クッションゴム
14 ベルトアンダークッション
15 サイドゴム
20 リム
21 カーカストリート 
111 タイヤ
112 鋼板
113 絶縁体
114 ハイレジスタンスメーター

Claims (28)

  1.  一対のビード部間に跨ってトロイド状に延在する少なくとも1枚のカーカスプライからなるカーカスを骨格とし、該カーカスのクラウン部タイヤ半径方向外側に配置された少なくとも一枚のベルト層を備え、前記ビード部のタイヤ幅方向外表面にゴムチェーファーが配設されている空気入りタイヤにおいて、
     前記ベルト層のタイヤ半径方向外側に、クッションゴム、および、踏面部を形成するトレッドゴムが順次配設されており、少なくとも前記ビード部から該クッションゴムまたは前記ベルト層のタイヤ幅方向外端部に配設されたベルトアンダークッションに接する位置まで、前記カーカスの、タイヤ外側および内側のうちの少なくとも一方の表面に露出するように、導電性繊維と非導電性繊維とを含む複合繊維が配設されるとともに、前記ゴムチェーファーが、窒素吸着比表面積30~43m/gのカーボンブラックを含有することを特徴とする空気入りタイヤ。
  2.  前記ゴムチェーファーが再生ゴムを含有する請求項1記載の空気入りタイヤ。
  3.  前記ゴムチェーファーが、ゴム成分100質量部に対し、前記カーボンブラックを64~73質量部にて含有する請求項1記載の空気入りタイヤ。
  4.  前記ゴムチェーファーのゴム成分100質量部に対し、前記再生ゴムが3~10質量部含まれている請求項2記載の空気入りタイヤ。
  5.  前記複合繊維が、前記カーカスの、タイヤ外側および内側の両表面に露出するように配設されている請求項1記載の空気入りタイヤ。
  6.  前記複合繊維の、タイヤ外側に露出した部分と、タイヤ内側に露出した部分とが、少なくとも1箇所以上で導通している請求項1記載の空気入りタイヤ。
  7.  前記非導電性繊維が有機物であって、前記複合繊維が該非導電性繊維を50質量%以上含有する請求項1記載の空気入りタイヤ。
  8.  前記複合繊維が、前記カーカスに縫い込まれている請求項1記載の空気入りタイヤ。
  9.  前記複合繊維の縫込みピッチが2~40mmである請求項8記載の空気入りタイヤ。
  10.  前記複合繊維が、前記カーカスに対し巻き付けられている請求項1記載の空気入りタイヤ。
  11.  前記複合繊維が、前記カーカスに対し、前記クッションゴムまたは前記ベルトアンダークッションのタイヤ幅方向の一方側の端部に接する位置から、前記ビード部を経由して、該カーカスのタイヤ内側を通り、該クッションゴムまたは該ベルトアンダークッションのタイヤ幅方向の他方側の端部まで巻き付けられている請求項10記載の空気入りタイヤ。
  12.  前記ビード部のタイヤ幅方向外表面にゴムチェーファーが配設されており、前記カーカスが、前記一対のビード部間に延在する本体部と、該一対のビード部にそれぞれ埋設されたビードコアの周りにタイヤ内側から外側に折り返され巻き上げられた折返し部とからなり、前記複合繊維が、該カーカスに対し、一方側の該折返し部のタイヤ幅方向外側であって前記ゴムチェーファーと接する位置から、該折返し部のタイヤ幅方向内側および該本体部のタイヤ幅方向外側を経由して、該カーカスのタイヤ外側を通り、他方側の該折返し部のタイヤ幅方向外側であって前記ゴムチェーファーと接する位置まで巻き付けられている請求項10記載の空気入りタイヤ。
  13.  前記複合繊維が、前記カーカスに対し螺旋状に巻き付けられている請求項10記載の空気入りタイヤ。
  14.  前記複合繊維の巻付けピッチが1~12回/mである請求項10記載の空気入りタイヤ。
  15.  前記複合繊維が、タイヤ周方向において打込み数0.04本/5cm以上で配置されている請求項1記載の空気入りタイヤ。
  16.  少なくとも前記ビード部から前記クッションゴムまたは前記ベルトアンダークッションに接する位置まで、ブリーダーコードが配設されてなり、かつ、前記複合繊維が、該ブリーダーコードのうち3~100質量%に代えて配設されている請求項1記載の空気入りタイヤ。
  17.  前記複合繊維の繊度が20~1000dtexである請求項1記載の空気入りタイヤ。
  18.  前記複合繊維が、タイヤ周方向に対し30~150°をなす角度で配設されている請求項1記載の空気入りタイヤ。
  19.  前記複合繊維が、タイヤ周方向に対し50~130°をなす角度で配設されている請求項18記載の空気入りタイヤ。
  20.  前記導電性繊維が、金属含有繊維、カーボン含有繊維および金属酸化物含有繊維のうちのいずれか1種以上を含む請求項1記載の空気入りタイヤ。
  21.  前記非導電性繊維が、綿、ナイロン、ポリエステルおよびポリプロピレンのうちのいずれか1種以上を含む請求項1記載の空気入りタイヤ。
  22.  前記複合繊維の破断伸びEbが、5%以上である請求項1記載の空気入りタイヤ。
  23.  前記複合繊維の抵抗値が、1.0×10Ω/cm以下である請求項1記載の空気入りタイヤ。
  24.  前記ゴムチェーファーが、ゴム成分100質量部に対し、カーボンナノチューブを0.5~4質量部にて含有する請求項1記載の空気入りタイヤ。
  25.  前記カーカスプライのプライコーティングゴム、前記ベルト層のベルトコーティングゴム、該カーカスプライ間のスキージーゴム、前記クッションゴム、前記ベルトアンダークッション、および、前記一対のビード部にそれぞれ埋設されたビードコアのタイヤ半径方向外側に配置されたビードフィラーゴムのうち、少なくとも一部材に、スチレンブタジエンゴムを20~40質量部、天然ゴムを60~80質量部含むゴム成分100質量部に対して、窒素吸着比表面積(NSA)30~43m/gのカーボンブラックを35~50質量部と、オイルを5質量部以下配合してなるタイヤ用ゴム組成物が用いられている請求項1記載の空気入りタイヤ。
  26.  前記タイヤ用ゴム組成物が、前記ゴム成分100質量部に対し、ケッチェンブラックおよびカーボンナノチューブのうち少なくとも1種を0.1~6質量部含む請求項25記載の空気入りタイヤ。
  27.  前記タイヤ用ゴム組成物が、充填材のうち2~15質量%にて、ケッチェンブラックおよびカーボンナノチューブの少なくとも1種を含む請求項26記載の空気入りタイヤ。
  28.  前記タイヤ用ゴム組成物における、スチレンブタジエンゴムの配合量をA質量部、天然ゴムの配合量をB質量部としたとき、
     スチレンブタジエンゴムA質量部に対し、前記タイヤ用ゴム組成物に含まれる窒素吸着比表面積(NSA)30~43m/gのカーボンブラックをA*100/(A+B)(質量%)にて配合したゴム組成物をゴム組成物X、
     天然ゴムB質量部に対し、前記タイヤ用ゴム組成物に含まれる窒素吸着比表面積(NSA)30~43m/gのカーボンブラックをB*100/(A+B)(質量%)にて配合したゴム組成物をゴム組成物Y、
     前記タイヤ用ゴム組成物をゴム組成物Zとした場合に、
     前記ゴム組成物X、Y、Zの50%伸長時のモジュラスを各々Mdx,Mdy,Mdz(MPa)とすると、Mdx,Mdy,Mdzが下記式(I)を満たす請求項25記載の空気入りタイヤ。
     0.9×{Mdx*A/(A+B)+Mdy*B/(A+B)}≧Mdz……(I)
PCT/JP2017/001138 2016-01-13 2017-01-13 空気入りタイヤ WO2017122821A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/069,606 US20190023083A1 (en) 2016-01-13 2017-01-13 Pneumatic tire
JP2017561209A JPWO2017122821A1 (ja) 2016-01-13 2017-01-13 空気入りタイヤ
EP17738573.9A EP3403854A4 (en) 2016-01-13 2017-01-13 TIRE
CN201780006594.9A CN108473008A (zh) 2016-01-13 2017-01-13 充气轮胎

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016004823 2016-01-13
JP2016-004823 2016-01-13
JP2016-109544 2016-05-31
JP2016109544 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017122821A1 true WO2017122821A1 (ja) 2017-07-20

Family

ID=59311255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001138 WO2017122821A1 (ja) 2016-01-13 2017-01-13 空気入りタイヤ

Country Status (5)

Country Link
US (1) US20190023083A1 (ja)
EP (1) EP3403854A4 (ja)
JP (1) JPWO2017122821A1 (ja)
CN (1) CN108473008A (ja)
WO (1) WO2017122821A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058911A1 (ja) * 2017-09-22 2019-03-28 日本ゼオン株式会社 ゴム組成物
WO2019116615A1 (ja) 2017-12-13 2019-06-20 株式会社ブリヂストン 空気入りタイヤ
JP2019099121A (ja) * 2017-11-28 2019-06-24 クムホ タイヤ シーオー.,インク. 空気入りタイヤ
JP2019112047A (ja) * 2017-12-22 2019-07-11 ハンコック タイヤ カンパニー リミテッド シート、その製造方法、及びそれを含むタイヤ
CN111051083A (zh) * 2017-08-31 2020-04-21 株式会社普利司通 充气轮胎
CN111098643A (zh) * 2018-10-26 2020-05-05 韩国轮胎与科技株式会社 轮胎帘布、其制备方法、包括其的片材及包括该片材的轮胎
CN112236318A (zh) * 2018-06-22 2021-01-15 横滨橡胶株式会社 充气轮胎和组装片
EP3725567A4 (en) * 2017-12-13 2021-07-14 Bridgestone Corporation TIRE
JP2022500549A (ja) * 2018-09-18 2022-01-04 ブリヂストン ヨーロッパ エヌブイ/エスエイBridgestone Europe Nv/Sa タイヤ部分用のゴムコンパウンド
KR20230049234A (ko) * 2021-10-06 2023-04-13 넥센타이어 주식회사 타이어
EP3988347A4 (en) * 2019-06-19 2023-06-14 Bridgestone Corporation TIRES
EP3988348A4 (en) * 2019-06-21 2023-06-21 Bridgestone Corporation PNEUMATIC

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021005729A (es) * 2018-11-29 2021-06-15 Pirelli Metodo y dispositivo para revisar la conductividad electrica de los neumaticos para ruedas de vehiculos.
JP7395124B2 (ja) * 2019-03-01 2023-12-11 住友ゴム工業株式会社 空気入りタイヤ
CN113811454B (zh) * 2019-04-18 2022-11-01 普利司通美国轮胎运营有限责任公司 用于为电子设备收集能量的系统和方法以及被构造用于与电子设备一起使用的轮胎
JP2021020514A (ja) * 2019-07-25 2021-02-18 株式会社ブリヂストン タイヤ・ホイール組立体及びタイヤ
EP3845399A1 (en) * 2019-12-31 2021-07-07 Nokian Renkaat Oyj A tire
JP7522591B2 (ja) * 2020-06-29 2024-07-25 住友ゴム工業株式会社 空気入りタイヤ
US20240017575A1 (en) * 2020-12-15 2024-01-18 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2023017521A (ja) * 2021-07-26 2023-02-07 株式会社ブリヂストン タイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226526A (ja) * 2000-02-16 2001-08-21 Sumitomo Rubber Ind Ltd チェーファー用ゴム組成物およびこれを用いた重荷重用空気入りタイヤ
JP2013151583A (ja) * 2012-01-24 2013-08-08 Bridgestone Corp ゴム組成物、ビードフィラー、チェーファー及びタイヤ
JP2014125005A (ja) * 2012-12-25 2014-07-07 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2014136713A (ja) * 2013-01-15 2014-07-28 Sumitomo Rubber Ind Ltd キャンバスチェーファー用ゴム組成物及び空気入りタイヤ
JP2015120446A (ja) * 2013-12-24 2015-07-02 横浜ゴム株式会社 空気入りタイヤ
JP2015171848A (ja) * 2014-03-12 2015-10-01 住友ゴム工業株式会社 空気入りタイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7204605A (ja) * 1971-05-18 1972-11-21
US5173135A (en) * 1989-02-01 1992-12-22 The Yokohama Rubber Co., Ltd. Radial tire for pssenger cars with sidewall rubber including electrically conductive carbon black
EP0819741A3 (en) * 1996-07-16 1998-10-21 Bridgestone Corporation Electrically conductive rubber cement and pneumatic tire using the same
US6289958B1 (en) * 1998-10-19 2001-09-18 The Goodyear Tire & Rubber Company Tire with tread containing electrically conductive stitched thread
US7284582B2 (en) * 2003-10-23 2007-10-23 The Goodyear Tire & Rubber Company Pneumatic tire with electrically conductive cord extending between a bead portion and a tread portion of the tire
US20090308512A1 (en) * 2006-09-27 2009-12-17 Norihiko Nakamura Pneumatic Tire
JP5570487B2 (ja) * 2011-10-12 2014-08-13 住友ゴム工業株式会社 空気入りタイヤ
CN103205031B (zh) * 2012-01-12 2017-07-04 住友橡胶工业株式会社 轮胎用橡胶组合物、以及充气轮胎
US9598564B2 (en) * 2014-04-30 2017-03-21 Lehigh Technologies, Inc. Chemically functionalized renewed rubber composition
US20160167451A1 (en) * 2014-12-12 2016-06-16 The Goodyear Tire & Rubber Company Rim/tire interface structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226526A (ja) * 2000-02-16 2001-08-21 Sumitomo Rubber Ind Ltd チェーファー用ゴム組成物およびこれを用いた重荷重用空気入りタイヤ
JP2013151583A (ja) * 2012-01-24 2013-08-08 Bridgestone Corp ゴム組成物、ビードフィラー、チェーファー及びタイヤ
JP2014125005A (ja) * 2012-12-25 2014-07-07 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2014136713A (ja) * 2013-01-15 2014-07-28 Sumitomo Rubber Ind Ltd キャンバスチェーファー用ゴム組成物及び空気入りタイヤ
JP2015120446A (ja) * 2013-12-24 2015-07-02 横浜ゴム株式会社 空気入りタイヤ
JP2015171848A (ja) * 2014-03-12 2015-10-01 住友ゴム工業株式会社 空気入りタイヤ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051083A (zh) * 2017-08-31 2020-04-21 株式会社普利司通 充气轮胎
EP3677437A4 (en) * 2017-08-31 2021-05-12 Bridgestone Corporation TIRE
WO2019058911A1 (ja) * 2017-09-22 2019-03-28 日本ゼオン株式会社 ゴム組成物
JP2019099121A (ja) * 2017-11-28 2019-06-24 クムホ タイヤ シーオー.,インク. 空気入りタイヤ
EP3725568A4 (en) * 2017-12-13 2021-07-14 Bridgestone Corporation PNEUMATIC BANDAGE
WO2019116615A1 (ja) 2017-12-13 2019-06-20 株式会社ブリヂストン 空気入りタイヤ
JP2019104424A (ja) * 2017-12-13 2019-06-27 株式会社ブリヂストン 空気入りタイヤ
JP7002314B2 (ja) 2017-12-13 2022-02-10 株式会社ブリヂストン 空気入りタイヤ
EP3725567A4 (en) * 2017-12-13 2021-07-14 Bridgestone Corporation TIRE
JP2019112047A (ja) * 2017-12-22 2019-07-11 ハンコック タイヤ カンパニー リミテッド シート、その製造方法、及びそれを含むタイヤ
US11214095B2 (en) 2017-12-22 2022-01-04 Hankook Tire Co., Ltd. Sheet, method for manufacturing the same, and tire comprising the same
CN112236318A (zh) * 2018-06-22 2021-01-15 横滨橡胶株式会社 充气轮胎和组装片
JP2022500549A (ja) * 2018-09-18 2022-01-04 ブリヂストン ヨーロッパ エヌブイ/エスエイBridgestone Europe Nv/Sa タイヤ部分用のゴムコンパウンド
CN111098643A (zh) * 2018-10-26 2020-05-05 韩国轮胎与科技株式会社 轮胎帘布、其制备方法、包括其的片材及包括该片材的轮胎
EP3988347A4 (en) * 2019-06-19 2023-06-14 Bridgestone Corporation TIRES
EP3988348A4 (en) * 2019-06-21 2023-06-21 Bridgestone Corporation PNEUMATIC
KR20230049234A (ko) * 2021-10-06 2023-04-13 넥센타이어 주식회사 타이어
KR102657758B1 (ko) 2021-10-06 2024-04-17 넥센타이어 주식회사 타이어

Also Published As

Publication number Publication date
JPWO2017122821A1 (ja) 2018-11-01
EP3403854A4 (en) 2019-10-30
CN108473008A (zh) 2018-08-31
EP3403854A1 (en) 2018-11-21
US20190023083A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017122821A1 (ja) 空気入りタイヤ
US10507692B2 (en) Rubber compound for tires, pneumatic tire, and an airless tire
JP6726217B2 (ja) 空気入りタイヤ
JP6150770B2 (ja) 空気入りタイヤ
JP6758046B2 (ja) 空気入りタイヤ
JP5480588B2 (ja) 空気入りタイヤ
JP4249791B2 (ja) タイヤ
JP5712189B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2014218096A (ja) 空気入りタイヤ
JP4249792B2 (ja) タイヤ
JP2013193577A (ja) 空気入りタイヤ
JP2014218555A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5512726B2 (ja) 空気入りタイヤ
JP5119491B2 (ja) 空気入りタイヤ
JP6006603B2 (ja) 空気入りタイヤ
JP5512725B2 (ja) 空気入りタイヤ
WO2021261481A1 (ja) 空気入りタイヤ
JP5924985B2 (ja) 空気入りタイヤ
JP2023089367A (ja) タイヤ
JP2012172141A (ja) ゴム組成物、それを用いたベルト用コーティングゴム及び空気入りタイヤ
JP2011235819A (ja) 空気入りタイヤ
JP2011235820A (ja) 空気入りタイヤ
JP2020138692A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738573

Country of ref document: EP

Effective date: 20180813