WO2017116042A1 - 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물 - Google Patents

고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2017116042A1
WO2017116042A1 PCT/KR2016/014602 KR2016014602W WO2017116042A1 WO 2017116042 A1 WO2017116042 A1 WO 2017116042A1 KR 2016014602 W KR2016014602 W KR 2016014602W WO 2017116042 A1 WO2017116042 A1 WO 2017116042A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
vinyl
aromatic
rubber
graft copolymer
Prior art date
Application number
PCT/KR2016/014602
Other languages
English (en)
French (fr)
Inventor
장주현
정유진
장기보
김정태
박광수
Original Assignee
롯데첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데첨단소재(주) filed Critical 롯데첨단소재(주)
Priority to JP2018517795A priority Critical patent/JP6978412B2/ja
Priority to US15/766,927 priority patent/US10767038B2/en
Priority to CN201680072889.1A priority patent/CN108368209A/zh
Publication of WO2017116042A1 publication Critical patent/WO2017116042A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a rubber-modified vinyl graft copolymer and a thermoplastic resin composition comprising the same. More specifically, the present invention relates to a rubber-modified vinyl graft copolymer having excellent impact resistance, heat resistance, appearance characteristics, and the like, a method for preparing the same, and a thermoplastic resin composition comprising the same.
  • Rubber-modified aromatic vinyl copolymer resins such as acrylonitrile-butadiene-styrene (ABS) resins have excellent impact resistance, molding processability, and appearance characteristics, and are widely used in various applications such as automobile parts, electrical and electronic products, and office equipment. have.
  • ABS acrylonitrile-butadiene-styrene
  • the heat-resistant copolymer may cause problems such as gas generation due to depolymerization such as alpha methyl styrene, deterioration of appearance characteristics due to unmelting of N-phenylmaleimide, and rubber-modified vinyl type such as g-ABS.
  • the compatibility with the graft copolymer is low, and may cause a decrease in physical properties such as impact resistance and occurrence of deviation.
  • An object of the present invention is to provide a rubber-modified vinyl graft copolymer and a method for producing the same that can implement excellent impact resistance, heat resistance, appearance characteristics.
  • Another object of the present invention is to provide a thermoplastic resin composition having excellent impact resistance, heat resistance, appearance characteristics and the like including the rubber-modified vinyl graft copolymer.
  • the rubber-modified vinyl graft copolymer has a core-shell structure in which a monomer mixture is graft-polymerized on a core including a rubbery polymer to form a shell, and the monomer mixture is substituted with an alpha position represented by Formula 1 below.
  • An aromatic monomer including an aromatic vinyl monomer and an aromatic vinyl monomer except the aromatic vinyl monomer substituted with the alpha position; Vinyl cyanide monomers; And maleimide-based monomers;
  • R 1 is an alkyl group having 1 to 5 carbon atoms
  • Ar is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms or a substituted or unsubstituted alkylaryl group having 7 to 20 carbon atoms.
  • the rubber-modified vinyl graft copolymer may be about 60 to about 160 parts by weight of the shell component graft copolymerized with respect to about 100 parts by weight of the core.
  • the monomer mixture may include about 30 to about 80 weight percent of the aromatic monomer, about 10 to about 30 weight percent of the vinyl cyanide monomer and about 10 to about 30 weight percent of the maleimide monomer.
  • the weight ratio of the aromatic vinyl monomer substituted for the alpha position and the aromatic vinyl monomer substituted for the alpha position substituted may be about 0.5: about 1 to about 5: about 1.
  • the average particle diameter of the rubbery polymer may be about 200 to about 400 nm.
  • the core may be polymerized by swelling an aromatic monomer and a vinyl cyanide monomer in the rubbery polymer.
  • the core is about 10 to about 110 parts by weight of the aromatic monomer and the vinyl cyanide monomer, based on about 100 parts by weight of the rubbery polymer, the weight ratio of the aromatic monomer and the vinyl cyanide monomer is about 1.5 : About 1 to about 4: may be about 1.
  • the maleimide monomer may include a compound represented by Formula 2 below:
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms.
  • Another aspect of the present invention relates to a method for producing the rubber-modified vinyl graft copolymer.
  • the manufacturing method is an aromatic monomer, a cyanide containing an aromatic vinyl monomer, except for the aromatic vinyl monomer substituted with the alpha position represented by the formula (1) and the alpha position substituted aromatic vinyl monomer in the core comprising a rubbery polymer Graft polymerizing the monomer mixture including the vinyl monomer and the maleimide monomer.
  • the core is prepared by mixing an aromatic monomer, a vinyl cyanide monomer, and a polymerization initiator with the rubbery polymer, and then adding and stirring an emulsifier, a molecular weight modifier, and water, and the aromatic monomer and the vinyl cyanide monomer are rubbery. Swell into the polymer; And it may be prepared by polymerization.
  • thermoplastic resin composition is the rubber-modified vinyl graft copolymer; And aromatic vinyl copolymer resins.
  • the thermoplastic resin composition may include about 10 wt% to about 40 wt% of the rubber-modified vinyl graft copolymer and about 60 wt% to about 90 wt% of the aromatic vinyl copolymer copolymer resin.
  • the aromatic vinyl copolymer resin may include a copolymer of an aromatic monomer and a vinyl cyanide monomer; A copolymer of an aromatic monomer and a vinyl cyanide monomer including an aromatic vinyl monomer substituted with an alpha position and an aromatic vinyl monomer except for the aromatic vinyl monomer substituted with an alpha position; And copolymers of aromatic monomers, vinyl cyanide monomers and maleimide monomers; It may include one or more of.
  • the thermoplastic resin composition has an Izod impact strength of about 1/4 "thick specimens measured from ASTM D256 of about 20 to about 40 kgfcm / cm and a 200 ° C, 10 kg load according to ISO 1133. Melt flow index measured under conditions is about 3 to about 5 g / 10 minutes, Vicat softening temperature (VST) measured at 5 kg load conditions in accordance with ASTM D1525 may be about 110 to about 130 °C. .
  • the present invention provides a rubber-modified vinyl graft copolymer and a method for preparing the rubber-modified vinyl graft copolymer which can realize excellent impact resistance, heat resistance, appearance characteristics, and the like. Has the effect of the invention to provide an excellent thermoplastic resin composition.
  • the rubber-modified vinyl graft copolymer according to the present invention comprises (a1) an aromatic vinyl monomer having an alpha position substituted in the core (A) comprising a rubbery polymer and (b2) an aromatic vinyl substituted with the alpha position. (B) an aromatic monomer comprising an aromatic vinyl monomer except for the monomer; (c) vinyl cyanide monomers; And (d) a maleimide-based monomer; is a core-shell structural copolymer in which a monomer mixture including a (B) shell is graft polymerized.
  • the core according to an embodiment of the present invention may include a rubbery polymer (a1) used in a conventional rubber-modified vinyl-based graft copolymer.
  • the rubbery polymer (a1) is a diene rubber such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), saturated rubber, isoprene rubber, hydrogenated to the diene rubber, Acrylic rubbers such as polybutylacrylic acid, ethylene-propylene-diene monomer terpolymer (EPDM) and the like can be exemplified. These can be applied individually or in mixture of 2 or more types. For example, polybutadiene (PBD, butadiene rubber) etc. can be used.
  • PBD polybutadiene
  • butadiene rubber butadiene rubber
  • the average particle diameter (Z-average) of the rubbery polymer may be about 200 to about 400 nm, for example about 230 to about 350 nm. It is possible to obtain a rubber-modified vinyl-based graft copolymer which can have excellent polymerization efficiency and exhibit excellent impact resistance and appearance characteristics in the graft polymerization in the above range.
  • the rubber polymer (a1) may be used as the core (A) alone, or (a2) aromatic monomers (aromatic vinyl monomers) and (a3) vinyl cyanide monomers are swelled in the rubber polymer (a1).
  • the polymerized thing can be used.
  • the core polymerized by swelling the aromatic monomer and the vinyl cyanide monomer in the rubbery polymer is polymerized, for example, by mixing the aromatic monomer and the vinyl cyanide monomer with the polymerization initiator, and then adding an emulsifier, a molecular weight modifier and water.
  • the aromatic monomer and the vinyl cyanide monomer may be swollen into the rubbery polymer, and then polymerized and used may be used, but is not limited thereto.
  • the method for producing such a core is known and can be easily performed by those skilled in the art.
  • the aromatic monomer (a2) is styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, p-methyl styrene, pt-butyl styrene, ethyl styrene, vinyl xylene, monochloro styrene, dichloro styrene, dibromostyrene, vinyl naphthalene And the like, but are not limited thereto. These can be applied individually or in mixture of 2 or more types. Preferably styrene may be used.
  • the vinyl cyanide monomer (a3) may be acrylonitrile, methacrylonitrile, ethacrylonitrile, or the like, but is not limited thereto. These can be applied individually or in mixture of 2 or more types. Preferably acrylonitrile can be used.
  • the core (A) is a polymer in which the aromatic monomer (a2) and the vinyl cyanide monomer (a3) are swelled and polymerized in the rubbery polymer (a1), to about 100 parts by weight of the rubbery polymer (a1)
  • the aromatic monomer (a2) and the vinyl cyanide monomer (a3) may be polymerized to about 10 to about 110 parts by weight, for example, about 15 to about 106 parts by weight.
  • the weight ratio (a2: a3) of the aromatic monomer (a2) and the vinyl cyanide monomer (a3) is about 1.5: about 1 to about 4: about 1, for example, about 2: about 1 to about 3.5: about May be one. It is possible to obtain a rubber-modified vinyl graft copolymer that can implement excellent impact resistance in the above range.
  • the shell of the present invention comprises an aromatic vinyl monomer (b1) in which the alpha position is substituted in the core (A) and (b2) an aromatic vinyl monomer except for the aromatic vinyl monomer in which the alpha position is substituted ( b) aromatic monomers; (c) vinyl cyanide monomers; And (d) a monomer mixture comprising a maleimide-based monomer is formed by graft polymerization.
  • the rubber-modified vinyl graft copolymer of the present invention forms a shell with at least four components (b1, b2, c, d), thereby solving problems such as deterioration of physical properties due to use of a heat resistant copolymer (matrix resin), When applied to a thermoplastic resin composition, it is possible to implement excellent impact resistance, heat resistance, appearance characteristics.
  • the alpha-substituted aromatic vinyl monomer (b1) may be represented by the following Chemical Formula 1.
  • R 1 is an alkyl group having 1 to 5 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, and the like
  • Ar is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms or a substituted or unsubstituted C 7 to 20 carbon atoms. Is an alkylaryl group.
  • 'substituted' means a hydrogen atom having an alkyl group having 1 to 10 carbon atoms, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, an aryl group having 6 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and a heterocarbon having 3 to 10 carbon atoms. It means what is substituted by substituents, such as a cycloalkyl group, a C4-C10 heteroaryl group, and these combination.
  • Specific examples of Ar may include a phenyl group, benzyl group, halophenyl group, naphthyl group and the like.
  • the aromatic vinyl monomer substituted with the alpha position may include ⁇ -methylstyrene and ⁇ -ethylstyrene, but are not limited thereto.
  • the aromatic vinyl monomer (b2) excluding the aromatic vinyl monomer substituted with the alpha position may be an aromatic vinyl substituted with the alpha position among the aromatic vinyl monomers used in a conventional rubber-modified vinyl graft copolymer.
  • the rest other than the system monomer can be used.
  • styrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene, etc. may be used, but is not limited thereto. Do not. These can be applied individually or in mixture of 2 or more types. Specifically, styrene may be used.
  • the aromatic monomer (b) may be included in about 30 to about 80% by weight, for example about 35 to about 75% by weight of 100% by weight of the monomer mixture.
  • the weight ratio (b1: b2) of the aromatic vinyl monomer (b1) except for the alpha-substituted aromatic vinyl monomer (b1) and the aromatic vinyl monomer for which the alpha position is substituted is about 0.5: about 1 to about 5: about 1, for example about 1: about 1 to about 3: about 1. It is possible to economically obtain a rubber-modified vinyl-based graft copolymer that can implement excellent impact resistance, heat resistance, appearance characteristics in the above range.
  • the vinyl cyanide monomer (c) may be a vinyl cyanide monomer used in a conventional rubber-modified vinyl graft copolymer.
  • acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile and the like can be used, but are not limited thereto. These can be applied individually or in mixture of 2 or more types. Specifically acrylonitrile or the like can be used.
  • the vinyl cyanide monomer (c) may be included in about 10 wt% to about 30 wt%, for example about 15 wt% to about 25 wt%, in 100 wt% of the monomer mixture. It is possible to obtain a rubber-modified vinyl graft copolymer that can implement excellent heat resistance, impact resistance, appearance characteristics in the above range.
  • the maleimide monomer (d) may include an N-substituted maleimide compound represented by Formula 2 below.
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms, for example, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group, a cyclohexyl group, or a phenyl group.
  • the maleimide monomer may include N-phenyl maleimide (PMI), N-methyl maleimide, and the like, but are not limited thereto.
  • the maleimide monomer (d) may be included in about 10 wt% to about 30 wt%, such as about 15 wt% to about 25 wt%, in 100 wt% of the monomer mixture.
  • the graft polymerization rate, efficiency, etc. of the shell component may be high, and a rubber-modified vinyl graft copolymer capable of realizing excellent heat resistance, impact resistance, and appearance characteristics may be obtained.
  • the rubber-modified vinyl graft copolymer has about 60 to about 160 parts by weight of the shell component (including b1, b2, c and d), for example about 65 to about 100 parts by weight of the core. About 150 parts by weight may be graft copolymerized. It is possible to obtain a rubber-modified vinyl graft copolymer that can implement excellent impact resistance, heat resistance, appearance characteristics in the above range.
  • Method for producing a rubber-modified vinyl graft copolymer is the aromatic monomer (b), the vinyl cyanide monomer (c) and the maleimide monomer (d) in the core (A) It may comprise the step of graft polymerization of the monomer mixture comprising a.
  • the polymerization may be carried out by a known polymerization method such as emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization and the like.
  • the polymerization is performed for about 1 to about 10 hours at a temperature of about 45 to about 80 ° C. in the presence of water (ion exchange water, etc.), a polymerization initiator, an emulsifier, a molecular weight regulator, and the like according to a known emulsion polymerization method. , For example, for about 1 to about 5 hours.
  • the rubber-modified vinyl graft copolymer of the present invention has high polymerization efficiency by applying the shell component, and thus, rubber-modified vinyl has a high yield even in a short polymerization time compared to a conventional rubber-modified vinyl-based graft copolymer production method.
  • System graft copolymers can be prepared.
  • polymerization initiator examples include benzoyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzenehydroxy peroxide, t-butyl peroxylaurate, t-butyl peroxy acetate, t-butyl peroxy Peroxide initiators such as propyl caponate; Redox-based initiators combining a redox agent; Combinations of the above may be used, but the present invention is not limited thereto.
  • the emulsifiers include soap-based compounds of fatty acids, soap-based compounds of rosin acids, acrylate acrylic acid copolymers saponified with sodium hydroxide, sulfate salts of polyoxyethyleneallylglycidylnonylphenyl ether, alkylarylsulfonates, and alkalimethylalkylsulfates. , Sulfonated alkyl esters, combinations thereof, and the like can be used, but is not limited thereto.
  • tert-dodecyl mercaptan bis (isopropoxythiocarbonyl) disulfide, p-methoxyphenyldiazothio-2-naphthyl ether, combinations thereof, and the like can be used, but are not limited thereto. It doesn't work.
  • the core (A) is a polymer in which the aromatic monomer (a2) and the vinyl cyanide monomer (a3) are swelled and polymerized in the rubber polymer (a1)
  • the monomer mixture including b1, b2, c and d
  • a polymerization initiator, a molecular weight regulator, etc. may be added, and graft polymerization of the monomer mixture to the core.
  • the rubber-modified vinyl graft copolymer may be added to a sulfuric acid solution or the like to destroy the latex (latex) polymer after completion of the graft polymerization, and then washed with water and dried to obtain a powdery polymer.
  • thermoplastic resin composition according to the present invention comprises the rubber-modified vinyl graft copolymer; And aromatic vinyl copolymer resins.
  • the rubber-modified vinyl graft copolymer may be present in a form dispersed in the aromatic vinyl copolymer resin (matrix resin).
  • the aromatic vinyl copolymer resin may be an aromatic vinyl copolymer resin used in a conventional rubber-modified aromatic vinyl copolymer resin.
  • the aromatic vinyl copolymer resin may be a polymer of a monomer mixture including a monomer copolymerizable with an aromatic vinyl monomer such as an aromatic vinyl monomer and a vinyl cyanide monomer.
  • the aromatic vinyl copolymer resin may be obtained by mixing an aromatic vinyl monomer and a monomer copolymerizable with an aromatic vinyl monomer, and then polymerizing them, and the polymerization may be emulsion polymerization, suspension polymerization, bulk polymerization, or the like. It can be carried out by a known polymerization method of.
  • the aromatic vinyl monomers include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene, dibromostyrene Vinyl naphthalene may be used, but is not limited thereto. These can be applied individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl monomer may be about 20 to about 90 wt%, for example about 30 to about 80 wt%, of 100 wt% of the total aromatic vinyl copolymer resin. In the above range, the impact resistance, fluidity, and the like of the thermoplastic resin composition may be excellent.
  • the monomer copolymerizable with the aromatic vinyl monomer for example, acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like.
  • Maleimide monomers such as vinyl cyanide monomer, N-phenyl maleimide (PMI), and N-methyl maleimide (N-methyl maleimide) may be used, and may be used alone or in combination of two or more thereof. Can be.
  • the content of the monomer copolymerizable with the aromatic vinyl monomer may be about 10 wt% to about 80 wt%, for example, about 20 wt% to about 70 wt% of the total 100 wt% of the aromatic vinyl copolymer resin. In the above range, the impact resistance, fluidity, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin comprises about 20 to about 90 weight percent of an aromatic vinyl monomer (b), for example about 30 to about 80 weight percent, and about 10 to about 80 vinyl cyanide monomer (c).
  • Weight percent for example about 20 to about 70 weight percent of a copolymer (binary copolymer); About 15 to about 55 weight percent, for example about 20 to about 50 weight percent, and the aromatic vinyl monomer except for the alpha position substituted aromatic vinyl monomer (b2) From about 5 to about 35 weight percent, such as from about 10 to about 30 weight percent and from about 10 to about 80 weight percent, such as from about 20 to about 70 weight percent, of a vinyl cyanide monomer (c) Copolymer); And about 20 to about 90 weight percent of aromatic vinylic monomer (b), for example about 30 to about 80 weight percent, vinyl cyanide monomer (c) about 5 to about 70 weight percent, for example about 10 to about 60 Weight percent and about 5 to about 70 weight percent of a maleimide-based monomer (d), for example about 10
  • SAN styrene-acrylonitrile
  • AMS-SAN ⁇ -methylstyrene-styrene-acrylonitrile
  • PMI-SAN N-phenylmaleimide-styrene-acrylonitrile
  • Aromatic vinyl copolymer resins containing from about 40% by weight may be used. In the above range, a thermoplastic resin composition excellent in impact resistance, heat resistance, flowability (processability), appearance characteristics, and the like can be obtained.
  • the aromatic vinyl copolymer resin has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 300,000 g / mol, for example, about 15,000 to about 160,000 g / mol Can be.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the thermoplastic resin composition may have excellent impact resistance, heat resistance, fluidity (processability), appearance characteristics, and the like.
  • the thermoplastic resin composition comprises about 10 to about 40 weight percent of the rubber-modified vinyl graft copolymer, for example about 15 to about 35 weight percent, and about 60 to about 90 weight of the aromatic vinyl copolymer resin. %, For example from about 65 to about 85 weight percent. In the above range, the thermoplastic resin composition may have excellent impact resistance, heat resistance, fluidity (processability), appearance characteristics, and the like.
  • the thermoplastic resin composition according to one embodiment of the present invention may further include conventional additives as necessary.
  • the additives include, but are not limited to, flame retardants, antioxidants, anti drip agents, lubricants, mold release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, mixtures thereof, and the like.
  • the content thereof may be about 0.001 to about 20 parts by weight based on about 100 parts by weight of the base resin including the rubber-modified vinyl graft copolymer and the aromatic vinyl copolymer resin, but is not limited thereto.
  • the thermoplastic resin composition may be prepared by a known thermoplastic resin composition manufacturing method.
  • the above components and, if necessary, other additives may be mixed and then melt-extruded in an extruder to prepare pellets.
  • the prepared pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such molding methods are well known by those skilled in the art. Since the thermoplastic resin composition of the present invention is excellent in impact resistance, heat resistance, fluidity (processability), appearance characteristics, and the like, it is useful as interior and exterior materials for automobile parts and electric and electronic products.
  • the thermoplastic resin composition of the present invention has an Izod impact strength of about 1/4 to about 40 kgfcm / cm, for example about 20 to about 35 kgfcm / cm, measured in accordance with ASTM D256.
  • Melt flow index measured at 200 ° C., 10 kg load conditions in accordance with ISO 1133, may be from about 3 to about 5 g / 10 minutes, for example from about 3.5 to about 4.5 g / 10 minutes, according to ASTM D1525.
  • Vicat softening temperature (VST) measured at 5 kg load conditions can be about 110 to about 130 °C, for example about 112 to about 125 °C.
  • ferric oxide hydrate and sodium pyrophosphate decahydrate were added as redox initiators, and then styrene and acrylonitrile swelled in butadiene rubber were added for 1 hour. During the polymerization to prepare the core.
  • SAN aromatic vinyl copolymer resin having a weight average molecular weight of 150,000 g / mol prepared by suspension polymerization of 74% by weight of styrene and 26% by weight of acrylonitrile was used.
  • Aromatic vinyl copolymer resin having a weight average molecular weight of 140,000 g / mol prepared by suspension polymerization of a monomer mixture of 54% by weight of ⁇ -methylstyrene (AMS), 19% by weight of styrene, and 27% by weight of acrylonitrile (AMS) -SAN) was used.
  • AMS ⁇ -methylstyrene
  • AMS acrylonitrile
  • composition and content of Table 2 100 parts by weight of the components ((A) and (B)) and 0.1 parts by weight of antioxidant (manufacturer: Ciba, product name: Irganox 1076), 0.3 parts by weight of stabilizer (magnesium stearate)
  • antioxidant manufactured by Ciba, product name: Irganox 1076
  • stabilizer magnesium stearate
  • Pellets were prepared. The prepared pellets were dried at 80 ° C.
  • Notch IZOD Impact Strength (Unit: kgf ⁇ cm / cm): Notched Izod impact strength of a 1/4 ”thick specimen was measured according to the evaluation method specified in ASTM D256.
  • MI Melt-flow index
  • VST Vicat Softening Temperature
  • Injection specimen appearance evaluation defects occurred in the specimen after injection of five specimens of 100 mm ⁇ 100 mm ⁇ 3.2 mm specification at a molding temperature of 320 ° C., a mold temperature of 70 ° C., and a cooling time of 120 seconds (silver streak). , Pinholes, and sand were visually observed. Evaluation criteria are as follows.
  • Good appearance (unobserved pinholes, etc.), ⁇ : Good appearance (less than five occurrences of pinholes, etc.), ⁇ : Poor appearance (five or more occurrences of pinholes, etc.), X: Very poor appearance (observation of hidden lines, etc.)
  • Example Comparative example One 2 3 4 5 One 2 3 (A) (% by weight) (A1) 24 - - - - - - - (A2) - 24 - - - - - (A3) - - 24 - - - - - (A4) - - - 24 - - - - (A5) - - - - 24 - - - (A6) - - - - - 24 - - (A7) - - - - - - 24 - (A8) - - - - - - - - 24 (B) (% by weight) (B1) 40 40 40 40 40 40 40 40 (B2) 19 19 19 19 19 19 19 (B3) 17 17 17 17 17 17 17 17 17 17 Notch Izod Impact Strength 22.2 22.6 23.0 23.3 20.5 18.5 15.0 18.3 Melt flow index 4.1 3.9 3.8 3.8 4.1 3.8 6.5 4.5 Vicat Soft
  • thermoplastic resin composition comprising the rubber-modified vinyl graft copolymer (Preparation Examples 1 to 5) according to the present invention has impact resistance, fluidity (molding processability), heat resistance, discoloration resistance (weather resistance), appearance characteristics It can be seen that the back is all excellent.
  • thermoplastic resin composition (Comparative Example 1) comprising a rubber-modified vinyl graft copolymer (Preparation Example 6) containing no aromatic vinyl monomer and a maleimide monomer substituted in the alpha position as a shell component
  • thermoplastic resin composition (Comparative Example 2) containing a rubber-modified vinyl graft copolymer (Production Example 7) containing no maleimide monomer as a shell component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명의 고무변성 비닐계 그라프트 공중합체는 고무질 중합체를 포함하는 코어에 단량체 혼합물이 그라프트 중합되어 쉘을 형성한 코어-쉘 구조를 가지며, 상기 단량체 혼합물은 화학식 1로 표시되는 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체; 시안화 비닐계 단량체; 및 말레이미드계 단량체;를 포함하는 것을 특징으로 한다. 상기 고무변성 비닐계 그라프트 공중합체를 포함하는 열가소성 수지 조성물은 내충격성, 내열성, 외관 특성 등이 우수하다.

Description

고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
본 발명은 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물에 관한 것이다. 보다 구체적으로 본 발명은 내충격성, 내열성, 외관 특성 등이 우수한 고무변성 비닐계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌(ABS) 수지 등의 고무변성 방향족 비닐계 공중합체 수지는 내충격성, 성형 가공성, 외관 특성 등이 우수하여, 자동차 부품, 전기전자 제품, 사무기기 등 다양한 용도에 널리 사용되고 있다.
이러한 고무변성 방향족 비닐계 공중합체 수지를 자동차 부품, 전기전자 제품의 내외장재 등으로 사용하기 위해서는 우수한 내열 특성을 구현할 수 있어야 한다. 이에 따라, 고무변성 방향족 비닐계 공중합체 수지의 내열성을 향상시키기 위하여, 고무변성 방향족 비닐계 공중합체 수지를 구성하는 성분의 일부를 내열성 공중합체로 대체하는 방법이 개발되었다. 예를 들면, 알파메틸스티렌-스티렌-아크릴로니트릴(AMS-SAN) 공중합체, N-페닐말레이미드-스티렌-아크릴로니트릴(PMI-SAN) 공중합체 등의 내열성 공중합체를 g-ABS 등의 고무변성 비닐계 그라프트 공중합체와 용융 압출하여 제조한 것이 사용되고 있다.
그러나, 상기 내열성 공중합체는 알파메틸스티렌 등의 해중합에 따른 가스 발생, N-페닐말레이미드의 미용융에 따른 외관 특성의 저하 등의 문제가 발생할 우려가 있고, g-ABS 등의 고무변성 비닐계 그라프트 공중합체와 상용성이 낮아, 내충격성 등의 물성 저하 및 편차 발생의 원인이 될 수 있다.
따라서, 내열성 공중합체 사용에 따른 문제점을 해결할 수 있는 내충격성, 내열성, 외관 특성 등이 우수한 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물의 개발이 요구되고 있다.
본 발명의 배경기술은 미국 특허 제4,757,109호 등에 개시되어 있다.
본 발명의 목적은 우수한 내충격성, 내열성, 외관 특성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체 및 이의 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 고무변성 비닐계 그라프트 공중합체를 포함하는 내충격성, 내열성, 외관 특성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 한 관점은 고무변성 비닐계 그라프트 공중합체에 관한 것이다. 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체를 포함하는 코어에 단량체 혼합물이 그라프트 중합되어 쉘을 형성한 코어-쉘 구조를 가지며, 상기 단량체 혼합물은 하기 화학식 1로 표시되는 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체; 시안화 비닐계 단량체; 및 말레이미드계 단량체;를 포함한다:
[화학식 1]
Figure PCTKR2016014602-appb-I000001
상기 화학식 1에서, R1은 탄소수 1 내지 5의 알킬기이고, Ar은 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 치환 또는 비치환된 탄소수 7 내지 20의 알킬아릴기이다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 상기 코어 약 100 중량부에 대하여, 상기 쉘 성분 약 60 내지 약 160 중량부가 그라프트 공중합된 것일 수 있다.
구체예에서, 상기 단량체 혼합물은 상기 방향족 단량체 약 30 내지 약 80 중량%, 상기 시안화 비닐계 단량체 약 10 내지 약 30 중량% 및 상기 말레이미드계 단량체 약 10 내지 약 30 중량%를 포함할 수 있다.
구체예에서, 상기 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체의 중량비는 약 0.5 : 약 1 내지 약 5 : 약 1일 수 있다.
구체예에서, 상기 고무질 중합체의 평균 입경은 약 200 내지 약 400 nm일 수 있다.
구체예에서, 상기 코어는 상기 고무질 중합체 내에 방향족 단량체 및 시안화 비닐계 단량체가 팽윤되어 중합된 것일 수 있다.
구체예에서, 상기 코어는 상기 고무질 중합체 약 100 중량부에 대하여, 상기 방향족 단량체 및 시안화 비닐계 단량체 약 10 내지 약 110 중량부가 중합된 것이며, 상기 방향족 단량체 및 상기 시안화 비닐계 단량체의 중량비는 약 1.5 : 약 1 내지 약 4 : 약 1일 수 있다.
구체예에서, 상기 말레이미드계 단량체는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다:
[화학식 2]
Figure PCTKR2016014602-appb-I000002
상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이다.
본 발명의 다른 관점은 상기 고무변성 비닐계 그라프트 공중합체의 제조방법에 관한 것이다. 상기 제조방법은 고무질 중합체를 포함하는 코어에 상기 화학식 1로 표시되는 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체, 시안화 비닐계 단량체 및 말레이미드계 단량체를 포함하는 단량체 혼합물을 그라프트 중합시키는 단계를 포함한다.
구체예에서, 상기 코어는 상기 고무질 중합체에 방향족 단량체 및 시안화 비닐계 단량체와 중합개시제를 혼합하여 투입한 후, 유화제, 분자량 조절제 및 물을 투입하고 교반하여, 상기 방향족 단량체 및 시안화 비닐계 단량체가 고무질 중합체 내부로 팽윤되도록 하고; 그리고 이를 중합시켜 제조한 것일 수 있다.
본 발명의 또 다른 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 상기 고무변성 비닐계 그라프트 공중합체; 및 방향족 비닐계 공중합체 수지를 포함한다.
구체예에서, 열가소성 수지 조성물은 상기 고무변성 비닐계 그라프트 공중합체 약 10 내지 약 40 중량% 및 상기 방향족 비닐계 공중합체 수지 약 60 내지 약 90 중량%를 포함할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 단량체 및 시안화 비닐계 단량체의 공중합체; 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체 및 시안화 비닐계 단량체의 공중합체; 및 방향족 단량체, 시안화 비닐계 단량체 및 말레이미드계 단량체의 공중합체; 중 1종 이상을 포함할 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/4" 두께 시편의 아이조드 충격강도가 약 20 내지 약 40 kgf·cm/cm이며, ISO 1133에 의거하여 200℃, 10 kg 하중 조건에서 측정한 용융흐름지수가 약 3 내지 약 5 g/10분이며, ASTM D1525에 의거하여 5 kg 하중 조건에서 측정한 비캣(Vicat) 연화온도(VST)가 약 110 내지 약 130℃일 수 있다.
본 발명은 우수한 내충격성, 내열성, 외관 특성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체 및 이의 제조방법과 상기 고무변성 비닐계 그라프트 공중합체를 포함하는 내충격성, 내열성, 외관 특성 등이 우수한 열가소성 수지 조성물을 제공하는 발명의 효과를 가진다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 고무변성 비닐계 그라프트 공중합체는 (a1) 고무질 중합체를 포함하는 (A) 코어에 (b1) 알파 위치가 치환된 방향족 비닐계 단량체 및 (b2) 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 (b) 방향족 단량체; (c) 시안화 비닐계 단량체; 및 (d) 말레이미드계 단량체;를 포함하는 단량체 혼합물이 그라프트 중합되어 (B) 쉘을 형성한 코어-쉘(core-shell) 구조 공중합체이다.
(A) 코어
본 발명의 일 구체예에 따른 코어(core)는 통상적인 고무변성 비닐계 그라프트 공중합체에 사용되는 (a1) 고무질 중합체를 포함할 수 있다.
구체예에서, 상기 고무질 중합체로(a1)는 폴리부타디엔, 폴리(스티렌-부타디엔), 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 폴리부틸아크릴산 등의 아크릴계 고무, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 폴리부타디엔(PBD, 부타디엔계 고무) 등을 사용할 수 있다.
구체예에서, 상기 고무질 중합체의 평균 입경(Z-평균)은 약 200 내지 약 400 nm, 예를 들면 약 230 내지 약 350 nm일 수 있다. 상기 범위에서 그라프트 중합 시 중합 효율이 우수할 수 있고, 우수한 내충격성, 외관 특성을 발현할 수 있는 고무변성 비닐계 그라프트 공중합체를 얻을 수 있다.
구체예에서, 상기 코어(A)로는 상기 고무질 중합체(a1)를 단독 사용하거나, 상기 고무질 중합체(a1) 내에 (a2) 방향족 단량체(방향족 비닐계 단량체) 및 (a3) 시안화 비닐계 단량체가 팽윤되어 중합된 것을 사용할 수 있다. 상기 고무질 중합체 내에 방향족 단량체 및 시안화 비닐계 단량체가 팽윤되어 중합된 코어는 예를 들면, 상기 고무질 중합체에 방향족 단량체 및 시안화 비닐계 단량체와 중합개시제를 혼합하여 투입한 후, 유화제, 분자량 조절제 및 물을 투입하고 교반하여, 상기 방향족 단량체 및 시안화 비닐계 단량체가 고무질 중합체 내부로 팽윤되도록 한 다음, 이를 중합시켜 제조한 것을 사용할 수 있으나, 이에 제한되지 않는다. 이러한 코어의 제조방법은 공지된 것으로서, 당업자에 의해 용이하게 수행될 수 있다.
상기 방향족 단량체로(a2)는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있으나, 이에 제한되지 않는다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 바람직하게는 스티렌이 사용될 수 있다.
상기 시안화 비닐계 단량체(a3)로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 등을 사용할 수 있으나, 이에 제한되지 않는다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 바람직하게는 아크릴로니트릴이 사용될 수 있다.
구체예에서, 상기 코어(A)가 고무질 중합체(a1) 내에 방향족 단량체(a2) 및 시안화 비닐계 단량체(a3)가 팽윤되어 중합된 것일 경우, 상기 고무질 중합체(a1) 약 100 중량부에 대하여, 상기 방향족 단량체(a2) 및 시안화 비닐계 단량체(a3)가 약 10 내지 약 110 중량부, 예를 들면 약 15 내지 약 106 중량부로 중합된 것일 수 있다. 또한, 상기 방향족 단량체(a2) 및 상기 시안화 비닐계 단량체(a3)의 중량비(a2:a3)는 약 1.5 : 약 1 내지 약 4 : 약 1, 예를 들면 약 2 : 약 1 내지 약 3.5 : 약 1일 수 있다. 상기 범위에서 우수한 내충격성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체를 얻을 수 있다.
(B) 쉘
본 발명의 쉘(shell)은 상기 코어(A)에 (b1) 알파 위치가 치환된 방향족 비닐계 단량체 및 (b2) 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 (b) 방향족 단량체; (c) 시안화 비닐계 단량체; 및 (d) 말레이미드계 단량체;를 포함하는 단량체 혼합물이 그라프트 중합되어 형성된 것이다. 본 발명의 고무변성 비닐계 그라프트 공중합체는 쉘을 상기 4 성분(b1, b2, c, d) 이상으로 형성함으로써, 내열성 공중합체(매트릭스 수지) 사용에 따른 물성 저하 등의 문제를 해결하고, 열가소성 수지 조성물에 적용 시, 우수한 내충격성, 내열성, 외관 특성 등을 구현할 수 있는 것이다.
구체예에서, 상기 알파 위치가 치환된 방향족 비닐계 단량체(b1)는 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2016014602-appb-I000003
상기 화학식 1에서, R1은 탄소수 1 내지 5의 알킬기, 예를 들면 메틸기, 에틸기, 프로필기 등이고, Ar은 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 치환 또는 비치환된 탄소수 7 내지 20의 알킬아릴기이다. 여기서, '치환'은 수소 원자가 탄소수 1 내지 10의 알킬기, 할로겐 원자, 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 10의 아릴기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 3 내지 10의 헤테로시클로알킬기, 탄소수 4 내지 10의 헤테로아릴기, 이들의 조합 등의 치환기로 치환되는 것을 의미한다. 상기 Ar의 구체적인 예로는 페닐기, 벤질기, 할로페닐기, 나프틸기 등을 예시할 수 있다. 상기 알파 위치가 치환된 방향족 비닐계 단량체로는 α-메틸스티렌, α-에틸스티렌 등을 예시할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체(b2)로는 통상적인 고무변성 비닐계 그라프트 공중합체에 사용되는 방향족 비닐계 단량체 중 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 나머지를 사용할 수 있다. 예를 들면, 스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있으나, 이에 제한되지 않는다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 구체적으로 스티렌 등이 사용될 수 있다.
구체예에서, 상기 방향족 단량체(b)는 단량체 혼합물 100 중량% 중, 약 30 내지 약 80 중량%, 예를 들면 약 35 내지 약 75 중량%로 포함될 수 있다. 또한, 상기 알파 위치가 치환된 방향족 비닐계 단량체(b1) 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체(b2)의 중량비(b1:b2)는 약 0.5 : 약 1 내지 약 5 : 약 1, 예를 들면 약 1 : 약 1 내지 약 3 : 약 1일 수 있다. 상기 범위에서 우수한 내충격성, 내열성, 외관 특성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체를 경제적으로 얻을 수 있다.
구체예에서, 상기 시안화 비닐계 단량체(c)로는 통상적인 고무변성 비닐계 그라프트 공중합체에 사용되는 시안화 비닐계 단량체를 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 사용할 수 있으나, 이에 제한되지 않는다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 구체적으로 아크릴로니트릴 등이 사용될 수 있다.
구체예에서, 상기 시안화 비닐계 단량체(c)는 단량체 혼합물 100 중량% 중, 약 10 내지 약 30 중량%, 예를 들면 약 15 내지 약 25 중량%로 포함될 수 있다. 상기 범위에서 우수한 내열성, 내충격성, 외관 특성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체를 얻을 수 있다.
구체예에서, 상기 말레이미드계 단량체(d)는 하기 화학식 2로 표시되는 N-치환 말레이미드 화합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2016014602-appb-I000004
상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기, 예를 들면 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 20의 아릴기, 구체적으로 메틸기, 에틸기, 프로필기, 시클로헥실기, 페닐기 등이다. 상기 말레이미드계 단량체로는 N-페닐말레이미드(N-phenyl maleimide: PMI), N-메틸말레이미드(N-methyl maleimide) 등을 예시할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 말레이미드계 단량체(d)는 단량체 혼합물 100 중량% 중, 약 10 내지 약 30 중량%, 예를 들면 약 15 내지 약 25 중량%로 포함될 수 있다. 상기 범위에서 쉘 성분의 그라프트 중합 속도, 효율 등이 높을 수 있고, 우수한 내열성, 내충격성, 외관 특성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체를 얻을 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 상기 코어 약 100 중량부에 대하여, 상기 쉘 성분(b1, b2, c 및 d 포함) 약 60 내지 약 160 중량부, 예를 들면 약 65 내지 약 150 중량부가 그라프트 공중합된 것일 수 있다. 상기 범위에서 우수한 내충격성, 내열성, 외관 특성 등을 구현할 수 있는 고무변성 비닐계 그라프트 공중합체를 얻을 수 있다.
본 발명의 일 구체예에 따른 고무변성 비닐계 그라프트 공중합체의 제조방법은 상기 코어(A)에 상기 방향족 단량체(b), 상기 시안화 비닐계 단량체(c) 및 상기 말레이미드계 단량체(d)를 포함하는 단량체 혼합물을 그라프트 중합시키는 단계를 포함할 수 있다. 상기 중합은 유화 중합, 현탁 중합, 용액 중합, 괴상 중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 중합은 공지의 유화 중합법에 따라, 물(이온교환수 등), 중합개시제, 유화제, 분자량 조절제 등의 존재 하에, 약 45 내지 약 80℃의 온도에서 약 1 내지 약 10시간, 예를 들면, 약 1 내지 약 5시간 동안 수행될 수 있다. 본 발명의 고무변성 비닐계 그라프트 공중합체는 상기 쉘 성분을 적용하여, 중합 효율이 높기 때문에, 통상적인 고무변성 비닐계 그라프트 공중합체의 제조방법에 비해 짧은 중합 시간에도 고수율로 고무변성 비닐계 그라프트 공중합체를 제조할 수 있다.
상기 중합개시제로는 벤조일퍼옥사이드, t-부틸하이드로퍼옥사이드, 큐멘하이드로퍼옥사이드, 디이소프로필벤젠하이드록시퍼옥사이드, t-부틸퍼옥시라우레이트, t-부틸퍼옥시아세테이트, t-부틸퍼옥시프로필카포네이트 등의 과산화물 개시제; 산화-환원제를 조합시킨 레독스계 개시제; 이들의 조합 등을 사용할 수 있으나, 이에 제한되지 않는다.
상기 유화제로는 지방산의 비누 계통 화합물, 로진산의 비누 계통 화합물, 수산화 나트륨으로 검화시킨 아크릴레이트 아크릴산 공중합체, 폴리옥시에틸렌알릴그리시딜노닐페닐에테르의 설페이트염, 알킬아릴설포네이트, 알카리메틸알킬설페이트, 설포네이트화된 알킬에스테르, 이들의 조합 등을 사용할 수 있으나, 이에 제한되지 않는다.
상기 분자량 조절제로는 tert-도데실메르캅탄, 비스(이소프로폭시티오카르보닐)디설피드, p-메톡시페닐디아조티오-2-나프틸에테르, 이들의 조합 등을 사용할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 코어(A)가 고무질 중합체(a1) 내에 방향족 단량체(a2) 및 시안화 비닐계 단량체(a3)가 팽윤되어 중합된 것일 경우, 상기 고무질 중합체(a1)에 방향족 단량체(a2) 및 시안화 비닐계 단량체(a3)와 중합개시제를 혼합하여 투입한 후, 유화제, 분자량 조절제 및 물을 투입하고 교반하여, 상기 방향족 단량체 및 시안화 비닐계 단량체가 고무질 중합체 내부로 팽윤되도록 한 후, 이를 중합(팽윤 중합)시켜 코어를 제조하고; 여기에, 상기 단량체 혼합물(b1, b2, c 및 d 포함) 및 필요에 따라, 중합개시제, 분자량 조절제 등을 투입하고, 코어에 단량체 혼합물을 그라프트 중합시키는 단계를 포함할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 그라프트 중합 완료 후, 황산 용액 등에 투입하여 라텍스(latex) 상태 중합물을 파괴하고, 이를 수세 및 건조하여 파우더 형태의 중합체로 얻을 수 있다.
본 발명에 따른 열가소성 수지 조성물은 상기 고무변성 비닐계 그라프트 공중합체; 및 방향족 비닐계 공중합체 수지를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물에서, 상기 고무변성 비닐계 그라프트 공중합체는 상기 방향족 비닐계 공중합체 수지(매트릭스 수지)에 분산된 형태로 존재할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 통상적인 고무변성 방향족 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체 등의 방향족 비닐계 단량체와 공중합 가능한 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 방향족 비닐계 단량체와 공중합 가능한 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화 중합, 현탁 중합, 괴상 중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체로는 예를 들면, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등의 시안화 비닐계 단량체, N-페닐말레이미드(N-phenyl maleimide: PMI), N-메틸말레이미드(N-methyl maleimide) 등의 말레이미드계 단량체 등을 사용할 수 있으며, 단독 또는 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체(b) 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량% 및 시안화 비닐계 단량체(c) 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%의 공중합체(2원 공중합체); 알파 위치가 치환된 방향족 비닐계 단량체(b1) 약 15 내지 약 55 중량%, 예를 들면 약 20 내지 약 50 중량% 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체(b2) 약 5 내지 약 35 중량%, 예를 들면 약 10 내지 약 30 중량% 및 시안화 비닐계 단량체(c) 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%의 공중합체(3원 공중합체); 및 방향족 비닐계 단량체(b) 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%, 시안화 비닐계 단량체(c) 약 5 내지 약 70 중량%, 예를 들면 약 10 내지 약 60 중량% 및 말레이미드계 단량체(d) 약 5 내지 약 70 중량%, 예를 들면 약 10 내지 약 60 중량%의 공중합체(3원 공중합체); 중 1종 이상을 포함할 수 있다. 예를 들면, 스티렌-아크릴로니트릴(SAN) 공중합체 약 10 내지 약 90 중량%, 예를 들면 약 20 내지 약 80 중량%, α-메틸스티렌-스티렌-아크릴로니트릴(AMS-SAN) 공중합체 약 5 내지 약 50 중량%, 예를 들면 약 10 내지 약 40 중량% 및 N-페닐말레이미드-스티렌-아크릴로니트릴(PMI-SAN) 공중합체 약 5 내지 약 50 중량%, 예를 들면 약 10 내지 약 40 중량%를 포함하는 방향족 비닐계 공중합체 수지를 사용할 수 있다. 상기 범위에서 내충격성, 내열성, 유동성(가공성), 외관 특성 등이 우수한 열가소성 수지 조성물을 얻을 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 15,000 내지 약 160,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 내열성, 유동성(가공성), 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 상기 고무변성 비닐계 그라프트 공중합체 약 10 내지 약 40 중량%, 예를 들면 약 15 내지 약 35 중량% 및 상기 방향족 비닐계 공중합체 수지 약 60 내지 약 90 중량%, 예를 들면 약 65 내지 약 85 중량%를 포함할 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 내열성, 유동성(가공성), 외관 특성 등이 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 필요에 따라, 통상적인 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 난연제, 산화 방지제, 적하 방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등이 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함하는 기초 수지 약 100 중량부에 대하여, 약 0.001 내지 약 20 중량부일 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 열가소성 수지 조성물은 공지의 열가소성 수지 조성물 제조방법으로 제조할 수 있다. 예를 들면, 상기 구성 성분과 필요에 따라, 기타 첨가제들을 혼합한 후에, 압출기 내에서 용융 압출하여 펠렛 형태로 제조할 수 있다. 또한, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 본 발명의 열가소성 수지 조성물은 내충격성, 내열성, 유동성(가공성), 외관 특성 등이 우수하므로, 자동차 부품, 전기전자 제품의 내외장재 등으로 유용하다.
본 발명의 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/4" 두께 시편의 아이조드 충격강도가 약 20 내지 약 40 kgf·cm/cm, 예를 들면 약 20 내지 약 35 kgf·cm/cm일 수 있고, ISO 1133에 의거하여 200℃, 10 kg 하중 조건에서 측정한 용융흐름지수가 약 3 내지 약 5 g/10분, 예를 들면 약 3.5 내지 약 4.5 g/10분일 수 있으며, ASTM D1525에 의거하여 5 kg 하중 조건에서 측정한 비캣(Vicat) 연화온도(VST)가 약 110 내지 약 130℃, 예를 들면 약 112 내지 약 125℃일 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
제조예 1 내지 8: 고무변성 비닐계 그라프트 공중합체의 제조
하기 표 1의 조성 및 함량에 따라, 유리 반응기에 (a1) 부타디엔 고무(PBD), (a2) 스티렌(SM) 및 (a3) 아크릴로니트릴(AN)을 투입하고, 부타디엔 고무 100 중량부에 대하여, 이온교환수 150 중량부, 과산화물 개시제로서 큐멘하이드로퍼옥사이드 0.1 중량부, 환원제로서 덱스트로스 모노하이드레이트 0.2 중량부, 유화제로서 로진 비누 0.5 중량부, 분자량 조절제로서 tert-도데실메르캅탄 0.1 중량부를 투입하였다. 다음으로, 반응기의 온도를 60℃로 상승시킨 후, 레독스계 개시제로서, 산화 제2철 수화물 및 소듐 피로포스페이트 데카하이드레이트를 투입한 후, 부타디엔 고무 내에 팽윤되어 있는 스티렌 및 아크릴로니트릴을 1시간 동안 중합하여 코어를 제조하였다.
다음으로, 하기 표 1의 조성 및 함량에 따라, 상기 유리 반응기에 (b1) α-메틸스티렌(AMS), (b2) 스티렌(SM), (b3) 아크릴로니트릴(AN) 및 (b4) N-페닐말레이미드(PMI)를 상기 코어 100 중량부에 대하여, 중합개시제로서 큐멘하이드로퍼옥사이드 0.2 중량부 분자량 조절제로서 tert-도데실메르캅탄 0.2 중량부와 함께 서서히 투입하고, 60℃에서 3시간 동안 그라프트 중합하였다. 중합 완료 후, 이를 75℃ 황산 1% 용액에 투입하여 라텍스 상태의 중합물을 파괴하고, 수세 및 건조 과정을 통해 파우더 형태의 중합체(코어-쉘 구조의 고무변성 비닐계 그라프트 공중합체)를 얻었다.
제조예
1 2 3 4 5 6 7 8
코어 (a1) PBD 평균입경 (nm) 245 310 245 310 310 310 310 310
중량부 100 100 100 100 100 100 100 100
(a2) SM (중량부) 45 52.5 38.8 45.3 - 45.3 45.3 45.3
(a3) AN (중량부) 15 17.5 12.9 15.1 - 15.1 15.1 15.1
코어 전체 중량부 100 100 100 100 100 100 100 100
(b1) AMS (중량%) 40 40 40 40 40 - 40 -
(b2) SM (중량%) 20 20 20 20 20 75 30 30
(b3) AN (중량%) 20 20 20 20 20 25 30 30
(b4) PMI (중량%) 20 20 20 20 20 - - 40
쉘 전체 중량부 140 130 140 130 100 130 130 130
전환율(conversion ratio) 94% 93% 96% 95% 91% 95% 65% 95%
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 고무변성 비닐계 그라프트 공중합체 수지
(A1) 제조예 1의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A2) 제조예 2의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A3) 제조예 3의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A4) 제조예 4의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A5) 제조예 5의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A6) 제조예 6의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A7) 제조예 7의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(A8) 제조예 8의 고무변성 비닐계 그라프트 공중합체 수지를 사용하였다.
(B) 방향족 비닐계 공중합체 수지
(B1) 스티렌 74 중량% 및 아크릴로니트릴 26 중량%의 단량체 혼합물을 현탁 중합하여 제조된 중량평균분자량 150,000 g/mol인 방향족 비닐계 공중합체 수지(SAN)를 사용하였다.
(B2) α-메틸스티렌(AMS) 54 중량%, 스티렌 19 중량% 및 아크릴로니트릴 27 중량%의 단량체 혼합물을 현탁 중합하여 제조된 중량평균분자량 140,000 g/mol인 방향족 비닐계 공중합체 수지(AMS-SAN)를 사용하였다.
(B3) N-페닐말레이미드(PMI), 스티렌 및 아크릴로니트릴의 공중합체인 방향족 비닐계 공중합체 수지(PMI-SAN, 제조사: DENKA 社, 제품명: MS-TI)를 사용하였다.
실시예 1 내지 4 및 비교예 1 내지 3
하기 표 2의 조성 및 함량에 따라, 상기 구성 성분((A) 및 (B)) 100 중량부 및 산화방지제(제조사: Ciba, 제품명: Irganox 1076) 0.1 중량부, 안정제(마그네슘 스테아레이트) 0.3 중량부를 텀블러 믹서로 10분 동안 혼합한 후, L/D=32, 직경 45 mm인 이축(twin screw type) 압출기에 첨가하고, 바렐(barrel) 온도 250℃ 및 교반 속도 250 rpm 조건에서 용융 및 압출하여 펠렛을 제조하였다. 제조된 펠렛은 80℃에서 2시간 이상 건조한 후, 실린더 온도 230℃ 조건의 사출기(제조사: LG전선, 제품명: LGH-140N)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 2에 나타내었다.
물성 측정 방법
(1) 노치 아이조드(Notch IZOD) 충격 강도(단위: kgf·cm/cm): ASTM D256에 규정된 평가방법에 의거하여, 1/4" 두께의 시편의 노치 아이조드 충격 강도를 측정하였다.
(2) 용융흐름지수(melt-flow index: MI, 단위: g/10분): ISO 1133에 규정된 평가방법에 의거하여 220℃, 10 kg 하중 조건에서 측정하였다.
(3) 비캣 연화온도(Vicat Softening Temperature: VST, 단위: ℃): ASTM D1525에 의거하여 5 kg 하중 조건에서 측정하였다.
(4) 황색지수(ΔYI) 차이: 실시예 및 비교예에서 제조된 펠렛 형태 열가소성 수지 조성물을 형체력이 100 톤이고 실린더의 온도가 250℃인 사출기에 투입하여 사출한 성형품의 황색지수(YI0)를 ASTM D1925에 준하여 측정하였으며(일본 Suga Instrument 사의 컬러 컴퓨터 측정기기로 측정), 이 황색지수와, 상기 펠렛 형태의 열가소성 수지 조성물을 상기 사출기에 10분 동안 체류시킨 뒤 사출한 성형품의 ASTM D1925에 준하여 측정한 황색지수(YI1) 측정한 후, 이의 차이(ΔYI = YI1 - YI0)를 산출하였다.
(5) 사출 시편 외관 평가: 성형 온도 320℃, 금형 온도 70℃, 냉각시간 120초에서 100 mm × 100 mm × 3.2 mm 규격의 시편 5개를 사출 후, 시편에 발생한 불량(은선(silver streak), 핀홀(pinhole), 샌드(sand))를 육안 관찰하였다. 평가 기준은 하기와 같다.
◎: 외관 우수(핀홀 등 미관찰), ○: 외관 양호(핀홀 등 5개 미만 발생), △: 외관 불량(핀홀 등 5개 이상 발생), ×: 외관 매우 불량(은선 등 관찰)
실시예 비교예
1 2 3 4 5 1 2 3
(A)(중량%) (A1) 24 - - - - - - -
(A2) - 24 - - - - - -
(A3) - - 24 - - - - -
(A4) - - - 24 - - - -
(A5) - - - - 24 - - -
(A6) - - - - - 24 - -
(A7) - - - - - - 24 -
(A8) - - - - - - - 24
(B)(중량%) (B1) 40 40 40 40 40 40 40 40
(B2) 19 19 19 19 19 19 19 19
(B3) 17 17 17 17 17 17 17 17
노치 아이조드 충격 강도 22.2 22.6 23.0 23.3 20.5 18.5 15.0 18.3
용융흐름지수 4.1 3.9 3.8 3.8 4.1 3.8 6.5 4.5
비캣 연화온도 113.3 112.9 112.5 112.4 112.9 112.4 108.1 113.5
ΔYI 24.3 24.5 24.1 24.9 25.4 26.3 29.5 36.1
외관 평가 ×
상기 결과로부터, 본 발명에 따른 고무변성 비닐계 그라프트 공중합체(제조예 1 내지 5)를 포함하는 열가소성 수지 조성물은 내충격성, 유동성(성형 가공성), 내열성, 내변색성(내후성), 외관 특성 등이 모두 우수함을 알 수 있다.
반면, 쉘 성분으로 알파 위치가 치환된 방향족 비닐계 단량체 및 말레이미드계 단량체를 포함하지 않는 고무변성 비닐계 그라프트 공중합체(제조예 6)를 포함하는 열가소성 수지 조성물(비교예 1)의 경우, 내충격성, 외관 특성 등이 저하됨을 알 수 있고, 쉘 성분으로 말레이미드계 단량체를 포함하지 않는 고무변성 비닐계 그라프트 공중합체(제조예 7)를 포함하는 열가소성 수지 조성물(비교예 2)의 경우, 내충격성, 내열성, 내변색성, 외관 특성 등이 저하됨을 알 수 있으며, 쉘 성분으로 알파 위치가 치환된 방향족 비닐계 단량체를 포함하지 않는 고무변성 비닐계 그라프트 공중합체(제조예 8)를 포함하는 열가소성 수지 조성물(비교예 3)의 경우, 내충격성, 내변색성, 외관 특성 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (14)

  1. 고무질 중합체를 포함하는 코어에 단량체 혼합물이 그라프트 중합되어 쉘을 형성한 코어-쉘 구조를 가지며,
    상기 단량체 혼합물은 하기 화학식 1로 표시되는 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체; 시안화 비닐계 단량체; 및 말레이미드계 단량체;를 포함하는 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체:
    [화학식 1]
    Figure PCTKR2016014602-appb-I000005
    상기 화학식 1에서, R1은 탄소수 1 내지 5의 알킬기이고, Ar은 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 치환 또는 비치환된 탄소수 7 내지 20의 알킬아릴기이다.
  2. 제1항에 있어서, 상기 고무변성 비닐계 그라프트 공중합체는 상기 코어 약 100 중량부에 대하여, 상기 쉘 성분 약 60 내지 약 160 중량부가 그라프트 공중합된 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체.
  3. 제1항에 있어서, 상기 단량체 혼합물은 상기 방향족 단량체 약 30 내지 약 80 중량%, 상기 시안화 비닐계 단량체 약 10 내지 약 30 중량% 및 상기 말레이미드계 단량체 약 10 내지 약 30 중량%를 포함하는 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체.
  4. 제1항에 있어서, 상기 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체의 중량비는 약 0.5 : 약 1 내지 약 5 : 약 1인 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체.
  5. 제1항에 있어서, 상기 고무질 중합체의 평균 입경은 약 200 내지 약 400 nm인 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체.
  6. 제1항에 있어서, 상기 코어는 상기 고무질 중합체 내에 방향족 단량체 및 시안화 비닐계 단량체가 팽윤되어 중합된 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체.
  7. 제6항에 있어서, 상기 코어는 상기 고무질 중합체 약 100 중량부에 대하여, 상기 방향족 단량체 및 시안화 비닐계 단량체 약 10 내지 약 110 중량부가 중합된 것이며, 상기 방향족 단량체 및 상기 시안화 비닐계 단량체의 중량비는 약 1.5 : 약 1 내지 약 4 : 약 1인 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체.
  8. 제1항에 있어서, 상기 말레이미드계 단량체는 하기 화학식 2로 표시되는 화합물을 포함하는 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체:
    [화학식 2]
    Figure PCTKR2016014602-appb-I000006
    상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이다.
  9. 고무질 중합체를 포함하는 코어에 상기 화학식 1로 표시되는 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체, 시안화 비닐계 단량체 및 말레이미드계 단량체를 포함하는 단량체 혼합물을 그라프트 중합시키는 단계를 포함하는 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체의 제조방법.
  10. 제9항에 있어서, 상기 코어는 상기 고무질 중합체에 방향족 단량체 및 시안화 비닐계 단량체와 중합개시제를 혼합하여 투입한 후, 유화제, 분자량 조절제 및 물을 투입하고 교반하여, 상기 방향족 단량체 및 시안화 비닐계 단량체가 고무질 중합체 내부로 팽윤되도록 하고; 그리고 이를 중합시켜 제조한 것을 특징으로 하는 고무변성 비닐계 그라프트 공중합체의 제조방법.
  11. 제1항 내지 제8항 중 어느 한 항에 따른 고무변성 비닐계 그라프트 공중합체; 및
    방향족 비닐계 공중합체 수지를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제11항에 있어서, 상기 열가소성 수지 조성물은 상기 고무변성 비닐계 그라프트 공중합체 약 10 내지 약 40 중량% 및 상기 방향족 비닐계 공중합체 수지 약 60 내지 약 90 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제11항에 있어서, 상기 방향족 비닐계 공중합체 수지는 방향족 단량체 및 시안화 비닐계 단량체의 공중합체; 알파 위치가 치환된 방향족 비닐계 단량체 및 상기 알파 위치가 치환된 방향족 비닐계 단량체를 제외한 방향족 비닐계 단량체를 포함하는 방향족 단량체 및 시안화 비닐계 단량체의 공중합체; 및 방향족 단량체, 시안화 비닐계 단량체 및 말레이미드계 단량체의 공중합체; 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제11항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/4" 두께 시편의 아이조드 충격강도가 약 20 내지 약 40 kgf·cm/cm이며, ISO 1133에 의거하여 200℃, 10 kg 하중 조건에서 측정한 용융흐름지수가 약 3 내지 약 5 g/10분이며, ASTM D1525에 의거하여 5 kg 하중 조건에서 측정한 비캣(Vicat) 연화온도(VST)가 약 110 내지 약 130℃인 것을 특징으로 하는 열가소성 수지 조성물.
PCT/KR2016/014602 2015-12-31 2016-12-13 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물 WO2017116042A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018517795A JP6978412B2 (ja) 2015-12-31 2016-12-13 ゴム変性ビニル系グラフト共重合体及びそれを含む熱可塑性樹脂組成物
US15/766,927 US10767038B2 (en) 2015-12-31 2016-12-13 Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same
CN201680072889.1A CN108368209A (zh) 2015-12-31 2016-12-13 橡胶改性乙烯基类接枝共聚物及包含其的热塑性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150191439A KR101895112B1 (ko) 2015-12-31 2015-12-31 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
KR10-2015-0191439 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017116042A1 true WO2017116042A1 (ko) 2017-07-06

Family

ID=59224971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014602 WO2017116042A1 (ko) 2015-12-31 2016-12-13 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Country Status (5)

Country Link
US (1) US10767038B2 (ko)
JP (1) JP6978412B2 (ko)
KR (1) KR101895112B1 (ko)
CN (1) CN108368209A (ko)
WO (1) WO2017116042A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767038B2 (en) 2015-12-31 2020-09-08 Lotte Advanced Materials Co., Ltd. Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278034B1 (ko) * 2018-09-05 2021-07-15 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 그라프트 공중합체
KR102303875B1 (ko) * 2019-03-28 2021-09-17 롯데첨단소재(주) 방향족 비닐계 공중합체 및 이의 제조방법
JPWO2022075170A1 (ko) * 2020-10-07 2022-04-14

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080949A (ko) * 1997-04-01 1998-11-25 귄터슈마허 부착물 생성이 감소된 폴리카보네이트/그래프트 중합체 성형조성물
KR20030030422A (ko) * 2001-10-11 2003-04-18 제일모직주식회사 난연성 열가소성 수지조성물
KR20030052525A (ko) * 2001-12-21 2003-06-27 제일모직주식회사 충격 강도가 향상된 스티렌계 열가소성 복합재료
KR20030056475A (ko) * 2001-12-28 2003-07-04 제일모직주식회사 유리섬유 강화 스티렌계 열가소성 복합재료
KR20060047874A (ko) * 2004-05-15 2006-05-18 란세스 도이치란트 게엠베하 그라프트 중합체를 포함하는 압출 가공용 조성물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699492B2 (ja) 1984-06-05 1994-12-07 日本合成ゴム株式会社 耐熱性樹脂の製造方法
US4659790A (en) * 1984-06-05 1987-04-21 Japan Synthetic Rubber Co., Ltd. Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
DE3687259T2 (de) 1985-05-16 1993-06-03 Mitsubishi Rayon Co Herstellungsverfahren fuer maleimidkopolymere und daraus hergestelltes thermoplastisches harz.
CA1272321A (en) * 1985-08-27 1990-07-31 Mune Iwamoto Rubber dispersed copolymer resin
US5112895A (en) * 1990-01-23 1992-05-12 Monsanto Company Weatherable graft polymers having improved impact retention and improved melt flow
JPH06228422A (ja) 1993-02-05 1994-08-16 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
US5412036A (en) * 1993-09-27 1995-05-02 The Dow Chemical Company Maleimide-modified high heat abs resins
DE69511473T3 (de) * 1994-01-10 2004-06-09 Mitsubishi Rayon Co., Ltd. Maleimid copolymer und harzzusammensetzung diesen enthaltend
DE19926622A1 (de) * 1999-06-11 2000-12-14 Bayer Ag Thermoplastische Formmassen
CN1357557A (zh) * 2000-12-14 2002-07-10 中国石化集团齐鲁石油化工公司 抗冲击耐热共聚树脂的制造方法
JP2002317015A (ja) 2001-04-20 2002-10-31 Kanegafuchi Chem Ind Co Ltd 成形加工性に優れた熱可塑性樹脂組成物
US7638559B2 (en) 2005-05-10 2009-12-29 Nova Chemicals Inc. Expandable resins
CN1935867A (zh) * 2006-09-07 2007-03-28 南京盛东化工有限公司 一种特殊结构abs类树脂改性剂的制备方法
TWI355401B (en) * 2006-09-29 2012-01-01 Cheil Ind Inc Thermoplastic resin composition and plastic articl
KR101158707B1 (ko) 2008-12-29 2012-06-22 제일모직주식회사 내열도 및 충격강도가 우수한 열가소성 수지 및 그 제조방법
KR101190452B1 (ko) * 2009-07-16 2012-10-11 주식회사 엘지화학 코어-쉘 고분자 입자를 포함하는 고무 조성물
KR101697393B1 (ko) * 2013-12-19 2017-02-01 주식회사 엘지화학 아크릴레이트-스티렌-아크릴로니트릴계 그라프트 공중합체를 포함하는 열가소성 수지
KR101895112B1 (ko) 2015-12-31 2018-09-04 롯데첨단소재(주) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080949A (ko) * 1997-04-01 1998-11-25 귄터슈마허 부착물 생성이 감소된 폴리카보네이트/그래프트 중합체 성형조성물
KR20030030422A (ko) * 2001-10-11 2003-04-18 제일모직주식회사 난연성 열가소성 수지조성물
KR20030052525A (ko) * 2001-12-21 2003-06-27 제일모직주식회사 충격 강도가 향상된 스티렌계 열가소성 복합재료
KR20030056475A (ko) * 2001-12-28 2003-07-04 제일모직주식회사 유리섬유 강화 스티렌계 열가소성 복합재료
KR20060047874A (ko) * 2004-05-15 2006-05-18 란세스 도이치란트 게엠베하 그라프트 중합체를 포함하는 압출 가공용 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767038B2 (en) 2015-12-31 2020-09-08 Lotte Advanced Materials Co., Ltd. Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same

Also Published As

Publication number Publication date
JP6978412B2 (ja) 2021-12-08
KR101895112B1 (ko) 2018-09-04
US10767038B2 (en) 2020-09-08
JP2019500434A (ja) 2019-01-10
US20180298184A1 (en) 2018-10-18
KR20170080169A (ko) 2017-07-10
CN108368209A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2016089042A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2017116042A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2018038573A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2012053693A1 (ko) 저온 백화가 발생하지 않는 고투명, 고충격 열가소성 수지 조성물
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2013100439A1 (ko) 내충격성, 내스크래치성 및 투명성이 우수한 투명 abs 수지 조성물
WO2013062170A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2017057904A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2016085222A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2017095059A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
KR960002985B1 (ko) 내열성 내충격성 수지 조성물
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2012091294A1 (ko) 내충격성 및 저광 특성이 우수한 난연성 열가소성 수지 조성물
WO2016108461A1 (ko) 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물
WO2019078514A1 (ko) 그래프트 공중합체 복합체의 제조방법, 그래프트 공중합체 복합체 및 이를 포함하는 열가소성 수지 조성물
WO2014208857A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018043930A1 (ko) 방향족 비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
KR101492032B1 (ko) 고온에서의 가공성 및 내변색성이 우수한 내열성 abs수지 조성물 및 이의 제조방법
WO2017116007A1 (ko) 도금 특성이 우수한 친환경 열가소성 수지 조성물
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
WO2015047026A1 (ko) 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
WO2024122978A1 (ko) 재생 수지 조성물
WO2022182138A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018517795

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881994

Country of ref document: EP

Kind code of ref document: A1