WO2016108461A1 - 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물 - Google Patents

친환경적이며 도금 특성이 우수한 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2016108461A1
WO2016108461A1 PCT/KR2015/013395 KR2015013395W WO2016108461A1 WO 2016108461 A1 WO2016108461 A1 WO 2016108461A1 KR 2015013395 W KR2015013395 W KR 2015013395W WO 2016108461 A1 WO2016108461 A1 WO 2016108461A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin composition
thermoplastic resin
monomer
parts
Prior art date
Application number
PCT/KR2015/013395
Other languages
English (en)
French (fr)
Inventor
이섭주
김동환
이완성
김형진
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Publication of WO2016108461A1 publication Critical patent/WO2016108461A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to a thermoplastic resin composition that is environmentally friendly and has excellent plating properties.
  • thermoplastic resins In general, molded products (plastics) molded from thermoplastic resins are often used by plating treatment, and ABS (acrylonitrile-butadiene-styrene) resins are widely used because of their excellent moldability and plating properties.
  • ABS acrylonitrile-butadiene-styrene
  • the plating liquid used in electroless copper plating may contain formaldehyde, a carcinogenic substance, which may adversely affect workers, and in order to dissolve copper ions in an alkaline solution, such as EDTA (ethylene diamine tetraacetic acid) Since a strong complexing agent is used, a number of processes, such as filtration, activated carbon treatment, and ion exchange, are involved to remove copper ions in the wastewater treatment step, thereby reducing process efficiency.
  • formaldehyde a carcinogenic substance, which may adversely affect workers
  • an alkaline solution such as EDTA (ethylene diamine tetraacetic acid)
  • EDTA ethylene diamine tetraacetic acid
  • hypophosphite contained in the plating liquid used for electroless nickel plating since the hypophosphite contained in the plating liquid used for electroless nickel plating is oxidized and converted into phosphite, it may violate environmental regulations regarding phosphorus components, and the high COD of the plating process wastewater may cause a problem of environmental pollution. have.
  • thermoplastic resin composition that can appropriately cope with problems such as deterioration of worker's health, environmental pollution, and deterioration of process efficiency that occur in the plastic plating process.
  • the present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to provide an environmentally friendly thermoplastic resin composition excellent in plating properties and electroless plating is required when forming a metal film or an alloy film by electroplating. will be.
  • one aspect of the present invention is a monomer mixture of 35 to 65 parts by weight of the diene rubber polymer and the mixture of aromatic vinyl monomer and vinyl cyan monomer in the weight ratio of 60 to 80: 20 to 40, respectively 35 ⁇ 20 to 45% by weight of the first graft copolymer having 45 parts by weight of graft polymerized; 50 to 75% by weight of the first copolymer in which the aromatic vinyl monomer and the vinyl cyan monomer are each copolymerized at a weight ratio of 60 to 80:20 to 40; And 2 to 8% by weight of a conductive filler.
  • the graft rate of the first graft copolymer may be 30 to 40%.
  • the thermoplastic resin composition is 45 to 55 parts by weight of the diene rubber polymer, and 45 to 55 parts by weight of the monomer mixture in which the aromatic vinyl monomer and the vinyl cyan monomer are mixed at a weight ratio of 60 to 80:20 to 40, respectively. It may further comprise 1 to 12% by weight of the graft polymerized second graft copolymer.
  • the graft rate of the second graft copolymer may be 65 to 75%.
  • the weight average molecular weight of the first copolymer may be 100,000 ⁇ 150,000.
  • thermoplastic resin composition is copolymerized with an aromatic vinyl monomer and a vinyl cyan monomer in a weight ratio of 60 to 80: 20 to 40, respectively, 1 to 25% by weight of the second copolymer having a weight average molecular weight of 80,000 to 100,000 It may further include.
  • the diene rubber polymer may be polybutadiene or polyisoprene.
  • the aromatic vinyl monomer is a group consisting of styrene, alphamethylstyrene, alphaethylstyrene, vinyltoluene, parabromostyrene, parachlorostyrene, tert-butylstyrene, dimethylstyrene, and mixtures of two or more thereof. It may be one selected from.
  • the vinyl cyan monomer may be one selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, and mixtures of two or more thereof.
  • the conductive filler may be one selected from the group consisting of carbon nanotubes, fullerenes, graphene, graphite, carbon fibers, carbon black, and mixtures of two or more thereof.
  • thermoplastic resin composition by adding a conductive filler to the thermoplastic resin composition to impart conductivity, it is possible to omit the electroless plating process during plating, thereby improving the environmental friendliness and plating characteristics.
  • Example 1 is an SEM image of the thermoplastic resin composition of Example 3 and a plating layer of a copper plating plastic prepared therefrom.
  • Figure 2 is a SEM image of the thermoplastic resin composition of Comparative Example 2, and a plated layer of a copper plated plastic prepared therefrom.
  • One aspect of the present invention is a 55-65 parts by weight of the diene rubber polymer and 35-45 parts by weight of a monomer mixture in which the aromatic vinyl monomer and the vinyl cyan monomer are mixed in a weight ratio of 60 to 80: 20 to 40, respectively, the first graft polymerized 20 to 45% by weight graft copolymer; 50 to 75% by weight of the first copolymer in which the aromatic vinyl monomer and the vinyl cyan monomer are each copolymerized at a weight ratio of 60 to 80:20 to 40; And 2 to 8% by weight of a conductive filler.
  • the graft copolymer may be 55 to 65 parts by weight of a diene rubber polymer and 35 to 45 parts by weight of a monomer mixture in which an aromatic vinyl monomer and a vinyl cyan monomer are mixed at a weight ratio of 60 to 80:20 to 40, respectively. And, the content may be in the range of 20 to 45% by weight based on the total weight of the thermoplastic resin composition.
  • diene rubber polymer examples include butadiene-aromatic vinyl compound copolymers such as polybutadiene, polyisoprene, butadiene-styrene copolymer, butadiene-vinyltoluene copolymer; Alternatively, butadiene-vinyl cyan compound copolymers such as butadiene-acrylonitrile copolymer and butadiene-methacrylonitrile copolymer may be used, but two or more of them may be mixed and used as necessary.
  • butadiene-aromatic vinyl compound copolymers such as polybutadiene, polyisoprene, butadiene-styrene copolymer, butadiene-vinyltoluene copolymer
  • butadiene-vinyl cyan compound copolymers such as butadiene-acrylonitrile copolymer and butadiene-methacrylonitrile copolymer may be used, but two
  • the content of the diene rubber polymer is less than 55 parts by weight, the content of rubber latex in the thermoplastic resin composition may be decreased, and thus mechanical properties such as impact strength may be reduced, and when it is more than 65 parts by weight, excessive aggregation between particles occurs. As a result, moldability and plating adhesion may be reduced.
  • the diene rubber polymer may be prepared by emulsion polymerization in consideration of ease of particle diameter control, but is not limited thereto.
  • a catalyst, an emulsifier, or the like used in emulsion polymerization may be a well-known one.
  • the graft copolymer is obtained by graft polymerization of the monomer mixture on the diene rubber polymer.
  • a polymerization method for preparing the graft copolymer for example, a known polymerization such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization is known. The method can be used alternatively or in combination of two or more.
  • the monomer mixture may be collectively administered together with a known emulsifier, a polymerization initiator, a catalyst, and the like, and may be continuously administered for a predetermined time, if necessary.
  • the graft copolymer initially obtained by the graft polymerization may be in latex form, but may be finally obtained as a solid in a powder state by coagulation and drying by treating it with an acid or a salt.
  • the monomer mixture may be a mixture of aromatic vinyl monomers and vinyl cyan monomers in a weight ratio of 60 to 80: 20 to 40, respectively, if necessary, a mono vinyl monomer copolymerizable with them is added in the range of 0 to 20% by weight. It may be mixed.
  • the content of the vinyl cyan monomer is less than 20% by weight based on the total weight of the monomer mixture, it is difficult to knead with the SAN resin produced by bulk or solution polymerization, and the impact strength of the final molded plastic molded product may be significantly reduced. In the case of more than% by weight, it is difficult to knead with the SAN resin produced by the bulk or solution polymerization method, and the surface properties may be degraded due to yellowing during high temperature molding.
  • the aromatic vinyl monomer may be one selected from the group consisting of styrene, alphamethylstyrene, alphaethylstyrene, vinyltoluene, parabromostyrene, parachlorostyrene, tert-butylstyrene, dimethylstyrene, and mixtures of two or more thereof. And, preferably, it may be styrene, but is not limited thereto.
  • the vinyl cyan monomer may be one selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, and mixtures of two or more thereof, preferably acrylonitrile, but is not limited thereto. It is not.
  • the mono vinyl monomer is maleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-phenylmaleimide, methyl methacrylate, methyl acrylate, butyl acrylate, acrylic acid, male Acid anhydrides, and mixtures of two or more thereof.
  • the graft ratio of the graft copolymer may be 30 to 40%, and when the graft ratio of the graft copolymer is outside the above range, the degree of dispersion of the thermoplastic resin composition may be lowered, thereby decreasing moldability and plating adhesion. .
  • the thermoplastic resin composition is 45-55 parts by weight of the diene rubber polymer, and 45-55 parts by weight of the monomer mixture in which the aromatic vinyl monomer and the vinyl cyan monomer are mixed in a weight ratio of 60 to 80: 20 to 40, respectively. It may further comprise 1 to 12% by weight of the graft copolymer. That is, the graft copolymer may be used alone of the same kind, and may be used by mixing different kinds of different diene rubber polymer content, if necessary. Specifically, by using a graft copolymer having a relatively small content of diene rubber polymer, plating adhesion can be further improved.
  • the content of the graft copolymer is more than 12% by weight based on the total weight of the thermoplastic resin composition, plating adhesion and plating appearance of the final molded plastic molded product may be deteriorated.
  • the graft ratio of the graft copolymer may be 65 to 75%, and when the graft ratio of the second graft copolymer is out of the range, the degree of dispersion of the thermoplastic resin composition may be lowered to decrease moldability and plating adhesion. Can be.
  • the copolymer may be a copolymer of an aromatic vinyl monomer and a vinyl cyan monomer in a weight ratio of 60 to 80:20 to 40, respectively, the content may be 50 to 75% by weight based on the total weight of the thermoplastic resin composition. .
  • the kind and content of the aromatic vinyl monomer and the vinyl cyan monomer are as described above.
  • the content of the copolymer is in the range of 50 to 75% by weight, the impact strength and plating adhesion of the plastic molded product, which is the final product, can be improved, and the expansion of the linear expansion coefficient can be suppressed to prevent expansion of the plated film.
  • the weight average molecular weight of the copolymer may be 100,000 to 150,000. If the weight average molecular weight of the copolymer is less than 100,000, the impact strength of the plastic molded product, which is the final product, may be lowered. It may occur, the moldability and plating adhesion may be reduced.
  • the thermoplastic resin composition is an aromatic vinyl monomer and a vinyl cyan monomer are each copolymerized in a weight ratio of 60 to 80: 20 to 40, respectively, the weight average molecular weight further comprises 1 to 25% by weight of the second copolymer of 80,000 to 100,000.
  • the said copolymer can be used individually by the same kind, and if needed, you may mix and use the heterogeneous thing from which a weight average molecular weight differs.
  • a copolymer having a relatively small weight average molecular weight it is possible to further improve moldability, plating appearance, and plating adhesion.
  • the impact strength of the final molded plastic molded product may be lowered.
  • the thermoplastic resin composition may include a conductive filler, the content may be 2 to 8% by weight based on the total weight of the thermoplastic resin composition. Since the conductive filler may impart conductivity to the thermoplastic resin composition and the plastic molded body manufactured therefrom, a separate electroless plating process may be omitted during plastic plating, thereby improving environmental friendliness in terms of both products and processes. In particular, the process efficiency can be greatly improved.
  • the content of the conductive filler in the thermoplastic resin composition can be adjusted to a certain range, for example, 2 to 8% by weight. If the content of the conductive filler is less than 2% by weight, the effect of imparting conductivity is weak and plating adhesion and Plating (the partial term uniformity described as a coating film) may reduce the appearance, and if it is more than 8% by weight, the relative content of the graft copolymer and the copolymer may be reduced, thereby reducing the impact strength of the final molded plastic molded product. The dispersion degree may be lowered due to the aggregation phenomenon between the conductive filler particles.
  • the conductive filler may be one selected from the group consisting of carbon nanotubes, fullerenes, graphene, graphite, carbon fibers, carbon black, and a mixture of two or more thereof, and preferably, the kneading with the thermoplastic resin composition is easy. It may be a carbon nanotube in consideration, and more preferably, it may be a multi-walled carbon nanotube in consideration of commercial availability and economics, but is not limited thereto.
  • the carbon nanotubes and the thermoplastic resin composition When the carbon nanotubes and the thermoplastic resin composition are kneaded, the carbon nanotubes may form a network structure in the thermoplastic resin composition.
  • the plastic molded body when carbon black is added together with the carbon nanotubes as the conductive filler, the plastic molded body may exhibit more uniform conductivity by a synergistic action between the two, and thus the coating film adhesion may be improved.
  • the carbon black is inserted into and fixed in the network structure formed in the thermoplastic resin composition by the carbon nanotubes, thereby exhibiting uniform conductivity as compared with the carbon nanotubes being applied alone.
  • the carbon black is a material having excellent conductivity in itself, but also has a property of easily peeling off carbon particles due to scratching or friction, and thus has low abrasion resistance, and moldability of plastic when only an excessive amount of carbon black is used as the conductive filler. This can be degraded.
  • the carbon nanotubes and the carbon black are applied together as a conductive filler, it is possible to reduce the content of the carbon black to prevent deterioration of the moldability of the plastic and at the same time improve the conductivity of the plastic molded body.
  • thermoplastic resin composition may further include a predetermined amount of additives as necessary.
  • additives examples include stabilizers commonly used; slush; Metal soap; Ultraviolet absorbers; Plasticizers; Colorants (pigments, dyes); Carbon fiber or glass fiber; Fillers such as talc, wollastonite, calcium carbonate, silica, wood flour and the like; Flame retardant; Anti-drip agents; Antibacterial agents; Antifungal agents; Coupling agents; And it may be one selected from the group consisting of two or more of these, but is not limited thereto.
  • the flame retardant plays a role of imparting flame retardancy to the thermoplastic resin composition having poor thermal properties and flame resistance, and halogen-based flame retardants, inorganic flame retardants, phosphorus flame retardants, and melanin flame retardants may be used depending on the component.
  • the halogen flame retardant may be divided into bromine and chlorine.
  • the bromine-based flame retardant may implement a good flame retardant effect even in a small amount, there is a problem that can not be recycled plastic and emit toxic environmental pollutants such as dioxin during combustion.
  • the inorganic flame retardant includes aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc stannate, molybdate, guanidine-based, zirconium, and the like.
  • aluminum hydroxide has the advantage of non-toxic, low smoke, excellent electrical insulation and low cost, but can be applied only to plastics with a low decomposition temperature of 180 ⁇ 220 °C decomposition temperature, should be applied in large quantities to impart flame retardancy Therefore, the mechanical properties and processability of the plastic material can be reduced.
  • the phosphorus-based flame retardants include ammonium phosphate, ammonium polyphosphate, haloalkyl phosphate, and the like.
  • the phosphorus-based flame retardant shows an excellent flame retardant effect in the solid phase reaction, and is particularly effective for plastics containing a large amount of oxygen.
  • the melanin-based flame retardants include melanin phosphate, melanin cyanurate, melanin phosphate, and the like.
  • the melanin-based flame retardant does not generate toxic gases, and the amount of smoke generated during combustion is low, thus reducing the risk to the environment.
  • Polybutadiene rubber content of 59% by weight, graft rate of 35%, the weight average molecular weight of 150,000 first ABS resin containing 34 parts by weight, styrene 68% and acrylonitrile 32% by weight, the weight average molecular weight of 120,000, melt 63 parts by weight of a first SAN resin having an index of 12 (230 ° C. and 3.8 kg), and a powder type multi-walled carbon nanometer having an average diameter of 8 to 15 nm, an average length of 26 ⁇ m, and an apparent specific gravity of 0.020 to 0.026 g / mL.
  • thermoplastic resin composition for direct plating in pellet form. It was.
  • thermoplastic resin composition was manufactured by the same method as 1.
  • a SAN resin comprising 50 parts by weight of the first SAN resin, 68% by weight of styrene and 32% by weight of acrylonitrile, a weight average molecular weight of 95,000 and a melt index of 27 (230 ° C., 3.8 Kg standard).
  • a thermoplastic resin composition was prepared in the same manner as in Example 2, except that 13 parts by weight of the SAN resin was used in a mixture.
  • thermoplastic resin composition was prepared in the same manner as in Example 2, except that the dosages of the first SAN resin and the powder-type multi-walled carbon nanotubes were changed to 62 parts by weight and 4 parts by weight, respectively.
  • thermoplastic resin composition was prepared in the same manner as in Example 2, except that the dosages of the first SAN resin and the powder-type multi-walled carbon nanotubes were changed to 61 parts by weight and 5 parts by weight, respectively.
  • thermoplastic resin composition was prepared in the same manner as in Example 1, except that 2 parts by weight of carbon black (CB) was additionally administered.
  • thermoplastic resin composition was prepared in the same manner as in Example 2, except that the dosage of the powder-type multi-walled carbon nanotubes was changed to 2 parts by weight and 3 parts by weight of carbon black were further administered.
  • thermoplastic resin composition was prepared in the same manner as in Example 3, except that 3 parts by weight of carbon black was additionally administered.
  • thermoplastic resin composition was prepared in the same manner as in Example 4, except that the dosage of the powder-type multi-walled carbon nanotubes was changed to 2 parts by weight and 3 parts by weight of carbon black were additionally administered.
  • thermoplastic resin composition was prepared in the same manner as in Example 1 except that the dosage of the first ABS resin was changed to 37 parts by weight and the powdered multi-walled carbon nanotubes were not administered.
  • thermoplastic resin composition was prepared in the same manner as in Example 1, except that the dosage amounts of the first ABS resin and the powder-type multi-walled carbon nanotubes were changed to 36 parts by weight and 1 part by weight, respectively.
  • thermoplastic resin composition was prepared in the same manner as in Example 2, except that the dosages of the first and second ABS resins were changed to 20 parts by weight and 14 parts by weight, respectively.
  • thermoplastic resin composition was prepared in the same manner as in Example 1, except that the dosage amounts of the first ABS resin and the powder-type multi-walled carbon nanotubes were changed to 27 parts by weight and 10 parts by weight, respectively.
  • thermoplastic resin compositions of Examples 1 to 9 and Comparative Examples 1 to 4 were introduced into an injection molding machine (250 tons of electric motors of LS), and were subjected to a constant shape and size under conditions of a cylinder set temperature of 200 ° C. and a mold temperature of 60 ° C. 100 ⁇ 100 ⁇ 3 mm) specimens were prepared.
  • the specimen was immersed in a cleaner at 40 ° C. for 3 minutes and then degreased. Thereafter, the mixture was washed with water at 20 ° C, immersed and etched in 69 ° C etching solution (400 g / l chromic acid, 400 g / l sulfuric acid) for 10 minutes.
  • the specimen was then washed with water at 20 ° C., pre-dipping with 35 ° C. aqueous 35% hydrochloric acid solution for 1 minute, and the specimen was washed with water at 20 ° C.
  • the copper plated specimens were prepared by electroplating the copper specimens at room temperature for 60 minutes to form a copper plating film having a thickness of 30 to 50 ⁇ m, followed by washing with 20 ° C. water and drying at 80 ° C. for 2 hours.
  • impact resistance, plating adhesion, and plating appearance were evaluated according to the following methods, and the results are shown in Table 2 below.
  • Impact resistance evaluated by Izod impact strength according to ASTM D256.
  • Plating adhesiveness The copper plating specimen was cut

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

본 발명의 일 실시예는 디엔계 고무질 중합체 55~65중량부 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 35~45중량부가 그라프트 중합된 제1 그라프트 공중합체 20~45중량%; 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합된 제1 공중합체 50~75중량%; 및 도전성 필러 2~8중량%;를 포함하는 열가소성 수지 조성물을 제공한다.

Description

친환경적이며 도금 특성이 우수한 열가소성 수지 조성물
본 발명은 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물에 관한 것이다.
일반적으로, 열가소성 수지를 성형한 성형품(플라스틱)을 도금 처리하여 사용하는 경우가 많은데, 이 중 ABS(acrylonitrile-butadiene-styrene) 수지가 성형성, 도금 특성이 우수하여 널리 사용되고 있다.
플라스틱 표면을 도금하기 위한 방법으로, 플라스틱 표면에 금속 촉매 핵을 부착시킨 후, 희석 산성액으로 처리하고, 무전해 동 또는 무전해 니켈 도금하여 도전성 피막을 형성한 후, 전기 도금하는 방법이 제안되어 통용되고 있다.
다만, 무전해 동 도금에 사용되는 도금액에 발암성 물질인 포름알데히드가 포함되어 작업자에게 악영향을 끼칠 수 있고, 동 도금액 제조 시 동 이온을 알칼리 용액에 용해시키기 위해 EDTA(ethylene diamine tetraacetic acid)와 같은 강한 착화제가 사용되므로, 폐수 처리 단계에서 동 이온을 제거하기 위해 여과, 활성탄 처리, 이온 교환 등 다수의 공정이 수반되어 공정 효율이 저하된다.
또한, 무전해 니켈 도금에 사용되는 도금액에 포함된 차아인산염이 산화되어 아인산염으로 전환되므로, 인 성분에 관한 환경 규제에 저촉될 수 있고, 도금 공정 폐수의 COD가 높아 환경 오염의 문제가 잠재하고 있다.
이에 따라, 플라스틱 도금 공정에서 발생하는 작업자의 건강 악화, 환경 오염, 공정 효율 저하와 같은 문제에 적절히 대응할 수 있는 열가소성 수지 조성물의 개발이 필요하다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 전기 도금에 의해 금속막 또는 합금막 형성 시 도금 특성이 우수하며 무전해 도금이 필요없는 친환경적인 열가소성 수지 조성물을 제공하는 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 디엔계 고무질 중합체 55~65중량부 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 35~45중량부가 그라프트 중합된 제1 그라프트 공중합체 20~45중량%; 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합된 제1 공중합체 50~75중량%; 및 도전성 필러 2~8중량%;를 포함하는 열가소성 수지 조성물을 제공한다.
일 실시예에 있어서, 상기 제1 그라프트 공중합체의 그라프트율이 30~40%일 수 있다.
일 실시예에 있어서, 상기 열가소성 수지 조성물이 디엔계 고무질 중합체 45~55중량부, 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 45~55중량부가 그라프트 중합된 제2 그라프트 공중합체 1~12중량%를 더 포함할 수 있다.
일 실시예에 있어서, 상기 제2 그라프트 공중합체의 그라프트율이 65~75%일 수 있다.
일 실시예에 있어서, 상기 제1 공중합체의 중량평균분자량이 100,000~150,000 일 수 있다.
일 실시예에 있어서, 상기 열가소성 수지 조성물이 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합되고, 중량평균분자량이 80,000~100,000인 제2 공중합체 1~25중량%를 더 포함할 수 있다.
일 실시예에 있어서, 상기 디엔계 고무질 중합체가 폴리부타디엔 또는 폴리이소프렌일 수 있다.
일 실시예에 있어서, 상기 방향족 비닐 단량체가 스티렌, 알파메틸스티렌, 알파에틸스티렌, 비닐톨루엔, 파라브로모스티렌, 파라클로로스티렌, tert-부틸스티렌, 디메틸스티렌, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있다.
일 실시예에 있어서, 상기 비닐 시안 단량체가 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있다.
일 실시예에 있어서, 상기 도전성 필러가 탄소나노튜브, 풀러렌, 그래핀, 그라파이트, 탄소섬유, 카본블랙, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있다.
본 발명의 일 측면에 따르면, 열가소성 수지 조성물에 도전성 필러를 부가하여 도전성을 부여함으로써, 도금 시 무전해 도금 공정을 생략할 수 있고, 이에 따라, 친환경성과 도금 특성을 향상시킬 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 실시예 3의 열가소성 수지 조성물, 및 이로부터 제조된 구리 도금 플라스틱의 도금층을 촬영한 SEM이미지이다.
도 2는 비교예 2의 열가소성 수지 조성물, 및 이로부터 제조된 구리 도금 플라스틱의 도금층을 촬영한 SEM이미지이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
본 발명의 일 측면은 디엔계 고무질 중합체 55~65중량부 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 35~45중량부가 그라프트 중합된 제1 그라프트 공중합체 20~45중량%; 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합된 제1 공중합체 50~75중량%; 및 도전성 필러 2~8중량%;를 포함하는 열가소성 수지 조성물을 제공한다.
(1) 그라프트 공중합체
(1-1) 제1 그라프트 공중합체
상기 그라프트 공중합체는 디엔계 고무질 중합체 55~65중량부 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 35~45중량부가 그라프트 중합된 것일 수 있고, 그 함량은 상기 열가소성 수지 조성물의 전체 중량을 기준으로 20~45중량%의 범위일 수 있다.
상기 디엔계 고무질 중합체로는, 예를 들어, 폴리부타디엔, 폴리이소프렌, 부타디엔-스티렌 공중합체, 부타디엔-비닐톨루엔 공중합체와 같은 부타디엔-방향족 비닐 화합물 공중합체; 또는 부타디엔-아크릴로니트릴 공중합체, 부타디엔-메타크릴로니트릴 공중합체와 같은 부타디엔-비닐 시안 화합물 공중합체를 사용할 수 있으나, 필요에 따라, 이들 중 2 이상을 혼합하여 사용할 수도 있다.
또한, 상기 디엔계 고무질 중합체의 함량이 55중량부 미만이면 열가소성 수지 조성물 중 고무 라텍스의 함량이 감소하여 충격강도와 같은 기계적 물성이 저하될 수 있고, 65중량부 초과이면 입자 간 응집이 과도하게 발생하여 성형성, 도금 밀착성이 저하될 수 있다.
상기 디엔계 고무질 중합체의 제조 방법은 입자 직경 제어의 용이성을 고려하여 유화 중합법으로 제조하는 것이 바람직하나, 이에 한정되는 것은 아니며, 유화 중합 시 사용되는 촉매, 유화제 등은 공지의 것이 사용될 수 있다.
상기 그라프트 공중합체는, 상기 디엔계 고무질 중합체에 상기 단량체 혼합물이 그라프트 중합된 것으로서, 이를 제조하기 위한 중합 방법으로는, 예를 들어, 유화 중합, 현탁 중합, 용액 중합, 괴상 중합과 같은 공지의 방법을 택일적으로 또는 2 이상을 조합하여 사용할 수 있다.
상기 그라프트 중합 시, 상기 단량체 혼합물은 공지의 유화제, 중합개시제, 촉매 등과 함께 일괄 투여될 수 있고, 필요에 따라, 미리 정해진 시간 동안 연속 투여될 수도 있다. 상기 그라프트 중합에 의해 최초로 수득되는 그라프트 공중합체는 라텍스 형태이나, 이를 산 또는 염으로 처리하여 응고, 건조하여 분말 상태의 고체로 최종 수득될 수 있다.
상기 단량체 혼합물은 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 것일 수 있고, 필요에 따라, 이들과 공중합 가능한 모노 비닐 단량체가 0~20중량%의 범위로 추가 혼합된 것일 수도 있다.
상기 비닐 시안 단량체의 함량이 상기 단량체 혼합물의 전체 중량을 기준으로 20중량% 미만이면 벌크 또는 용액 중합법으로 생산된 SAN 수지와 혼련되기 어렵고 최종 제품인 플라스틱 성형체의 충격강도가 현저히 저하될 수 있으며, 40중량% 초과인 경우에도 벌크 또는 용액 중합법으로 생산된 SAN 수지와 혼련되기 어렵고 고온 성형 시 황변 현상에 의해 표면 특성이 저하될 수 있다.
상기 방향족 비닐 단량체가 스티렌, 알파메틸스티렌, 알파에틸스티렌, 비닐톨루엔, 파라브로모스티렌, 파라클로로스티렌, tert-부틸스티렌, 디메틸스티렌, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있고, 바람직하게는, 스티렌일 수 있으나 이에 한정되는 것은 아니다.
상기 비닐 시안 단량체가 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있고, 바람직하게는, 아크릴로니트릴일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 모노 비닐 단량체가 말레이미드, N-메틸말레이미드, N-에틸말레이미드, N-프로필말레이미드, N-페닐말레이미드, 메틸메타크릴레이트, 메틸아크릴레이트, 부틸아크릴레이트, 아크릴산, 말레산무수물, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있다.
상기 그라프트 공중합체의 그라프트율이 30~40%일 수 있으며, 상기 그라프트 공중합체의 그라프트율이 상기 범위를 벗어나는 경우, 상기 열가소성 수지 조성물의 분산도가 저하되어 성형성, 도금 밀착성이 저하될 수 있다.
(1-2) 제2 그라프트 공중합체
한편, 상기 열가소성 수지 조성물이 디엔계 고무질 중합체 45~55중량부, 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 45~55중량부가 그라프트 중합된 그라프트 공중합체 1~12중량%를 더 포함할 수 있다. 즉, 상기 그라프트 공중합체로는 동종의 것을 단독으로 사용할 수 있고, 필요에 따라, 디엔계 고무질 중합체의 함량이 상이한 이종의 것을 혼합하여 사용할 수도 있다. 구체적으로, 디엔계 고무질 중합체의 함량이 상대적으로 적은 그라프트 공중합체를 혼합하여 사용함으로써, 도금 밀착성을 더욱 향상시킬 수 있다.
상기 그라프트 공중합체의 함량이 상기 열가소성 수지 조성물의 전체 중량을 기준으로 12중량% 초과이면, 최종 제품인 플라스틱 성형체의 도금 밀착성과 도금 외관성이 저하될 수 있다.
상기 그라프트 공중합체의 그라프트율이 65~75%일 수 있으며, 상기 제2 그라프트 공중합체의 그라프트율이 상기 범위를 벗어나는 경우, 상기 열가소성 수지 조성물의 분산도가 저하되어 성형성, 도금 밀착성이 저하될 수 있다.
그 외, 상기 방향족 비닐 단량체와 상기 비닐 시안 단량체의 종류, 함량에 관해서는 전술한 것과 같다.
(2) 공중합체
(2-1) 제1 공중합체
상기 공중합체는 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합된 것일 수 있고, 그 함량은 상기 열가소성 수지 조성물의 전체 중량을 기준으로 50~75중량% 일 수 있다. 상기 방향족 비닐 단량체와 상기 비닐 시안 단량체의 종류, 함량에 관해서는 전술한 것과 같다.
상기 공중합체의 함량이 50~75중량%의 범위이면, 최종 제품인 플라스틱 성형체의 충격강도와 도금 밀착성이 향상될 수 있고, 선팽창계수의 증가를 억제하여 도금막의 팽창을 방지할 수 있다.
한편, 상기 공중합체의 중량평균분자량이 100,000~150,000 일 수 있으며, 상기 공중합체의 중량평균분자량이 100,000 미만이면 최종 제품인 플라스틱 성형체의 충격강도가 저하될 수 있고, 150,000 초과이면 입자 간 응집이 과도하게 발생하여 성형성, 도금 밀착성이 저하될 수 있다.
(2-2) 제2 공중합체
한편, 상기 열가소성 수지 조성물이 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합되고, 중량평균분자량이 80,000~100,000인 제2 공중합체 1~25중량%를 더 포함할 수 있다. 즉, 상기 공중합체로는 동종의 것을 단독으로 사용할 수 있고, 필요에 따라, 중량평균분자량이 상이한 이종의 것을 혼합하여 사용할 수도 있다. 구체적으로, 중량평균분자량이 상대적으로 적은 공중합체를 혼합하여 사용함으로써, 성형성, 도금 외관성, 도금 밀착성을 더욱 향상시킬 수 있다.
상기 공중합체의 함량이 상기 열가소성 수지 조성물의 전체 중량을 기준으로 25중량% 초과이면, 최종 제품인 플라스틱 성형체의 충격강도가 저하될 수 있다.
그 외, 상기 방향족 비닐 단량체와 상기 비닐 시안 단량체의 종류, 함량에 관해서는 전술한 것과 같다.
(3) 도전성 필러
상기 열가소성 수지 조성물은 도전성 필러를 포함할 수 있고, 그 함량은 상기 열가소성 수지 조성물의 전체 중량을 기준으로 2~8중량%일 수 있다. 상기 도전성 필러가 상기 열가소성 수지 조성물과 이로부터 제조되는 플라스틱 성형체 자체에 도전성을 부여할 수 있으므로, 플라스틱 도금 시 별도의 무전해 도금 공정을 생략할 수 있어 제품과 공정의 양 측면에서 친환경성을 제고할 수 있고, 특히, 공정 효율을 크게 향상시킬 수 있다.
다만, 상기 열가소성 수지 조성물 중 상기 도전성 필러의 함량을 일정 범위, 예를 들어, 2~8중량%로 조절할 수 있는데, 상기 도전성 필러의 함량이 2중량% 미만이면 도전성 부여 효과가 미약하여 도금 밀착성과 도금(도막으로 기재되어 있던 부분 용어 통일) 외관성이 저하될 수 있고, 8중량% 초과이면 상기 그라프트 공중합체와 상기 공중합체의 상대적인 함량이 적어져 최종 제품인 플라스틱 성형체의 충격강도가 저하될 수 있으며, 도전성 필러 입자 간 응집 현상에 의해 분산도가 저하될 수 있다.
상기 도전성 필러가 탄소나노튜브, 풀러렌, 그래핀, 그라파이트, 탄소섬유, 카본블랙, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있고, 바람직하게는, 열가소성 수지 조성물과의 혼련 용이성을 고려하여 탄소나노튜브일 수 있고, 더욱 바람직하게는, 상업적 구득 가능성과 경제성을 고려하여 다중 벽(multi-walled) 탄소나노튜브일 수 있으나, 이에 한정되는 것은 아니다.
상기 탄소나노튜브와 상기 열가소성 수지 조성물이 혼련되면, 탄소나노튜브는 열가소성 수지 조성물 내에서 네트워크 구조를 형성할 수 있다. 이 때, 도전성 필러로 상기 탄소나노튜브와 함께 카본블랙이 첨가되면, 양자 간 상승 작용에 의해 플라스틱 성형체가 보다 균일한 도전성을 나타낼 수 있어 도막 밀착성이 향상될 수 있다.
즉, 상기 탄소나노튜브에 의해 상기 열가소성 수지 조성물 내에 형성된 네트워크 구조 내부로 상기 카본블랙이 삽입되어 고정됨으로써, 상기 탄소나노튜브가 단독으로 적용되는 것에 비해 균일한 도전성을 나타낼 수 있다.
한편, 상기 카본블랙은 그 자체로 우수한 전도성을 가지는 물질이나, 긁힘 또는 마찰에 의해 탄소 입자의 이탈이 용이한 특성 또한 가지고 있어 내마모성이 낮고, 도전성 필러로 카본블랙만을 과량 사용하는 경우 플라스틱의 성형성이 저하될 수 있다.
따라서, 도전성 필러로 상기 탄소나노튜브와 상기 카본블랙이 함께 적용되는 경우, 카본블랙의 함량을 감소시켜 플라스틱의 성형성이 저하되는 것을 방지함과 동시에 플라스틱 성형체의 도전성을 향상시킬 수 있다.
(4) 기타 첨가제
상기 열가소성 수지 조성물은, 그라프트 공중합체, 공중합체, 및 도전성 필러 외에도, 필요에 따라, 일정 함량의 첨가제를 더 포함할 수 있다.
상기 첨가제로는, 통상적으로 사용되는 안정제; 윤활제; 금속 비누; 자외선 흡수제; 가소제; 착색제(안료, 염료); 탄소섬유나 유리섬유; 탈크, 규회석(wollastonite), 탄산칼슘, 실리카, 목분 등의 충전제; 난연제; 드립 방지제; 항균제; 곰팡이 방지제; 커플링제; 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나일 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 난연제는 열적 성질 및 내연소성이 취약한 열가소성 수지 조성물에 난연성을 부여하는 역할을 수행하는 것으로서, 성분에 따라 할로겐계 난연제, 무기계 난연제, 인계 난연제, 멜라닌계 난연제가 사용될 수 있다.
상기 할로겐계 난연제는 브롬계와 염소계로 구분될 수 있다. 상기 브롬계 난연제는 적은 양으로도 우수한 난연 효과를 구현할 수 있으나, 플라스틱의 재활용이 불가능하고 연소 시 다이옥신과 같은 유독성 환경오염 물질을 배출하는 문제점 있다.
상기 무기계 난연제는 수산화알루미늄, 산화안티몬, 수산화마그네슘, 주석산아연, 몰리브덴산염, 구아니딘계, 지르코늄 등이 있다. 이들 중, 수산화알루미늄은 무독성, 저발연성이고 전기 절연성이 우수하며 가격이 저렴한 장점이 있으나, 분해 온도가 180~220℃로 가공 온도가 낮은 플라스틱에만 적용될 수 있고, 난연성을 부여하기 위해 다량 적용되어야 하기 때문에 플라스틱 재료의 기계적 물성과 가공성을 저하시킬 수 있다.
상기 인계 난연제는 적인, 암모늄 포스페이트, 암모늄 폴리포스페이트, 할로알킬 포스페이트 등이 있다. 상기 인계 난연제는 고체상 반응에서 우수한 난연 효과를 나타내며, 특히, 산소를 다량 함유하는 플라스틱에 효과적이다.
상기 멜라닌계 난연제는 멜라닌 포스페이트, 멜라닌 시아누레이트, 멜라닌 포스페이트 등이 있다. 상기 멜라닌계 난연제는 유독성 기체의 발생이 없고, 연소 시 매연 발생량이 적어 환경에 대한 위험도가 적다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다.
실시예 1
폴리부타디엔 고무 함량이 59중량%, 그라프트율이 35%, 중량평균분자량이 150,000인 제1 ABS 수지 34중량부, 스티렌 68중량%와 아크릴로니트릴 32중량%를 함유하고, 중량평균분자량이 120,000, 용융지수가 12(230℃, 3.8kg 기준)인 제1 SAN 수지 63중량부, 및 평균 직경이 8~15nm, 평균 길이가 26㎛, 겉보기 비중이 0.020~0.026g/mL인 분체형 다중벽 탄소나노튜브(CNT) 3중량부를 헨셀 혼합기에 투여하고 3분 간 배합한 후, 32㎜φ 압출기를 이용하여 용융 혼련(실린더 설정 온도 250℃)하고, 절단하여 펠릿 형태의 직접 도금용 열가소성 수지 조성물을 제조하였다.
실시예 2
ABS 수지로, 제1 ABS 수지 24중량부와, 폴리부타디엔 고무 함량이 50중량%, 그라프트율이 70%, 중량평균분자량이 80,000인 제2 ABS 수지 10중량부를 혼합하여 사용한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 3
SAN 수지로, 상기 제1 SAN 수지 50중량부와, 스티렌 68중량%와 아크릴로니트릴 32중량%를 함유하고, 중량평균분자량이 95,000, 용융지수가 27(230℃, 3.8Kg 기준)인 제2 SAN 수지 13중량부를 혼합하여 사용한 것을 제외하면, 상기 실시예 2와 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 4
제1 SAN 수지와 분체형 다중벽 탄소나노튜브의 투여량을 각각 62중량부와 4중량부로 변경한 것을 제외하면, 상기 실시예 2와 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 5
제1 SAN 수지와 분체형 다중벽 탄소나노튜브의 투여량을 각각 61중량부와 5중량부로 변경한 것을 제외하면, 상기 실시예 2와 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 6
카본블랙(CB) 2중량부를 추가로 투여한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 7
분체형 다중벽 탄소나노튜브의 투여량을 2중량부로 변경하고, 카본블랙 3중량부를 추가로 투여한 것을 제외하면, 상기 실시예 2와 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 8
카본블랙 3중량부를 추가로 투여한 것을 제외하면, 상기 실시예 3과 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
실시예 9
분체형 다중벽 탄소나노튜브의 투여량을 2중량부로 변경하고, 카본블랙 3중량부를 추가로 투여한 것을 제외하면, 상기 실시예 4와 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
비교예 1
제1 ABS 수지의 투여량을 37중량부로 변경하고, 분체형 다중벽 탄소나노튜브를 투여하지 않은 것을 제외하면, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
비교예 2
제1 ABS 수지와 분체형 다중벽 탄소나노튜브의 투여량을 각각 36중량부와 1중량부로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
비교예 3
제1 및 제2 ABS 수지의 투여량을 각각 20중량부, 14중량부로 변경한 것을 제외하면, 상기 실시예 2와 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
비교예 4
제1 ABS 수지와 분체형 다중벽 탄소나노튜브의 투여량을 각각 27중량부와 10중량부로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물을 제조하였다.
상기 실시예 1~9와, 비교예 1~4에서 각 성분의 투여량을 하기 표 1에 나타내었다.
제1 ABS 제2 ABS 제1 SAN 제2 SAN CNT CB
실시예 1 34 - 63 - 3 -
실시예 2 24 10 63 - 3 -
실시예 3 24 10 50 13 3 -
실시예 4 24 10 62 - 4 -
실시예 5 24 10 61 - 5 -
실시예 6 34 - 63 - 3 2
실시예 7 24 10 63 - 2 3
실시예 8 24 10 50 13 3 2
실시예 9 24 10 62 - 2 3
비교예 1 37 - 63 - - -
비교예 2 36 - 63 - 1 -
비교예 3 20 14 63 - 3 -
비교예 4 27 - 63 - 10 -
(단위: 중량부)
실험예
상기 실시예 1~9와, 비교예 1~4의 열가소성 수지 조성물을 사출 성형기(전동식 250톤, LS 산전)에 도입하고, 실린더 설정 온도 200℃ 및 금형 온도 60℃의 조건에서 일정 형상 및 크기(100x100x3mm)의 시편을 제조하였다. 시편을 40℃의 클리너에 3분 간 침지한 후, 탈지하였다. 이 후, 20℃의 물로 세정하고, 69℃의 에칭액(크롬산 400g/l, 황산400g/l)에 10분 간 침지하여 식각하였다. 이어서, 시편을 20℃의 물로 세정하고, 35℃의 35% 염산 수용액으로 1분 간 프리-딥핑(pre-dipping)하였으며, 시편을 20℃의 물로 세정하였다.
세정된 시편에 대해 실온에서 60분 간 전기 구리 도금하여 두께 30~50㎛의 구리 도금막을 형성한 후, 20℃의 물로 세정하고 80℃에서 2시간 동안 건조시켜 구리 도금 시편을 제조하였다. 제조된 각각의 시편에 대해, 내충격성, 도금 밀착성, 및 도금 외관성을 하기 방법에 따라 평가하였고, 그 결과를 하기 표 2에 나타내었다.
-내충격성 : ASTM D256에 준하는 아이조드(Izod) 충격강도로 평가하였다.
-도금 밀착성 : 구리 도금 시편을 10㎜의 폭으로 절단하고, 구리 도금막을 시험편으로부터 90도의 각도로 박리시켜, 그 강도(필링 강도)를 평가하였다.
-도금 외관성 : 구리 도금 시편의 표면을 육안으로 평가하였다.
충격강도(㎏·㎝/㎝) 도금밀착성 도금외관성
실시예 1 20
실시예 2 18
실시예 3 15
실시예 4 14
실시예 5 10
실시예 6 15
실시예 7 18
실시예 8 14
실시예 9 16
비교예 1 30 X X
비교예 2 25 X
비교예 3 22
비교예 4 4미만 X X
1. 도금 밀착성 평가 기준- ○: 7N/cm 이상; △: 4N/cm 이상 7N/cm 미만; X: 4N/cm 미만2. 도금 외관성 평가 기준- ○: 도금 불착 미관찰, 도금막 균일; △: 도금 불착 관찰 또는 도금막 불균일; X: 도금 불착 관찰, 도금막 불균일
상기 표 1~2와, 도 1~2를 참조하면, 열가소성 수지 조성물에 도전성 필러인 탄소나노튜브가 부가되는 경우, 충격강도는 다소 감소하나, 도금 밀착성과 도금 외관성이 향상되었으나(실시예 1, 비교예 1), 탄소나노튜브의 투여량이 2중량부 미만이거나 8중량부 초과이면 도금 밀착성과 도금 외관성이 크게 저하됨을 확인하였다(비교예 2, 4).
또한, 성질이 상이한 제1, 및 제2 ABS 수지, 또는 제1, 및 제2 SAN 수지를 혼용하는 경우에는 도금 밀착성이 더욱 향상되었으나(실시예 2~5), 제2 ABS 수지의 투여량이 12중량부를 초과하면 도금 밀착성과 도금 외관성이 저하됨을 확인하였다(실시예 2, 비교예 3).
한편, 도전성 필러로 탄소나노튜브와 카본블랙이 함께 적용되는 경우, 탄소나노튜브가 단독으로 적용되는 경우에 비해 도금 밀착성이 더욱 향상됨을 확인하였다(실시예 1~4, 6~9). 이는 열가소성 수지 조성물 내에 형성된 탄소나노튜브 네트워크 구조 내부로 카본블랙이 삽입 및 고정되어 도전성이 향상되고 균일화된 결과인 것으로 분석된다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 디엔계 고무질 중합체 55~65중량부 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 35~45중량부가 그라프트 중합된 제1 그라프트 공중합체 20~45중량%;
    방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합된 제1 공중합체 50~75중량%; 및
    도전성 필러 2~8중량%;를 포함하는, 열가소성 수지 조성물.
  2. 제1항에 있어서,
    상기 제1 그라프트 공중합체의 그라프트율이 30~40%인 것을 특징으로 하는, 열가소성 수지 조성물.
  3. 제1항에 있어서,
    상기 열가소성 수지 조성물이 디엔계 고무질 중합체 45~55중량부, 및 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 혼합된 단량체 혼합물 45~55중량부가 그라프트 중합된 제2 그라프트 공중합체 1~12중량%를 더 포함하는 것을 특징으로 하는, 열가소성 수지 조성물.
  4. 제3항에 있어서,
    상기 제2 그라프트 공중합체의 그라프트율이 65~75%인 것을 특징으로 하는, 열가소성 수지 조성물.
  5. 제1항에 있어서,
    상기 제1 공중합체의 중량평균분자량이 100,000~150,000인 것을 특징으로 하는, 열가소성 수지 조성물.
  6. 제5항에 있어서,
    상기 열가소성 수지 조성물이 방향족 비닐 단량체와 비닐 시안 단량체가 각각 60~80 : 20~40의 중량비로 공중합되고, 중량평균분자량이 80,000~100,000인 제2 공중합체 1~25중량%를 더 포함하는 것을 특징으로 하는, 열가소성 수지 조성물.
  7. 제1항에 있어서,
    상기 디엔계 고무질 중합체가 폴리부타디엔 또는 폴리이소프렌인 것을 특징으로 하는, 열가소성 수지 조성물.
  8. 제1항에 있어서,
    상기 방향족 비닐 단량체가 스티렌, 알파메틸스티렌, 알파에틸스티렌, 비닐톨루엔, 파라브로모스티렌, 파라클로로스티렌, tert-부틸스티렌, 디메틸스티렌, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 하는, 열가소성 수지 조성물.
  9. 제1항에 있어서,
    상기 비닐 시안 단량체가 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 하는, 열가소성 수지 조성물.
  10. 제1항에 있어서,
    상기 도전성 필러가 탄소나노튜브, 풀러렌, 그래핀, 그라파이트, 탄소섬유, 카본블랙, 및 이들 중 2 이상의 혼합물로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 하는, 열가소성 수지 조성물.
PCT/KR2015/013395 2014-12-30 2015-12-08 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물 WO2016108461A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140193715A KR101900270B1 (ko) 2014-12-30 2014-12-30 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물
KR10-2014-0193715 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016108461A1 true WO2016108461A1 (ko) 2016-07-07

Family

ID=56284556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013395 WO2016108461A1 (ko) 2014-12-30 2015-12-08 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물

Country Status (3)

Country Link
KR (1) KR101900270B1 (ko)
TW (1) TWI573831B (ko)
WO (1) WO2016108461A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479300A (zh) * 2020-11-12 2022-05-13 中国石油天然气股份有限公司 电镀级abs树脂组合物、电镀级abs树脂及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106188928B (zh) * 2016-08-18 2019-06-21 上海锦湖日丽塑料有限公司 一种耐高低温循环性能优异的耐热电镀abs树脂及其制备方法
KR101859011B1 (ko) * 2016-12-05 2018-06-28 금호석유화학 주식회사 도금 특성이 우수한 친환경 열가소성 수지 조성물
JP7299399B1 (ja) * 2022-10-24 2023-06-27 テクノUmg株式会社 グラフト共重合体、めっき用樹脂組成物、成形品及びめっき加工品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303293A (ja) * 2000-04-27 2001-10-31 Inoac Corp 金属・プラスチック複合品の製造方法
KR100654932B1 (ko) * 2005-06-14 2006-12-06 제일모직주식회사 도금 외관 특성이 우수한 열가소성 abs 수지 조성물
KR100717515B1 (ko) * 2005-12-22 2007-05-11 제일모직주식회사 도금 밀착성 및 도금 표면특성이 우수한 abs 그라프트공중합체, 그 제조방법 및 이를 이용한 abs 수지 조성물
JP2007161940A (ja) * 2005-12-16 2007-06-28 Toray Ind Inc メッキおよび塗装用樹脂組成物およびその成形体
KR20120095530A (ko) * 2011-02-21 2012-08-29 고려대학교 산학협력단 고분자/필러의 전기전도성 복합체 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352816A (ja) * 2003-05-28 2004-12-16 Mitsubishi Engineering Plastics Corp 導電性熱可塑性樹脂組成物
KR100709593B1 (ko) * 2005-12-29 2007-04-20 제일모직주식회사 내충격성 및 내화학성이 우수한 스티렌계 열가소성 수지조성물
JP5572287B2 (ja) * 2007-12-27 2014-08-13 ユーエムジー・エービーエス株式会社 めっき基材用強化樹脂組成物および成形品、ならびに電気めっき部品
WO2011118522A1 (ja) * 2010-03-24 2011-09-29 電気化学工業株式会社 表面導電性積層シート及び電子部品包装容器
CN103119096B (zh) * 2010-09-22 2016-01-20 东丽株式会社 阻燃性苯乙烯类热塑性树脂组合物及其成型品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303293A (ja) * 2000-04-27 2001-10-31 Inoac Corp 金属・プラスチック複合品の製造方法
KR100654932B1 (ko) * 2005-06-14 2006-12-06 제일모직주식회사 도금 외관 특성이 우수한 열가소성 abs 수지 조성물
JP2007161940A (ja) * 2005-12-16 2007-06-28 Toray Ind Inc メッキおよび塗装用樹脂組成物およびその成形体
KR100717515B1 (ko) * 2005-12-22 2007-05-11 제일모직주식회사 도금 밀착성 및 도금 표면특성이 우수한 abs 그라프트공중합체, 그 제조방법 및 이를 이용한 abs 수지 조성물
KR20120095530A (ko) * 2011-02-21 2012-08-29 고려대학교 산학협력단 고분자/필러의 전기전도성 복합체 및 이의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479300A (zh) * 2020-11-12 2022-05-13 中国石油天然气股份有限公司 电镀级abs树脂组合物、电镀级abs树脂及其制备方法
CN114479300B (zh) * 2020-11-12 2024-03-26 中国石油天然气股份有限公司 电镀级abs树脂组合物、电镀级abs树脂及其制备方法

Also Published As

Publication number Publication date
KR20160080957A (ko) 2016-07-08
KR101900270B1 (ko) 2018-09-20
TWI573831B (zh) 2017-03-11
TW201623420A (zh) 2016-07-01

Similar Documents

Publication Publication Date Title
WO2016108461A1 (ko) 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물
WO2016089042A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2014061891A1 (ko) 유리섬유 강화 폴리카보네이트 난연 수지 조성물
WO2017078273A1 (ko) 도금 밀착력이 우수한 폴리카보네이트-abs계 얼로이 수지 조성물 및 이를 포함하는 성형품
WO2019078464A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017057904A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2020067681A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017116042A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2017116007A1 (ko) 도금 특성이 우수한 친환경 열가소성 수지 조성물
WO2017095059A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2012091294A1 (ko) 내충격성 및 저광 특성이 우수한 난연성 열가소성 수지 조성물
WO2014208857A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2019059452A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 성형품
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2019078514A1 (ko) 그래프트 공중합체 복합체의 제조방법, 그래프트 공중합체 복합체 및 이를 포함하는 열가소성 수지 조성물
WO2013100336A1 (en) Thermoplastic resin composition and molded product using the same
WO2018124482A2 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
KR101859011B1 (ko) 도금 특성이 우수한 친환경 열가소성 수지 조성물
WO2012091300A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2019124857A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019164167A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875555

Country of ref document: EP

Kind code of ref document: A1