WO2017110877A1 - ヒ素の固定化方法及びヒ素含有ガラス固化体 - Google Patents

ヒ素の固定化方法及びヒ素含有ガラス固化体 Download PDF

Info

Publication number
WO2017110877A1
WO2017110877A1 PCT/JP2016/088108 JP2016088108W WO2017110877A1 WO 2017110877 A1 WO2017110877 A1 WO 2017110877A1 JP 2016088108 W JP2016088108 W JP 2016088108W WO 2017110877 A1 WO2017110877 A1 WO 2017110877A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
calcium arsenate
arsenate
copper
solution
Prior art date
Application number
PCT/JP2016/088108
Other languages
English (en)
French (fr)
Inventor
淳宏 鍋井
リナート ミルヴァリエフ
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201680073830.4A priority Critical patent/CN108368564B/zh
Priority to US16/064,153 priority patent/US10758954B2/en
Priority to EP16878764.6A priority patent/EP3395969B1/en
Publication of WO2017110877A1 publication Critical patent/WO2017110877A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • B09B3/29Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix involving a melting or softening step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an arsenic immobilization method for forming a vitrified material in which the arsenic elution amount is suppressed to an environmental standard or less, and to an arsenic-containing vitrified material. More specifically, the present invention relates to an arsenic immobilization method in which calcium arsenate recovered from a smelting intermediate or the like is vitrified to suppress an arsenic elution amount to an environmental standard or less and an arsenic-containing vitrified solid obtained from the method. .
  • the arsenic immobilization method of the present invention is suitable as a treatment method for copper arsenide-containing slime produced in a copper smelting process.
  • the copper arsenide-containing slime generally contains 40 to 60% by mass of copper, 20 to 40% by mass of arsenic, 0.5 to 5% by mass of lead, tin, antimony, bismuth and the like. Therefore, after removing impurities such as arsenic, the copper arsenide-containing slime is returned to the copper smelting process, and the copper content is recovered from the copper arsenide-containing slime.
  • impurities such as arsenic accumulate gradually in the copper smelting system and have an adverse effect on the copper quality, and are therefore removed from the system.
  • a ferric iron compound is added to the arsenic-containing solution so that the Fe / As molar ratio is 0.9 to 1.1 to form an FeAs starch, and the FeAs starch recovered by solid-liquid separation is recovered.
  • the slurry or the solution is heated to produce crystalline scorodite (FeAsO 4 .2H 2 O), thereby fixing arsenic.
  • arsenic acid (As 2 O 3 ) is extracted by leaching water from arsenic-containing smoke ash under heating.
  • an oxidizing agent such as manganese peroxide
  • slaked lime are added to the filtrate and reacted to produce and recover calcium arsenate.
  • recycled glass powder is mixed with this calcium arsenate and melted at 1200 ° C. to produce a solidified arsenic-containing glass.
  • Patent Document 3 In the method disclosed in Patent Document 3, first, a sodium-based alkali residue containing arsenic and antimony is heated to 850-1200 ° C. to selectively reduce and separate antimony by a carbon-based reducing agent. Next, a glass component is added to the remaining sodium arsenate and melted by heating to produce a solidified glass of arsenic. In the method disclosed in Non-Patent Document 1, a glass solid of arsenic is produced by heating and melting CaO—SiO 2 -based slag and calcium arsenate at a constant oxygen partial pressure at 1400 ° C.
  • Patent Document 1 has the advantage that arsenic is immobilized as scorodite, the arsenic concentration in the scorodite is high, and the conversion efficiency of the intermediate product from iron arsenic to scorodite is good.
  • expensive ferric salt is used when producing iron arsenic, the cost tends to be high.
  • arsenic adhering is removed by washing with water after the scorodite synthesis, waste liquid containing arsenic is generated, and the treatment cost is increased.
  • scorodite has a small bulk specific gravity of about 1, if it is disposed of in a scorodite state, the volume of the disposal site is compressed.
  • Patent Document 2 In the treatment method of Patent Document 2, the process of leaching arsenic-containing smoke ash to filter out an arsenous acid solution, adding magnesium oxide and slaked lime to this to form calcium arsenate, takes time, and is expensive. . There is also a problem that arsenic contained in the vitrified body is not sufficiently fixed.
  • the treatment method of Patent Document 3 is a method of vitrifying sodium arsenate, which makes exhaust gas treatment difficult because arsenic oxide volatilizes at 1000 ° C. or higher.
  • the treatment method of Non-Patent Document 1 requires appropriate control of the oxygen partial pressure in order to vitrify calcium arsenate under a constant oxygen partial pressure using CaO—SiO 2 -based slag, making actual operation difficult. There is a problem.
  • the present invention provides an arsenic glass fixing method that solves the above-mentioned problems in conventional processing methods and a arsenic-containing vitrified glass obtained by the method, for a processing method for vitrifying and fixing arsenic. According to the present invention, effective and easy glass fixation of arsenic becomes possible, and the amount of elution of arsenic contained in the vitrified body can be reduced below the environmental standard.
  • aspects of the present invention relate to an arsenic immobilization method and an arsenic-containing vitrified body (hereinafter referred to as “arsenic immobilization method of the present invention” and “arsenic-containing vitrified body of the present invention”) having the following configurations. .
  • Arsenic immobilization method of the present invention and an arsenic-containing vitrified body of the present invention
  • Calcium arsenate is added to a vitrified material containing iron, silica and an alkali component so that the weight ratio of iron silica is 0.5 to 0.9 and the amount of the alkali component is 14 wt% to 26 wt%.
  • An arsenic immobilization method characterized in that arsenic is made into a vitrified body.
  • the copper arsenic-containing material is a copper arsenide-containing slime, and sodium hydroxide and an oxidizing agent are added to the copper arsenide-containing slime and heated to leach arsenic, while the leach residue is separated into solid and liquid and recovered.
  • Calcium arsenate by adding slaked lime to the sodium arsenate solution to produce calcium arsenate, and adding the vitrified material to the recovered calcium arsenate so that the weight ratio of iron silica and the amount of the alkali component are the same.
  • vitrified body produced by the arsenic immobilization method of the present invention can be stored as a mold for a long period of time, it can be stably stored without being scattered like powdered scorodite.
  • the vitrified material using waste glass can increase the arsenic concentration in the vitrified material to 13 wt% or more, and the vitrified material using copper slag is vitrified.
  • the arsenic concentration in the body can be increased to 11 wt% or more. Since these have a smaller volume than scorodite, the limited volume of the final disposal site can be used effectively.
  • the arsenic immobilization method of the present invention can use calcium arsenate produced by recovering sodium arsenate by oxidative leaching using sodium hydroxide and adding slaked lime to this sodium arsenate solution.
  • sodium hydroxide is produced together with the production of calcium arsenate, most of this sodium hydroxide can be returned to the leaching process and reused. For this reason, sodium hydroxide can be used efficiently and its consumption can be reduced.
  • the arsenic immobilization method of the present invention is a method of vitrifying calcium arsenate and immobilizing it, and targets an iron arsenic deposit produced by adding a ferric compound to an alkali arsenate solution as in the conventional method. Since it is not a method, an expensive ferric compound is not used and processing cost can be reduced.
  • the arsenic-containing vitrified product produced by the arsenic immobilization method of the present invention does not need to be washed with water, and the arsenic content of the drainage is small, so the burden of the drainage treatment is small.
  • waste glass often contains a small amount of arsenic, so it is difficult to recycle and most of it is disposed of in landfills.
  • the vitrified arsenic Since the concentration can be increased, the limited volume of the final disposal site can be used more effectively than landfill disposal with waste glass.
  • the arsenic immobilization method of the present invention is a vitrification containing iron, silica and an alkali component such that the weight ratio of iron silica is 0.5 to 0.9 and the amount of alkali component is 14 wt% to 26 wt%.
  • An arsenic immobilization method characterized in that calcium arsenate is added to a material to form arsenic into a vitrified body.
  • calcium arsenate for example, calcium arsenate produced by adding slaked lime to an alkali arsenate solution obtained by adding an alkali solution and an oxidizing agent to a copper arsenic-containing material and oxidatively leaching can be used.
  • the copper arsenic-containing material for example, a copper arsenide-containing slime generated in copper electrolytic smelting can be used.
  • a sodium hydroxide solution can be used as the alkaline solution.
  • the copper arsenide-containing slime generated in copper electrolytic smelting is recovered, washed with water, sodium hydroxide is added to pH 7.5 or higher, an oxidizing agent is added, and heating is performed to leach arsenic, and the leachate is solidified.
  • sodium arsenate solution is recovered by liquid separation and slaked lime is added to the sodium arsenate solution, calcium arsenate is generated.
  • calcium arsenate used in the arsenic immobilization method of the present invention calcium arsenate recovered from a copper arsenide-containing slime solution produced in such copper electrolytic refining can be used. The process of recovering and vitrifying calcium arsenate from the copper arsenide-containing slime solution will be described below. This process is shown in FIG.
  • Arsenic is leached by adding an alkaline solution and an oxidizing agent to a copper arsenide-containing slime.
  • the pH of the solution is preferably 7.5 or more.
  • the oxidizing agent air, oxygen, chlorine, a chlorine compound, or the like can be used. Air or oxygen may be blown into the solution in the form of microbubbles.
  • the heating temperature for oxidative leaching is preferably 90 ° C. or lower.
  • the leaching temperature is preferably 30 ° C. to 90 ° C. If the temperature is lower than 30 ° C., the leaching time becomes longer.
  • arsenic is selectively leached from the copper arsenide-containing slime, and the separability from coexisting metals such as copper and lead contained in the slime is good. Furthermore, the filterability of the slurry after leaching is good, and the slurry can be filtered in a short time. Further, the quality of copper contained in the leaching residue is as high as 80 to 85%, and copper smelting treatment is easy.
  • the amount of slaked lime produced by calcium arsenate has a Ca / As molar ratio of 5/3, so that the Ca / As molar ratio is 1.
  • the Ca / As molar ratio is 1.7 or less, the recovery rate of As is lowered, and when it is 2.0 or more, unreacted slaked lime remains as an impurity, which is not preferable.
  • sodium hydroxide is produced together with calcium arsenate, so sodium hydroxide contained in the filtrate obtained by solid-liquid separation of calcium arsenate is returned to the oxidation leaching step, Can be reused as a source.
  • the solution pH is preferably 7.5 to 11, more preferably 9 to 10. If the pH is less than 7.5, the concentration of sodium hydroxide to be regenerated decreases as shown in the following formula [3]. If the pH is 11 or more, the formation of calcium arsenate becomes insufficient.
  • 3NaH 2 AsO 4 + 5Ca (OH) 2 3NaOH + As 3 Ca 5 O 13 H ⁇ + 6H 2 O [3]
  • the liquid temperature in the calcium arsenate production step is preferably 50 ° C to 70 ° C. When the liquid temperature is less than 50 ° C., calcium arsenate is not sufficiently formed. When the liquid temperature exceeds 70 ° C., crystalline calcium arsenate grows around calcium hydroxide and inhibits the reaction, which is not preferable.
  • the heating time is preferably 1 to 4 hours.
  • the iron silica weight ratio is the ratio of the weight of iron contained in the vitrified material to the weight of silica contained in the vitrified material.
  • the weight percentage of the amount of alkali component is the weight percent of the alkali component relative to the total weight of the dry weight of calcium arsenate and the weight of the vitrification material.
  • the weight in this specification is used synonymously with mass. Therefore, the weight ratio is mass ratio, and wt% is mass%.
  • waste glass containing iron, silica, and an alkali component for example, waste glass containing iron, silica, calcium, and sodium, copper slag, and the like can be used.
  • Waste glass and copper slag are preferably used by mixing with silica sand or the like of the silica source so as to be in the range of the weight ratio of iron silica and the amount of alkali component of the present invention. Further, waste glass and copper slag may be mixed and used.
  • a vitrified material and calcium arsenate are mixed so that the iron silica weight ratio (Fe / SiO2) of the vitrified body is 0.5 to 0.9 and the alkali component amount is 14 wt% to 26 wt%, and the mixture is heated and melted. To make a glass solid.
  • the iron content and silica content of the vitrified body are mainly the iron content and silica content contained in the vitrified material.
  • the alkali component of a vitrified body is Ca content of calcium arsenate, Ca content, Na content, etc. which are contained in the vitrification material.
  • the amount of alkali component is the total amount of these alkali component oxides.
  • the amount of alkali component is the total amount of Na 2 O and CaO.
  • the iron silica weight ratio (Fe / SiO 2 ) of the vitrified body is less than 0.5 or exceeds 0.9, in the elution test of the vitrified body (elution test according to Ministry of the Environment Notification No. 13), Arsenic elution amount exceeds the environmental standard (0.3 ppm). Further, when the amount of alkali components in the vitrified body, for example, the total amount of Na 2 O and CaO is less than 14 wt%, the arsenic concentration is less than 5 wt% and the economic advantage is reduced, and when it exceeds 26 wt%, the arsenic concentration is 15 wt%. % Or more, and the elution amount of arsenic increases, which is not preferable.
  • the upper limit of the heating temperature in the vitrification process is preferably 1400 ° C.
  • the heating temperature is 1450 ° C. or higher, calcium arsenate decomposes and arsenic oxide volatilizes, making it impossible to fix arsenic.
  • the lower limit of the heating temperature is the temperature at which the mixture of calcium arsenate and vitrification material melts.
  • the temperature of the vitrification step is preferably 1000 ° C. to 1400 ° C., and preferably 1100 ° C. to 1350 ° C.
  • the heating and melting time may be approximately 15 to 30 minutes.
  • the heating means is not limited as long as the heating temperature is reached. In general, a melting furnace or the like can be used.
  • the arsenic-containing vitrified product produced by the arsenic immobilization method of the present invention is preferably such that the concentration of arsenic contained in the vitrified product is 5 wt% to 15 wt%. If the vitrified arsenic concentration is less than 5 wt%, there are few economic advantages. On the other hand, in order for the arsenic concentration of the vitrified body to exceed 15 wt%, it is necessary to use calcium arsenate having a CaO concentration of 26 wt% or more, and the CaO concentration of the vitrified body is also increased. Since it exceeds the component amount range, the arsenic elution amount increases.
  • Example 1 Copper arsenide-containing slime (As: 30 wt%, Cu: 60 wt%) 100 g (dry mass) was mixed with 0.5 L of caustic soda solution (NaOH concentration 65 g / L), stirred, heated to 85 ° C., 1 L / air Oxidation leaching was performed while blowing min. The leachate was separated into solid and liquid to recover the sodium arsenate solution.
  • Example 2 Using a mixture of copper slag and waste glass as the vitrification material, the vitrification material is added to the calcium arsenate recovered in Example 1, and the iron silica weight ratio and the amount of alkali components (total amount of Na 2 O and CaO) are In addition to the values shown in Table 1, a mixed sample was prepared. This mixed sample was put into a crucible and melted by heating at 1350 ° C. in the atmosphere for 30 minutes. The melt was cooled and the glass solid was recovered. The vitrified product was subjected to an arsenic elution test (based on Ministry of the Environment Notification No. 13).
  • sample No. 21 The composition of the vitrified body and the results of the arsenic elution test are shown in Table 2 (Sample No. 21). As shown in Table 2, sample No. No. 21 has an iron-silica weight ratio in the range of 0.5 to 0.9, an alkali component amount in the range of 14 wt% to 26 wt%, and the arsenic elution amount is suppressed to 0.3 ppm or less. .
  • Example 1 Using copper slag to which silica sand is not added as a vitrification material, the copper slag recovered in Example 1 is made of copper slag with an iron-silica weight ratio and an alkali component amount (total amount of Na 2 O and CaO) of Table 3. A mixed sample was prepared so that This mixed sample was heated and melted in the same manner as in Example 1 to produce a vitrified body. This glass solid was subjected to the same arsenic elution test as in Example 1. Table 3 shows the composition of the vitrified body and the results of the arsenic elution test.
  • Example 3 Using copper slag and waste glass as the vitrification material, the waste glass is recovered from the calcium arsenate recovered in Example 1, and the weight ratio of iron silica and the amount of alkali components (total amount of Na 2 O and CaO) are as shown in Table 3.
  • a mixed sample was prepared by adding the values. This mixed sample was heated and melted in the same manner as in Example 1 to produce a vitrified body. This glass solid was subjected to the same arsenic elution test as in Example 1. The composition of the vitrified body and the results of the arsenic elution test are shown in Table 3 (Sample No. 34).
  • arsenic accumulated in the electrolytic solution can be easily and inexpensively fixed by using a vitrification material such as inexpensive copper slag or silica sand. As a result, arsenic can be stably stored for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

鉄シリカ重量比が0.5~0.9であって、アルカリ成分量が14wt%~26wt%になるように、鉄とシリカとアルカリ成分を含むガラス化材料にヒ酸カルシウムを加えて、ヒ素をガラス固化体にすることを特徴とするヒ素の固定化方法であり、例えば、銅ヒ素含有物溶液にアルカリ溶液と酸化剤を加えて酸化浸出を行い、浸出残渣を固液分離し、回収したヒ酸アルカリ溶液に、消石灰を加えてヒ酸カルシウムを生成させ、回収したヒ酸カルシウムに、上記鉄シリカ重量比および上記アルカリ成分量になるように、上記ガラス化材料を加えてヒ素をガラス固化体にするヒ素の固定化方法。

Description

ヒ素の固定化方法及びヒ素含有ガラス固化体
 本願発明は、ヒ素溶出量を環境基準以下に抑制したガラス固化体にするヒ素の固定化方法ヒ素含有ガラス固化体に関する。より詳しくは、製錬中間物などから回収したヒ酸カルシウムをガラス固化体にしてヒ素溶出量を環境基準以下に抑制することができるヒ素固定化方法及びその方法から得られるヒ素含有ガラス固化体に関する。本願発明のヒ素の固定化方法は、銅製錬工程において生じるヒ化銅含有スライムなどの処理方法として好適である。
 本願は、2015年12月23日に、日本に出願された特願2015-250760号に基づき優先権を主張し、その内容をここに援用する。
 銅の電解製錬においては、電解液に銅やヒ素がしだいに蓄積する。そのため、電解液の一部を抜き出して浄液処理している。この浄液処理の際には、ヒ化銅(CuAsなど)を含有するスライムを抜き出している。このヒ化銅含有スライムには、概ね、銅40~60質量%、ヒ素20~40質量%、鉛、錫、アンチモン、ビスマスなどが各々0.5~5質量%含まれている。従って、ヒ素などの不純物を除いた後、このヒ化銅含有スライムを銅製錬工程に戻して、ヒ化銅含有スライムから銅分を回収している。一方、ヒ素などの不純物は銅製錬系内で次第に蓄積し、銅品質に悪影響を及ぼすので系外に除去される。
 ヒ化銅含有スライムなどに含まれるヒ素を安定な化合物に固定化処理して、銅製錬の系外に除去する方法として、例えば以下の処理方法が従来から知られている。
 特許文献1に開示される方法では、まず、銅ヒ素含有物に水酸化ナトリウム液を加え、空気を吹き込んで加熱下でアルカリ酸化浸出を行う。次に、浸出終了後、被処理液のpHをpH7.5~10に調整し、銅分を含む浸出残渣と、ヒ素を含む溶液とに固液分離する。次に、該ヒ素含有溶液に第二鉄化合物をFe/Asモル比で0.9~1.1になるように添加してFeAs澱物を生成させ、固液分離して回収したFeAs澱物を硫酸性溶液に混合して酸性スラリーまたは酸性溶液にする。次に、該スラリーまたは該溶液を加熱処理して結晶質のスコロダイト(FeAsO・2HO)を生成させることによって、ヒ素を固定化している。
 特許文献2に開示される方法では、まず、ヒ素含有煙灰から加熱下で水浸出して亜ヒ酸(As)を抽出する。次に、この濾液に、酸化剤(過酸化マンガン等)、消石灰を添加して反応させ、ヒ酸カルシウムを生成させて回収する。次に、このヒ酸カルシウムにリサイクルガラス粉を混合して1200℃で熔融させ、ヒ素含有ガラス固化体を製造している。
 特許文献3に開示される方法では、まず、ヒ素、アンチモンを含むナトリウム系アルカリ残渣を850-1200℃に加熱し、カーボン系還元剤によるアンチモンを選択的に還元分離させる。次に、残留するヒ酸ソーダにガラス成分を添加して加熱熔融してヒ素のガラス固化体を製造している。
 非特許文献1に開示される方法では、CaO-SiO系スラグとヒ酸カルシウムとを一定の酸素分圧下、1400℃で加熱熔融してヒ素のガラス固化体を製造している。
特開2014-208581号公報 国際公開WO2014/059535A1号公報 中国特許公開CN102965517A公報
Paper presented at GDMB Seminar"Slags in Metallurgy (Schlacken in der Metallurgie)"P.M. SWASH et al. Aachen, Germany, 17-19 March, 1999.
 特許文献1の処理方法は、ヒ素がスコロダイトとして固定化され、スコロダイト中のヒ素濃度が高く、中間生成物の鉄ヒ素殿物からスコロダイトへの転換効率も良いと云う利点を有している。一方、鉄ヒ素殿物を生成する際に高価な第二鉄塩を用いるので、コスト高になる傾向がある。また、スコロダイト合成後に、付着しているヒ素を水洗浄して除去するので、ヒ素を含む排液が発生し、その処理費が高くなる。さらに、スコロダイトは嵩比重が約1と小さいので、スコロダイトの状態で廃棄処分すると処分場の容積を圧迫する。
 特許文献2の処理方法は、ヒ素含有煙灰を水浸出して亜ヒ酸溶液を濾別し、これに酸化マグネシウムと消石灰を添加してヒ酸カルシウムにする工程に手間がかかり、コスト高である。またガラス固化体に含まれるヒ素の固定が十分ではない問題がある。
 特許文献3の処理方法は、ヒ酸ナトリウムをガラス固化する方法であり、これは1000℃以上でヒ素酸化物が揮発するため、排ガス処理が困難になる。
 非特許文献1の処理方法は、CaO-SiO系スラグを用いてヒ酸カルシウムを一定の酸素分圧下でガラス化するために、酸素分圧の適切な制御を必要とし、実際の操業が難しいと云う問題がある。
 本願発明は、ヒ素をガラス化して固定する処理方法について、従来の処理方法における上記問題を解決したヒ素のガラス固定化方法及びその方法で得られるヒ素含有ガラス固化体を提供する。本願発明によれば、効果的かつ容易なヒ素のガラス固定化が可能となり、ガラス固化体に含まれるヒ素の溶出量を環境基準以下にすることができる。
 本願発明の態様は、以下の構成を有するヒ素の固定化方法とヒ素含有ガラス固化体(以下、「本願発明のヒ素の固定化方法」及び「本願発明のヒ素含有ガラス固化体」と称する)に関する。
〔1〕鉄シリカ重量比が0.5~0.9であって、アルカリ成分量が14wt%~26wt%になるように、鉄とシリカとアルカリ成分を含むガラス化材料にヒ酸カルシウムを加えて、ヒ素をガラス固化体にすることを特徴とするヒ素の固定化方法。
〔2〕銅ヒ素含有物にアルカリ溶液と酸化剤を加えて酸化浸出を行い、浸出残渣を固液分離し、回収したヒ酸アルカリ溶液に、消石灰を加えてヒ酸カルシウムを生成させ、回収したヒ酸カルシウムに、上記鉄シリカ重量比および上記アルカリ成分量になるように、上記ガラス化材料を加えてヒ酸カルシウムをガラス固化体にする上記[1]に記載するヒ素の固定化方法。
〔3〕銅ヒ素含有物がヒ化銅含有スライムであり、該ヒ化銅含有スライムに水酸化ナトリウムと酸化剤を加え、加熱してヒ素を浸出させる一方、浸出残渣を固液分離し、回収したヒ酸ナトリウム溶液に、消石灰を加えてヒ酸カルシウムを生成させ、回収したヒ酸カルシウムに、上記鉄シリカ重量比および上記アルカリ成分量になるように、上記ガラス化材料を加えてヒ酸カルシウムをガラス固化体にする上記[2]に記載するヒ素の固定化方法。
〔4〕ヒ酸ナトリウム溶液に消石灰を加えてヒ酸カルシウムを生成させ、該ヒ酸カルシウムを含む溶液を固液分離してヒ酸カルシウムを回収し、一方、水酸化ナトリウムを含む濾液を酸化浸出工程に返送し、酸化浸出のアルカリ源として再利用する上記[3]に記載するヒ素の固定化方法。
〔5〕ヒ素含有量が5wt%~15wt%であり、鉄シリカ重量比が0.5~0.9であって、アルカリ成分のNaOとCaOの合計量が14wt%~26wt%であることを特徴とするヒ素含有ガラス固化体。
 本願発明のヒ素の固定化方法によって製造したガラス固化体は、モールドとして長期間の保管が可能であるため、粉体であるスコロダイトのように飛散することなく、安定的な貯蔵が可能である。
 本願発明のヒ素の固定化方法によれば、廃ガラスを用いたガラス固化体ではガラス固化体中のヒ素濃度を13wt%以上に高めることができ、また銅スラグを用いたガラス固化体ではガラス固化体中のヒ素濃度を11wt%以上に高めることができる。これらは何れもスコロダイトより容積が小さいため、最終処分場の限られた容積を有効に利用することができる。
 本願発明のヒ素の固定化方法は、水酸化ナトリウムを用いた酸化浸出によってヒ酸ナトリウムを回収し、このヒ酸ナトリウム溶液に消石灰を加えて生じたヒ酸カルシウムを用いることができる。この場合、ヒ酸カルシウムの生成と共に水酸化ナトリウムが生成するので、この水酸化ナトリウムの大部分を浸出工程に返送して再利用することができる。このため水酸化ナトリウムを効率よく使用することができ、またその消費量を低減することができる。
 本願発明のヒ素の固定化方法はヒ酸カルシウムをガラス化して固定する方法であり、従来方法のようなヒ酸アルカリ溶液に第二鉄化合物を加えて生成させた鉄ヒ素殿物を対象にする方法ではないので、高価な第二鉄化合物を使用せず、処理コストを低減することができる。
 本願発明のヒ素の固定化方法によって製造したヒ素含有ガラス固化体は、スコロダイトと異なり、水洗浄する必要がなく、排液のヒ素含有量が少ないので、排液処理の負担が小さい。
 また、廃ガラスには微量のヒ素が含有されているものが多いので、リサイクルが難しく、大部分は埋立処分されているが、本願発明のヒ素の固定化方法によれば、ガラス固化体のヒ素濃度を高めることができるので、廃ガラスのまま埋立処分するよりも、最終処分場の限られた容積を有効に利用することができる。
本願発明の処理工程を示す工程図。
 以下、本願発明のヒ素の固定化方法及びヒ素が入ガラス固化体の実施形態を説明する。
本願発明のヒ素の固定化方法は、鉄シリカ重量比が0.5~0.9であって、アルカリ成分量が14wt%~26wt%になるように、鉄とシリカとアルカリ成分を含むガラス化材料にヒ酸カルシウムを加えて、ヒ素をガラス固化体にすることを特徴とするヒ素の固定化方法である。
 上記ヒ酸カルシウムとしては、例えば、銅ヒ素含有物にアルカリ溶液と酸化剤を加えて酸化浸出して回収したヒ酸アルカリ溶液に消石灰を加えて生成させたヒ酸カルシウムなどを用いることができる。上記銅ヒ素含有物は、例えば、銅電解製錬において発生するヒ化銅含有スライムなどを用いることができる。上記アルカリ溶液としては水酸化ナトリウム溶液を用いることができる。
 銅電解製錬において発生するヒ化銅含有スライムを回収して水洗浄し、水酸化ナトリウムを加えてpH7.5以上にすると共に酸化剤を加え、加熱してヒ素を浸出させ、該浸出液を固液分離してヒ酸ナトリウム溶液を回収し、該ヒ酸ナトリウム溶液に消石灰を加えるとヒ酸カルシウムが生成する。本願発明のヒ素の固定化方法において使用するヒ酸カルシウムとして、このような銅電解精錬において生じたヒ化銅含有スライム溶液から回収したヒ酸カルシウムを用いることができる。ヒ化銅含有スライム溶液からヒ酸カルシウムを回収してガラス化する工程を以下に説明する。また、この工程を図1に示す。
〔アルカリ酸化浸出工程〕
 ヒ化銅含有スライムにアルカリ溶液と酸化剤を加えてヒ素を浸出させる。このアルカリ酸化浸出において、該溶液のpHは7.5以上が好ましい。酸化剤としては、空気や酸素、塩素、塩素化合物などを用いることができる。空気や酸素はマイクロバブルの状態で該溶液に吹き込んでも良い。酸化浸出の加熱温度は90℃以下が好ましい。
 アルカリ溶液として水酸化ナトリウム溶液を用いた酸化浸出において、次式[1]に示すように、ヒ化銅が水酸化ナトリウム液中で酸化され、銅が酸化銅または水酸化銅を形成して固形分の残渣になり、ヒ素がヒ酸ナトリウムを形成して液中に浸出する。
 2Cu3As+4NaOH+4O2=3Cu2O↓+2Na2HAsO4+H2O [1]
 上記アルカリ酸化浸出のpHが7.5より低い領域では、例えば、微量の銅イオンとヒ素(V)イオンが反応してヒ酸銅〔Cu(AsO〕の沈澱が生じるので液中のヒ素濃度は低下する。水酸化ナトリウムを添加してpHを7.5以上に調整すれば、ヒ素の浸出が進むので、pH7.5以上に調整して酸化浸出を行うのが好ましい。
 上記反応式[1]に示すように、ヒ素1モルを酸化浸出するには水酸化ナトリウム2モルが消費されるので、NaOHの添加量はNaOH/Asモル比=2倍(1当量)に基づいて調整すればよい。また、原料中のヒ素濃度が明らかなときには必要量の水酸化ナトリウム全量を浸出開始時に添加してもよい。この場合、浸出初期の液性が強アルカリ(pH14程度)になる場合でも浸出終了時のpHが7.5~10の範囲になるようにすれば、銅、鉛などの重金属イオン濃度を抑えて、比較的に高純度のヒ素(V)を含むヒ素浸出液を得ることができる。
 浸出温度は30℃~90℃がよく、30℃より低いと浸出時間が長くなり、90℃より高いと蒸気の発生量が多く、加熱コストが無駄になる。
 上記アルカリ酸化浸出によれば、ヒ化銅含有スライムからヒ素が選択的に浸出され、該スライムに含まれる銅や鉛などの共存金属との分離性が良い。さらに、浸出後のスラリーの濾過性が良く、短時間で濾過することができる。また、浸出残渣に含まれる銅の品位が80~85%と高く、銅製錬処理が容易である。
〔ヒ酸カルシウムの生成工程〕
 上記アルカリ酸化浸出の浸出液を固液分離して、酸化銅を含む浸出残渣を除き、濾液のヒ酸ナトリウム溶液を回収する。このヒ酸ナトリウム溶液に消石灰を加えると、次式[2]に示すように、ヒ酸カルシウム(AsCa13H)が生成する。このヒ酸カルシウムを回収する。
 3Na2HAsO4+ 5Ca(OH)2 = 6NaOH+As3Ca5O13H↓+ 3H2O [2]
 ヒ酸カルシウムの生成工程において、上記反応式[2]に示すように、ヒ酸カルシウムが生成する消石灰の量は、Ca/Asモル比が5/3であるので、Ca/Asモル比1.7~2.0になる量の消石灰を加えると良い。Ca/Asモル比1.7以下では、Asの回収率が低下し、2.0以上では、不純物として未反応の消石灰が残留するので好ましくない。
 また、上記反応式[2]に示すように、ヒ酸カルシウムと共に水酸化ナトリウムが生成するので、ヒ酸カルシウムを固液分離した濾液に含まれる水酸化ナトリウムを上記酸化浸出工程に返送し、アルカリ源として再利用することができる。
 ヒ酸カルシウムの生成工程において、溶液pHは7.5~11が好ましく、pH9~10がより好ましい。pH7.5未満では次式[3]に示すように、再生する水酸化ナトリウム濃度が低下し、pH11以上ではヒ酸カルシウムの生成が不十分になるので好ましくない。
 3NaH2AsO4+5Ca(OH)2=3NaOH+As3Ca5O13H↓+6H2O [3]
 ヒ酸カルシウム生成工程の液温は50℃~70℃が好ましい。液温が50℃未満ではヒ酸カルシウムが十分に生成しない。液温が70℃を超えると結晶性ヒ酸カルシウムが水酸化カルシウムの周りに成長して反応を阻害するので好ましくない。加熱時間は1~4時間が好ましい。
〔ヒ酸カルシウムのガラス化工程〕
 ヒ酸カルシウムに、鉄シリカ重量比が0.5~0.9、アルカリ成分量が14wt%~26wt%になるように、鉄とシリカとアルカリ成分を含むガラス化材料を加えて、ヒ酸カルシウムをガラス固化体にする。
 鉄シリカ重量比は、ガラス化材料に含まれるシリカの重量に対する、ガラス化材料に含まれる鉄の重量の比である。
 アルカリ成分量の重量パーセンテージは、ヒ酸カルシウムの乾燥重量及びガラス化材料の重量の合計重量に対する、アルカリ成分の重量パーセントである。
 本明細書中の重量は質量と同義で用いられている。よって、重量比は質量比、wt%は質量%である。
 鉄とシリカとアルカリ成分を含むガラス化材料としては、例えば、鉄、シリカ、カルシウム、ナトリウムを含む廃ガラスや、銅スラグなどを用いることができる。廃ガラスおよび銅スラグは、本願発明の鉄シリカ重量比およびアルカリ成分量の範囲になるように、シリカ源の珪砂等と混合して用いると良い。また廃ガラスと銅スラグを混合して用いても良い。
 ガラス化材料とヒ酸カルシウムを、ガラス固化体の鉄シリカ重量比(Fe/SiO2)が0.5~0.9、アルカリ成分量が14wt%~26wt%になるように混合し、加熱熔融してガラス固化体にする。
 ガラス固化体の鉄分およびシリカ分は主にガラス化材料に含まれている鉄分とシリカ分である。また、ガラス固化体のアルカリ成分は、ヒ酸カルシウムのCa分、およびガラス化材料に含まれているCa分やNa分などである。アルカリ成分量は、これらのアルカリ成分酸化物の合計量であり、アルカリ成分としてナトリウムとカルシウムを含むガラス固化体では、アルカリ成分量はNaOとCaOの合計量である。
 ガラス固化体の鉄シリカ重量比(Fe/SiO)が0.5未満であり、または0.9を超えると、ガラス固化体の溶出試験(環境省告示13号に準拠した溶出試験)において、ヒ素の溶出量が環境基準(0.3ppm)を上回るようになる。また、ガラス固化体のアルカリ成分量、例えば、NaOとCaOの合計量が14wt%未満ではヒ素濃度が5wt%未満になり経済的な利点が少なくなり、26wt%を超えるとヒ素濃度が15wt%以上になり、ヒ素の溶出量が多くなるので好ましくない。
 ガラス化工程の加熱温度の上限は1400℃が好ましい。加熱温度が1450℃以上になるとヒ酸カルシウムが分解してヒ素酸化物が揮発し、ヒ素を固定できなくなる。一方、加熱温度の下限はヒ酸カルシウムとガラス化材料の混合物が熔融する温度である。一般には、ガラス化工程の温度は1000℃~1400℃が良く、1100℃~1350℃が好ましい。加熱熔融時間は概ね15分~30分であれば良い。加熱手段は上記加熱温度になるものであれば良く制限されない。一般には溶融炉などを用いることができる。
 本願発明のヒ素の固定化方法によって製造するヒ素含有ガラス固化体は、該ガラス固化体に含まれるヒ素濃度が5wt%以上~15wt%以下になるようにすると良い。ガラス固化体のヒ素濃度が5wt%未満では経済的な利点が少ない。一方、ガラス固化体のヒ素濃度が15wt%を上回るには、CaO濃度が26wt%以上のヒ酸カルシウムを用いる必要があり、ガラス固化体のCaO濃度も高くなり、本願発明に係る処理方法のアルカリ成分量の範囲を超えるようになるので、ヒ素の溶出量が多くなる。
 以下、本願発明に係る処理方法及びヒ素含有ガラス固化体の実施例を比較例と共に示す。
〔実施例1〕
 ヒ化銅含有スライム(As:30wt%、Cu:60wt%)100g(乾燥質量)を苛性ソーダ液0.5L(NaOH濃度65g/L)に混合し攪拌して、85℃に加熱し、空気1L/minを吹き込みながら酸化浸出を行った。浸出液を固液分離してヒ酸ナトリウム溶液を回収した。このヒ酸ナトリウム溶液(As:39g/L、pH10、50℃)500mlに、消石灰32gを添加して4時間攪拌し、白色沈澱(ヒ酸カルシウム沈澱)を生成させた。沈澱生成後のスラリーを固液分離して、ヒ酸カルシウム沈澱(As:30wt%、Ca:35wt%)64g(乾燥質量)と、濾液(As:20ppm、NaOH41g/l)500mlを回収した。
 回収したヒ酸カルシウムに、銅スラグと珪砂を混合したガラス化材料を、鉄シリカ重量比と、アルカリ成分量(NaOとCaOの合計量)が表1の値になるように加えて混合試料を調製した。この混合試料を、ルツボに入れ、1350℃、大気下で30分間加熱して熔融した。熔体を冷却してガラス固化体を回収した。このガラス固化体について、ヒ素の溶出試験(環境省告示13号に準拠)を行った。ガラス固化体の組成およびヒ素溶出試験の結果を表1に示した(試料No.1~No.6)。
 表1に示すように、本実施例の試料No.1~No.6は何れも鉄シリカ重量比が0.5~0.9の範囲内であって、アルカリ成分量が14wt%~26wt%の範囲内であり、ヒ素の溶出量は0.28ppm以下に抑制されている。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 ガラス化材料として銅スラグと廃ガラスの混合物を用い、実施例1で回収したヒ酸カルシウムに該ガラス化材料を、鉄シリカ重量比と、アルカリ成分量(NaOとCaOの合計量)が表1の値になるように加えて混合試料を調製した。この混合試料を、ルツボに入れ、1350℃、大気下で30分間加熱して熔融した。熔体を冷却してガラス固化体を回収した。このガラス固化体について、ヒ素の溶出試験(環境省告示13号に準拠)を行った。ガラス固化体の組成およびヒ素溶出試験の結果を表2に示した(試料No.21)。
 表2に示すように、本実施例の試料No.21は鉄シリカ重量比が0.5~0.9の範囲内であって、アルカリ成分量が14wt%~26wt%の範囲内であり、ヒ素の溶出量は0.3ppm以下に抑制されている。
Figure JPOXMLDOC01-appb-T000002
〔比較例1〕
 ガラス化材料として珪砂を加えない銅スラグを用い、実施例1で回収したヒ酸カルシウムに、銅スラグを、鉄シリカ重量比と、アルカリ成分量(NaOとCaOの合計量)が表3の値になるように加えて混合試料を調製した。この混合試料を実施例1と同様にして加熱溶融し、ガラス固化体を製造した。このガラス固化体について、実施例1と同様のヒ素溶出試験を行った。ガラス固化体の組成およびヒ素溶出試験の結果を表3に示した。
 表3に示すように、ガラス化材料として用いた銅スラグは鉄分が多いので、鉄シリカ重量比が0.9以上になり、アルカリ成分量が14wt%~26wt%の範囲でも、ヒ素の溶出量が0.3ppmを上回るようになる(試料No,31~No.32)。
〔比較例2〕
 ガラス化材料として銅スラグを加えない廃ガラスを用い、実施例1で回収したヒ酸カルシウムに、廃ガラスを、鉄シリカ重量比と、アルカリ成分量(NaOとCaOの合計量)が表3の値になるように加えて混合試料を調製した。この混合試料を実施例1と同様にして加熱溶融し、ガラス固化体を製造した。このガラス固化体について、実施例1と同様のヒ素溶出試験を行った。ガラス固化体の組成およびヒ素溶出試験の結果を表3に示した
(試料No.33)。
 表3に示すように、ガラス化材料の廃ガラスはアルカリ成分が多いので、アルカリ成分量が26wt%を上回り、ヒ素の溶出量が0.3ppmを上回るようになる。
〔比較例3〕
 ガラス化材料として銅スラグと廃ガラスを用い、実施例1で回収したヒ酸カルシウムに、廃ガラスを、鉄シリカ重量比と、アルカリ成分量(NaOとCaOの合計量)が表3の値になるように加えて混合試料を調製した。この混合試料を実施例1と同様にして加熱溶融し、ガラス固化体を製造した。このガラス固化体について、実施例1と同様のヒ素溶出試験を行った。ガラス固化体の組成およびヒ素溶出試験の結果を表3に示した(試料No.34)。
 表3に示すように、アルカリ成分量が26wt%を上回り、鉄シリカ重量比が0.5~0.9の範囲でも、ヒ素の溶出量が0.3ppmを上回るようになる(試料No.34)。
Figure JPOXMLDOC01-appb-T000003
 銅の電解精錬において、電解液に蓄積したヒ素を安価な銅スラグや珪砂などのガラス化材料を用いて容易にかつ低コストで固定化することができる。その結果として、ヒ素を安定的に長期間濃縮保管することができるようになる。

Claims (5)

  1.  鉄シリカ重量比が0.5~0.9であって、アルカリ成分量が14wt%~26wt%になるように、鉄とシリカとアルカリ成分を含むガラス化材料にヒ酸カルシウムを加えて、ヒ素をガラス固化体にすることを特徴とするヒ素の固定化方法。
  2.  銅ヒ素含有物にアルカリ溶液と酸化剤を加えて酸化浸出を行い、浸出残渣を固液分離し、回収したヒ酸アルカリ溶液に、消石灰を加えてヒ酸カルシウムを生成させ、回収したヒ酸カルシウムに、上記鉄シリカ重量比および上記アルカリ成分量になるように、上記ガラス化材料を加えてヒ酸カルシウムをガラス固化体にする請求項1に記載するヒ素の固定化方法。
  3.  銅ヒ素含有物がヒ化銅含有スライムであり、該ヒ化銅含有スライムに水酸化ナトリウムと酸化剤を加え、加熱してヒ素を浸出させる一方、浸出残渣を固液分離し、回収したヒ酸ナトリウム溶液に、消石灰を加えてヒ酸カルシウムを生成させ、回収したヒ酸カルシウムに、上記鉄シリカ重量比および上記アルカリ成分量になるように、上記ガラス化材料を加えてヒ酸カルシウムをガラス固化体にする請求項2に記載するヒ素の固定化方法。
  4.  ヒ酸ナトリウム溶液に消石灰を加えてヒ酸カルシウムを生成させ、該ヒ酸カルシウムを含む溶液を固液分離してヒ酸カルシウムを回収し、一方、水酸化ナトリウムを含む濾液を酸化浸出工程に返送し、酸化浸出のアルカリ源として再利用する請求項3に記載するヒ素の固定化方法。
  5.  ヒ素含有量が5wt%~15wt%であり、鉄シリカ重量比が0.5~0.9であって、アルカリ成分のNaOとCaOの合計量が14wt%~26wt%であることを特徴とするヒ素含有ガラス固化体。
PCT/JP2016/088108 2015-12-23 2016-12-21 ヒ素の固定化方法及びヒ素含有ガラス固化体 WO2017110877A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680073830.4A CN108368564B (zh) 2015-12-23 2016-12-21 砷的固定方法及含砷玻璃固化体
US16/064,153 US10758954B2 (en) 2015-12-23 2016-12-21 Method for immobilizing arsenic, and arsenic-containing vitrified waste
EP16878764.6A EP3395969B1 (en) 2015-12-23 2016-12-21 Method for immobilizing arsenic, and arsenic-containing vitrified waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015250760A JP6691680B2 (ja) 2015-12-23 2015-12-23 ヒ素の固定化方法
JP2015-250760 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017110877A1 true WO2017110877A1 (ja) 2017-06-29

Family

ID=59089448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088108 WO2017110877A1 (ja) 2015-12-23 2016-12-21 ヒ素の固定化方法及びヒ素含有ガラス固化体

Country Status (5)

Country Link
US (1) US10758954B2 (ja)
EP (1) EP3395969B1 (ja)
JP (1) JP6691680B2 (ja)
CN (1) CN108368564B (ja)
WO (1) WO2017110877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190330092A1 (en) * 2018-04-30 2019-10-31 Dundee Sustainable Technologies Inc. System and method of fabrication of arsenic glass

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923457B (zh) * 2019-12-27 2021-06-04 中国科学院电工研究所 一种高纯砷晶体的制备方法
CN113136489B (zh) * 2020-04-13 2022-07-15 中南大学 一种高砷烟灰解毒并资源化的同步处理方法
CN111575483B (zh) * 2020-04-17 2022-08-02 昆明铂锐金属材料有限公司 一种从铜阳极泥中分离硒碲砷铜铅银及富集金的方法
CN111533228A (zh) * 2020-05-19 2020-08-14 宁夏大学 一种分级调控处理含砷废水且减量稳定化砷渣的方法
CN112718793B (zh) * 2020-12-15 2022-03-11 紫金矿业集团股份有限公司 一种含亚砷酸盐的含砷物料直接玻璃化固砷方法
CN112919801B (zh) * 2021-02-23 2022-03-15 浙江本尊新材料科技有限公司 一种砷固废处理制备含砷硼硅玻璃的方法
CN114920529A (zh) * 2022-05-31 2022-08-19 湖南现代环境科技股份有限公司 一种复合固化药剂和含砷废渣的处理工艺
CN116197209A (zh) * 2023-01-17 2023-06-02 广西凯玺有色金属有限公司 一种砷酸钙玻璃固化的清洁处理方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965517A (zh) * 2012-12-03 2013-03-13 中南大学 一种砷碱渣玻璃固化的处理方法
WO2014059535A1 (en) * 2012-10-16 2014-04-24 Dundee Sustainable Technologies Inc. Method and composition for sequestration of arsenic

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2047807A1 (fr) * 1991-07-24 1993-01-25 My Dung Nguyen Handfield Vitrification des cendres
TW261602B (ja) * 1992-09-22 1995-11-01 Timothy John White
JP2009242935A (ja) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd 砒素を含むもののアルカリ処理方法
JP6241661B2 (ja) 2013-03-29 2017-12-06 三菱マテリアル株式会社 ヒ素の分離固定化方法
CN103255289B (zh) * 2013-05-22 2015-04-22 昆明理工大学 一种氧压碱浸砷冰铜脱除和回收砷的方法
CN104911358B (zh) * 2015-06-10 2017-07-14 中南大学 一种从铜阳极泥碱性浸出液中分离砷和硒的方法
US9981295B2 (en) * 2016-07-21 2018-05-29 Dundee Sustainable Technologies Inc. Method for vitrification of arsenic and antimony

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059535A1 (en) * 2012-10-16 2014-04-24 Dundee Sustainable Technologies Inc. Method and composition for sequestration of arsenic
CN102965517A (zh) * 2012-12-03 2013-03-13 中南大学 一种砷碱渣玻璃固化的处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROTO OTAKI ET AL.: "Development of Heavy Weight-FRCC using copper slag", PROCEEDINGS OF AIJ TOHOKU CHAPTER ARCHITECTURAL RESEARCH MEETING, June 2014 (2014-06-01), pages 157 - 160, XP009512038, ISSN: 1345-6687 *
SWASH,P.M ET AL.: "Comparison of the Solubilities of Arsenic-Bearing Wastes from Hydrometallurgical and Pyrometallurgical Processes", SLAGS IN METALLURGY, March 1999 (1999-03-01), XP055492999 *
TIMMONS, DALE M. ET AL.: "Vitrification Tested on Hazardous Wastes", POLLUTION ENGINEERING, vol. 22, no. 6, June 1990 (1990-06-01), pages 76 - 81, XP009511497, ISSN: 0032-3640 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190330092A1 (en) * 2018-04-30 2019-10-31 Dundee Sustainable Technologies Inc. System and method of fabrication of arsenic glass
US11168014B2 (en) * 2018-04-30 2021-11-09 Dundee Sustainable Technologies Inc. System and method of fabrication of arsenic glass

Also Published As

Publication number Publication date
CN108368564A (zh) 2018-08-03
JP6691680B2 (ja) 2020-05-13
US10758954B2 (en) 2020-09-01
US20180354840A1 (en) 2018-12-13
EP3395969A1 (en) 2018-10-31
EP3395969A4 (en) 2019-07-10
EP3395969B1 (en) 2020-11-18
JP2017115196A (ja) 2017-06-29
CN108368564B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2017110877A1 (ja) ヒ素の固定化方法及びヒ素含有ガラス固化体
JP7038709B2 (ja) リチウムを回収するためのプロセス
JP6241661B2 (ja) ヒ素の分離固定化方法
JP5344170B2 (ja) タングステンの回収処理方法
JP4632147B2 (ja) 金の分離を伴う銀地金の精錬方法
CN111533156A (zh) 焚烧飞灰的处理工艺和焚烧灰渣的处理工艺
JP7016463B2 (ja) テルルの回収方法
EP2995702A1 (en) Zinc production method
NO180188B (no) Fremgangsmåte for opparbeiding av residuer fra direkte syntese av organoklorsilaner og/eller klorsilaner
CN102502746A (zh) 一种铝酸钠溶液中s2-的排除方法
JP4529969B2 (ja) セレン酸含有液からセレンの除去方法
JPH09241776A (ja) 製錬中間物に含まれるヒ素分離方法およびヒ素の回収方法
JP4710033B2 (ja) 砒素含有物の処理方法
BG66201B1 (bg) Метод за рециклиране на шлаки от производството на мед
JPH09315819A (ja) ヒ素を含む硫化物からヒ素を回収する方法及びヒ酸カルシウムを製造する方法
JP2003268457A (ja) セレン白金族元素含有物の溶解処理方法
JPS6319576B2 (ja)
JP2007224341A (ja) 銀インゴットの製造方法
CN114101275B (zh) 一种砷碱渣的矿化解毒处理方法
JP4431767B2 (ja) 飛灰の湿式処理法
JP5084272B2 (ja) 亜鉛を含む重金属類及び塩素を含有する物質の処理方法
CN113564345A (zh) 含钒石油渣资源化、无害化处理的方法
JPS5939371B2 (ja) クロマイトの砕解法
JPH07113129A (ja) 鉛を含有する原材料から鉛を回収する方法
JPH09512057A (ja) チタン含有材料の浸出

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878764

Country of ref document: EP