WO2017099080A1 - 芳香族ポリスルホン樹脂及びその製造方法 - Google Patents

芳香族ポリスルホン樹脂及びその製造方法 Download PDF

Info

Publication number
WO2017099080A1
WO2017099080A1 PCT/JP2016/086234 JP2016086234W WO2017099080A1 WO 2017099080 A1 WO2017099080 A1 WO 2017099080A1 JP 2016086234 W JP2016086234 W JP 2016086234W WO 2017099080 A1 WO2017099080 A1 WO 2017099080A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysulfone resin
aromatic polysulfone
aromatic
resin
group
Prior art date
Application number
PCT/JP2016/086234
Other languages
English (en)
French (fr)
Inventor
雄作 小日向
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187015542A priority Critical patent/KR102649403B1/ko
Priority to CN201680071048.9A priority patent/CN108368254B/zh
Priority to US15/781,598 priority patent/US10676573B2/en
Priority to EP16872978.8A priority patent/EP3388469A4/en
Publication of WO2017099080A1 publication Critical patent/WO2017099080A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/42Phenols and polyhydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • C08G85/002Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2310/00Agricultural use or equipment

Definitions

  • the present invention relates to an aromatic polysulfone resin and a method for producing the same.
  • Resins with an ultraviolet blocking effect are widely used in food, medical, agricultural fields, etc. for the purpose of packaging contents that deteriorate due to ultraviolet rays.
  • Patent Document 1 discloses a resin containing an ultraviolet absorber.
  • the resin containing the ultraviolet absorber described above is easy to manufacture, when a molded body molded from such a resin is used for a long period of time, the ultraviolet absorber is deposited on the resin surface. There is a problem that it is easy and the ultraviolet absorber is deteriorated by heat during the injection molding process, and there is a problem that materials that can be used to solve these problems are limited.
  • the present invention relates to an aromatic polysulfone resin having an ultraviolet cut effect, and an aromatic polysulfone resin capable of suppressing a decrease in the ultraviolet cut effect when a molded product molded from such a resin is used for a long period of time.
  • the purpose is to provide.
  • the present invention includes the following aspects.
  • Ph 1 and Ph 2 each independently represent a phenylene group; the hydrogen atoms contained in the phenylene group are, independently of each other, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a halogen atom. It may be substituted with an atom.
  • Aromatic having a yellow index of 50 or more and a weight average molecular weight of 25,000 to 45,000 including a step of melt kneading an aromatic polysulfone resin having a weight average molecular weight of 50,000 to 70,000 at a temperature of 390 ° C. or higher.
  • a method for producing a polysulfone resin including a step of melt kneading an aromatic polysulfone resin having a weight average molecular weight of 50,000 to 70,000 at a temperature of 390 ° C. or higher.
  • the aromatic polysulfone resin of the present invention when a molded body molded from the resin is used for a long period of time, it is possible to suppress a decrease in the ultraviolet ray cutting effect.
  • the aromatic polysulfone resin according to an embodiment of the present invention preferably has a yellow index of 50 or more and a weight average molecular weight (Mw) of 25000 to 45000. 60 or more, more preferably 70 or more, and preferably 80 or less. That is, the yellow index of the aromatic polysulfone resin is preferably from 50 to 80, more preferably from 60 to 80, and particularly preferably from 70 to 80. As another aspect, the yellow index may be not less than 57 and not more than 72.
  • the “yellow index” means that an aromatic polysulfone resin is molded into a 64 mm ⁇ 64 mm size flat plate test piece (thickness 3 mm) and a colorimetric color difference meter is used. Then, it can be obtained by measuring based on JIS K 7373.
  • the weight average molecular weight of the aromatic polysulfone resin of the present invention is preferably 30000 to 45000, more preferably 32000 to 43000, and particularly preferably 33000 to 41000.
  • the “weight average molecular weight” is a polystyrene equivalent value measured by a gel permeation chromatography (GPC) method described in Examples described later unless otherwise specified.
  • the aromatic polysulfone resin of the present invention has an ultraviolet cut effect, and if the yellow index of the aromatic polysulfone resin is in the above range, the ultraviolet cut effect is increased and the transmittance in the visible light region is reduced. This is preferable because it is not excessive.
  • the weight average molecular weight is in the above range, injection molding is possible, which is preferable.
  • the “ultraviolet ray cutting effect” is an effect of cutting light in the ultraviolet region that deteriorates the contents when the aromatic polysulfone resin of the present invention is formed into a molded body, for example, It means that the transmittance of light in the ultraviolet region (wavelength of 315 nm or more and 380 nm or less) in the aromatic polysulfone resin is 5% or less.
  • “ultraviolet ray cut effect” means that the transmittance of light having a wavelength of 380 nm in the aromatic polysulfone resin of the present invention is 2.5% or less, preferably 1.3% or more and 2.5% or less. Means that.
  • the aromatic polysulfone resin of the present invention since the aromatic polysulfone resin of the present invention has the above-mentioned ultraviolet cut effect, it may be referred to as an ultraviolet cut resin.
  • the transmittance in the visible light region does not decrease too much means that the aromatic polysulfone resin of the present invention maintains the light transmittance in the visible light region (400 to 800 nm).
  • the aromatic polysulfone resin when the aromatic polysulfone resin is formed into a molded body, it means that the contents can be transparent.
  • “the transmittance in the visible light region does not decrease too much” means that the light transmittance in the visible light region 650 nm in the aromatic polysulfone resin of the present invention is 60% or more and 90% or less. , Preferably 62% to 81%, more preferably 62% to 63%.
  • the aromatic polysulfone resin of the present invention comprises a divalent aromatic group (that is, a residue obtained by removing two hydrogen atoms bonded to the aromatic ring from an aromatic compound) and a sulfonyl group (—SO 2 —). It is a resin having a repeating unit.
  • the repeating unit has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as repeating unit (1)) from the viewpoint of heat resistance and chemical resistance. It is preferable.
  • Ph 1 and Ph 2 each independently represent a phenylene group; the hydrogen atoms contained in the phenylene group are, independently of each other, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a halogen atom. It may be substituted with an atom.
  • the phenylene group represented by Ph 1 and Ph 2 may be a p-phenylene group, an m-phenylene group, or an o-phenylene group, preferably p-phenylene group. It is a group.
  • Examples of the alkyl group having 1 to 5 carbon atoms in which the hydrogen atom contained in the phenylene group may be substituted include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Examples thereof include a butyl group, a tert-butyl group, and an n-pentyl group.
  • Examples of the aryl group having 6 to 15 carbon atoms in which the hydrogen atom contained in the phenylene group may be substituted include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and a p-toluyl group.
  • the ratio of the repeating unit represented by the formula (1) is preferably 80 to 100% by weight with respect to the total weight of the constituent units constituting the aromatic polysulfone resin.
  • the aromatic polysulfone resin according to the present invention is suitably obtained by polycondensing a corresponding aromatic dihalogenosulfone compound and an aromatic dihydroxy compound in an organic polar solvent using an alkali metal carbonate as a base.
  • a resin having a repeating unit (1) uses a compound represented by the following formula (2) as an aromatic dihalogenosulfone compound (hereinafter sometimes referred to as compound (2)), and the following as an aromatic dihydroxy compound:
  • compound (3) hereinafter sometimes referred to as compound (3)
  • X 1 and X 2 each independently represent a halogen atom; Ph 1 and Ph 2 are as defined above. ]
  • Examples of the compound (2) include bis (4-chlorophenyl) sulfone (also referred to as 4,4′-dichlorodiphenylsulfone) and 4-chlorophenyl-3 ′, 4′-dichlorophenylsulfone.
  • Examples of the compound (3) include bis (4-hydroxyphenyl) sulfone (also referred to as 4,4′-dihydroxydiphenylsulfone), bis (4-hydroxy-3,5-dimethylphenyl) sulfone, and bis (4-hydroxy-3 -Phenylphenyl) sulfone.
  • the aromatic polysulfone resin according to the present invention may have a repeating unit other than the repeating unit represented by the formula (1), and other than the repeating unit represented by the formula (1).
  • the aromatic polysulfone resin having the repeating unit can be produced using an aromatic sulfone compound such as 4,4′-bis (4-chlorophenylsulfonyl) biphenyl in addition to the compound (2).
  • 4-hydroxy-4 ′-(4-chlorophenylsulfonyl) biphenyl or the like may be used instead of aromatic dihalogenosulfone compound, aromatic dihydroxy compound, or aromatic dihalogenosulfone compound and aromatic dihydroxy compound.
  • the alkali metal carbonate may be an alkali carbonate that is a normal salt, an alkali bicarbonate that is an acidic salt (also referred to as alkali hydrogen carbonate), or a mixture of both.
  • alkali carbonate sodium carbonate and potassium carbonate are preferable, and as the alkali bicarbonate, sodium bicarbonate and potassium bicarbonate are preferable.
  • organic polar solvent examples include dimethyl sulfoxide, 1-methyl-2-pyrrolidone, sulfolane (also referred to as 1,1-dioxothyrane), 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2- Examples include imidazolidinone, dimethyl sulfone, diethyl sulfone, diisopropyl sulfone and diphenyl sulfone.
  • the amount of use of the aromatic dihalogenosulfone compound (number of moles) is usually from 95 to 110 mol%, preferably from 100 to 105 mol%, based on the amount of use of the aromatic dihydroxy compound (number of moles).
  • the target reaction is dehydrohalogenated polycondensation of an aromatic dihalogenosulfone compound and an aromatic dihydroxy compound. If no side reaction occurs, the closer the molar ratio of the two is to 1: 1, that is, the aromatic
  • the aromatic polysulfone resin obtained has a higher degree of polymerization as the usage amount (number of moles) of the aromatic dihalogenosulfone compound is closer to 100 mol% relative to the usage amount (number of moles) of the aromatic dihydroxy compound.
  • the by-product alkali hydroxide or the like causes a side reaction such as a substitution reaction of a halogeno group to a hydroxyl group or a depolymerization, and this side reaction reduces the degree of polymerization of the resulting aromatic polysulfone resin. Therefore, in consideration of the degree of this side reaction, it is necessary to adjust the amount (in moles) of the aromatic dihalogenosulfone compound so that the aromatic polysulfone resin having the predetermined Mw can be obtained.
  • the amount (number of moles) of the alkali metal salt of carbonic acid is usually 95 to 115 mol%, preferably 100 to 110 mol%, as an alkali metal, based on the hydroxyl group of the aromatic dihydroxy compound. If no side reaction occurs, the more the amount of the alkali metal carbonate used, the faster the target polycondensation proceeds. Therefore, the resulting aromatic polysulfone resin has a higher degree of polymerization. As the amount of the alkali metal salt used is larger, the same side reaction as described above tends to occur, and the degree of polymerization of the resulting aromatic polysulfone resin decreases due to this side reaction. Therefore, in consideration of the degree of this side reaction, it is necessary to adjust the use amount (number of moles) of the alkali metal salt of carbonic acid so that the aromatic polysulfone resin having the predetermined Mw can be obtained.
  • an aromatic dihalogenosulfone compound and an aromatic dihydroxy compound are dissolved in an organic polar solvent, and as a second step, a solution obtained in the first step An alkali metal salt of carbonic acid is added to polycondensate the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound.
  • an unreacted carbonic acid alkali is obtained from the reaction mixture obtained in the second step.
  • An aromatic polysulfone resin is obtained by removing the metal salt, the by-produced alkali halide, and the organic polar solvent.
  • the melting temperature in the first stage is preferably 40 to 180 ° C.
  • the second stage polycondensation temperature is preferably 180 to 400 ° C. If no side reaction occurs, the higher the polycondensation temperature, the faster the target polycondensation proceeds. Therefore, the resulting aromatic polysulfone resin has a higher degree of polymerization. The same side reaction as described above is likely to occur, and this side reaction reduces the degree of polymerization of the resulting aromatic polysulfone resin. Therefore, in consideration of the degree of this side reaction, it is necessary to adjust the polycondensation temperature so that the aromatic polysulfone resin having the predetermined Mw can be obtained.
  • the temperature is gradually raised while removing by-product water, and after reaching the reflux temperature of the organic polar solvent, it is usually 1 hour to 50 hours, preferably 10 hours to It is better to keep it warm for 30 hours.
  • the side reaction does not occur, the longer the polycondensation time, the more the target polycondensation proceeds. Therefore, the aromatic polysulfone resin obtained has a higher degree of polymerization.
  • the side reaction also proceeds, and this side reaction reduces the degree of polymerization of the resulting aromatic polysulfone resin. Therefore, in consideration of the degree of this side reaction, it is necessary to adjust the polycondensation time so that the aromatic polysulfone resin having the predetermined Mw can be obtained.
  • the aromatic polysulfone is first removed from the reaction mixture obtained in the second stage by removing unreacted alkali metal salt of carbonic acid and by-produced alkali halide by filtration or centrifugation.
  • a solution in which the resin is dissolved in an organic polar solvent can be obtained.
  • an aromatic polysulfone resin can be obtained by removing the organic polar solvent from this solution.
  • the removal of the organic polar solvent may be carried out by directly distilling off the organic polar solvent from the solution, or the solution is mixed with a poor solvent for the aromatic polysulfone resin to precipitate the aromatic polysulfone resin. You may carry out by isolate
  • Examples of the poor solvent for the aromatic polysulfone resin include methanol, ethanol, isopropyl alcohol, hexane, heptane, and water, and methanol is preferable because it is easy to remove.
  • organic polar solvent When a relatively high melting point organic polar solvent is used as a polymerization solvent, the reaction mixture obtained in the second stage is cooled and solidified, and then pulverized. From the obtained powder, water is used. In addition, an alkali metal salt of unreacted carbonic acid and a by-produced alkali halide are extracted and removed, and a solvent that does not have solubility in aromatic polysulfone resin and has solubility in organic polar solvent. It is also possible to extract and remove the organic polar solvent.
  • the volume average particle size of the powder is preferably 200 to 2000 ⁇ m, more preferably 250 to 1500 ⁇ m, and further preferably 300 to 1000 ⁇ m from the viewpoint of extraction efficiency and workability during extraction. When it is in the above range, the extraction efficiency is good, it does not solidify during extraction, and it tends to be hard to cause clogging when filtering or drying after extraction, which is preferable.
  • the “volume average particle diameter” here is a value measured by a laser diffraction method.
  • the extraction solvent for example, when diphenyl sulfone is used as the polymerization solvent, a mixed solvent of acetone and methanol can be used.
  • the mixing ratio of acetone and methanol is usually determined from the extraction efficiency and the sticking property of the aromatic polysulfone resin powder.
  • an aromatic dihydroxy compound and an alkali metal carbonate are reacted in an organic polar solvent to remove by-product water
  • an aromatic dihalogenosulfone compound is added to the reaction mixture obtained in the first stage, and polycondensation is performed.
  • the third stage from the reaction mixture obtained in the second stage, Unreacted alkali metal salt of carbonic acid, by-produced alkali halide and organic polar solvent are removed to obtain an aromatic polysulfone resin.
  • azeotropic dehydration may be performed by adding an organic solvent azeotroped with water in order to remove by-product water.
  • organic solvent azeotropic with water include benzene, chlorobenzene, toluene, methyl isobutyl ketone, hexane and cyclohexane.
  • the temperature for azeotropic dehydration is usually 70 to 200 ° C.
  • the polycondensation temperature in the second stage is preferably 40 to 180 ° C.
  • the aromatic polysulfone resin having the predetermined Mw is obtained in consideration of the degree of side reaction as before. It is necessary to adjust the polycondensation temperature and the polycondensation time.
  • an aromatic polysulfone resin having a weight average molecular weight (Mw) of 50,000 to 70000 according to the present invention can be suitably produced.
  • the weight average molecular weight (Mw) of the aromatic polysulfone resin of the present invention is 25000-45000. If Mw is less than the above lower limit, the mechanical strength and durability of the aromatic polysulfone resin will be insufficient. Moreover, when Mw exceeds the said upper limit, injection molding processability will fall. That is, when Mw is equal to or higher than the lower limit, the aromatic polysulfone resin has sufficient mechanical strength and durability, and when Mw is equal to or lower than the upper limit, injection molding processability is good.
  • the aromatic polysulfone resin of the present invention is an aromatic polysulfone resin having a weight average molecular weight (Mw) of 50,000 to 70,000 at a temperature of 390 ° C. or more, preferably 400 ° C. or less, for 1 minute or more, preferably 5 minutes or less.
  • Mw weight average molecular weight
  • an aromatic polysulfone resin having a yellow index of 50 or more and a weight average molecular weight (Mw) of 25000 to 45000 can be obtained.
  • the temperature here is the temperature of the cylinder in the apparatus used for melt-kneading.
  • the aromatic polysulfone resin has high transparency, and the light transmittance in the ultraviolet region (wavelength of 315 nm or more and 380 nm or less) is often 20% or more and 40% or less.
  • a powdered resin is used in the form of pellets by the melt-kneading process.
  • the conditions for the melt-kneading process of the aromatic polysulfone resin are used.
  • the weight before melt kneading so that the weight average molecular weight (Mw) after the melt kneading process is in the range of 25000 to 45000. Adjust the average molecular weight.
  • the Mw of the aromatic polysulfone before melt kneading is preferably 50,000 to 70000. This is because if Mw before melt kneading is less than the lower limit, it is difficult to ensure Mw (25000 or more) that can ensure the mechanical strength and durability of the aromatic polysulfone resin after the melt kneading step. is there.
  • Mw (45000 or less) it becomes difficult to ensure Mw (45000 or less) from which favorable thermoforming workability is obtained after a melt-kneading process when Mw before melt-kneading exceeds the said upper limit. That is, if the Mw before melt kneading is equal to or higher than the above lower limit value, Mw (25000 or more) that can ensure the mechanical strength and durability of the aromatic polysulfone resin after the melt kneading step can be ensured. Mw (45000 or less) with which favorable thermoforming workability is obtained after a melt-kneading process as Mw is below the said upper limit can be ensured.
  • the aromatic polysulfone resin before melt kneading has a weight average molecular weight of, for example, 50,000 to 70,000, and is once used for molding of products used for medical applications, for example, runners, end of molding Resin generated as waste, which has become unqualified as a product due to cutting and staying, can be reused.
  • the resin when molding a resin by heating as in injection molding, the resin is thermoformed at a temperature 50 to 150 ° C. higher than the melting point or glass transition point in order to reduce the viscosity of the resin.
  • thermoforming oxidative decomposition of the resin molecular chain begins.
  • the transmittance in the ultraviolet region is controlled by melt-kneading the resin at a temperature higher than the temperature at which the oxidative decomposition of the molecular chain appears (for example, 390 ° C. or higher and 400 ° C. or lower).
  • the aromatic polysulfone resin of the present invention may further contain a filler within a range not impairing the object of the present invention.
  • a filler include inorganic fillers, and examples of the inorganic filler include glass fiber, mica, talc, glass beads, silica beads, and glass balloons. These fillers may be used alone or in combination of two or more.
  • the aromatic polysulfone resin obtained as described above has a light transmittance of 380 nm in the ultraviolet region of 5% or less, preferably 2.5% or less, and a light transmittance of 650 nm in the visible region. Is 60% or more, preferably 62% or more, and cuts off light in the ultraviolet region that deteriorates the contents of the molded body, and also becomes a resin having transparency that allows the contents to be seen through. .
  • Another aspect of the aromatic polysulfone resin of the present invention is: An aromatic dihalogenosulfone compound (2) represented by the formula (2), preferably 4,4′-dichlorodiphenylsulfone, The aromatic dihydroxy compound represented by the formula (3), preferably 4,4′-dihydroxydiphenyl sulfone, was polycondensed.
  • An aromatic polysulfone resin An aromatic dihalogenosulfone compound (2) represented by the formula (2), preferably 4,4′-dichlorodiphenylsulfone, The aromatic dihydroxy compound represented by the formula (3), preferably 4,4′-dihydroxydiphenyl sulfone, was polycondensed.
  • An aromatic dihydroxy compound represented by the above formula (3), preferably 4,4′-dihydroxydiphenylsulfone, is used as an alkali metal salt of carbonic acid, preferably potassium carbonate as a base, in an organic polar solvent, preferably diphenylsulfone.
  • an aromatic polysulfone resin having a weight average molecular weight of 50,000 to 70,000, preferably 51,000 to 650000; Melting and kneading the aromatic polysulfone resin obtained in the above step at a temperature of 390 ° C. or higher and 400 ° C. or lower,
  • the weight average molecular weight is 25000-45000, preferably 33000-41000, and the yellow index is 50 or more and 80 or less, preferably 57 or more and 72 or less.
  • Yet another aspect of the method for producing the aromatic polysulfone resin of the present invention is: In the melt kneading step, when an aromatic polysulfone resin having a weight average molecular weight of 50,000 to 70000 is melt kneaded at a temperature of 390 ° C. or more and 400 ° C. or less, the weight average molecular weight is 25000 to 45000, preferably 33000 to 41000, This is a step performed under any conditions for producing an aromatic polysulfone resin having a yellow index of 50 or more and 80 or less, preferably 57 or more and 72 or less.
  • the melt-kneading step is a step of melt-kneading with a twin screw extruder.
  • Example 1 In a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 500 g of 4,4′-dihydroxydiphenylsulfone, 589 g of 4,4′-dichlorodiphenylsulfone, and a polymerization solvent 942 g of diphenylsulfone was charged, and the temperature was raised to 180 ° C. while nitrogen gas was circulated in the system. After adding 283 g of potassium carbonate to the obtained solution, the temperature was gradually raised to 290 ° C., and the mixture was further reacted at 290 ° C. for 2 hours.
  • reaction solution was cooled to room temperature (about 25 ° C.), solidified, finely pulverized, then washed with warm water and washed with a mixed solvent of acetone and methanol several times, and then heat-dried at 150 ° C., An aromatic polysulfone resin having a chloro group at the end was obtained as a powder. Next, Mw (Mw before melt kneading) of this aromatic polysulfone resin was measured.
  • the obtained aromatic polysulfone resin is supplied to a twin-screw extruder ("PCM-30 type” manufactured by Ikekai Tekko Co., Ltd.), melt-kneaded at a cylinder temperature of 390 ° C, and extruded to produce strands. The resulting strand was cut to obtain a pellet. Next, Mw (Mw after melt kneading) of the obtained aromatic polysulfone resin was measured. Next, the yellow index and light transmittance of the obtained aromatic polysulfone resin were measured.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • Example 2 In a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 500 g of 4,4′-dihydroxydiphenylsulfone, 589 g of 4,4′-dichlorodiphenylsulfone, and a polymerization solvent 942 g of diphenylsulfone was charged, and the temperature was raised to 180 ° C. while nitrogen gas was circulated in the system. After adding 287 g of potassium carbonate to the obtained solution, the temperature was gradually raised to 290 ° C., and the mixture was further reacted at 290 ° C. for 2 hours.
  • reaction solution was cooled to room temperature (about 25 ° C.), solidified, finely pulverized, then washed with warm water and washed with a mixed solvent of acetone and methanol several times, and then heat-dried at 150 ° C., An aromatic polysulfone resin having a chloro group at the end was obtained as a powder. Next, Mw (Mw before melt kneading) of this aromatic polysulfone resin was measured.
  • the obtained aromatic polysulfone resin is supplied to a twin-screw extruder ("PCM-30 type" manufactured by Ikekai Tekko Co., Ltd.), melted and kneaded at a cylinder temperature of 395 ° C, and extruded to produce a strand. The resulting strand was cut to obtain a pellet. Next, Mw (Mw after melt kneading) of the obtained aromatic polysulfone resin was measured. Next, the yellow index and light transmittance of the obtained aromatic polysulfone resin were measured.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • Example 3 Aromatic polysulfone resin obtained by the same method as in Example 2 is supplied to a twin-screw extruder ("PCM-30 type” manufactured by Ikekai Tekko Co., Ltd.), melt-kneaded at a cylinder temperature of 400 ° C and extruded. Thus, a strand was obtained, and this strand was cut to obtain a pellet. Next, Mw (Mw after melt kneading) of the obtained aromatic polysulfone resin was measured. Next, the yellow index and light transmittance of the obtained aromatic polysulfone resin were measured.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • Comparative Example 1 In a polymerization tank equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a condenser with a receiver at the tip, 500 g of 4,4′-dihydroxydiphenylsulfone, 593 g of 4,4′-dichlorodiphenylsulfone, and a polymerization solvent Diphenyl sulfone (949 g) was charged, and the temperature was raised to 180 ° C. while nitrogen gas was circulated in the system. After adding 287 g of anhydrous potassium carbonate to the obtained solution, the temperature was gradually raised to 290 ° C., and the mixture was further reacted at 290 ° C. for 2 hours.
  • the obtained reaction solution was cooled to room temperature (about 25 ° C.), solidified, finely pulverized, then washed with warm water and washed with a mixed solvent of acetone and methanol several times, and then heat-dried at 150 ° C., An aromatic polysulfone resin having a chloro group at the end was obtained as a powder. Next, Mw (Mw before melt kneading) of this aromatic polysulfone resin was measured. Next, the obtained aromatic polysulfone resin is supplied to a cylinder of a twin-screw extruder (“PCM-30 type” manufactured by Ikekai Tekko Co., Ltd.), and melt-kneaded at a cylinder temperature of 380 ° C.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • Comparative Example 2 In a polymerization tank equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a condenser with a receiver at the tip, 500 g of 4,4′-dihydroxydiphenylsulfone, 593 g of 4,4′-dichlorodiphenylsulfone, and a polymerization solvent Diphenyl sulfone (949 g) was charged, and the temperature was raised to 180 ° C. while nitrogen gas was circulated in the system. After adding 287 g of anhydrous potassium carbonate to the obtained solution, the temperature was gradually raised to 290 ° C., and the mixture was further reacted at 290 ° C. for 2.5 hours.
  • reaction solution was cooled to room temperature (about 25 ° C.), solidified, finely pulverized, then washed with warm water and washed with a mixed solvent of acetone and methanol several times, and then heat-dried at 150 ° C., An aromatic polysulfone resin having a chloro group at the end was obtained as a powder. Mw (Mw before melt kneading) of this aromatic polysulfone resin was measured.
  • the obtained aromatic polysulfone resin is supplied to a cylinder of a twin-screw extruder (“PCM-30 type” manufactured by Ikekai Tekko Co., Ltd.), melt kneaded at a cylinder temperature of 385 ° C., and extruded to obtain a strand. A pellet was obtained by cutting the strand. Next, Mw (Mw after melt kneading) of the obtained aromatic polysulfone resin was measured. Next, the yellow index and light transmittance of the obtained aromatic polysulfone resin were measured.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • Example 3 The aromatic polysulfone resin obtained in Example 1 was supplied to a twin-screw extruder ("PCM-30 type” manufactured by Ikekai Tekko Co., Ltd.), melt-kneaded at a cylinder temperature of 365 ° C, and extruded to produce strands. By cutting this strand, a pellet was obtained. Mw (Mw after melt-kneading) of the obtained aromatic polysulfone resin was measured by the above-described method for measuring Mw of the aromatic polysulfone resin. Further, the yellow index and light transmittance of the obtained aromatic polysulfone resin were measured by the above-described measuring method. Table 1 shows the measurement results of the weight average molecular weight (Mw), yellow index, and light transmittance of the aromatic polysulfone resin before and after melt kneading.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • the aromatic polysulfone resin of the present invention does not contain an ultraviolet absorber, it is expected that when the molded body molded from the resin is used for a long period of time, it is possible to suppress a decrease in the ultraviolet cut effect. It is effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

イエローインデックスが50以上であり、重量平均分子量が25000~45000である芳香族ポリスルホン樹脂。

Description

芳香族ポリスルホン樹脂及びその製造方法
 本発明は、芳香族ポリスルホン樹脂及びその製造方法に関する。
 本願は、2015年12月8日に、日本に出願された特願2015-239124号に基づき優先権を主張し、その内容をここに援用する。
 紫外線カット効果を持つ樹脂は、紫外線により劣化する内容物の包装等を目的として、食品、医療、農業分野等に広く用いられている。
 このような紫外線カット効果を有する樹脂の製造方法として、例えば特許文献1には、紫外線吸収剤を含有した樹脂が開示されている。
 しかし、上記記載の紫外線吸収剤を含有する樹脂では、製造が容易ではあるが、その様な樹脂から成形された成型体を長期間に渡って使用した場合、紫外線吸収剤が樹脂表面に析出しやすいことや、射出成形加工する際に紫外線吸収剤が熱により劣化する等の課題があり、これらを解決するために使用可能な材料が限定されるという課題がある。
特開2007-181969号公報
 本発明は、紫外線カット効果を有する芳香族ポリスルホン樹脂に関するものであり、このような樹脂から成形された成型体を長期間に渡って使用した場合の紫外線カット効果の低下を抑制できる芳香族ポリスルホン樹脂を提供することを目的とする。
 本発明は、以下の態様を含む。
[1] イエローインデックスが50以上であり、重量平均分子量が25000~45000である芳香族ポリスルホン樹脂。
[2] 式(1)で表される繰返し単位を有する[1]記載の芳香族ポリスルホン樹脂。
-Ph-SO-Ph-O-   (1)
[Ph及びPhは、互いに独立に、フェニレン基を表し;前記フェニレン基に含まれる水素原子は、互いに独立に、炭素数1~5のアルキル基、炭素数6~15のアリール基又はハロゲン原子で置換されていてもよい。]
[3] 重量平均分子量が50000~70000である芳香族ポリスルホン樹脂を、390℃以上の温度で溶融混練する工程を含む、イエローインデックスが50以上であり、重量平均分子量が25000~45000である芳香族ポリスルホン樹脂の製造方法。
 本発明の芳香族ポリスルホン樹脂によれば、前記樹脂から成形された成型体を長期間に渡って使用した場合、紫外線カット効果の低下を抑制できる。
 以下、本発明を詳細に説明する。
 本発明の一実施形態である芳香族ポリスルホン樹脂は、イエローインデックスが50以上、且つ重量平均分子量(Mw)が25000~45000であることを特徴とする前記芳香族ポリスルホン樹脂のイエローインデックスは、好ましくは60以上であり、より好ましくは70以上であり、好ましくは80以下である。すなわち、前記芳香族ポリスルホン樹脂のイエローインデックスは、50以上80以下が好ましく、60以上80以下がより好ましく、70以上80以下が特に好ましい。
また、別の側面として、前記イエローインデックスは、57以上72以下であってもよい。
 本明細書において、「イエローインデックス」とは、後述の実施例に記載のとおり、芳香族ポリスルホン樹脂を64mm×64mmサイズの平板状試験片(厚さ3mm)に成形し、測色色差計を用いて、JIS K 7373に基づき、測定することにより求めることができる。
本発明の芳香族ポリスルホン樹脂の重量平均分子量は、好ましくは30000~45000であり、より好ましくは32000~43000であり、特に好ましくは33000~41000である。
本明細書において、「重量平均分子量」とは、特に断りのない限り、後述の実施例に記載のゲル浸透クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
本発明の芳香族ポリスルホン樹脂は紫外線カット効果を有しており、前記芳香族ポリスルホン樹脂のイエローインデックスが前記の範囲にあると、紫外線のカット効果が高くなり、また可視光領域の透過率が低下しすぎることがなく、好ましい。重量平均分子量が前記の範囲にあると、射出成型が可能となるため、好ましい。
本明細書において、「紫外線のカット効果」とは、本発明の芳香族ポリスルホン樹脂を成形体としたとき、その内容物を劣化させるような紫外領域の光をカットする効果であり、例えば、前記芳香族ポリスルホン樹脂における紫外線領域(波長315nm以上、380nm以下)の光の透過率が5%以下であることを意味する。
別の側面として、「紫外線のカット効果」とは、本発明の芳香族ポリスルホン樹脂における波長380nmの光の透過率が2.5%以下、好ましくは1.3%以上2.5%以下であることを意味する。
従って、本発明の芳香族ポリスルホン樹脂は前記の紫外線カット効果を有するため、紫外線カット樹脂と称される場合がある。
本明細書において、「可視光領域の透過率が低下しすぎることがない」とは、本発明の芳香族ポリスルホン樹脂が可視光領域の範囲(400~800nm)の光の透過率を維持しており、且つ前記芳香族ポリスルホン樹脂を成形体としたときに内容物の透視が可能となる透明度を持つことを意味する。
また、別の側面として、「可視光領域の透過率が低下しすぎることがない」とは、本発明の芳香族ポリスルホン樹脂における可視光領域650nmの光線透過率が60%以上90%以下であり、好ましくは62%以上81%以下、より好ましくは62%以上63%以下であることを意味する。
 本発明の芳香族ポリスルホン樹脂は、2価の芳香族基(すなわち、芳香族化合物から、その芳香環に結合した水素原子を2個除いてなる残基)及びスルホニル基(-SO-)を含む繰り返し単位を有する樹脂である。本発明での芳香族ポリスルホン樹脂は、耐熱性や耐薬品性の点から、繰返し単位が、下記式(1)で表される繰返し単位(以下、繰返し単位(1)ということがある)を有することが好ましい。
 -Ph-SO-Ph-O- (1)
[Ph及びPhは、互いに独立に、フェニレン基を表し;前記フェニレン基に含まれる水素原子は、互いに独立に、炭素数1~5のアルキル基、炭素数6~15のアリール基又はハロゲン原子で置換されていてもよい。]
 Ph及びPhで表されるフェニレン基は、p-フェニレン基であってもよいし、m-フェニレン基であってもよいし、o-フェニレン基であってもよく、好ましくはp-フェニレン基である。前記フェニレン基に含まれる水素原子が置換されていてもよい炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基及びtert-ブチル基及びn-ペンチル基等が挙げられる。
前記フェニレン基に含まれる水素原子が置換されていてもよい炭素数6~15のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基及びp-トルイル基等が挙げられる。
本発明の芳香族ポリスルホン樹脂において、前記式(1)で表される繰返し単位の割合は、前記芳香族ポリスルホン樹脂を構成する構成単位の合計重量に対して、80~100重量%が好ましい。
 本発明に係る芳香族ポリスルホン樹脂は、対応する芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを、塩基として炭酸のアルカリ金属塩を用いて、有機極性溶媒中で重縮合させることにより、好適に製造することができる。例えば、繰返し単位(1)を有する樹脂は、芳香族ジハロゲノスルホン化合物として下記式(2)で表される化合物(以下、化合物(2)ということがある)を用い、芳香族ジヒドロキシ化合物として下記式(3)で表される化合物(以下、化合物(3)ということがある。)を用いることにより、好適に製造することができる。
-Ph-SO-Ph-X (2)
[X及びXは、互いに独立に、ハロゲン原子を表し;Ph及びPhは、前記と同義である。]
HO-Ph-SO-Ph-OH (3)
[Ph及びPhは、前記と同義である。]
 化合物(2)としては、ビス(4-クロロフェニル)スルホン(4,4’-ジクロロジフェニルスルホンともいう)及び4-クロロフェニル-3’,4’-ジクロロフェニルスルホンが挙げられる。
 化合物(3)としては、ビス(4-ヒドロキシフェニル)スルホン(4,4’-ジヒドロキシジフェニルスルホンともいう)、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホン及びビス(4-ヒドロキシ-3-フェニルフェニル)スルホンが挙げられる。
 なお、本発明に係る芳香族ポリスルホン樹脂は、前記式(1)で表される繰り返し単位以外の繰り返し単位を有していてもよく、そのような前記式(1)で表される繰り返し単位以外の繰り返し単位を有する芳香族ポリスルホン樹脂は、例えば化合物(2)に加えて、4,4’-ビス(4-クロロフェニルスルホニル)ビフェニル等の芳香族スルホン化合物を用いて製造することもできる。また、芳香族ジハロゲノスルホン化合物、芳香族ジヒドロキシ化合物、若しくは芳香族ジハロゲノスルホン化合物及び芳香族ジヒドロキシ化合物の全部又は一部に代えて、4-ヒドロキシ-4’-(4-クロロフェニルスルホニル)ビフェニル等の、分子中にハロゲノ基及びヒドロキシル基を有する化合物を用いることもできる。
 炭酸のアルカリ金属塩は、正塩である炭酸アルカリであってもよいし、酸性塩である重炭酸アルカリ(炭酸水素アルカリともいう)であってもよいし、両者の混合物であってもよい。炭酸アルカリとしては、炭酸ナトリウムや炭酸カリウムが好ましく、重炭酸アルカリとしては、重炭酸ナトリウムや重炭酸カリウムが好ましい。
 有機極性溶媒としては、例えば、ジメチルスルホキシド、1-メチル-2-ピロリドン、スルホラン(1,1-ジオキソチランともいう)、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン及びジフェニルスルホンが挙げられる。
 芳香族ジハロゲノスルホン化合物の使用量(モル数)は、芳香族ジヒドロキシ化合物の使用量(モル数)に対して、通常95~110モル%であり、好ましくは100~105モル%である。目的とする反応は、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物との脱ハロゲン化水素重縮合であり、仮に副反応が生じなければ、両者のモル比が1:1に近いほど、すなわち芳香族ジハロゲノスルホン化合物の使用量(モル数)が芳香族ジヒドロキシ化合物の使用量(モル数)に対して100モル%に近いほど、得られる芳香族ポリスルホン樹脂は、重合度が高くなるが、実際は、副生する水酸化アルカリ等により、ハロゲノ基のヒドロキシル基への置換反応や解重合等の副反応が生じ、この副反応により、得られる芳香族ポリスルホン樹脂の重合度が低下する。そのため、この副反応の度合いも考慮して、前記所定のMwを有する芳香族ポリスルホン樹脂が得られるように、芳香族ジハロゲノスルホン化合物の使用量(モル数)を調整する必要がある。
 炭酸のアルカリ金属塩の使用量(モル数)は、芳香族ジヒドロキシ化合物のヒドロキシル基に対して、アルカリ金属として、通常95~115モル%であり、好ましくは100~110モル%である。仮に副反応が生じなければ、炭酸のアルカリ金属塩の使用量が多いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホン樹脂は、重合度が高くなるが、実際は、炭酸のアルカリ金属塩の使用量が多いほど、前記同様の副反応が生じ易くなり、この副反応により、得られる芳香族ポリスルホン樹脂の重合度が低下する。そのため、この副反応の度合いも考慮して、前記所定のMwを有する芳香族ポリスルホン樹脂が得られるように、炭酸のアルカリ金属塩の使用量(モル数)を調整する必要がある。
 典型的な芳香族ポリスルホン樹脂の製造方法では、第1段階として、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを有機極性溶媒に溶解させ、第2段階として、第1段階で得られた溶液に、炭酸のアルカリ金属塩を加えて、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを重縮合させ、第3段階として、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、副生したハロゲン化アルカリ、及び有機極性溶媒を除去して、芳香族ポリスルホン樹脂を取得する。
 第1段階の溶解温度は、40~180℃が好ましい。また、第2段階の重縮合温度は、180~400℃が好ましい。仮に副反応が生じなければ、重縮合温度が高いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホン樹脂は、重合度が高くなるが、実際は、重縮合温度が高いほど、前記同様の副反応が生じ易くなり、この副反応により、得られる芳香族ポリスルホン樹脂の重合度が低下する。そのため、この副反応の度合いも考慮して、前記所定のMwを有する芳香族ポリスルホン樹脂が得られるように、重縮合温度を調整する必要がある。
 また、第2段階の重縮合は、通常、副生する水を除去しながら徐々に昇温し、有機極性溶媒の還流温度に達した後、さらに通常1時間~50時間、好ましくは10時間~30時間保温することにより行うのがよい。仮に副反応が生じなければ、重縮合時間が長いほど、目的とする重縮合が進むので、得られる芳香族ポリスルホン樹脂は、重合度が高くなるが、実際は、重縮合時間が長いほど、前記同様の副反応も進み、この副反応により、得られる芳香族ポリスルホン樹脂の重合度が低下する。そのため、この副反応の度合いも考慮して、前記所定のMwを有する芳香族ポリスルホン樹脂が得られるように、重縮合時間を調整する必要がある。
 第3段階では、まず、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリを、濾過や遠心分離等で除去することにより、芳香族ポリスルホン樹脂が有機極性溶媒に溶解してなる溶液を得ることができる。次いで、この溶液から、有機極性溶媒を除去することにより、芳香族ポリスルホン樹脂を得ることができる。有機極性溶媒の除去は、前記溶液から直接、有機極性溶媒を留去することにより行ってもよいし、前記溶液を芳香族ポリスルホン樹脂の貧溶媒と混合して、芳香族ポリスルホン樹脂を析出させ、濾過や遠心分離等で分離することにより行ってもよい。
 芳香族ポリスルホン樹脂の貧溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ヘキサン、ヘプタン及び水が挙げられ、除去し易いことから好ましくはメタノールが挙げられる。
 また、比較的高融点の有機極性溶媒が重合溶媒として用いられる場合には、第2段階で得られた反応混合物を冷却固化させた後、粉砕し、得られた粉体から、水を用いて、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリを抽出除去すると共に、芳香族ポリスルホン樹脂に対して溶解力を持たず、かつ、有機極性溶媒に対して溶解力をもつ溶媒を用いて、有機極性溶媒を抽出除去することも可能である。
 前記粉体の体積平均粒径は、抽出効率及び抽出時の作業性の点から、好ましくは200~2000μmであり、より好ましくは250~1500μmであり、さらに好ましくは300~1000μmである。前記の範囲にあると、抽出効率が良好であり、また抽出の際に固化することがなく、また抽出後に濾過や乾燥を行う際に目詰まりを起こしにくい傾向があり、好ましい。
  ここでいう「体積平均粒径」は、レーザー回折法により測定した値である。
 抽出溶媒としては、例えば重合溶媒にジフェニルスルホンを使用した場合、アセトンとメタノールの混合溶媒を用いることができる。ここで、アセトンとメタノールの混合比は、通常、抽出効率と芳香族ポリスルホン樹脂粉体の固着性から決められる。
 また、別の典型的な芳香族ポリスルホン樹脂の製造方法では、第1段階として、芳香族ジヒドロキシ化合物と炭酸のアルカリ金属塩とを有機極性溶媒中で反応させ、副生する水を除去し、第2段階として、第1段階で得られた反応混合物に、芳香族ジハロゲノスルホン化合物を加えて、重縮合を行い、第3段階として、先と同様、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、副生したハロゲン化アルカリ、及び有機極性溶媒を除去して、芳香族ポリスルホン樹脂を取得する。
 なお、この別法において、第1段階では、副生する水を除去するために、水と共沸する有機溶媒を加えて、共沸脱水を行ってもよい。水と共沸する有機溶媒としては、例えば、ベンゼン、クロロベンゼン、トルエン、メチルイソブチルケトン、ヘキサン及びシクロヘキサンが挙げられる。共沸脱水の温度は、通常70~200℃である。
 また、この別法において、第2段階の重縮合温度は40~180℃が好ましく、先と同様、副反応の度合いも考慮して、前記所定のMwを有する芳香族ポリスルホン樹脂が得られるように、重縮合温度や重縮合時間を調整する必要がある。 上記方法により、本発明に係る、重量平均分子量(Mw)が50000~70000の芳香族ポリスルホン樹脂が好適に製造できる。
 本発明の芳香族ポリスルホン樹脂は、重量平均分子量(Mw)が25000~45000である。Mwが上記下限値に満たないと、芳香族ポリスルホン樹脂の機械的強度及び耐久性が不十分となる。また、Mwが上記上限値を超えると、射出成形加工性が低下する。すなわち、Mwが上記下限値以上であると、芳香族ポリスルホン樹脂の機械的強度及び耐久性が十分となり、Mwが上記上限値以下であると、射出成形加工性が良好である。
 本発明の芳香族ポリスルホン樹脂は、重量平均分子量(Mw)が50000~70000である芳香族ポリスルホン樹脂を390℃以上、好ましくは400℃以下の温度下で、1分以上、好ましくは5分以下で溶融混練することにより、イエローインデックスが50以上、且つ重量平均分子量(Mw)が25000~45000である芳香族ポリスルホン樹脂として得られる。 なお、ここでいう温度は、溶融混練に用いる装置におけるシリンダーの温度である。
 一般に、芳香族ポリスルホン樹脂は、透明性が高く、紫外線領域(波長315nm以上380nm以下)の光の透過率は20%以上40%以下となることが多い。 樹脂を射出成形により任意の形状に加工を行う際には、粉状の樹脂を溶融混練工程によりペレット状にしたものを使用するが、本発明では、芳香族ポリスルホン樹脂の溶融混練工程の条件を制御することにより、溶融混錬後の芳香族ポリスルホン樹脂の紫外線領域(315nm以上380nm以下)での透過率をカットし、且つ、可視光領域の範囲(400~800nm)の光の透過率を維持できることを見出した。
 さらに、上記記載の溶融混錬工程では樹脂の重量平均分子量が低下する現象が伴うため、溶融混練工程後の重量平均分子量(Mw)が25000~45000の範囲となるように、溶融混練前の重量平均分子量を調整する。従って、溶融混錬前の芳香族ポリスルホンのMwとしては、50000~70000であることが好ましい。
 これは、溶融混練前のMwが上記下限値に満たないと、溶融混練工程後に芳香族ポリスルホン樹脂の機械的強度及び耐久性が確保できるMw(25000以上)を担保することが困難になるためである。また、溶融混練前のMwが上記上限を超えると、溶融混練工程後に良好な加熱成形加工性が得られるMw(45000以下)を担保することが困難になるためである。すなわち、溶融混練前のMwが上記下限値以上であると、溶融混練工程後に芳香族ポリスルホン樹脂の機械的強度及び耐久性が確保できるMw(25000以上)を担保することができ、溶融混練前のMwが上記上限値以下であると、溶融混練工程後に良好な加熱成形加工性が得られるMw(45000以下)を担保することができる。
上記の溶融混練前の芳香族ポリスルホン樹脂としては、例えば、50000~70000の重量平均分子量を有し、医療用途に用いられる製品の成型等に一旦使われたものの、例えば、ランナー、成型途中の端切り及び滞留等により、製品としては不適格となった、いわば廃材として生じた樹脂を再利用できる。
 一般的に、射出成型のように樹脂を加熱して成形する際には、樹脂の粘度を低下させるために融点あるいはガラス転移点より50~150℃高い温度で加熱成形され、これ以上の温度で加熱成形する場合には、樹脂の分子鎖の酸化分解が始まる。本発明では、この分子鎖の酸化分解が発現する温度以上(例えば、390℃以上、400℃以下)で樹脂を溶融混練することにより、紫外線領域での透過率を制御している。
 また、1つの側面として、本発明の芳香族ポリスルホン樹脂は、本発明の目的を損なわない範囲内でさらに充填剤を配合してもよい。前記充填材としては、無機充填材が挙げられ、前記無機充填材としては、ガラス繊維、マイカ、タルク、ガラスビーズ、シリカビーズ及びガラスバルーン等が挙げられる。これらの充填材は、単独又は2種類以上を配合されてもよい。
 上記のように得られた、芳香族ポリスルホン樹脂は、紫外光領域である380nmの光線透過率が5%以下、好ましくは2.5%以下で、且つ、可視光領域である650nmの光線透過率が60%以上、好ましくは62%以上となり、成型体としたときにその内容物を劣化させるような紫外領域の光をカットし、また、内容物の透視が可能となる透明度を持つ樹脂となる。
 本発明の芳香族ポリスルホン樹脂の別の側面は、
 前記式(2)で表される芳香族ジハロゲノスルホン化合物(2)、好ましくは4,4’-ジクロロジフェニルスルホンと、
 前記式(3)で表される芳香族ジヒドロキシ化合物、好ましくは4,4’-ジヒドロキシジフェニルスルホンと、が重縮合した、
 重量平均分子量が25000~45000、好ましくは33000~41000の芳香族ポリスルホン樹脂であり、
 イエローインデックスが50以上80以下、好ましくは57以上72以下である、
 芳香族ポリスルホン樹脂、である。
 本発明の芳香族ポリスルホン樹脂の製造方法の別の側面は、
 前記式(2)で表される芳香族ジハロゲノスルホン化合物(2)、好ましくは4,4’-ジクロロジフェニルスルホンと、
 前記式(3)で表される芳香族ジヒドロキシ化合物、好ましくは4,4’-ジヒドロキシジフェニルスルホンと、を
炭酸のアルカリ金属塩、好ましくは炭酸カリウムを塩基として、有機極性溶媒、好ましくはジフェニルスルホン中で、重縮合させることにより、
重量平均分子量が50000~70000、好ましくは51000~650000である芳香族ポリスルホン樹脂を得る工程と;
前記工程で得られた芳香族ポリスルホン樹脂を、390℃以上400℃以下の温度で溶融混練する工程と、を含む、
重量平均分子量が25000~45000、好ましくは33000~41000であり、イエローインデックスが50以上80以下、好ましくは57以上72以下である、
芳香族ポリスルホン樹脂の製造方法である。
 本発明の芳香族ポリスルホン樹脂の製造方法のさらに別の側面は、
 前記溶融混練する工程が、重量平均分子量が50000~70000の芳香族ポリスルホン樹脂を390℃以上400℃以下の温度で溶融混練したとき、重量平均分子量が25000~45000、好ましくは33000~41000であり、イエローインデックスが50以上80以下、好ましくは57以上72以下である芳香族ポリスルホン樹脂を生成する任意の条件で行われる工程である。
 さらに別の側面は、前記溶融混練する工程が、二軸押出機で溶融混練される工程である。
 以下、本発明の実施例を示すが、本発明はこれによって限定されるものではない。
〔芳香族ポリスルホン樹脂のMwの測定〕
 下記の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、Mwを求めた。
試料:濃度が0.003g/mLである芳香族ポリスルホン樹脂のN,N-ジメチルホルムアミド溶液を50μL注入
カラム:東ソー(株)製「TSKgel GMHHR-H」(7.8mmφ×300mm)を2本連結
カラム温度:40℃
溶離液:N,N-ジメチルホルムアミド
溶離液流量:0.8mL/分
検出器:示差屈折率計(RI)+多角度光散乱光度計(MALS)
標準試薬:ポリスチレン
〔芳香族ポリスルホン樹脂のイエローインデックスの評価〕
 実施例1~3、又は比較例1~3で得られた芳香族ポリスルホン樹脂を、日精樹脂工業(株)の射出成形機“PS40E1ASE”)を用いて、シリンダー温度370℃、金型温度150℃、射出速度40%の成形条件で、64mm×64mmサイズの平板状試験片(厚さ3mm)に成形した。そして、日本電色工業(株)の測色色差計「ZE-2000」を用いて、JIS K 7373に基づき、これらの平板状試験片のイエローインデックスを測定した。
〔芳香族ポリスルホン樹脂の光線透過率の評価〕
 実施例1~3、又は比較例1~3で得られた芳香族ポリスルホン樹脂を、日精樹脂工業(株)の射出成形機“PS40E1ASE”)を用いて、シリンダー温度370℃、金型温度150℃、射出速度40%の成形条件で、64mm×64mmサイズの平板状試験片(厚さ3mm)に成形した。そして、(株)日立製作所の分光光度計「U-3500」を用いて、これらの平板状試験片の380nm及び650nmにおける光線透過率を測定した。
実施例1
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、4,4’-ジヒドロキシジフェニルスルホン500g、4,4’-ジクロロジフェニルスルホン589g、及び重合溶媒としてジフェニルスルホン942gを仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、炭酸カリウム283gを添加した後、290℃まで徐々に昇温し、290℃でさらに2時間反応させた。得られた反応液を室温(約25℃)まで冷却して固化させ、細かく粉砕した後、温水による洗浄及びアセトンとメタノールの混合溶媒による洗浄を数回行い、次いで150℃で加熱乾燥を行い、末端がクロロ基である芳香族ポリスルホン樹脂を粉末として得た。
 次に、この芳香族ポリスルホン樹脂のMw(溶融混練前のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂を、二軸押出機(池貝鉄工(株)製「PCM-30型」のシリンダーに供給し、シリンダー温度390℃で溶融混練して押し出すことにより、ストランドを得、このストランドを切断することにより、ペレットを得た。
 次に、得られた芳香族ポリスルホン樹脂のMw(溶融混練後のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂のイエローインデックスと光線透過率を測定した。
実施例2
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、4,4’-ジヒドロキシジフェニルスルホン500g、4,4’-ジクロロジフェニルスルホン589g、及び重合溶媒としてジフェニルスルホン942gを仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、炭酸カリウム287gを添加した後、290℃まで徐々に昇温し、290℃でさらに2時間反応させた。得られた反応液を室温(約25℃)まで冷却して固化させ、細かく粉砕した後、温水による洗浄及びアセトンとメタノールの混合溶媒による洗浄を数回行い、次いで150℃で加熱乾燥を行い、末端がクロロ基である芳香族ポリスルホン樹脂を粉末として得た。次に、この芳香族ポリスルホン樹脂のMw(溶融混練前のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂を、二軸押出機(池貝鉄工(株)製「PCM-30型」のシリンダーに供給し、シリンダー温度395℃で溶融混練して押し出すことにより、ストランドを得、このストランドを切断することにより、ペレットを得た。
 次に、得られた芳香族ポリスルホン樹脂のMw(溶融混練後のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂のイエローインデックスと光線透過率を測定した。
実施例3
 実施例2と同様の手法により得られた芳香族ポリスルホン樹脂を、二軸押出機(池貝鉄工(株)製「PCM-30型」のシリンダーに供給し、シリンダー温度400℃で溶融混練して押し出すことにより、ストランドを得、このストランドを切断することにより、ペレットを得た。
 次に、得られた芳香族ポリスルホン樹脂のMw(溶融混練後のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂のイエローインデックスと光線透過率を測定した。
比較例1
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、4,4’-ジヒドロキシジフェニルスルホン500g、4,4’-ジクロロジフェニルスルホン593g、及び重合溶媒としてジフェニルスルホン949gを仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、無水炭酸カリウム287gを添加した後、290℃まで徐々に昇温し、290℃でさらに2時間反応させた。得られた反応液を室温(約25℃)まで冷却して固化させ、細かく粉砕した後、温水による洗浄及びアセトンとメタノールの混合溶媒による洗浄を数回行い、次いで150℃で加熱乾燥を行い、末端がクロロ基である芳香族ポリスルホン樹脂を粉末として得た。次に、この芳香族ポリスルホン樹脂のMw(溶融混練前のMw)を測定した。
 次に、二軸押出機(池貝鉄工(株)製「PCM-30型」のシリンダーに、得られた芳香族ポリスルホン樹脂を供給し、シリンダー温度380℃で溶融混練して押し出すことにより、ストランドを得、このストランドを切断することにより、ペレットを得た。
 次に、得られた芳香族ポリスルホン樹脂のMw(溶融混練後のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂のイエローインデックスと光線透過率を測定した。
比較例2
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、4,4’-ジヒドロキシジフェニルスルホン500g、4,4’-ジクロロジフェニルスルホン593g、及び重合溶媒としてジフェニルスルホン949gを仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、無水炭酸カリウム287gを添加した後、290℃まで徐々に昇温し、290℃でさらに2.5時間反応させた。得られた反応液を室温(約25℃)まで冷却して固化させ、細かく粉砕した後、温水による洗浄及びアセトンとメタノールの混合溶媒による洗浄を数回行い、次いで150℃で加熱乾燥を行い、末端がクロロ基である芳香族ポリスルホン樹脂を粉末として得た。この芳香族ポリスルホン樹脂のMw(溶融混練前のMw)を測定した。二軸押出機(池貝鉄工(株)製「PCM-30型」のシリンダーに、得られた芳香族ポリスルホン樹脂を供給し、シリンダー温度385℃で溶融混練して押し出すことにより、ストランドを得、このストランドを切断することにより、ペレットを得た。
 次に、得られた芳香族ポリスルホン樹脂のMw(溶融混練後のMw)を測定した。
 次に、得られた芳香族ポリスルホン樹脂のイエローインデックスと光線透過率を測定した。
 比較例3
 実施例1で得られた芳香族ポリスルホン樹脂を、二軸押出機(池貝鉄工(株)製「PCM-30型」のシリンダーに供給し、シリンダー温度365℃で溶融混練して押し出すことにより、ストランドを得、このストランドを切断することにより、ペレットを得た。
 得られた芳香族ポリスルホン樹脂のMw(溶融混練後のMw)を、前述の芳香族ポリスルホン樹脂のMwの測定方法により測定した。
 また、得られた芳香族ポリスルホン樹脂のイエローインデックスと光線透過率を、前述の測定方法により測定した。溶融混錬前後での芳香族ポリスルホン樹脂の重量平均分子量(Mw)とイエローインデックスと光線透過率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の芳香族ポリスルホン樹脂は、紫外線吸収剤を含まないので、前記樹脂から成形された成型体を長期間に渡って使用した場合、紫外線カット効果の低下を抑制できることが予想されるので、産業上有効である。

Claims (3)

  1.  イエローインデックスが50以上であり、重量平均分子量が25000~45000である芳香族ポリスルホン樹脂。
  2.  式(1)で表される繰返し単位を有する請求項1記載の芳香族ポリスルホン樹脂。
    -Ph-SO-Ph-O- (1)
    [Ph及びPhは、互いに独立に、フェニレン基を表し;前記フェニレン基に含まれる水素原子は、互いに独立に、炭素数1~5のアルキル基、炭素数6~15のアリール基又はハロゲン原子で置換されていてもよい。]
  3.  重量平均分子量が50000~70000である芳香族ポリスルホン樹脂を、390℃以上の温度で溶融混練する工程を含む、イエローインデックスが50以上であり、重量平均分子量が25000~45000である芳香族ポリスルホン樹脂の製造方法。
PCT/JP2016/086234 2015-12-08 2016-12-06 芳香族ポリスルホン樹脂及びその製造方法 WO2017099080A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187015542A KR102649403B1 (ko) 2015-12-08 2016-12-06 방향족 폴리술폰 수지 및 그 제조 방법
CN201680071048.9A CN108368254B (zh) 2015-12-08 2016-12-06 芳香族聚砜树脂及其制造方法
US15/781,598 US10676573B2 (en) 2015-12-08 2016-12-06 Aromatic polysulfone resin and method for producing same
EP16872978.8A EP3388469A4 (en) 2015-12-08 2016-12-06 AROMATIC POLYSULPHON RESIN AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015239124A JP6172586B2 (ja) 2015-12-08 2015-12-08 芳香族ポリスルホン樹脂及びその製造方法
JP2015-239124 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017099080A1 true WO2017099080A1 (ja) 2017-06-15

Family

ID=59013189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086234 WO2017099080A1 (ja) 2015-12-08 2016-12-06 芳香族ポリスルホン樹脂及びその製造方法

Country Status (7)

Country Link
US (1) US10676573B2 (ja)
EP (1) EP3388469A4 (ja)
JP (1) JP6172586B2 (ja)
KR (1) KR102649403B1 (ja)
CN (1) CN108368254B (ja)
TW (1) TW201734093A (ja)
WO (1) WO2017099080A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079531A1 (ja) * 2016-10-26 2018-05-03 住友化学株式会社 芳香族ポリスルホンの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172586B2 (ja) * 2015-12-08 2017-08-02 住友化学株式会社 芳香族ポリスルホン樹脂及びその製造方法
EP3587470B1 (en) * 2018-06-27 2023-12-06 SHPP Global Technologies B.V. Semicrystalline polyphenylsulfone and associated method of making and method of additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322130A (ja) * 1993-05-11 1994-11-22 Ube Ind Ltd 芳香族ポリスルホン樹脂
JP2009541508A (ja) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア 減少した黄色値を有するポリスルホン及びポリエーテルスルホン及びその製造方法
JP2013502476A (ja) * 2009-08-20 2013-01-24 ビーエーエスエフ ソシエタス・ヨーロピア ハロゲンの少ないポリビフェニルスルホンポリマーの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919380A (en) * 1971-12-29 1975-11-11 Union Carbide Corp Process for expanding annealed thermoformable materials
DE2549529C2 (de) * 1975-11-05 1983-06-09 Basf Ag, 6700 Ludwigshafen Aromatische Polyäthersulfone und ein Verfahren zu ihrer Herstellung
EP0218064B1 (de) * 1985-09-03 1989-02-01 Bayer Ag Verfahren zur Herstellung von Polyethersulfonen
DE3820959A1 (de) * 1988-06-22 1989-12-28 Bayer Ag Verfahren zur herstellung von aromatischen polyethersulfonen
JP4362878B2 (ja) 1998-09-25 2009-11-11 住友化学株式会社 熱可塑性芳香族ポリスルホン樹脂
US6593445B2 (en) * 2000-03-03 2003-07-15 Solvay Advanced Polymers, Llc Low color poly(biphenyl ether sulfone) and improved process for the preparation thereof
US6420514B1 (en) * 2000-07-12 2002-07-16 Vision - Ease Lens, Inc. Transparent polysulfone articles with reduced spurious coloration
US7902316B2 (en) * 2003-11-20 2011-03-08 Sabic Innovative Plastics Ip B.V. Polyethersulfone composition, method of making and articles therefrom
US20060189752A1 (en) * 2005-02-18 2006-08-24 Krueger David C Composition and method for forming an article having improved properties
JP4797630B2 (ja) 2006-01-06 2011-10-19 凸版印刷株式会社 紫外線カットフィルム、及びこれを用いた容器
US20080032096A1 (en) * 2006-08-07 2008-02-07 Eastman Kodak Company Microstructured film containing polysulfone polymer
US8110639B2 (en) * 2006-11-17 2012-02-07 Solvay Advanced Polymers, L.L.C. Transparent and flame retardant polysulfone compositions
US8034857B2 (en) * 2007-07-12 2011-10-11 Sabic Innovative Plastics Ip B.V. Polyetherimide/polyphenylene ether sulfone blends
TWI461466B (zh) * 2007-08-06 2014-11-21 Solvay Advanced Polymers Llc 阻燃性碸聚合物
KR101821534B1 (ko) * 2009-04-03 2018-01-23 바스프 에스이 염소 저함유 폴리비페닐 술폰 중합체의 제조 방법
JP5703645B2 (ja) * 2009-09-29 2015-04-22 住友化学株式会社 芳香族ポリスルホン樹脂及びその膜
JP2012211290A (ja) * 2011-03-31 2012-11-01 Sumitomo Chemical Co Ltd ハロゲン含有量が低減されたポリスルホンの製造方法
US9040651B2 (en) * 2011-10-31 2015-05-26 Sabic Global Technologies B.V. Poly(aryl ether sulfone) composition, and method of making
US9074093B2 (en) * 2011-12-09 2015-07-07 Sabic Global Technologies B.V. Blends of polyphenylene ether sulfone and polyester carbonate
EP2669316A1 (de) * 2012-05-29 2013-12-04 Basf Se Verfahren zur Herstellung von Hochleistungsthermoplasten mit verbesserter Eigenfarbe
US9127160B2 (en) * 2012-05-29 2015-09-08 Basf Se Process for producing high-performance thermoplastics with improved intrinsic color
JP2014065842A (ja) 2012-09-26 2014-04-17 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物および成形品
CN107406676B (zh) * 2015-03-09 2019-12-10 沙特基础工业全球技术有限公司 可混溶的聚苯醚砜/聚对苯二甲酸亚烷基酯共混物
JP6172586B2 (ja) * 2015-12-08 2017-08-02 住友化学株式会社 芳香族ポリスルホン樹脂及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322130A (ja) * 1993-05-11 1994-11-22 Ube Ind Ltd 芳香族ポリスルホン樹脂
JP2009541508A (ja) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア 減少した黄色値を有するポリスルホン及びポリエーテルスルホン及びその製造方法
JP2013502476A (ja) * 2009-08-20 2013-01-24 ビーエーエスエフ ソシエタス・ヨーロピア ハロゲンの少ないポリビフェニルスルホンポリマーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388469A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079531A1 (ja) * 2016-10-26 2018-05-03 住友化学株式会社 芳香族ポリスルホンの製造方法
JP2018070698A (ja) * 2016-10-26 2018-05-10 住友化学株式会社 芳香族ポリスルホンの製造方法
US11597801B2 (en) 2016-10-26 2023-03-07 Sumitomo Chemical Company, Limited Method for producing aromatic polysulfone

Also Published As

Publication number Publication date
CN108368254A (zh) 2018-08-03
EP3388469A1 (en) 2018-10-17
EP3388469A4 (en) 2019-08-07
US20180371171A1 (en) 2018-12-27
US10676573B2 (en) 2020-06-09
KR102649403B1 (ko) 2024-03-19
CN108368254B (zh) 2021-06-29
JP6172586B2 (ja) 2017-08-02
KR20180092954A (ko) 2018-08-20
JP2017105893A (ja) 2017-06-15
TW201734093A (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
JP5966251B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5870515B2 (ja) ポリカーボネート樹脂組成物および成形品
JP6015022B2 (ja) ポリカーボネート樹脂組成物及び成形品
ES2309054T3 (es) Poli (bifenil eter sulfona) de bajo color y proceso para producir la misma.
KR20110138266A (ko) 염소 저함유 폴리비페닐 술폰 중합체의 제조 방법
JP6759186B2 (ja) 芳香族ポリスルホン
JP2013502476A (ja) ハロゲンの少ないポリビフェニルスルホンポリマーの製造方法
JP5919612B2 (ja) 芳香族ポリスルホンの製造方法
JP5978555B2 (ja) ポリカーボネート樹脂組成物及びその成形品
WO2017099080A1 (ja) 芳香族ポリスルホン樹脂及びその製造方法
FR2970004A1 (fr) Polyphosphonate, procede de preparation de celui-ci, et composition de resine thermoplastique ignifugee le comprenant
KR20100122080A (ko) 분자량을 조정하기 위한 알킬페놀,및 개선된 특성을 갖는 폴리카르보네이트 조성물
JP2011225832A (ja) 熱可塑性樹脂組成物の製造方法
JP2004263154A (ja) ポリ(ビフェニルエーテルスルホン)及びその製造方法
JP2012067294A (ja) ポリカーボネート樹脂組成物及び成形品
JP5891555B2 (ja) 芳香族ポリスルホンの製造方法
JP2013221071A (ja) 芳香族ポリスルホンの製造方法
Trivedi Specialty Thermoplastics: Preparations, Processing, Properties, Performance
JP2003138009A (ja) 芳香族ポリエーテルの製造方法
JPH01275657A (ja) 芳香族ポリエーテルケトン組成物
JP6044058B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2005146196A (ja) 芳香族ポリエーテルの製造方法
JP2011148996A (ja) ポリカーボネート樹脂組成物及び成形品
JP2005097338A (ja) 芳香族ポリエーテルの製造法
JPH09328541A (ja) 芳香族ポリエーテルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187015542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872978

Country of ref document: EP