WO2017081951A1 - ヒータ - Google Patents

ヒータ Download PDF

Info

Publication number
WO2017081951A1
WO2017081951A1 PCT/JP2016/078892 JP2016078892W WO2017081951A1 WO 2017081951 A1 WO2017081951 A1 WO 2017081951A1 JP 2016078892 W JP2016078892 W JP 2016078892W WO 2017081951 A1 WO2017081951 A1 WO 2017081951A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
heating resistor
heating
heater
groove portion
Prior art date
Application number
PCT/JP2016/078892
Other languages
English (en)
French (fr)
Inventor
和一 口町
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020187012836A priority Critical patent/KR102041208B1/ko
Priority to CN201680064339.5A priority patent/CN108353469B/zh
Priority to JP2017550026A priority patent/JP6643353B2/ja
Priority to US15/775,156 priority patent/US11116046B2/en
Publication of WO2017081951A1 publication Critical patent/WO2017081951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to a heater.
  • a ceramic heater for a semiconductor manufacturing apparatus described in Japanese Patent Application Laid-Open No. 2004-146567 (hereinafter also referred to as Patent Document 1) is known.
  • a ceramic heater for a semiconductor manufacturing apparatus described in Patent Document 1 has a ceramic substrate (first ceramic substrate) having a wafer mounting surface (heating surface) on the upper surface and a resistance heating element (heating resistor) on the lower surface; And another ceramic substrate (second ceramic substrate) provided on the lower surface of the first ceramic substrate via an adhesive layer.
  • the heater includes a first ceramic substrate having a heating surface on one main surface, a second ceramic substrate provided to cover the other main surface of the first ceramic substrate with one main surface, and the second ceramic substrate A heating resistor provided on the one main surface of the substrate; and an adhesive layer for bonding the first ceramic substrate and the second ceramic substrate so as to cover the heating resistor.
  • FIG. It is sectional drawing which shows a heater. It is a schematic diagram which shows the wiring pattern of the heating resistor in the heater shown in FIG. It is sectional drawing which shows the other example of a heater. It is a schematic diagram which shows the wiring pattern of the heating resistor in the heater of another example. It is an expanded sectional view which shows the cross section of the heating resistor in the heater of another example. It is an expanded sectional view which shows the cross section of the heating resistor in the heater of another example. It is an expanded sectional view which shows the cross section of the heating resistor in the heater of another example.
  • FIG. 1 is a cross-sectional view showing the heater 100.
  • the heater 100 is provided so as to cover the first ceramic substrate 1 having the heating surface 10 on one main surface and the other main surface of the first ceramic substrate 1 with one main surface.
  • the second ceramic substrate 2, the heating resistor 3 provided on one main surface of the second ceramic substrate 2, and the first ceramic substrate 1 and the second ceramic substrate 2 are bonded to cover the heating resistor 3.
  • Layer 5 The second ceramic substrate 2, the heating resistor 3 provided on one main surface of the second ceramic substrate 2, and the first ceramic substrate 1 and the second ceramic substrate 2 are bonded to cover the heating resistor 3.
  • “one main surface” of the first ceramic substrate 1 is the upper surface of the first ceramic substrate 1, and “the other main surface” of the first ceramic substrate 1 is the lower surface of the first ceramic substrate 1. .
  • “one main surface” of the second ceramic substrate 2 is the upper surface of the second ceramic substrate 2, and “the other main surface” of the second ceramic substrate 2 is the lower surface of the second ceramic substrate 2. Therefore, for convenience of explanation, the following description will be made using the words of the upper surface and the lower surface instead of “one main surface” and “the other main surface”.
  • the “one main surface” is not limited to the upper surface, and there is no problem even if it is a surface other than the upper surface, such as the lower surface or the side surface, depending on the orientation of the heater 100.
  • the “other main surface” is not limited to the lower surface, and there is no problem even if it is a surface other than the lower surface such as the upper surface or the side surface according to the orientation of the heater 100.
  • the first ceramic substrate 1 is a plate-like member having a heating surface 10 on the upper surface.
  • the first ceramic substrate 1 is a member that contacts an object to be heated.
  • the first ceramic substrate 1 is a member for reducing unevenness of heat transmitted from the heating resistor 3 and transmitting it to the heating surface 10.
  • the first ceramic substrate 1 heats an object to be heated, such as a silicon wafer or a silicon wafer chip, on the heating surface 10 on the upper surface.
  • the heater 100 is a member having, for example, a rectangular shape when viewed in plan. In this case, the first ceramic substrate 1 and the second ceramic substrate 2 are also rectangular.
  • the first ceramic substrate 1 is made of a ceramic material such as alumina, aluminum nitride, silicon nitride, or yttria.
  • the dimensions of the first ceramic substrate 1 can be set such that the vertical length is 10 to 120 mm, the horizontal length is 10 to 120 mm, and the thickness is 1 to 10 mm.
  • the diameter can be set to 50 mm to 450 mm, and the thickness can be set to 1 to 10 mm.
  • the heater 100 may further include a temperature sensor 4 inside the first ceramic substrate 1.
  • the temperature sensor 4 is made of a conductor pattern, for example. The temperature can be measured by measuring the change in the resistance value of the conductor pattern.
  • the temperature sensor 4 is formed of a conductor pattern, for example, the temperature sensor 4 is drawn around almost the entire surface in a repeatedly bent shape.
  • the conductor pattern is made of a metal material such as tungsten, molybdenum, or platinum.
  • a sensor in which a thermocouple is embedded in the ceramic substrate 1 can be used.
  • the temperature sensor 4 By embedding the temperature sensor 4 in the first ceramic substrate 1, for example, the temperature can be measured at a portion closer to the heating surface 10 as compared with the case where the temperature sensor 4 is embedded in the second ceramic substrate 2. Therefore, the measurement result in the temperature sensor 4 can be brought close to the actual temperature of the heating surface 10.
  • the second ceramic substrate 2 is a member provided with a heating resistor 3 on the upper surface.
  • the second ceramic substrate 2 is provided so as to cover the lower surface of the first ceramic substrate 1 with the upper surface.
  • the first ceramic substrate 1 and the second ceramic substrate 2 are bonded via an adhesive layer 5.
  • the adhesive layer 5 is in contact with the lower surface of the first ceramic substrate 1 and the upper surface of the second ceramic substrate 2.
  • the second ceramic substrate 2 is made of a ceramic material such as alumina, aluminum nitride, silicon nitride, or yttria, for example.
  • the second ceramic substrate 2 may be made of the same material as the first ceramic substrate 1.
  • the second ceramic substrate 2 is, for example, a rectangular member.
  • the second ceramic substrate 2 can have a vertical length of 10 to 120 mm, a horizontal length of 10 to 120 mm, and a thickness of 1 to 10 mm.
  • the diameter can be set to 50 mm to 450 mm, and the thickness can be set to 1 to 10 mm.
  • the first ceramic substrate 1 and the second ceramic substrate 2 are formed, for example, such that the side surfaces are flush with each other.
  • the second ceramic substrate 2 may have irregularities on the lower surface. Since the second ceramic substrate 2 has irregularities on the lower surface, the heat dissipation property on the lower surface can be improved. Thereby, the temperature of the heater 100 can be quickly lowered.
  • a plurality of juxtaposed grooves can be used.
  • the groove is formed so as to extend along the horizontal direction or the vertical direction of the second ceramic substrate 2 and is formed on the entire lower surface of the second ceramic substrate 2.
  • the heating resistor 3 is a member for heating the sample placed on the heating surface 10 on the upper surface of the first ceramic substrate 1.
  • the heating resistor 3 is provided on the upper surface of the second ceramic substrate 2.
  • the heating resistor 3 can be heated.
  • the heat generated by the heating resistor 3 is transmitted through the adhesive layer 5 and the inside of the first ceramic substrate 1 and reaches the heating surface 10 on the upper surface of the first ceramic substrate 1.
  • the sample installed on the heating surface 10 can be heated.
  • the heating resistor 3 is a linear pattern having a plurality of folded portions, and is formed on almost the entire top surface of the second ceramic substrate 2. Thereby, it can suppress that dispersion
  • FIG. Note that FIG. 2 and FIG. 4 described later are not cross-sectional views, but the heating resistor 3 is hatched for the purpose of helping understanding.
  • the heating resistor 3 contains a conductor component and a glass component.
  • a conductor component metal materials, such as silver palladium, platinum, aluminum, or gold
  • a metal that can be sintered in the atmosphere may be selected as the metal material.
  • the glass component includes oxides of materials such as silicon, aluminum, bismuth, calcium, boron, and zinc.
  • the following method can be used for temperature control of the heater 100.
  • the temperature can be measured by providing the temperature sensor 4 described above inside the first ceramic substrate 1.
  • the voltage applied to the heating resistor 3 is adjusted based on the temperature of the first ceramic substrate 1 measured as described above. Thereby, the heat generation of the heating resistor 3 can be controlled so that the temperature of the heating surface 10 becomes constant.
  • the adhesive layer 5 is a member for bonding the first ceramic substrate 1 and the second ceramic substrate 2.
  • the adhesive layer 5 is provided between the lower surface of the first ceramic substrate 1 and the upper surface of the second ceramic substrate 2.
  • the adhesive layer 5 bonds the first ceramic substrate 1 and the second ceramic substrate 2 together with the heating resistor 3.
  • the adhesive layer 5 is made of, for example, a resin material such as silicone resin or epoxy resin.
  • the thickness of the adhesive layer 5 can be set to 0.01 to 0.3 mm, for example.
  • the adhesive layer 5 may contain a filler such as alumina or aluminum nitride.
  • the heat generating resistor 3 is provided on the upper surface of the second ceramic substrate 2, so that the heat generated in the heat generating resistor 3 is not only the first ceramic substrate 1 but also the adhesive layer 5. Can also be diffused. Thereby, the soaking
  • the upper surface of the second ceramic substrate 2 may have a groove portion 21, and the heating resistor 3 may be provided on the bottom surface of the groove portion 21 along the shape of the groove portion 21. Since the heating resistor 3 is provided in the groove portion 21, when the first ceramic substrate 1 and the second ceramic substrate 2 are bonded by the adhesive layer 5, the heating resistor 3 is directly above the portion where the heating resistor 3 is provided. The variation in the thickness of the adhesive layer 5 immediately above the portion where the heating resistor 3 is not provided can be reduced. Thereby, the thermal uniformity in the heating surface 10 can be improved.
  • the dimensions of the groove 21 can be set, for example, such that the depth is 1 to 2 times the thickness of the heating resistor 3 and the width of the opening is 1 to 1.2 times the width of the bottom surface.
  • the groove portion 21 is formed to have a plurality of folded portions.
  • FIG. 4 is not a cross-sectional view, but hatching is also applied to a region corresponding to the groove 21 in addition to the heating resistor 3 for the purpose of facilitating understanding.
  • the groove portion 21 is provided corresponding to a portion where the heating resistor 3 is provided.
  • the heating resistor 3 is provided on the bottom surface of the groove portion 21, and the heating resistor 3 and the groove portion 21 have the same shape when seen in a plan view.
  • the “similar shape” means that the length direction (axial direction) of the pattern of the heating resistor 3 and the length direction (axial direction) of the groove 21 are aligned, and the size in the width direction is sufficient. (Width) may be different. Specifically, for example, as shown in FIG. 4, the groove 21 may be formed wider than the heating resistor 3.
  • the opening of the groove portion 21 is formed wider than the bottom surface of the groove portion 21, and the entire bottom surface of the groove portion 21 is formed.
  • the heating resistor 3 may be formed. Further, the heating resistor 3 is formed only on the center side in the width direction of the groove portion 21, and the heating resistor 3 may not be formed at the corner (end side in the width direction) of the groove portion 21.
  • the thickness of the heating resistor 3 may be smaller than the depth of the groove 21.
  • the surface of the heating resistor 3 can be positioned inside the groove portion 21 with respect to the opening of the groove portion 21.
  • the heat generated from the heating resistor 3 is transferred to the upper surface of the second ceramic substrate 2.
  • heat can be diffused in the surface direction.
  • a gap may be provided between the surface of the heating resistor 3 and the adhesive layer 5.
  • the heat generated from the heating resistor 3 is more easily transmitted to the second ceramic substrate 2, so that the heat uniformity on the upper surface of the second ceramic substrate 2 can be further improved.
  • the thermal uniformity on the heating surface 10 can be further improved.
  • the heating resistor 3 may be provided on the bottom surface of the groove 21, and a part of the heating resistor 3 may be located outside the groove 21. Thereby, since the thickness of the heating resistor 3 can be increased, the risk of disconnection or the like can be reduced. In addition, since the heating resistor 3 is provided on the bottom surface of the groove portion 21, the heat generated from the heating resistor 3 can be easily diffused in the surface direction in the second ceramic substrate 2. As a result, the thermal uniformity on the upper surface of the second ceramic substrate 2 can be improved while improving the long-term reliability of the heating resistor 3, so that the thermal uniformity on the heating surface 10 from which heat is transferred can be further improved.
  • the heating resistor 3 is provided in the groove portion 21, and the thickness of the heating resistor 3 is reduced toward the center in the width direction of the groove portion 21. May be.
  • the long-term reliability of the heater 100 under a heat cycle can be improved.
  • the heating resistor 3 when the heating resistor 3 is thermally expanded under a heat cycle, the heating resistor 3 can be easily thermally expanded to the center side by reducing the thickness on the center side. In general, thermal stress under a heat cycle tends to concentrate on the corners (portions formed by the bottom surface and the wall surface) of the groove portion 21 of the second ceramic substrate 2.
  • the thickness on the center side of the heating resistor 3 can be set to, for example, 50 to 95% of the thickness on the end side in the width direction.
  • the width of the groove portion 21 may increase from the bottom surface toward the opening. Thereby, when the heating resistor 3 formed on the bottom surface of the groove portion 21 is thermally expanded, the heating resistor 3 is easily thermally expanded toward the opening side. Therefore, the thermal stress generated between the second ceramic substrate 2 and the heating resistor 3 can be reduced.
  • the width at the opening of the groove 21 can be set to 1.01 to 1.5 times the width at the bottom of the groove 21, for example.
  • the following methods may be mentioned.
  • a resinous mask is applied to the entire surface of the second ceramic substrate 2.
  • the ceramic substrate 2 is fixed in a sandblasting apparatus, and powder such as silicon carbide is sprayed from the nozzle as a medium onto the surface of the second ceramic substrate 2.
  • the resinous mask is designed so that only the portion covering the portion where the groove 21 is to be formed is torn by the collision of the media.
  • the groove portion 21 having a predetermined depth can be provided on the surface of the second ceramic substrate 2.
  • first ceramic substrate 10 heating surface 2: second ceramic substrate 21: groove portion 3: heating resistor 4: temperature sensor 5: adhesive layer 100: heater

Abstract

ヒータは、一方の主面に加熱面を有する第1セラミック基板と、該第1セラミック基板の他方の主面を一方の主面で覆うように設けられた第2セラミック基板と、前記第2セラミック基板の前記一方の主面に設けられた発熱抵抗体と、前記第1セラミック基板と前記第2セラミック基板とを前記発熱抵抗体を覆って接着する接着層とを備えている。

Description

ヒータ
 本発明は、ヒータに関するものである。
 ヒータとして、例えば、特開2004-146567号公報(以下、特許文献1ともいう)に記載の半導体製造装置用セラミックスヒータが知られている。特許文献1に記載の半導体製造装置用セラミックスヒータは、上面にウエハ載置面(加熱面)を有し、下面に抵抗発熱体(発熱抵抗体)を備えたセラミック基板(第1セラミック基板)と、第1セラミック基板の下面に接着層を介して設けられた別のセラミック基板(第2セラミック基板)とを有している。
 近年、ヒータは、加熱面における均熱性を保ちつつも、更なる急速昇温および急速降温が求められるようになってきている。
 ヒータを急速昇温および急速降温させるためには、ヒータ全体の熱容量を小さくすることが求められる。ヒータ全体の熱容量を小さくするためには、例えば、第1セラミック基板の厚みを小さくすることが考えられる。しかしながら、特許文献1に記載のヒータにおいて、第1セラミック基板の厚みを小さくしてしまうと、加熱面における均熱性が悪化してしまうおそれがあった。具体的には、加熱面のうち、発熱抵抗体が設けられている領域の直上と、発熱抵抗体が設けられていない領域の直上とにおいて、温度の差が生じてしまうおそれがあった。これは、第1セラミック基板の厚みを小さくしすぎることによって、発熱抵抗体で生じた熱が第1セラミック基板において、面方向において十分に拡散しなくなるためであると考えられる。
 ヒータは、一方の主面に加熱面を有する第1セラミック基板と、該第1セラミック基板の他方の主面を一方の主面で覆うように設けられた第2セラミック基板と、前記第2セラミック基板の前記一方の主面に設けられた発熱抵抗体と、前記第1セラミック基板と前記第2セラミック基板とを前記発熱抵抗体を覆って接着する接着層とを備えている。
ヒータを示す断面図である。 図1に示したヒータにおける発熱抵抗体の配線パターンを示す模式図である。 ヒータの他の例を示す断面図である。 他の例のヒータにおける発熱抵抗体の配線パターンを示す模式図である。 他の例のヒータにおける発熱抵抗体の断面を示す拡大断面図である。 他の例のヒータにおける発熱抵抗体の断面を示す拡大断面図である。 他の例のヒータにおける発熱抵抗体の断面を示す拡大断面図である。
 以下、ヒータ100について、図面を参照して説明する。
 図1はヒータ100を示す断面図である。図1に示すように、ヒータ100は、一方の主面に加熱面10を有する第1セラミック基板1と、第1セラミック基板1の他方の主面を一方の主面で覆うように設けられた第2セラミック基板2と、第2セラミック基板2の一方の主面に設けられた発熱抵抗体3と、第1セラミック基板1と第2セラミック基板2とを発熱抵抗体3を覆って接着する接着層5とを備えている。
 ヒータ100においては、第1セラミック基板1の「一方の主面」が第1セラミック基板1の上面であり、第1セラミック基板1の「他方の主面」が第1セラミック基板1の下面である。また、第2セラミック基板2の「一方の主面」が第2セラミック基板2の上面であり、第2セラミック基板2の「他方の主面」が第2セラミック基板2の下面である。そのため、以下では説明の都合上、「一方の主面」および「他方の主面」に代えて、上面および下面の文言を用いて説明する。なお、「一方の主面」は上面に限定されるものではなく、ヒータ100の向きに応じて下面または側面等、上面以外の面であっても何ら問題ない。また、「他方の主面」も下面に限定されるものではなく、同じくヒータ100の向きに応じて上面または側面等、下面以外の面であっても何ら問題ない。
 第1セラミック基板1は、上面に加熱面10を有する板状の部材である。第1セラミック基板1は、被加熱物に接触する部材である。また、第1セラミック基板1は、発熱抵抗体3から伝わった熱のむらを低減して、加熱面10に伝えるための部材である。第1セラミック基板1は、上面の加熱面10において、例えば、シリコンウエハまたはシリコンウエハチップ等の被加熱物を加熱する。ヒータ100は、平面視したときの形状が、例えば、矩形状の部材である。この場合、第1セラミック基板1および第2セラミック基板2も、矩形状である。第1セラミック基板1は、例えばアルミナ、窒化アルミニウム、窒化ケイ素またはイットリア等のセラミック材料からなる。第1セラミック基板1の寸法は、例えば、矩形状の場合は、縦の長さを10~120mm、横の長さを10~120mm、厚みを1~10mmに設定できる。また、円形状の場合は直径50mm~450mm、厚みは1~10mmに設定できる。
 図1に示すように、ヒータ100は、第1セラミック基板1の内部に、温度センサー4をさらに備えていてもよい。温度センサー4は、例えば、導体パターンから成る。この導体パターンの抵抗値の変化を測定することによって、温度を測定することができる。温度センサー4が導体パターンから成る場合には、例えば、繰り返し折り曲げた形状で面方向のほぼ全体に引き回されている。なお、導体パターンは、例えば、タングステン、モリブデンまたは白金等の金属材料から成る。また、その他の温度センサー4としては、例えば、熱電対をセラミック基板1の内部に埋め込んだものを用いることができる。温度センサー4を第1セラミック基板1に埋設することによって、例えば、温度センサー4を第2セラミック基板2に埋設する場合と比較して、加熱面10に近い部分で温度を測定することができる。そのため、温度センサー4における測定結果を加熱面10の実際の温度に近づけることができる。
 第2セラミック基板2は、上面に発熱抵抗体3が設けられた部材である。第2セラミック基板2は、第1セラミック基板1の下面を、上面で覆うように設けられている。第1セラミック基板1と第2セラミック基板2とは、接着層5を介して、接着されている。接着層5は、第1セラミック基板1の下面と第2セラミック基板2の上面とに接触している。第2セラミック基板2は、例えば、アルミナ、窒化アルミニウム、窒化ケイ素またはイットリア等のセラミック材料からなる。特に、第2セラミック基板2は、第1セラミック基板1と同じ材料から成っていてもよい。これにより、第1セラミック基板1と第2セラミック基板2の熱膨張率を近づけることができるので、第1セラミック基板1と第2セラミック基板2との間に生じる熱応力を低減できる。第2セラミック基板2は、例えば、矩形状の部材である。第2セラミック基板2の寸法は、例えば、矩形状の場合は、縦の長さを10~120mm、横の長さを10~120mm、厚みを1~10mmに設定できる。また、円形状の場合は直径50mm~450mm、厚みは1~10mmに設定できる。第1セラミック基板1および第2セラミック基板2は、例えば、側面が面一になるよう形成される。
 また、第2セラミック基板2は、下面に凹凸を有していてもよい。第2セラミック基板2が下面に凹凸を有していることによって、下面における熱放散性を向上できる。これにより、ヒータ100の降温を素早く行なうことができる。凹凸としては、例えば、並置された複数の溝を用いることができる。溝は、例えば、第2セラミック基板2の横方向または縦方向に沿って伸びるように形成されるとともに、第2セラミック基板2の下面の全面に形成されている。
 発熱抵抗体3は、第1セラミック基板1の上面の加熱面10に載置された試料を加熱するための部材である。発熱抵抗体3は、第2セラミック基板2の上面に設けられている。発熱抵抗体3に電圧を印加することによって、発熱抵抗体3を発熱させることができる。発熱抵抗体3で発せられた熱は、接着層5および第1セラミック基板1の内部を伝わって、第1セラミック基板1の上面における加熱面10に到達する。これにより、加熱面10に設置された試料を加熱することができる。図2に示すように、発熱抵抗体3は、複数の折り返し部を有する線状のパターンであって、第2セラミック基板2の上面のほぼ全面に形成されている。これにより、加熱面10において熱分布にばらつきが生じることを抑制できる。なお、図2および後述する図4は断面を示す図ではないが、理解を助けることを目的として、発熱抵抗体3にハッチングを付している。
 発熱抵抗体3は、導体成分およびガラス成分を含んでいる。導体成分としては、例えば銀パラジウム、白金、アルミニウムまたは金等の金属材料を含んでいる。ガラス成分が発泡してしまうことを抑制するために、金属材料としては大気中で焼結可能な金属を選択してもよい。また、ガラス成分としては、ケイ素、アルミニウム、ビスマス、カルシウム、ホウ素および亜鉛等の材料の酸化物を含んでいる。
 ヒータ100の温度制御には以下の方法を用いることができる。具体的には、第1セラミック基板1の内部に上述した温度センサー4を設けることによって温度を測定できる。以上のようにして測定した第1セラミック基板1の温度に基づいて、発熱抵抗体3に印加する電圧を調整する。これにより、加熱面10の温度が一定になるように発熱抵抗体3の発熱を制御することができる。
 接着層5は、第1セラミック基板1と第2セラミック基板2とを接着するための部材である。接着層5は、第1セラミック基板1の下面と第2セラミック基板2の上面との間に設けられている。接着層5は、第1セラミック基板1と第2セラミック基板2とを発熱抵抗体3ごと接着している。接着層5は、例えば、シリコーン樹脂またはエポキシ樹脂等の樹脂材料等から成る。接着層5の厚みは、例えば、0.01~0.3mmに設定できる。また、接着層5は、アルミナまたは窒化アルミニウム等のフィラーを含有していてもよい。
 ヒータ100においては、図1に示すように、第2セラミック基板2の上面に発熱抵抗体3が設けられることにより、発熱抵抗体3で生じた熱を第1セラミック基板1だけではなく接着層5においても拡散させることができる。これにより、加熱面10における均熱性を向上できる。
 また、図3~5に示すように、第2セラミック基板2の上面が溝部21を有するとともに、発熱抵抗体3が溝部21の底面に溝部21の形状に沿って設けられていてもよい。発熱抵抗体3が溝部21に設けられていることによって、第1セラミック基板1と第2セラミック基板2とを接着層5で接着したときに、発熱抵抗体3が設けられている部分の直上と、発熱抵抗体3が設けられていない部分の直上とにおける、接着層5の厚みのばらつきを低減することができる。これにより、加熱面10における均熱性を向上させることができる。溝部21の寸法は、例えば、深さを発熱抵抗体3の厚みの1~2倍に、開口の幅を底面の幅の1~1.2倍に設定できる。
 より詳しくは、図4に示すように、溝部21は複数の折り返し部を有するように形成されている。なお、図4は、断面を示す図ではないが、理解を助けることを目的として、発熱抵抗体3に加えて溝部21に該当する領域にもハッチングを付している。溝部21は、発熱抵抗体3が設けられる部分に対応して設けられている。言い換えると、発熱抵抗体3は溝部21の底面に設けられるとともに、平面透視したときに発熱抵抗体3と溝部21とが同様の形状を有している。
 ここでいう「同様の形状」とは、発熱抵抗体3のパターンの長さ方向(軸方向)と、溝部21の長さ方向(軸方向)とが揃っていればよく、幅方向の大きさ(幅)が異なっていてもよい。具体的には、例えば、図4に示すように、溝部21が発熱抵抗体3よりも幅広に形成されていてもよい。
 より具体的には、例えば溝部21の軸方向に垂直な断面を示す図5に示すように、溝部21の底面よりも溝部21の開口の方が幅広に形成されるとともに溝部21の底面の全面に発熱抵抗体3が形成されていてもよい。また、溝部21のうち幅方向の中央側にのみ発熱抵抗体3が形成されており、溝部21の隅(幅方向における端側)には発熱抵抗体3が形成されていなくてもよい。
 さらに、図5に示すように、発熱抵抗体3の厚みが溝部21の深さよりも小さくてもよい。発熱抵抗体3の厚みを溝部21の深さよりも小さくすることによって、発熱抵抗体3の表面を溝部21の開口よりも溝部21の内側に位置させることができる。このように、発熱抵抗体3の表面を第2セラミック基板2の上面よりも下方に位置させることによって、発熱抵抗体3から発せられた熱が第2セラミック基板2の上面に伝わるまでの間に、第2セラミック基板2において面方向に熱を拡散することができる。その結果、第2セラミック基板2の上面における均熱性を向上できるので、そこから熱が伝わることになる加熱面10における均熱性をさらに向上できる。
 また、図6に示すように、発熱抵抗体3の表面と接着層5との間に隙間が設けられていてもよい。これにより、発熱抵抗体3から発せられた熱が第2セラミック基板2にさらに伝わりやすくなるので、第2セラミック基板2の上面における均熱性をさらに向上できる。その結果、加熱面10における均熱性をさらに向上できる。
 また、図7に示すように、溝部21の底面に発熱抵抗体3が設けられるとともに、発熱抵抗体3の一部が溝部21の外部に位置していてもよい。これにより、発熱抵抗体3の厚みを大きくすることができるので、断線等のおそれを低減することができる。また、溝部21の底面に発熱抵抗体3が設けられていることによって、発熱抵抗体3から発せられた熱を第2セラミック基板2において面方向に熱を拡散させやすくできる。その結果、発熱抵抗体3の長期信頼性を向上させつつ、第2セラミック基板2の上面における均熱性を向上できるので、そこから熱が伝わることになる加熱面10における均熱性をさらに向上できる。
 さらに、図5に示すように、発熱抵抗体3が溝部21の内部に設けられているとともに、発熱抵抗体3の厚みが、溝部21の幅方向において、中心側に向かうにつれて厚みが小さくなっていてもよい。発熱抵抗体3の厚みを中心側に向かうにつれて小さくしておくことによって、ヒートサイクル下におけるヒータ100の長期信頼性を向上できる。具体的には、ヒートサイクル下において発熱抵抗体3が熱膨張したときに、中心側の厚みを小さくしておくことによって、発熱抵抗体3が中心側に熱膨張しやすくすることができる。一般的に、第2セラミック基板2の溝部21の角部(底面と壁面とから成る部分)には、ヒートサイクル下における熱応力が集中しやすい傾向にある。これに対して、中心側の厚みを小さくして、発熱抵抗体3を中心側に熱膨張させることによって、溝部21の角部に生じる熱応力を低減させることができる。これにより、第2セラミック基板2にクラックが生じるおそれを低減できる。発熱抵抗体3の中心側の厚みは、幅方向における端側の厚みと比較して、例えば、50~95%の厚みに設定できる。
 また、図5に示すように、溝部21は、底面から開口に向かうにつれて幅が大きくなっていてもよい。これにより、溝部21の底面に形成された発熱抵抗体3が熱膨張したときに、発熱抵抗体3が開口側に熱膨張しやすくなる。そのため、第2セラミック基板2と発熱抵抗体3との間に生じる熱応力を低減できる。溝部21の開口における幅は、例えば、溝部21の底面における幅の1.01~1.5倍に設定できる。
 第2セラミック基板2の上面に溝部21を設けるとともに、溝部21の内部に溝部21と同様の形状を有する発熱抵抗体3を形成するための方法としては、以下の方法が挙げられる。
 まず、第2セラミック基板2の表面の全体に樹脂性のマスクを貼る。サンドブラスト装置内にセラミック基板2を固定して、ノズルからメディアとして炭化珪素等の粉末を第2セラミック基板2の表面に噴射する。樹脂性のマスクは、溝部21を形成したい箇所を覆う部分についてのみ、メディアの衝突によって破れるように設計されている。これにより、所定の時間メディアを第2セラミック基板2の表面に噴射し続けることで、第2セラミック基板2の表面に所定の深さの溝部21を設けることができる。
1:第1セラミック基板
10:加熱面
2:第2セラミック基板
21:溝部
3:発熱抵抗体
4:温度センサー
5:接着層
100:ヒータ

Claims (6)

  1.  一方の主面に加熱面を有する第1セラミック基板と、該第1セラミック基板の他方の主面を一方の主面で覆うように設けられた第2セラミック基板と、前記第2セラミック基板の前記一方の主面に設けられた発熱抵抗体と、前記第1セラミック基板と前記第2セラミック基板とを前記発熱抵抗体を覆って接着する接着層とを備えているヒータ。
  2.  前記第2セラミック基板の前記一方の主面が溝部を有するとともに、前記発熱抵抗体が前記溝部の底面に前記溝部の形状に沿って設けられている請求項1に記載のヒータ。
  3.  前記発熱抵抗体の厚みが、前記溝部の深さよりも小さい請求項2に記載のヒータ。
  4.  前記発熱抵抗体と前記接着層との間に隙間がある請求項3に記載のヒータ。
  5.  前記発熱抵抗体の厚みが、前記溝部の幅方向において、中心側に向かうに連れて厚みが小さくなっている請求項3または請求項4に記載のヒータ。
  6.  前記第1セラミック基板の内部に温度センサーをさらに備えた請求項1乃至請求項5のいずれかに記載のヒータ。
PCT/JP2016/078892 2015-11-12 2016-09-29 ヒータ WO2017081951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187012836A KR102041208B1 (ko) 2015-11-12 2016-09-29 히터
CN201680064339.5A CN108353469B (zh) 2015-11-12 2016-09-29 加热器
JP2017550026A JP6643353B2 (ja) 2015-11-12 2016-09-29 ヒータ
US15/775,156 US11116046B2 (en) 2015-11-12 2016-09-29 Heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222074 2015-11-12
JP2015-222074 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017081951A1 true WO2017081951A1 (ja) 2017-05-18

Family

ID=58694984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078892 WO2017081951A1 (ja) 2015-11-12 2016-09-29 ヒータ

Country Status (5)

Country Link
US (1) US11116046B2 (ja)
JP (1) JP6643353B2 (ja)
KR (1) KR102041208B1 (ja)
CN (1) CN108353469B (ja)
WO (1) WO2017081951A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602464A (zh) * 2017-11-21 2020-08-28 沃特洛电气制造公司 集成式加热器和制造方法
WO2021039497A1 (ja) * 2019-08-29 2021-03-04 京セラ株式会社 基体構造体及び基体構造体を用いた対象物載置装置
US11751289B2 (en) 2017-11-21 2023-09-05 Watlow Electric Manufacturing Company Integrated heater and method of manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102111109B1 (ko) * 2017-02-21 2020-05-14 엘지전자 주식회사 면상 발열장치, 이를 포함하는 전기 레인지 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511840U (ja) * 1974-06-20 1976-01-08
JPS63178477A (ja) * 1987-01-20 1988-07-22 松下電器産業株式会社 電熱ユニツト
JPH045094U (ja) * 1990-04-24 1992-01-17
WO2001084888A1 (en) * 2000-04-29 2001-11-08 Ibiden Co., Ltd. Ceramic heater and method of controlling temperature of the ceramic heater
JP2002033287A (ja) * 2000-07-17 2002-01-31 Sumitomo Osaka Cement Co Ltd 加熱装置
JP2004146567A (ja) * 2002-10-24 2004-05-20 Sumitomo Electric Ind Ltd 半導体製造装置用セラミックスヒーター
JP2005347559A (ja) * 2004-06-03 2005-12-15 Ngk Spark Plug Co Ltd 静電チャック及びセラミック製の静電チャックの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511840A (ja) 1974-06-21 1976-01-09 Hitachi Ltd Koosuteinguritsuchiosonaeta kikaki
JPH045094A (ja) * 1990-04-23 1992-01-09 Canon Inc 製本部材
FR2733871B1 (fr) * 1995-05-04 1997-06-06 Norton Pampus Gmbh Element chauffant, procede de fabrication et application
ATE301916T1 (de) * 1999-11-19 2005-08-15 Ibiden Co Ltd Keramisches heizgerät
US20040222211A1 (en) * 1999-12-28 2004-11-11 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered body, and ceramic substrate for a semiconductor producing/examining device
JP3228923B2 (ja) * 2000-01-18 2001-11-12 イビデン株式会社 半導体製造・検査装置用セラミックヒータ
JP3228924B2 (ja) * 2000-01-21 2001-11-12 イビデン株式会社 半導体製造・検査装置用セラミックヒータ
JP2001247382A (ja) * 2000-03-06 2001-09-11 Ibiden Co Ltd セラミック基板
JP2002231628A (ja) * 2001-02-01 2002-08-16 Sony Corp 半導体薄膜の形成方法及び半導体装置の製造方法、これらの方法の実施に使用する装置、並びに電気光学装置
US20040094871A1 (en) * 2001-04-12 2004-05-20 Yasutaka Ito Ceramic bonded body and its producing method, and ceramic structure for semiconductor wafer
US20020185487A1 (en) * 2001-05-02 2002-12-12 Ramesh Divakar Ceramic heater with heater element and method for use thereof
CN1473452A (zh) * 2001-07-09 2004-02-04 IBIDEN�ɷ����޹�˾ 陶瓷加热器与陶瓷接合体
JP4409373B2 (ja) * 2004-06-29 2010-02-03 日本碍子株式会社 基板載置装置及び基板温度調整方法
JP4467453B2 (ja) * 2004-09-30 2010-05-26 日本碍子株式会社 セラミックス部材及びその製造方法
JP2006140367A (ja) * 2004-11-15 2006-06-01 Sumitomo Electric Ind Ltd 半導体製造装置用加熱体およびこれを搭載した加熱装置
US7701693B2 (en) * 2006-09-13 2010-04-20 Ngk Insulators, Ltd. Electrostatic chuck with heater and manufacturing method thereof
JP5423632B2 (ja) * 2010-01-29 2014-02-19 住友大阪セメント株式会社 静電チャック装置
WO2012090782A1 (ja) * 2010-12-27 2012-07-05 株式会社クリエイティブ テクノロジー ワーク加熱装置及びワーク処理装置
TW201436091A (zh) * 2013-01-30 2014-09-16 Kyocera Corp 試料保持具及使用其之電漿蝕刻裝置
JP5871885B2 (ja) * 2013-11-13 2016-03-01 エスペック株式会社 接触式試験装置及び環境試験方法
US10079167B2 (en) * 2014-11-20 2018-09-18 Sumitomo Osaka Cement Co., Ltd. Electrostatic chucking device
JP6380177B2 (ja) * 2015-03-12 2018-08-29 住友大阪セメント株式会社 静電チャック装置
KR102224133B1 (ko) * 2016-12-26 2021-03-08 교세라 가부시키가이샤 시료 유지구

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511840U (ja) * 1974-06-20 1976-01-08
JPS63178477A (ja) * 1987-01-20 1988-07-22 松下電器産業株式会社 電熱ユニツト
JPH045094U (ja) * 1990-04-24 1992-01-17
WO2001084888A1 (en) * 2000-04-29 2001-11-08 Ibiden Co., Ltd. Ceramic heater and method of controlling temperature of the ceramic heater
JP2002033287A (ja) * 2000-07-17 2002-01-31 Sumitomo Osaka Cement Co Ltd 加熱装置
JP2004146567A (ja) * 2002-10-24 2004-05-20 Sumitomo Electric Ind Ltd 半導体製造装置用セラミックスヒーター
JP2005347559A (ja) * 2004-06-03 2005-12-15 Ngk Spark Plug Co Ltd 静電チャック及びセラミック製の静電チャックの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602464A (zh) * 2017-11-21 2020-08-28 沃特洛电气制造公司 集成式加热器和制造方法
CN111602464B (zh) * 2017-11-21 2023-01-24 沃特洛电气制造公司 集成式加热器和制造方法
US11751289B2 (en) 2017-11-21 2023-09-05 Watlow Electric Manufacturing Company Integrated heater and method of manufacture
WO2021039497A1 (ja) * 2019-08-29 2021-03-04 京セラ株式会社 基体構造体及び基体構造体を用いた対象物載置装置
JPWO2021039497A1 (ja) * 2019-08-29 2021-03-04

Also Published As

Publication number Publication date
CN108353469B (zh) 2021-01-22
JP6643353B2 (ja) 2020-02-12
JPWO2017081951A1 (ja) 2018-08-30
KR20180066149A (ko) 2018-06-18
CN108353469A (zh) 2018-07-31
US11116046B2 (en) 2021-09-07
US20180332669A1 (en) 2018-11-15
KR102041208B1 (ko) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2017081951A1 (ja) ヒータ
KR102213060B1 (ko) 저 열팽창 계수의 정상부를 갖는 받침부 구성
KR102508959B1 (ko) 정전 척 장치
JP4879060B2 (ja) 基板加熱装置
JP2021525454A5 (ja)
JP2015523732A (ja) 積層ヒータ用複合基板
KR20100015461A (ko) 기판 온도 제어 장치용 스테이지
JP6526219B2 (ja) 試料保持具
JP6639940B2 (ja) 保持装置および保持装置の製造方法
JP6856357B2 (ja) ヒータ
JP6856334B2 (ja) ヒータ
JP6980544B2 (ja) 試料保持具
JP6957417B2 (ja) ヒータ
CN109416269B (zh) 传感器、热流量测量装置及用于制造传感器的方法
KR20200134277A (ko) 유지 장치의 제조 방법, 및, 유지 장치
KR102638093B1 (ko) 샤프트가 있는 세라믹 히터
JP6835623B2 (ja) ヒータ
JP6885817B2 (ja) 試料保持具
KR102592798B1 (ko) 히터
JP6867907B2 (ja) セラミックス接合体およびセラミックス接合体の製造方法
KR102632768B1 (ko) 웨이퍼 배치대
WO2021002168A1 (ja) シャフト付きセラミックヒータ
JP6952394B2 (ja) 試料保持具
JP3563726B2 (ja) ウエハ支持部材
JP2024010907A (ja) 保持部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187012836

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017550026

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15775156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863915

Country of ref document: EP

Kind code of ref document: A1