JP5871885B2 - 接触式試験装置及び環境試験方法 - Google Patents

接触式試験装置及び環境試験方法 Download PDF

Info

Publication number
JP5871885B2
JP5871885B2 JP2013235253A JP2013235253A JP5871885B2 JP 5871885 B2 JP5871885 B2 JP 5871885B2 JP 2013235253 A JP2013235253 A JP 2013235253A JP 2013235253 A JP2013235253 A JP 2013235253A JP 5871885 B2 JP5871885 B2 JP 5871885B2
Authority
JP
Japan
Prior art keywords
heating
temperature
plate
contact
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013235253A
Other languages
English (en)
Other versions
JP2015094714A5 (ja
JP2015094714A (ja
Inventor
田中 秀樹
秀樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2013235253A priority Critical patent/JP5871885B2/ja
Priority to TW103130453A priority patent/TWI624662B/zh
Priority to KR1020140144125A priority patent/KR101793894B1/ko
Priority to US14/535,837 priority patent/US10852348B2/en
Priority to CN201410640375.4A priority patent/CN104635076B/zh
Publication of JP2015094714A publication Critical patent/JP2015094714A/ja
Publication of JP2015094714A5 publication Critical patent/JP2015094714A5/ja
Application granted granted Critical
Publication of JP5871885B2 publication Critical patent/JP5871885B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Toxicology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Resistance Heating (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Control Of Resistance Heating (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Description

本発明は、被試験物の温度特性の評価を行う接触式試験装置に関するものである。また、当該接触式試験装置を使用して被試験物の温度特性を評価する環境試験方法に関するものである。
製品等の性能を評価する方法の一つとして、環境試験がある。環境試験は、製品等を特定の環境下に置き、性能等の変化を観察するものである。
環境試験の一つとして、温度特性評価試験がある。温度特性評価試験は、例えば、プリント基板に実装する小型デバイスにおいて、構成部材の温度特性を評価する試験である。
温度特性評価試験は、例えば、評価対象たるプリント基板(被試験物)をホットプレート上に載置し、被試験物を所定の温度に加熱した状態で通電することによって、被試験物の温度特性を評価するものである。
温度特性評価試験は、複数の被試験物を一枚のホットプレートに載置して同時に各被試験物を評価することが多い。当然のことながら、信頼性の高い温度特性のデータを得るためには、全ての被試験物において同一条件・環境で評価することが必要となる。
そこで、温度特性評価試験に使用されるホットプレートでは、全ての被試験物が同一の温度条件下となるように、被試験物の載置面の温度分布を均一とする工夫がなされていた。
例えば、特許文献1に記載のホットプレートは、円板状の絶縁性セラミック基板の内部に同心円状の抵抗発熱体を埋没している。そして、抵抗発熱体を絶縁性セラミック基板の外周部の熱容量が中央部の熱容量に比べて相対的に小さくして、絶縁性セラミック基板の載置面の面内の温度分布を均等にしている。特許文献1に記載のホットプレートは、載置面の表面においてある程度精度の良い温度分布を得られるとされている。被試験物内での温度分布は、仮に被試験物で熱を発生しなければ、載置面の温度分布と1対1で対応すると考えられるので、特許文献1に記載のホットプレートを用いれば、それぞれの被試験物が均等に加熱されて正確な温度特性のデータが得られると推察できる。
特開2002−198302号公報
しかしながら、環境試験を行う被試験物の中には、通電等により自己発熱する機器を備えた被試験物がある。発熱する機器を備えた被試験物を試験する場合には、機器で生じる熱が被試験物の他の部位の温度状態に影響を与える。すなわち、機器近傍の温度は、機器の周囲の温度よりも高温となるので、被試験物全体の温度分布が不均一となり、温度が高い部位と低い部位が生じてしまう。また、機器自身の温度特性を測定する場合には、自己発熱により試験温度が乱れ、試験温度が定まらない。
このように、特許文献1に記載のホットプレートでは、載置面の温度分布が均一であっても、それぞれの被試験物の構成部材が均一な温度条件下に置かれず、温度特性を正確に評価できないおそれがあった。
また、上記したような複数の被試験物を同時に試験する場合には、機器の通電量の過多や内部抵抗の変化等によって、被試験物間で機器の発熱状態がばらつく場合がある。すなわち、機器の発熱量が被試験物によって異なる場合がある。
そのため、各被試験物間での試験環境がばらついて、同一条件・同一環境とならず、個々の被試験物の温度特性を正確に評価できない問題があった。
そこで、本発明は、被試験物が自己発熱するか否かに関わらず、被試験物内での温度のバラツキを抑制できる接触式試験装置を提供することを目的とする。また、試験時に被試験物の一部が局所的に発熱する被試験物であっても、正確に温度特性を測定できる環境試験方法を提供することを目的とする。
本発明者は、次のことを念頭に接触式試験装置の開発を行った。すなわち、被試験物には、自己発熱しない場合、自己発熱する場合の2つの場合がある。接触式試験装置に汎用性を持たせるためには、どちらの場合においても試験時の被試験物の温度分布を均一にする必要がある。
前者の「自己発熱しない場合」については、従来の構造と同様に、被試験物を接触させる昇温プレートの面内の温度分布を均等にすることによって達成できる。しかしながら、上記したように後者の「自己発熱する場合」の場合には、昇温プレートの面内の温度分布が均等であっても被試験物の温度分布にバラツキが生じる。
そこで、本発明者は、昇温プレートの面内の温度分布を均等にしつつ、後者の「自己発熱する場合」の場合において、被試験物の発熱に対応した発熱体の発熱状態を調整できる機構の開発を行った。
上記のことを念頭において導き出された本発明の一つの様相は、昇温可能な昇温プレートを有し、当該昇温プレート上に被試験物を接触させて所望の試験を実施する接触式試験装置において、前記昇温プレートを加熱する加熱部材を有し、前記加熱部材は、複数条の発熱体と、発熱体に給電する給電部を有し、前記発熱体は面状に分布し、前記複数の発熱体の一群又は全部は、並列に接続されており、前記発熱体の一部又は全部は、温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇するものであり、前記加熱部材は、昇温プレートと対向するように配置され、昇温プレートと加熱部材との間に間隙が設けられていることである。
ここでいう「温度/抵抗特性」とは、温度に対する抵抗値の関係をいう。
ここでいう「温度/抵抗特性が急峻」とは、温度係数が1000ppm/℃以上のものを表す。
ここでいう「条」とは、細長いものの数量を表し、形状は問わない。すなわち、直線状でも良いし曲線状でもよい。
本様相によれば、加熱部材は、複数条の発熱体が面状に分布しており、複数の発熱体の一群又は全部は、給電部に対して並列に接続されている。すなわち、加熱部材には、細長い複数の発熱体が面状に敷かれており、そのそれぞれの一群又は全部が給電部に並列接続されている。そのため、発熱体の並列接続された一部又は全部は、全て給電部に対して同電位となる。
また、本様相によれば、発熱体の一部又は全部は、温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇するものである。すなわち、発熱体は、温度が上昇するとその抵抗値が急上昇し、温度が低下すると抵抗値が急降下するものである。
つまり、並列接続された各発熱体は、同電位となっているので、発熱体の一部又は全部は、温度が上昇すると、即座に抵抗値が上昇し、発熱量が減少する。また、発熱体の一部又は全部は、温度が低下すると、即座に抵抗値が下降し、発熱量が増大する。
このように本様相の接触式試験装置は、発熱体自身に温度変化に伴って発熱量を調整する自動調整機能を有している。
そのため、例えば、自己発熱する被試験物を試験した場合には、被試験物の温度変化に合わせて、発熱体がすぐに発熱量を調整するので、被試験物全体での温度分布が生じにくい。
また、自己発熱しない被試験物を試験した場合には、被試験物が発熱しないため、被試験物の温度がそのまま発熱体の発熱量に反映される。
ここで、上記したように本様相によれば、複数の細長い発熱体が面状に分布している。
通常、熱源から発生した熱は、熱源を中心として同心円状に拡散するので、発熱体で発生する熱は、天地方向(上下方向)において発熱源たる発熱体を中心に同心円状に広がると推察できる。
仮に昇温プレートと加熱部材が直接接触した状態で発熱体が発熱した場合には、発熱体から直接昇温プレートに熱が伝わるので、発熱体の真上の部位と、隣接する発熱体間の隙間の部位とで、昇温プレートに伝わる熱量が異なる。すなわち、昇温プレートの面内において、発熱体の熱が良く伝わる密の部分と、発熱体の熱が伝わりにくい疎の部分が生じる。そのため、図17(a)のように、昇温プレートの面内で温度分布にバラツキが生じ、被試験物内においても温度分布にバラツキが生じるおそれがある。
そこで、本様相によれば、昇温プレートと加熱部材との間に一定の間隙が設けられている。すなわち、本様相によれば、発熱体から昇温プレートまでの間に距離があり、熱が拡散して均された状態で昇温プレートに伝わる。そのため、図17(b)のように、昇温プレートの面内の温度分布が均等となり、被試験物内においても温度分布が均一となる。
以上のように本様相の接触式試験装置であれば、被試験物が自己発熱しない場合及び自己発熱する場合のいずれの場合においても、所望の温度環境を精密に形成することができ、正確な温度特性を測定することができる。
好ましい様相は、前記加熱部材は、基板を有し、前記発熱体は前記基板上に設けられ、前記基板の昇温プレートと対向する面は、第一被覆部材で覆われており、発熱体が発熱することによって、第一被覆部材の表面から遠赤外線が輻射されることである。
ここでいう「遠赤外線」とは、波長が4μm〜1mmの範囲の電磁波をいう。
本様相によれば、第一被覆部材の表面から輻射される遠赤外線により昇温プレートと加熱部材の間の間隙を放射伝熱されるので、加熱部材からの熱流が、試験中ほとんど変化せず維持されることとなり、昇温プレートを効率良く加熱することができる。
上記した様相は、前記昇温プレート上に複数の被試験物を接触させて所望の試験を実施する接触式試験装置であって、前記複数の被試験物のうち少なくとも2つの被試験物は、自己発熱するものであり、昇温プレートを平面視したときに、前記2つの被試験物は、前記給電部に並列接続された異なる発熱体と重なるように設置できるものであってもよい。
この様相によれば、自己発熱する2つの被試験物は、給電部に並列接続された異なる発熱体と重なるように設置できるので、それぞれの被試験物の発熱状態に合わせて、発熱体が温度調節機能を発揮できる。それ故に、それぞれの被試験物間での自己発熱による温度環境のバラツキを抑制することができる。
また上記した様相は、前記加熱部材は、基板を有し、前記発熱体は前記基板上に設けられ、前記基板の昇温プレートと対向する表面は、第一被覆部材で覆われており、前記第一被覆部材は、波長が5μmにおける放射率が0.4以上1未満であるものであってもよい。
この様相によれば、第一被覆部材の遠赤外線の波長の一つである5μmにおける放射率が0.4以上1未満であるので、熱エネルギーを遠赤外線として放出しやすく、より効率良く加熱することができる。
上記した様相は、前記第一被覆部材は、結晶化ガラスによって形成されているものであってもよい。
好ましい様相は、前記昇温プレートは、遠赤外線を吸収しやすい材料によって形成されていることである。
上記した様相は、前記昇温プレートは、波長が5μmにおける吸収率が0.3以上1未満であるものであってもよい。
この様相によれば、昇温プレートの波長5μmにおける吸収率が0.3以上1未満であるので、発熱体の熱によって発生する加熱部材の表面からの遠赤外線を効率良く吸収することができる。すなわち、本様相の接触式試験装置は、昇温プレートが遠赤外線を吸収しやすく、暖まりやすい。
上記した様相は、前記昇温プレートは、表面にアルマイト加工を施したアルミニウム板(黒色アルマイトを含む)又は黒体塗料によって形成されているものであってもよい。
上記した様相は、前記間隙は、0.5mm以上4.5mm以下であるものであってもよい。
昇温プレートと加熱部材との間の間隙が0.5mm未満の場合、昇温プレートと加熱部材の距離が近すぎて、上記したような各発熱体による発熱量に疎の部位と密の部位が生じ、昇温プレートが均等に加熱されないおそれがある。
昇温プレートと加熱部材との間の間隙が4.5mm超過の場合、昇温プレートと加熱部材の距離が離れすぎて、自己発熱する被試験物を使用した場合に被試験物から生じる熱が拡散しすぎて、被試験物の発熱部位の熱が正確に発熱体に反映されないおそれがある。
昇温プレートの面内の温度分布を均一にする観点から、間隙は1mm以上であることがより好ましい。被試験物の発熱部位をより鮮明に発熱体に反映させる観点から、間隙は3mm以下であることがより好ましい。
好ましい様相は、昇温プレート上に自己発熱する被試験物を接触させて所望の試験を実施する接触式試験装置であって、被試験物が発熱することによって、昇温プレートの表面から加熱部材に遠赤外線が輻射されることである。
本様相によれば、被試験物の発熱により昇温プレートの表面から加熱部材に遠赤外線が輻射されるので、発熱体の対応部位が加熱されて、発熱体の発熱量が調整される。
ところで、加熱部材は試験時には温度が高温となるため、基板と第一被覆部材の熱膨張係数の差が大きい場合、この熱膨張係数の差により、加熱部材がひずんで片側に反ったり、部分的に破損したりするおそれがある。
そこで、好ましい様相は、前記加熱部材は、基板を有し、前記発熱体は前記基板上に設けられ、前記基板の昇温プレートと対向する面は、第一被覆部材で覆われており、さらに、前記基板の昇温プレートと反対面は、第二被覆部材で覆われており、当該第二被覆部材の熱膨張係数は、前記第一被覆部材の熱膨張係数と同一の値又は近い値をとることである。
ここでいう「熱膨張係数が近い値」とは、熱膨張係数の差が±3×10-6/℃以内のものである。
本様相によれば、基板の表面側を第一被覆部材で被覆するとともに、基板の下面側にも第一被覆部材の熱膨張係数と同一の値又は近い値をとる第二被覆部材で被覆するため、加熱部材の反りを防止することができる。
好ましい様相は、加熱部材を挟んで昇温プレートと反対側に防熱板を有し、前記防熱板は、照射された遠赤外線の大部分を反射するものであって、かつ、加熱部材との間に空間が設けられていることである。
ここでいう「照射された遠赤外線の大部分を反射する」とは、照射された遠赤外線の80パーセント以上を反射することをいう。
本様相によれば、加熱部材側から照射された遠赤外線は防熱板によって反射されるため、遠赤外線を加熱部材側に戻すことが可能であり、エネルギーの損失を抑制することができる。
なお、上記した定義によると、防熱板は、照射された遠赤外線の80パーセント以上を反射するものであるが、よりエネルギー損失を抑制できる観点から、防熱板は、照射された遠赤外線の90パーセント以上を反射するものであることが好ましく、95パーセント以上を反射するものであることがより好ましい。
本発明の一つの様相は、上記した接触式試験装置を用いて被試験物の環境試験を行う環境試験方法であって、前記被試験物は、面状に広がりを有するものであって、その面内に自己発熱する発熱部が存在することを特徴とする環境試験方法である。
本様相によれば、局所的に温度分布が生じる被試験物を使用した場合でも、被試験物全体を均等な温度状態とすることができ、温度条件における被試験物の特性を正確に測定することができる。
本発明の接触式試験装置によれば、被試験物が自己発熱するか否かに関わらず、被試験物内での温度のバラツキを抑制できる。
本発明の環境試験方法によれば、試験時に被試験物の一部が局所的に発熱する被試験物であっても、正確に温度特性を測定できる。
本発明の第1実施形態に係る接触式試験装置の斜視図である。 図1の接触式試験装置のA−A断面図である。 図1の接触式試験装置及び被試験物の分解斜視図である。 図3の加熱部材の一部破断斜視図である。 図3の加熱部材を模式的に表す平面図である。 本発明の第1実施形態における接触式試験装置の加熱部材と昇温プレートと被試験物の各温度状況を表す説明図であり、(a)〜(c)は経時変化によるグラフをそれぞれ表す。 本発明の第1実施形態における接触式試験装置の加熱部材と昇温プレートと被試験物の各温度状況を表す説明図であり、(d)〜(f)は経時変化によるグラフをそれぞれ表す。 本発明の第1実施形態における接触式試験装置の加熱部材と昇温プレートと被試験物の各温度状況を表す説明図であり、(g)〜(i)は経時変化によるグラフをそれぞれ表す。 本発明の比較例における接触式試験装置の加熱部材と昇温プレートと被試験物の各温度状況を表す説明図である。 本発明の他の実施形態における加熱部材を模式的に示した平面図である。 本発明の他の実施形態における加熱部材を模式的に示した平面図である。 本発明の他の実施形態における接触式試験装置を模式的に示した平面図である。 本発明の他の実施形態における接触式試験装置を模式的に示した斜視図である。 本発明の他の実施形態における接触式試験装置を模式的に示した斜視図である。 本発明の他の実施形態における加熱部材を模式的に示した平面図である。 本発明の他の実施形態における接触式試験装置を模式的に示した斜視図である。 昇温プレートの温度状況を表す説明図であり、(a)は、昇温プレートに加熱部材を直接接触させた場合のグラフであり、(b)は、昇温プレートと加熱部材の間に間隙を形成した場合のグラフである。
以下に、本発明の第1実施形態について詳細に説明する。
なお、以下の説明において、特に断りがない限り、上下の位置関係は、通常の設置位置(図1)を基準に説明する。また、特に断りの無い限り、物性は、標準状態を基準とする。
本発明の第1実施形態の接触式試験装置1は、所望の温度環境を形成する環境試験装置である。接触式試験装置1は、特に被試験物2の温度特性を測定する温度特性評価試験に好適に使用されるものである。
また、接触式試験装置1は、具体的にはホットプレートであり、被試験物2を常温よりも高い温度条件下に晒すものである。すなわち、接触式試験装置1は、1又は複数の被試験物2を昇温プレート3に接触させ、昇温プレート3を昇温して使用されるものである。
接触式試験装置1は、通電することによって自己発熱する被試験物2を測定する際に温度分布自動調整機能を有していることを特徴の一つとする。
そのため、以下の説明においては、通電することによって自己発熱する被試験物2を使用した場合について説明し、自己発熱しない被試験物を使用する場合については説明を省略する。
接触式試験装置1は、図1のように、公知の断熱箱4の中に入れて使用されるものである。すなわち、接触式試験装置1は、断熱箱4と組み合わせて所望の環境を形成するものである。
接触式試験装置1は、図2,図3に示されるように、昇温プレート3と、加熱部材5と、防熱板6を有している。
被試験物2は、環境試験の評価対象であり、小型デバイスを実装する半導体基板である。具体的には、被試験物2は、図1のように、面状に広がりをもったエポキシ基板等の基板30上に通電により熱を発生する供試体発熱部31(発熱部)を実装したものである。つまり、被試験物2には、その面内に自己発熱する部位が存在する。
昇温プレート3は、図3のように、面状に広がりを有した板状部材である。昇温プレート3は、円形又は多角形状をしており、本実施形態では、略四角形状をしている。
昇温プレート3は、図3のように、載置部7を有している。
載置部7は、複数の被試験物2を載置する部位であり、本実施形態では、最大4つまでの被試験物2を載置可能となっている。
載置部7の少なくとも下面(加熱部材5と対向する面)は、遠赤外線を吸収しやすい材料で形成されている。
具体的には、載置部7の少なくとも下面は、波長が5μmにおける吸収率が0.3以上1未満である材料によって形成されている。載置部7の少なくとも下面は、波長が5μmにおける吸収率が0.5以上1未満である材料によって形成されていることが好ましい。波長が5μmにおける吸収率が0.8以上1未満である材料によって形成されていることがより好ましい。
本実施形態では、載置部7の全てが同一の材料、すなわち、遠赤外線を吸収しやすい材料で形成されている。
昇温プレート3の少なくとも下面は、表面にアルマイト加工を施したアルミニウム板(黒色アルマイトを含む)又は黒体塗料によって形成されていることが好ましい。
載置部7の被試験物2の載置部位の平均厚みは5mm〜10mmであることが好ましい。本実施形態では、載置部7の厚みは均一であって8mm程度である。
加熱部材5は、昇温プレート3を加熱する部材であり、図5に示されるように複数条の発熱体22と、発熱体22に給電する給電部26,27を有している。
発熱体22は、細長く延びた電熱線であり、給電部26,27から給電することによって発熱するものである。
発熱体22は、面状に分布しており、各発熱体22は、所定の間隔を空けてそれぞれ略平行になるように並列されている。
また、各発熱体22の端部は、それぞれ給電部26,27に接続されており、給電部26,27に対して電気的に並列接続されている。
すなわち、加熱部材5の各発熱体22及び給電部26,27は、基板20上を櫛状に分布している。
発熱体22は、温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇する性質を有している。
具体的には、発熱体22は、温度係数が1000ppm/℃以上2000ppm/℃以下の性質を有する。
発熱体22は、温度を反映しやすい観点から温度係数が1000ppm/℃以上の性質を有することが好ましく、1500ppm/℃以上の性質を有することがより好ましい。
また発熱体22は、抵抗の変化量を適量に制御する観点から2000ppm/℃以下の性質を有していることが好ましく、1750ppm/℃以下の性質を有していることがより好ましい。
本実施形態の発熱体22は、1000ppm/℃の銀−パラジウム合金(Ag−Pd)によって形成されている。
発熱体22の形成方法は、特に限定されないが、例えば、スクリーン印刷法によって形成することができる。
図5に示される隣接する発熱体22,22間の間隔S1は、1mm〜10mmであることが好ましい。
間隔S1が1mmよりも狭くなると、隣接する発熱体22の熱の影響を受けて温度分布自動調整機能を十分に発揮できなくなるおそれがある。間隔S1が10mmよりも広がると、昇温プレート3を均等に加熱できないおそれがある。
給電部26,27は、外部電源に電気的に接続されて、発熱体22に対して電流を供給するものである。
給電部26,27は、導電体で形成されている。なお、給電部26,27は、発熱体22と同じ材料によって形成されていてもよい。
加熱部材5は、図2,図4に示されるように、基板20上の一方の主面(昇温プレート3と対向する側の面)に、第一被覆部材25が積層されている。また加熱部材5は、基板20上の他方の主面(昇温プレート3と反対側の面)に絶縁層21、発熱体22、第二被覆部材23(被覆部材)がこの順に積層された断面構造を有している。
すなわち、基板20の一方の主面(上面)は、第一被覆部材25によって覆われている。また基板20の他方の主面(下面)は、絶縁層21によって覆われており、その外側に発熱体22が形成されている。また、絶縁層21及び発熱体22の外側を第二被覆部材23が覆っている。
基板20は、加熱部材5の骨格を形成する板状の部材であり、例えばステンレススチールによって形成されている。
基板20の大きさは、昇温プレート3とほぼ同じ程度の大きさである。
絶縁層21は、基板20と発熱体22の直接の接触を防止するものである。すなわち、発熱体22を通過する電流が基板20に逃げることを防止する絶縁膜である。
絶縁層21は、耐熱性及び絶縁性を有するものであれば、特に限定されないが、例えば、結晶化ガラスなどが使用できる。
絶縁層21は、基板20の一方の主面上の全面に形成されている。
第一被覆部材25は、発熱体22で発生した熱を昇温プレート3に放射伝熱する部材である。
第一被覆部材25の少なくとも上面(昇温プレート3と対面する面)は、遠赤外線を照射しやすい材料によって形成されている。
具体的には、第一被覆部材25は、波長が5μmにおける放射率が0.4以上1未満である材料によって少なくとも上面が形成されている。
第一被覆部材25は、熱エネルギーを遠赤外線に効率良く変換する観点から、波長が5μmにおける放射率が0.6以上1未満である材料によって上面が形成されていることが好ましい。
また、第一被覆部材25の少なくとも上面は、遠赤外線を照射しやすい材料によって形成されており、具体的には、結晶化ガラスによって形成されていることが好ましい。
本実施形態では、第一被覆部材25の全てが遠赤外線を照射しやすい材料によって形成されており、具体的には、結晶化ガラスによって形成されている。
第二被覆部材23は、第一被覆部材25と同一又は近い熱膨張係数を有する材料によって形成されている。
本実施形態では、第二被覆部材23は、第一被覆部材25と同一材料によって形成されている。すなわち、第二被覆部材23も結晶化ガラスによって形成されている。
また、本実施形態では、第二被覆部材23は、第一被覆部材25と同一材料によって形成されているので、遠赤外線を照射しやすい。
防熱板6は、加熱部材5側から発生した遠赤外線を反射する板状体である。防熱板6の大きさは、図2に示されるように、加熱部材5の第二被覆部材23の全面を覆う程度の大きさとなっている。
防熱板6は、照射された遠赤外線の大部分を反射する材料によって形成されている。防熱板6は、照射された遠赤外線の90パーセント以上100パーセント以下を反射するものであることが好ましく、95パーセント以上100パーセント以下を反射するものであることがより好ましい。
具体的には、防熱板6は、厚みが1mm程度のステンレススチール製の薄板で形成されていることが好ましい。
続いて、接触式試験装置1の各部位の位置関係について説明する。
加熱部材5は、図2に示されるように、昇温プレート3の下方に位置しており、昇温プレート3の下面と加熱部材5の上面は所定の間隔を空けて対面している。すなわち、昇温プレート3と加熱部材5の間には、一定の間隙D1が設けられており、昇温プレート3と第一被覆部材25は互いに対面している。
昇温プレート3と加熱部材5の間の間隙D1(高さ(上下方向の長さ))は、0.5mm以上4.5mm以下であることが好ましい。
この範囲であれば、被試験物2の供試体発熱部31の熱を発熱体22に伝熱させるとともに、昇温プレート3を均等に加熱することができる。
昇温プレート3の面内の温度分布をより均一にする観点から、D1は1mm以上であることがより好ましい。被試験物2の発熱部位をより鮮明に発熱体22に反映させる観点から、D1は3mm以下であることがより好ましい。
防熱板6は、図2のように、加熱部材5の下方に位置しており、加熱部材5の下面と防熱板6の上面は所定の間隔を空けて対面している。すなわち、加熱部材5と防熱板6の間には、一定の空間が形成されており、加熱部材5の第二被覆部材23と防熱板6は互いに対面している。また、防熱板6は、加熱部材5を挟んで昇温プレート3と対向する位置にある。
加熱部材5と防熱板6との間隔D2は、5mm〜15mmであることが好ましい。本実施形態では、間隔D2は10mm程度である。
続いて、接触式試験装置1を使用して複数の被試験物2の環境試験を同時に行う場合の環境試験方法について各部材の位置関係とともに説明する。
まず、昇温プレート上に複数の被試験物2を載置する。
このとき、被試験物2は、昇温プレート3を平面視したときに、図5のように給電部26,27に並列接続された複数の発熱体22からなる群と重なるように設置されている。すなわち、被試験物2は、並列接続された複数の発熱体22に跨がるように配されている。
また、それぞれの被試験物2は、異なる発熱体22と重なるように設置されている。
その後、被試験物2を設置した接触式試験装置1を昇温プレート3が水平方向を向いた横姿勢で断熱箱4に導入し、各発熱体22に給電して加熱する。
このとき、発熱体22に給電部26,27から給電されると、発熱体22内の抵抗によって、発熱体22が発熱する。発熱体22が発熱すると、発熱体22の上方(昇温プレート3側)では、発熱体22の熱が基板20、絶縁層21を介して第一被覆部材25に伝熱し、第一被覆部材25の温度が上がる。第一被覆部材25の温度が上がると、第一被覆部材25の表面(上面)から昇温プレート3に向けて遠赤外線が輻射される。第一被覆部材25の表面(上面)から輻射された遠赤外線は、昇温プレート3の表面(下面)で吸収され、昇温プレート3の温度が上昇する。昇温プレート3の温度が上昇すると被試験物2の温度が上昇し、被試験物2が所望の環境下に置かれる。
一方、発熱体22の下方(防熱板6側)では、発熱体22の熱が第二被覆部材23に伝熱し、第二被覆部材23の温度が上がる。第二被覆部材23の温度が上がると、第二被覆部材23の表面(下面)から防熱板6に向けて遠赤外線が輻射される。第二被覆部材23の表面(下面)から輻射された遠赤外線は、防熱板6の表面(上面)で反射され、第二被覆部材23の表面(下面)で吸収される。遠赤外線が第二被覆部材23の表面(下面)で吸収されると、第二被覆部材23の温度が上昇し、基板20、絶縁層21を介して第一被覆部材25に伝熱される。
このように、発熱体22で発生した熱は、そのほとんどが昇温プレート3に伝わるため、熱エネルギーの損失が少ない。
所望の環境が形成されると、公知の測定装置で被試験物2の特性を測定し評価する。
本実施形態の接触式試験装置1は、上記したように温度分布自動調整機能を備えており、この温度分布自動調整機能は、被試験物2が自己発熱するものにおいて発揮する。この温度分布自動調整機能について、従来のホットプレートと比較しながら説明する。
従来のホットプレートの場合、図9のように、被試験物2の供試体発熱部31の自己発熱によって、被試験物2の温度は、被試験物2の面内において、供試体発熱部31に対応する位置をピークトップとし、外側に向けて漸次低下していく(図9の太線C)。また、発熱体22の加熱温度は一定であるから(図9の実線A)、供試体発熱部31の自己発熱を受けて昇温プレート3においても被試験物2の供試体発熱部31に対応する位置をピークトップとし、昇温プレート3の温度は、外側に向けて漸次低下していく(図9の破線B)。
このように、従来のホットプレートの場合には、図9の太線Cのように、被試験物2の面内において温度にバラツキが生じ、正確な温度特性を測定することができなかった。
また、昇温プレート3上に被試験物2を密集させて設置した場合には、上記したように供試体発熱部31の自己発熱を受けて昇温プレート3の温度分布が乱れるので、他の被試験物2の測定にも影響を与えるおそれがあった。
一方、本実施形態の接触式試験装置1の場合は、発熱当初には、従来のホットプレートと同様、図6(a)のように試験物の供試体発熱部31の自己発熱によって、被試験物2の面内において、供試体発熱部31に対応する位置をピークトップとした温度分布が形成される。
その後、図6(b)のように、発熱体22がこの温度上昇を受けて、発熱当初に比べて発熱体22内の抵抗が増大し、部分的に発熱体22の発熱量が減少する(図6(b)の実線A)。発熱体22の発熱量が減少していくと(図6(b)の実線A)、発熱体22の発熱量に追随して昇温プレート3のピークトップは低下していき(図6(b)の破線B)、被試験物2の供試体発熱部31のピークトップも低下していく(図6(b)の太線C)。また、被試験物2の供試体発熱部31の熱が周りの温度の低い部位に流れて均熱化されていく。
そして、発熱体22の発熱量がある一定値を超えてさらに減少していくと(図6(c)の実線A)、昇温プレート3の温度の分布の正負が逆転して、被試験物2の供試体発熱部31との対応部位を、ピークボトムとした分布を取る(図6(c)の破線B)。発熱体22の発熱量がさらに減少していくと(図7(d)の実線A)、被試験物2では、供試体発熱部31に対応する位置をピークボトムとした温度分布が形成される(図7(d)の太線C)。すなわち、被試験物2の供試体発熱部31の部位が周囲の温度に比べて低い温度となる。
発熱体22は、被試験物2の供試体発熱部31の対応部位の温度の低下(図7(d)の太線C)を受けて、発熱体22内の抵抗が減少し、部分的に発熱体22の発熱量が増加していく(図7(e)の実線A)。発熱体22の発熱量が増加していくと(図7(f)の実線A)、昇温プレート3の温度分布のピークは上昇していき(図7(f)の破線B)、被試験物2の温度分布のピークも上昇する(図7(f)の太線C)。
そして、発熱体22の発熱量がある一定値を超えてさらに増加していくと(図8(g)の実線A)、昇温プレート3の温度の分布の正負が逆転して、被試験物2の供試体発熱部31との対応部位を、ピークトップとした分布を取る(図8(g)の破線B)。
発熱体22の発熱量がさらに増加していくと(図8(h)の実線A)、被試験物2では、供試体発熱部31に対応する位置をピークトップとした温度分布が形成される(図8(h)の太線C)。すなわち、被試験物2の供試体発熱部31の部位が周囲の温度に比べて高い温度となる。
このように、発熱体22の発熱量の増減が繰り返されて、図8(i)のように、被試験物2の全体の温度が所定の値に収束し、均等となる。
そして、PID制御によって被試験物2全体の温度が所望の温度になるように維持する。
本実施形態の接触式試験装置1によれば、発熱体22上に遠赤外線を照射しやすい第一被覆部材25を被覆し、昇温プレート3の第一被覆部材25と対面する部位を、遠赤外線を吸収しやすいもので形成している。そのため、遠赤外線による放射伝熱がスムーズとなり、温度制御が行いやすい。
本実施形態の接触式試験装置1によれば、加熱部材5の表裏面が同一材質の第一被覆部材25と第二被覆部材23で形成されているため、熱膨張による加熱部材5の反りを抑制することができる。
本実施形態の接触式試験装置1によれば、加熱部材5の昇温プレート3に向かう面との反対面に第二被覆部材23が形成されており、第二被覆部材23は第一被覆部材25と同様の遠赤外線を照射しやすい材質で形成されている。そのため、温度上昇によって、第二被覆部材23からの遠赤外線の照射量が増加し、熱エネルギーが損失するおそれがある。
そこで、本実施形態の接触式試験装置1によれば、第二被覆部材23と対面するように、遠赤外線を反射しやすい防熱板6が設置されているので、第二被覆部材23から照射された遠赤外線は、防熱板6で反射されて、第二被覆部材23に戻る。そのため、第二被覆部材23からの遠赤外線の照射による余分な加熱が生じず、熱エネルギーの損失を抑制することができる。
上記した実施形態では、接触式試験装置1を用いて自己発熱する被試験物2について試験した場合について説明したが、本発明はこれに限定されるものではなく、接触式試験装置1は自己発熱しない被試験物2についても使用できる。
上記した実施形態では、被試験物2として、一つの供試体発熱部31を備えた基板30を使用したが、本発明はこれに限定されるものではなく、複数の供試体発熱部31を備えた基板30を使用してもよい。複数の供試体発熱部31を備えている場合、被試験物2内で温度分布が生じやすいので、本発明の効果が大きい。
上記した実施形態では、加熱部材5に設けられた発熱体22の全てが、給電部26,27に対して並列接続されていたが、本発明はこれに限定されるものではなく、被試験物2が載置される部位に対応する発熱体22で群を形成し、その1又は複数群の発熱体22をそれぞれ給電部26,27に対して並列に接続してもよい。
要するに、図10のように、被試験物2が載置される部位に対応する発熱体22のそれぞれを給電部26,27に対して並列接続すれば、その他の部位では、発熱体91は給電部26,27に対して並列に接続しなくてもよい。
上記した実施形態では、発熱体22の全部を温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇するもので形成していたが、本発明はこれに限定されるものではなく、発熱体22の一部を温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇するもので形成してもよい。
例えば、図11に示されるように、複数条の発熱体22のうち、被試験物2を載置する部位の発熱体22を温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇するもので形成し、被試験物2を載置しない部位に対応する発熱体90を他の材料で形成してもよい。
上記した実施形態では、1枚の昇温プレート3につき、1つの加熱部材5を設置していたが、本発明はこれに限定されるものではなく、図12のように、1枚の昇温プレート3につき、複数の加熱部材5を設置していてもよい。
また、図13のように、1つの加熱部材5に対して、複数の昇温プレート3を設置していてもよい。こうすることにより、各被試験物2間での発熱状態のバラツキの影響をより低減することができる。なお、昇温プレート3と加熱部材5を複数ずつ有するものでもよい。
上記した実施形態では、昇温プレート3の載置部7の厚みは均一であったが、本発明はこれに限定されるものではなく、部分的に厚みが異なっていてもよい。例えば、図14のように被試験物2を載置する部位の厚みを厚くし、それ以外の厚みを薄くしてもよい。また、逆に被試験物2を載置する部位の厚みを薄くし、それ以外の厚みを厚くしてもよい。
上記した実施形態では、接触式試験装置1を断熱箱4の中に入れて使用したが、本発明はこれに限定されるものではなく、接触式試験装置1を恒温恒湿装置と組み合わせて使用してもよいし、接触式試験装置1のみで使用してもよい。
上記した実施形態では、昇温プレート3に複数の被試験物2を載置できるものについて説明したが、本発明はこれに限定されるものではなく、昇温プレート3に対して一つの被試験物2のみを載置できるものとしてもよい。
上記した実施形態では、各発熱体22は、給電部26,27に対して櫛状に分布していたが、本発明はこれに限定されるものではなく、各発熱体22の分布形状は特に限定されない。例えば、渦巻き状に分布していてもよい。
上記した実施形態では、帯状に延びた給電部26,27に発熱体22が接続されていたが、本発明はこれに限定されるものではなく、図15のように点状の給電部26,27に発熱体22が接続されていてもよい。
上記した実施形態では、PID制御によって被試験物2全体の温度が所望の温度になるように制御していたが、本発明はこれに限定されるものではない。例えば、ON−OFF制御により制御してもよい。
上記した実施形態では、遠赤外線によって昇温プレート3を加熱したが、本発明はこれに限定されるものではなく、その他の電磁波によって加熱してもよい。
上記した実施形態では、加熱部材5の上方に昇温プレートを備え、さらに昇温プレートの上面に被試験物2が載置される位置関係であったが、本発明はこれに限定されるものではなく、天地逆転していてもよい。この場合、被試験物2は、図示しない固定手段によって昇温プレート3に固定される。
上記した実施形態では、接触式試験装置1は昇温プレート3が水平方向を向いた横姿勢で断熱箱4に設置されるものであったが、本発明はこれに限定されるものではなく、図16のように昇温プレート3が鉛直方向を向いた縦姿勢で断熱箱4に設置されてもよい。この場合、被試験物2は、図示しない固定手段によって昇温プレート3に固定される。
上記した実施形態では、加熱部材5を昇温プレート3の被試験物2との接触面と反対側に設けていたが、本発明はこれに限定されるものではなく、加熱部材5を昇温プレート3の上方側(被試験物2側)に設けてもよい。
上記した実施形態では、基板20の下面側(防熱板6と対向する側)に発熱体22が形成されていたが、本発明はこれに限定されるものではなく、基板20の上面側(昇温プレート3と対向する側)に発熱体22が形成されていてもよい。この場合、スルーホール等を設けて、発熱体22と給電部26,27を基板20の下面側で接続することが好ましい。
上記した実施形態では、断熱箱4に一組の昇温プレート3と加熱部材5と防熱板6を設置しているが、本発明はこれに限定されるものではなく、水平置き、垂直置きを問わず、多段・多列構造に配置してもよい。すなわち、断熱箱4に複数組の昇温プレート3と加熱部材5と防熱板6を設置してもよい。
1 接触式試験装置
2 被試験物
3 昇温プレート
5 加熱部材
6 防熱板
7 載置部
20 基板
22 発熱体
23 第二被覆部材
25 第一被覆部材
26 給電部
31 供試体発熱部(発熱部)

Claims (7)

  1. 昇温可能な昇温プレートを有し、当該昇温プレート上に被試験物を接触させて所望の試験を実施する接触式試験装置において、
    前記昇温プレートを加熱する加熱部材を有し、前記加熱部材は、複数条の発熱体と、発熱体に給電する給電部を有し、前記発熱体は面状に分布し、前記複数の発熱体の一部又は全部は、並列に接続されており、
    前記発熱体の一部又は全部は、温度/抵抗特性が急峻であって温度が上昇すると抵抗値も上昇するものであり、
    前記加熱部材は、昇温プレートと対向するように配置され、昇温プレートと加熱部材との間に間隙が設けられていることを特徴とする接触式試験装置。
  2. 前記加熱部材は、基板を有し、
    前記発熱体は前記基板に設けられ、前記基板の昇温プレートと対向する面は、第一被覆部材で覆われており、
    発熱体が発熱することによって、第一被覆部材の表面から遠赤外線が輻射されることを特徴とする請求項1に記載の接触式試験装置。
  3. 前記昇温プレートは、遠赤外線を吸収しやすい材料によって形成されていることを特徴とする請求項1又は2のいずれかに記載の接触式試験装置。
  4. 昇温プレート上に自己発熱する被試験物を接触させて所望の試験を実施する接触式試験装置であって、
    被試験物が発熱することによって、昇温プレートの表面から加熱部材に遠赤外線が輻射されることを特徴とする請求項1〜3のいずれかに記載の接触式試験装置。
  5. 前記加熱部材は、基板を有し、
    前記発熱体は前記基板に設けられ、前記基板の昇温プレートと対向する面は、第一被覆部材で覆われており、
    さらに、前記基板の昇温プレートと反対面は、第二被覆部材で覆われており、
    当該第二被覆部材の熱膨張係数は、前記第一被覆部材の熱膨張係数と同一の値又は近い値をとることを特徴とする請求項1〜4のいずれかに記載の接触式試験装置。
  6. 加熱部材を挟んで昇温プレートと反対側に防熱板を有し、
    前記防熱板は、照射された遠赤外線の大部分を反射するものであって、かつ、加熱部材との間に空間が設けられていることを特徴とする請求項1〜5のいずれかに記載の接触式試験装置。
  7. 請求項1〜6のいずれかに記載の接触式試験装置を用いて被試験物の環境試験を行う環境試験方法であって、
    前記被試験物は、面状に広がりを有するものであって、その面内に自己発熱する発熱部が存在することを特徴とする環境試験方法。
JP2013235253A 2013-11-13 2013-11-13 接触式試験装置及び環境試験方法 Active JP5871885B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013235253A JP5871885B2 (ja) 2013-11-13 2013-11-13 接触式試験装置及び環境試験方法
TW103130453A TWI624662B (zh) 2013-11-13 2014-09-03 Contact test device and environmental test method
KR1020140144125A KR101793894B1 (ko) 2013-11-13 2014-10-23 접촉식 시험 장치 및 환경 시험 방법
US14/535,837 US10852348B2 (en) 2013-11-13 2014-11-07 Contact-type testing device and environmental test method
CN201410640375.4A CN104635076B (zh) 2013-11-13 2014-11-13 接触式试验装置和环境试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235253A JP5871885B2 (ja) 2013-11-13 2013-11-13 接触式試験装置及び環境試験方法

Publications (3)

Publication Number Publication Date
JP2015094714A JP2015094714A (ja) 2015-05-18
JP2015094714A5 JP2015094714A5 (ja) 2015-07-30
JP5871885B2 true JP5871885B2 (ja) 2016-03-01

Family

ID=53042837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235253A Active JP5871885B2 (ja) 2013-11-13 2013-11-13 接触式試験装置及び環境試験方法

Country Status (5)

Country Link
US (1) US10852348B2 (ja)
JP (1) JP5871885B2 (ja)
KR (1) KR101793894B1 (ja)
CN (1) CN104635076B (ja)
TW (1) TWI624662B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041208B1 (ko) * 2015-11-12 2019-11-06 쿄세라 코포레이션 히터
CN108037398B (zh) * 2018-01-16 2023-12-05 苏州精濑光电有限公司 一种显示模组老化测试装置及老化测试方法
EP3783375A1 (de) * 2019-08-19 2021-02-24 Dyconex AG Heiss-e-test für unbestückte leiterplatten

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3160510B2 (ja) * 1995-11-14 2001-04-25 シャープ株式会社 面状発熱体
US5759281A (en) * 1997-06-30 1998-06-02 Emcore Corporation CVD reactor for uniform heating with radiant heating filaments
US6888106B2 (en) * 2000-04-07 2005-05-03 Ibiden Co., Ltd. Ceramic heater
JP2002198302A (ja) * 2000-12-27 2002-07-12 Ibiden Co Ltd 半導体製造・検査装置用ホットプレート
JP2004200199A (ja) * 2002-12-16 2004-07-15 Oki Electric Ind Co Ltd 放熱シート
JP2004221166A (ja) * 2003-01-10 2004-08-05 Toshiba Matsushita Display Technology Co Ltd 加熱装置
JP4298421B2 (ja) * 2003-07-23 2009-07-22 エスペック株式会社 サーマルプレートおよび試験装置
JP2006140367A (ja) * 2004-11-15 2006-06-01 Sumitomo Electric Ind Ltd 半導体製造装置用加熱体およびこれを搭載した加熱装置
JP4344682B2 (ja) * 2004-12-02 2009-10-14 エスペック株式会社 流体加熱装置、並びに、試験装置
US7901509B2 (en) * 2006-09-19 2011-03-08 Momentive Performance Materials Inc. Heating apparatus with enhanced thermal uniformity and method for making thereof
TW200928354A (en) * 2007-12-21 2009-07-01 Iteq Corp Apparatus for measurement of heat conductivity effect and method of using the same
KR101672910B1 (ko) * 2008-07-22 2016-11-04 에스펙 가부시키가이샤 결로량이 제어 가능한 환경 시험 장치 및 그 제어 방법
TWI399120B (zh) * 2009-04-30 2013-06-11 Hon Hai Prec Ind Co Ltd 面熱源
JP2011146368A (ja) * 2009-12-15 2011-07-28 Panasonic Corp 面状採暖具の製造方法
TWM433047U (en) * 2011-12-23 2012-07-01 C Sun Mfg Ltd Thin type heater of heating device
TWM464342U (zh) * 2013-05-15 2013-11-01 Kuo-Wei Fan 電熱裝置

Also Published As

Publication number Publication date
CN104635076A (zh) 2015-05-20
KR20150055545A (ko) 2015-05-21
KR101793894B1 (ko) 2017-11-06
US20150129575A1 (en) 2015-05-14
TWI624662B (zh) 2018-05-21
JP2015094714A (ja) 2015-05-18
TW201518712A (zh) 2015-05-16
US10852348B2 (en) 2020-12-01
CN104635076B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
JP5459907B2 (ja) 基板載置装置の評価装置、及びその評価方法、並びにそれに用いる評価用基板
JP5871885B2 (ja) 接触式試験装置及び環境試験方法
US9933311B2 (en) Blackbody function
JP2012204826A (ja) 加熱装置
JP2015094714A5 (ja)
JP3795352B2 (ja) 半導体モジュールの温度制御装置及び温度制御方法
WO2010024122A1 (ja) ホットプレート及び乾燥機
JP2006527378A5 (ja)
US7057139B2 (en) Electric heating assembly
TWI708303B (zh) 基板評價用晶片及基板評價裝置
JP2018169164A (ja) キャピラリ電気泳動装置および恒温槽
CN110933784B (zh) 一种一维传热高温均匀加热板及加热装置
JP2017050254A (ja) 赤外線ヒーター
JP5694824B2 (ja) 加熱装置
JPH1167619A (ja) 基板加熱装置
JP6047411B2 (ja) 温度測定機構及び温度測定方法
KR101639588B1 (ko) 평가 기판, 환경 시험 장치, 및 공시체의 평가 방법
JP3515904B2 (ja) 半導体ウェーハの温度試験装置
WO2004049762A1 (ja) 金属ヒータ
US20230262851A1 (en) Sensor for measurements of thermophysical properties
JP2009285038A (ja) 加熱装置及びヒーター・センサーユニット
JP2016174096A (ja) 加熱装置
KR101575565B1 (ko) 원적외선 히터
KR20150141096A (ko) 방열필름의 열적성능 평가방법
KR102638346B1 (ko) 히터의 온도 제어 방법, 히터 및 탑재대

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5871885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250