WO2017071117A1 - 萜烯树脂基复合粘结剂在电化学储能器件中的用途 - Google Patents

萜烯树脂基复合粘结剂在电化学储能器件中的用途 Download PDF

Info

Publication number
WO2017071117A1
WO2017071117A1 PCT/CN2016/070066 CN2016070066W WO2017071117A1 WO 2017071117 A1 WO2017071117 A1 WO 2017071117A1 CN 2016070066 W CN2016070066 W CN 2016070066W WO 2017071117 A1 WO2017071117 A1 WO 2017071117A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
terpene resin
positive electrode
lithium ion
ion battery
Prior art date
Application number
PCT/CN2016/070066
Other languages
English (en)
French (fr)
Inventor
张灵志
何嘉荣
仲皓想
Original Assignee
深圳市鑫昌龙新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鑫昌龙新材料科技股份有限公司 filed Critical 深圳市鑫昌龙新材料科技股份有限公司
Priority to US15/771,480 priority Critical patent/US20180351178A1/en
Publication of WO2017071117A1 publication Critical patent/WO2017071117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a binder, in particular to a use of a terpene resin-based composite binder in an electrochemical energy storage device.
  • the binder is a polymer compound for adhering the electrode active material and the conductive agent to the current collector.
  • PVDF polyvinylidene fluoride
  • NMP organic solvent N-methylpyrrolidone
  • the Young's modulus of PVDF is relatively high, the flexibility of the pole piece is not good enough, the molecular weight decreases after water absorption, and the viscosity is deteriorated. Therefore, the humidity requirement for the environment is relatively high, the energy consumption is large, and the production cost is high.
  • the organic solvent NMP used in PVDF is volatile, flammable, explosive, and highly toxic. The volatilization of NMP not only seriously jeopardizes the health of the workers in the production workshop, but also causes serious environmental pollution and high recycling costs.
  • Terpene resin (C 5 H 8 ) n also known as polydecene or terpene resin, is a natural source of hydrocarbons widely found in plants and marine organisms. It has low odor, no toxicity, no crystallization, and is resistant to dilute acid.
  • Dilute alkali, heat resistance, light resistance, anti-aging, strong adhesion, high adhesion, good thermal stability, good compatibility and solubility, etc., are widely used as pressure sensitive adhesives, hot melt adhesives
  • the matrix of the mixture, tackifier, etc. is used in industries such as coatings, rubber, plastics, printing, sanitary and food packaging, ion exchange resins, potash synergists, and the like.
  • the applicant of the present invention submitted a natural polymer terpene resin-based water-based binder and its invention patent (201410229082.7) applied to a lithium ion battery negative electrode or a supercapacitor in 2014, and the technical effect is good.
  • JP 5-74461 uses carboxymethyl cellulose (CMC) mixed with styrene-butadiene rubber emulsion (SBR) as a water-based binder for lithium ion battery anode materials, which has been rapidly developed and widely used in lithium ion batteries. Preparation of graphite negative electrode sheets.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber emulsion
  • the positive electrode of the lithium battery has not been commercially available. The main reason is that the positive electrode material potential platform is relatively high. Compared with the graphite negative electrode material, the positive electrode material generally has poor conductivity, and there are problems such as easy agglomeration and difficulty in dispersion.
  • the cathode material and the anode material have different technical requirements for the aqueous binder.
  • the anode material aqueous binder needs higher oxidation resistance, can withstand high potential repeated charge and discharge cycles, and the anode material is water-based. Binders require better resistance to reduction.
  • the positive electrode material plays a more critical role in the performance of the battery than the negative electrode material. Therefore, the water-based binder for the positive electrode material is a technological frontier for the development of materials related to the lithium battery industry.
  • the PVDF binder used in the positive electrode of the lithium ion battery is currently expensive, and it is urgent to research and develop a new type of lithium ion battery positive electrode binder and reduce the production cost.
  • the terpene resin-based composite binder of the invention is applied to a positive electrode or a supercapacitor of a lithium ion battery, which can significantly improve its high rate performance and cycle stability, and reduce the electrochemical interface impedance.
  • the terpene resin has a wide range of raw materials, is environmentally friendly, and has low cost.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a use of a terpene resin-based composite binder in the preparation of a positive electrode sheet or a supercapacitor electrode sheet of a lithium ion battery.
  • the invention provides a positive electrode tab for a lithium ion battery, the invention also provides a supercapacitor electrode sheet, and the invention also provides a lithium ion battery and a super capacitor.
  • the technical solution adopted by the present invention is: the use of a terpene resin-based composite binder in preparing a positive electrode sheet or a supercapacitor electrode sheet of a lithium ion battery.
  • the terpene resin-based binder is a terpene resin-based water-based binder or a terpene resin-based oil-based binder;
  • the terpene resin-based water-based binder comprises a water-soluble terpene resin emulsion and a water-soluble polymer auxiliary agent, and the water-soluble polymer auxiliary agent is one of carboxymethyl cellulose, polyacrylic acid, and a metal salt thereof. Or a mass ratio of the terpene resin in the terpene resin emulsion to the water-soluble polymer auxiliary agent is 50:1 to 1:50;
  • the terpene resin-based oily binder comprises an oil-soluble terpene resin and an oil-soluble polymer auxiliary agent, the oil-soluble polymer auxiliary agent is polyvinylidene fluoride (PVDF), the oil-soluble terpene resin and the polymer
  • PVDF polyvinylidene fluoride
  • the mass ratio of vinylidene fluoride is 1:4 to 1:50.
  • the present invention provides a positive electrode tab for a lithium ion battery, the positive electrode tab of the lithium ion battery comprising a current collector and a lithium ion battery positive electrode slurry supported on the current collector; the lithium ion battery positive electrode slurry comprising a positive electrode active material , conductive agent, binder and solvent;
  • the binder is a terpene resin-based water-based binder
  • the terpene resin-based water-based binder comprises a water-soluble terpene resin emulsion and a water-soluble polymer auxiliary agent, and the water-soluble polymer aid
  • the agent is one or more of carboxymethyl cellulose, polyacrylic acid and a metal salt, and the mass ratio of the terpene resin and the water-soluble polymer auxiliary in the terpene resin emulsion is 50:1 to 1 :50; the solvent is water.
  • the terpene resin emulsion of the present invention is obtained by emulsifying a terpene resin and a polymer surfactant, and the terpene resin emulsion or terpene resin solid used in the present invention can be directly purchased from the market. More preferably, the terpene resin emulsion has a terpene resin mass concentration of 55%, and the terpene resin emulsion has a viscosity of 3000 to 8000 mPa ⁇ s.
  • the binder is a terpene resin-based oily binder
  • the terpene resin-based oily binder comprises an oil-soluble terpene resin and an oil-soluble polymer auxiliary agent, and the oil-soluble polymer auxiliary agent It is polyvinylidene fluoride (PVDF), and the mass ratio of the oil-soluble terpene resin to polyvinylidene fluoride is 1:4 to 1:50, and the solvent is N-methylpyrrolidone.
  • PVDF polyvinylidene fluoride
  • the positive active material is one or more of lithium iron phosphate, lithium cobaltate, lithium manganate or a ternary material;
  • the conductive agent is a conductive carbon material; and
  • the current collector is an aluminum foil current collector;
  • the lithium ion battery positive electrode slurry has a solid content of 30 to 75%, and the lithium ion battery positive electrode slurry has a viscosity of 3000 to 8000 mPa ⁇ s. More preferably, the conductive agent is acetylene black.
  • the present invention provides a supercapacitor electrode sheet comprising a current collector and an electrode slurry supported on a current collector; the electrode paste comprising an active material, a conductive agent, a binder, and a solvent;
  • the terpene resin-based oily binder comprises an oil-soluble terpene resin and an oil-soluble polymer auxiliary, the oil-soluble polymer auxiliary is polyvinylidene fluoride (PVDF), and the oil-soluble terpene
  • PVDF polyvinylidene fluoride
  • the mass ratio of the resin to the polyvinylidene fluoride is from 1:4 to 1:50, and the solvent is N-methylpyrrolidone.
  • the active material is activated carbon;
  • the conductive agent is a conductive carbon material; and
  • the current collector is an aluminum foil current collector;
  • the supercapacitor electrode sheet electrode slurry has a solid content of 30 to 75%, and the supercapacitor electrode sheet electrode slurry has a viscosity of 3,000 to 8,000 mPa ⁇ s. More preferably, the conductive agent is acetylene black.
  • the present invention provides a lithium ion battery comprising the above-described lithium ion battery positive electrode sheet.
  • the present invention provides a supercapacitor comprising the supercapacitor electrode sheets described above.
  • the invention has the beneficial effects that the present invention provides a use of a terpene resin-based composite binder in the preparation of a positive electrode sheet or a supercapacitor electrode sheet of a lithium ion battery. Compared with the prior art, the present invention has the following advantages:
  • the terpene resin-based water-based binder provided by the invention is applied to a cathode material of a lithium ion battery, which can reduce the electrochemical interface impedance;
  • the terpene resin provided by the invention is widely derived from natural plants, is environmentally friendly, rich in resources, and is used as a component of a water-based or oily binder for a positive electrode of a lithium ion battery and a supercapacitor, and has a remarkable technical effect, and can reduce the battery.
  • the cost promote the battery's all-water green production, has a broad market prospect.
  • Example 1 is a cycle performance test curve of lithium iron phosphate and a comparative electrode according to Example 1 of the present invention at a charge and discharge current density of 0.2 C.
  • Example 2 is a comparison diagram of impedance tests of lithium iron phosphate and a comparison electrode at a rate of 0.2 C according to Example 2 of the present invention.
  • Example 3 is a graph showing the rate performance of lithium iron phosphate and a comparative electrode at different charge and discharge current densities according to Example 3 of the present invention.
  • Example 4 is a cycle performance test curve of a ternary material and a comparative electrode according to Example 4 of the present invention at a charge and discharge current density of 0.2 C.
  • Example 5 is a comparison diagram of impedance tests of a ternary material and a comparative electrode according to Example 5 of the present invention at a 0.2 C rate.
  • Example 6 is a graph showing the rate performance of a ternary material and a comparative electrode according to Example 6 of the present invention at different charge and discharge current densities.
  • Figure 7 is a graph showing the cycle performance test of lithium iron phosphate and a comparative electrode at a charge and discharge current density of 0.2 C according to Example 7 of the present invention.
  • Example 8 is a graph showing the rate performance of a ternary material and a comparative electrode according to Example 8 of the present invention at different charge and discharge current densities.
  • Figure 9 is a cycle stability curve of an activated carbon electrode at a current density of 200 mA/g according to Example 9 of the present invention.
  • terpene resin is abbreviated as TX.
  • the invention exemplifies a method for preparing a lithium ion battery or a supercapacitor electrode by using a terpene resin-based composite binder, and a lithium ion battery or a super capacitor of a lithium ion battery and a other binder of a terpene resin-based composite binder.
  • the water-soluble terpene resin emulsion (model 8218 aqueous terpene resin viscosifying emulsion) or terpene resin solid used in the specific examples of the present invention was purchased from Guangzhou Songbao Chemical Co., Ltd.
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the binder is a terpene resin-based water-based binder, and the terpene resin-based water-based binder comprises a water-soluble terpene resin emulsion and a water-soluble polymer auxiliary agent, and the water-soluble polymer auxiliary agent is a carboxyl group.
  • Sodium methylcellulose (CMC) the solvent being water.
  • the positive active material is lithium iron phosphate; the conductive agent is acetylene black; the current collector is an aluminum foil current collector; the solid content of the lithium ion battery positive electrode slurry is 45%, and the viscosity of the lithium ion battery positive electrode slurry It is 4000mPa ⁇ s.
  • a comparative electrode was prepared in the same manner using polyvinylidene fluoride (PVDF) as a binder.
  • PVDF polyvinylidene fluoride
  • Table 1 is a cycle performance test curve of the test electrode and the comparison electrode at a charge and discharge current density of 0.2 C in the present embodiment, and Table 1 is the capacity retention rate after the corresponding 100 cycles. It can be seen from the table that the lithium iron phosphate electrode prepared by using different ratios of TX/CMC as a binder has a capacity retention rate higher than that of the lithium iron phosphate electrode prepared by using PVDF as a binder after 100 cycles.
  • Table 1 shows the capacity retention rate after 100 cycles of 0.2C rate of lithium iron phosphate cathode material prepared with different binders.
  • Comparative electrodes were prepared in the same manner using PAALi, CMC and PVDF as binders, respectively.
  • the impedance test after the test electrode and the comparison electrode were cycled for 100 turns.
  • FIG. 2 is an impedance test result of the test electrode and the comparison electrode in the present embodiment at a ratio of 0.2 C, using TX/PAALi, PAALi, CMC, and PVDF as binders, and lithium iron phosphate electrode after 100 cycles. It can be seen from the figure that with TX/PAALi as the binder, the impedance value of the lithium iron phosphate electrode is relatively smaller than that of the PAALi, CMC and PVDF systems.
  • test electrode uses TX/PAANa as a binder
  • Electrochemical tests were performed on the charge-discharge cycle stability and rate performance of the test electrode and the comparison electrode.
  • the electrode using TX/PAANa as the lithium iron phosphate binder exhibits excellent high rate characteristics.
  • the magnification is higher than 0.5C
  • lithium iron phosphate using TX/PAANa as a binder is much higher than PVDF.
  • the magnification is 5C
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the binder is a terpene resin-based water-based binder, and the terpene resin-based water-based binder comprises a water-soluble terpene resin emulsion and a water-soluble polymer auxiliary agent, and the water-soluble polymer auxiliary agent is a carboxyl group.
  • Sodium methylcellulose (CMC) the solvent being water.
  • the positive active material is a ternary material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC); the conductive agent is acetylene black; the current collector is an aluminum foil current collector; and the lithium ion battery
  • NMC ternary material
  • the conductive agent is acetylene black;
  • the current collector is an aluminum foil current collector; and the lithium ion battery
  • the solid content of the positive electrode slurry was 45%, and the viscosity of the lithium ion battery positive electrode slurry was 3000 mPa ⁇ s.
  • NMC NMC positive electrode sheet
  • the comparative electrode was prepared in the same manner using PVDF as a binder.
  • Table 4 is a cycle performance test curve of the test electrode and the comparison electrode at a charge and discharge current density of 0.2 C in the present embodiment
  • Table 2 is the capacity retention rate after the corresponding 200 cycles. It can be seen from the table that the capacity retention of the NMC electrode prepared by using different ratios of TX/CMC as a binder after 200 cycles is equivalent to or even higher than that of the NMC electrode prepared by using PVDF as a binder.
  • Table 2 shows the capacity retention rate after 200 cycles of 0.2N rate of ternary cathode material prepared with different binders.
  • the impedance test after the test electrode and the comparison electrode were cycled for 200 turns.
  • FIG. 5 is an impedance test result of the test electrode and the comparison electrode in the present embodiment, using TX/PAALi and PVDF as binders and the ternary material electrode circulating for 200 cycles at 0.2 C rate. It can be seen from the figure that the impedance value of the electrode using the TX/PAALi ternary material binder is relatively smaller than that of the PVDF system.
  • Electrochemical tests were performed on the charge-discharge cycle stability and rate performance of the test electrode and the comparison electrode.
  • FIG. 6 is a graph showing the rate performance curves of the test electrode and the comparative electrode at different charge and discharge current densities in the present embodiment.
  • the electrode using TX/PAANa as a ternary material binder exhibits a good high rate characteristic.
  • the magnification is higher than 0.5C
  • the specific capacity of the ternary material using TX/PAANa as the binder is much higher than that of PVDF.
  • the magnification is 5C
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the lithium ion battery positive electrode slurry includes a positive active material, a conductive agent, a binder, and a solvent; and the positive active material, the guide
  • the binder is a terpene resin-based oily binder
  • the terpene resin-based oily binder comprises an oil-soluble terpene resin and an oil-soluble polymer auxiliary agent
  • the oil-soluble polymer auxiliary agent is a poly-powder Fluorine (PVDF)
  • PVDF poly-powder Fluorine
  • the mass ratio of the oil-soluble terpene resin to polyvinylidene fluoride is 1:4 to 1:50
  • the solvent is N-methylpyrrolidone.
  • the positive active material is lithium iron phosphate; the conductive agent is acetylene black; the current collector is an aluminum foil current collector; the solid content of the lithium ion battery positive electrode slurry is 45%, and the viscosity of the lithium ion battery positive electrode slurry It is 3000mPa ⁇ s.
  • the lithium iron phosphate and the conductive agent are mixed and stirred until uniformly dispersed; the oil-soluble terpene resin is added to N-methylpyrrolidone (NMP) to prepare a terpene resin solution, and the obtained terpene resin solution is added to the above system and stirred uniformly. Then, PVDF was added to the above-obtained mixture, and an appropriate amount of NMP was added thereto, and the mixture was uniformly stirred to obtain an electrode slurry (solid content: 45%); the obtained slurry was uniformly coated on the Al foil and sufficiently dried, that is, A lithium iron phosphate positive electrode sheet is obtained.
  • NMP N-methylpyrrolidone
  • a comparative electrode was prepared in the same manner using PVDF as a binder (no terpene resin).
  • Table 7 is a cycle performance test curve of the test electrode and the comparison electrode at a charge and discharge current density of 0.2 C in the present embodiment
  • Table 3 is the capacity retention rate after the corresponding 65 cycles. It can be seen from the table that the different addition ratios (1:4, 1:25 and 1:50, here refers to the mass ratio) of the lithium iron phosphate electrode prepared by using TX and PVDF as composite binders after 65 cycles The capacity retention rate is higher than that of the lithium iron phosphate electrode prepared by using PVDF as a binder.
  • Table 3 shows the capacity retention rate after 65 cycles of 0.2C rate of lithium iron phosphate cathode material prepared with different binders.
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the binder is a terpene resin-based oily binder
  • the terpene resin-based oily binder comprises an oil-soluble terpene resin and an oil-soluble polymer auxiliary agent
  • the oil-soluble polymer auxiliary agent is a poly-powder Fluorine (PVDF)
  • PVDF poly-powder Fluorine
  • the mass ratio of the oil-soluble terpene resin to polyvinylidene fluoride is 1:20
  • the solvent is N-methylpyrrolidone (NMP).
  • the positive active material is a ternary material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC); the conductive agent is acetylene black; the current collector is an aluminum foil current collector; and the lithium ion battery
  • the solid content of the positive electrode slurry was 45%, and the viscosity of the lithium ion battery positive electrode slurry was 4000 mPa ⁇ s.
  • the ternary material and the conductive agent are mixed and stirred until uniformly dispersed; the oil-soluble terpene resin is added to N-methylpyrrolidone (NMP) to prepare a terpene resin solution, and the obtained terpene resin solution is added to the above system and stirred uniformly. Then, PVDF was added to the above-obtained mixture, and an appropriate amount of NMP was added thereto, and the mixture was uniformly stirred to obtain an electrode slurry (solid content: 45%); the obtained slurry was uniformly coated on the Al foil and sufficiently dried, that is, A ternary material positive electrode sheet is obtained.
  • NMP N-methylpyrrolidone
  • a comparative electrode was prepared in the same manner using PVDF as a binder (no terpene resin).
  • Electrochemical tests were performed on the charge-discharge cycle stability and rate performance of the test electrode and the comparison electrode.
  • FIG. 8 is a test curve of the rate performance of the test electrode and the comparative electrode at different charge and discharge current densities according to the embodiment.
  • the ternary material electrode prepared by using TX-PVDF having a mass ratio of 1:20 as a composite binder exhibits excellent high-rate characteristics.
  • the magnification is higher than 2C
  • the ternary material using TX-PVDF as a binder has better rate performance than PVDF.
  • the magnification is 5C
  • the specific capacity of the ternary material prepared by using TX-PVDF as the binder is 113.3 mAh/g, which is higher than the specific capacity of the ternary material (106.7 mAh/g) using the PVDF binder.
  • the binder is a terpene resin-based oily binder
  • the terpene resin-based oily binder comprises an oil-soluble terpene resin and an oil-soluble polymer auxiliary agent
  • the oil-soluble polymer auxiliary agent is a poly-powder Fluorine (PVDF)
  • PVDF poly-powder Fluorine
  • the mass ratio of the oil-soluble terpene resin to polyvinylidene fluoride is 1:50
  • the solvent is N-methylpyrrolidone.
  • the active material is activated carbon (C); the conductive agent is acetylene black; the current collector is an aluminum foil current collector; the solid content of the supercapacitor electrode sheet electrode slurry is 40%, and the supercapacitor electrode sheet electrode paste
  • the viscosity is 4000 mPa ⁇ s.
  • the activated carbon and the conductive agent are mixed and stirred until uniformly dispersed; the oil-soluble terpene resin is added to N-methylpyrrolidone (NMP) to prepare a terpene resin solution, and the obtained terpene resin solution is added to the above system and stirred uniformly; Add PVDF to the mixture obtained above, add an appropriate amount of NMP, and stir evenly to obtain an electrode slurry (solid content: 40%); uniformly apply the obtained slurry to the Al foil, and dry it sufficiently to obtain activated carbon. Electrode sheet. After the vacuum-dried pole pieces were weighed, the pole pieces and the separator were placed in a button cell case, and the electrolyte was added dropwise to form a symmetric activated carbon supercapacitor, and the cycle stability test was performed.
  • NMP N-methylpyrrolidone
  • test electrode was tested for cycle stability at a current density of 200 mA/g.
  • Figure 9 is a cyclic stability curve of an activated carbon electrode prepared using a TX/PVDF binder at a current density of (200-2.5 V) at a current density of 200 mA/g.
  • the activated carbon electrode prepared by using TX/PVDF binder has its coulombic efficiency maintained above 97% after 1000 cycles (except for the first 10 times).
  • the capacitors exhibit good cycle stability.

Abstract

本发明提供了一种萜烯树脂基复合粘结剂在制备锂离子电池正极电极片或超级电容器电极片中的用途。与现有技术相比,本发明具有以下优势:本发明提供的萜烯树脂基水系粘结剂应用于锂离子电池正极,能降低正极极片的电化学界面阻抗,能较大改善锂电池正极材料的高倍率性能以及循环稳定性能;本发明提供的萜烯树脂基油性粘结剂在锂离子电池正极和超级电容中的应用,能改善电极的循环稳定性能,显著地降低生产的成本;本发明提供的萜烯树脂广泛来源于天然植物,绿色环保,资源丰富,作为水系或油性粘结剂的成分应用于锂离子电池正极和超级电容器,有显著的技术效果,能降低电池的成本,推动电池全水性绿色生产,具有广阔的市场前景。

Description

萜烯树脂基复合粘结剂在电化学储能器件中的用途 技术领域
本发明涉及一种粘结剂,具体涉及一种萜烯树脂基复合粘结剂在电化学储能器件中的用途。
背景技术
在电池或超级电容器制造过程中,均需使用粘结剂将电极活性物质粘结加工。粘结剂是用来将电极活性物质和导电剂粘附在集流体上的高分子化合物。长期以来,在锂离子电池工业的规模化生产中,主要采用聚偏氟乙烯(PVDF)作粘结剂、有机溶剂N-甲基吡咯烷酮(NMP)等作分散剂。但由于PVDF存在自身的缺点,如电子和离子导电性差,在电解液中有一定的溶胀,且与金属锂、LixC6在较高温度下发生放热反应,存在较大的安全隐患。此外,PVDF的杨氏模量相对较高,极片的柔韧性不够好,吸水后分子量下降,粘性变差,因此,对环境的湿度要求比较高,能耗大,生产成本高。同时PVDF使用的有机溶剂NMP易挥发、易燃、易爆,且毒性大。NMP的挥发不仅严重危害生产车间工作人员的身体健康,而且会造成严重的环境污染,回收费用高。因此,寻找可以替代有机溶剂型PVDF的新型绿色水系粘结剂具有深远的意义,已逐渐成为锂离子电池粘结剂的重要发展方向,以满足现代社会对于绿色节能生产的需求。萜烯树脂(C5H8)n,又称聚萜烯或蒎烯树脂,广泛存在于植物体和海洋生物体内的天然来源碳氢化合物,具有低气味、无毒、不结晶、耐稀酸稀碱、耐热、耐光、抗老化、粘接力强、高附着力、热稳定性好,相容性和溶解性好等诸多优点,被广泛地用作压敏粘合剂、热熔粘合剂、增粘剂等的基体,应用于涂料、橡胶、塑料、印刷、卫生和食品包装、离子交换树脂、钾肥增效剂等工业中。本发明申请人于2014年提交了天然高分子萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器上应用的发明专利(201410229082.7),技术效果良好。此外,JP5-74461采用羧甲基纤维素(CMC)与丁苯橡胶乳液(SBR)混合作为锂离子电池负极材料的水系粘结剂,已经得到了迅速的发展,并广泛商业应用于锂离子电池石墨负极片的制备。但在锂电池正极还未能商业化应用,其主要 原因是由于正极材料电位平台相对较高,与石墨负极材料比较正极材料通常导电性很差,还存在易团聚和难分散等问题。此外,正极材料和负极材料对水性粘结剂的技术要求不同,与负极材料相比,正极材料水性粘结剂需要更高的抗氧化性,能耐高电位反复充放电循环,而负极材料的水性粘结剂则需要更好的耐还原性能。与负极材料相比,正极材料对电池的性能起着更关键的作用。因此,正极材料用水系粘结剂是锂电池行业相关材料研发的技术前沿。然而,目前锂离子电池正极所使用的PVDF粘结剂价格昂贵,迫切需要研究开发新型的锂离子电池正极水系粘结剂以及降低生产成本。本发明萜烯树脂基复合粘结剂应用于锂离子电池正极或超级电容器中,能显著提高其高倍率性能和循环稳定性,降低电化学界面阻抗。与目前锂离子电池正极PVDF粘结剂体系比较,萜烯树脂原料来源广泛,绿色环保,成本低廉。研究开发新型的萜烯树脂基复合粘结剂,对解决正极浆料的分散性,推动锂离子电池和超级电容器电极片制备的绿色工艺发展,降低生产成本,以及推动锂离子电池产业的技术进步,乃至推动电动汽车等战略新兴产业的发展具有重要意义。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供了一种萜烯树脂基复合粘结剂在制备锂离子电池正极电极片或超级电容器电极片中的用途。本发明提供了一种锂离子电池正极电极片,本发明还提供了一种超级电容器电极片,本发明还提供了一种锂离子电池和一种超级电容器。
为实现上述目的,本发明采取的技术方案为:萜烯树脂基复合粘结剂在制备锂离子电池正极电极片或超级电容器电极片中的用途。
优选地,所述萜烯树脂基粘结剂为萜烯树脂基水系粘结剂或萜烯树脂基油性粘结剂;
所述萜烯树脂基水系粘结剂包含水溶性萜烯树脂乳液和水溶性高分子助剂,所述水溶性高分子助剂为羧甲基纤维素、聚丙烯酸及其金属盐中的一种或几种,所述萜烯树脂乳液中的萜烯树脂和所述水溶性高分子助剂的质量比为50:1~1:50;
所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯(PVDF),所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50。
本发明提供了一种锂离子电池正极电极片,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、粘结剂和溶剂;
所述粘结剂为萜烯树脂基复合粘结剂;且所述正极活性材料、导电剂和粘结剂的质量比为正极活性材料:导电剂:粘结剂=70~95:1~20:4~10。
优选地,所述粘结剂为萜烯树脂基水系粘结剂,所述萜烯树脂基水系粘结剂包含水溶性萜烯树脂乳液和水溶性高分子助剂,所述水溶性高分子助剂为羧甲基纤维素、聚丙烯酸及金属盐中的一种或几种,所述萜烯树脂乳液中的萜烯树脂和所述水溶性高分子助剂的质量比为50:1~1:50;所述溶剂为水。本发明所述萜烯树脂乳液为萜烯树脂和高分子表面活性剂乳化而成,本发明所用萜烯树脂乳液或萜烯树脂固体可直接购买于市场。更优选地,所述萜烯树脂乳液中萜烯树脂的质量浓度为55%,所述萜烯树脂乳液的粘度为3000~8000mPa·s。
优选地,所述粘结剂为萜烯树脂基油性粘结剂,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯(PVDF),所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50,所述溶剂为N-甲基吡咯烷酮。
优选地,所述正极活性材料为磷酸铁锂、钴酸锂、锰酸锂或三元材料的一种或多种;所述导电剂为导电碳材料;所述集流体为铝箔集流体;
所述锂离子电池正极浆料的固体含量为30~75%,锂离子电池正极浆料的粘度为3000~8000mPa·s。更优选地,所述导电剂为乙炔黑。
本发明提供了一种超级电容器电极片,所述超级电容器电极片包括集流体和负载在集流体上的电极浆料;所述电极浆料包括活性材料、导电剂、粘结剂和溶剂;
所述粘结剂为萜烯树脂基油性粘结剂;且所述活性材料、导电剂和粘结剂的质量比为活性材料:导电剂:粘结剂=70~95:1~20:4~10。
优选地,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯(PVDF),所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50,所述溶剂为N-甲基吡咯烷酮。
优选地,所述活性材料为活性炭;所述导电剂为导电碳材料;所述集流体为铝箔集流体;
所述超级电容器电极片电极浆料的固体含量为30~75%,超级电容器电极片电极浆料的粘度为3000~8000mPa·s。更优选地,所述导电剂为乙炔黑。
本发明提供了一种锂离子电池,所述锂离子电池包含上述所述的锂离子电池正极电极片。
本发明提供了一种超级电容器,所述超级电容器包含上述所述的超级电容器电极片。
本发明的有益效果在于:本发明提供了一种萜烯树脂基复合粘结剂在制备锂离子电池正极电极片或超级电容器电极片中的用途。与现有技术相比,本发明具有以下优势:
1)本发明提供的萜烯树脂基水系粘结剂应用于锂离子电池正极材料,能降低电化学界面阻抗;
2)本发明提供的萜烯树脂基水系粘结剂在锂离子电池正极中的应用,能较大改善材料的高倍率性能以及电池循环稳定性能;
3)本发明提供的萜烯树脂基油性粘结剂在锂离子电池正极和超级电容器中的应用,能改善电池循环稳定性能,显著地降低生产的成本;
4)本发明提供的萜烯树脂广泛来源于天然植物,绿色环保,资源丰富,作为水系或油性粘结剂的成分应用于锂离子电池正极和超级电容器,有显著的技术效果,能降低电池的成本,推动电池全水性绿色生产,具有广阔的市场前景。
附图说明
图1为本发明实施例1磷酸铁锂及对比电极在0.2C充放电电流密度下的循环性能测试曲线。
图2为本发明实施例2磷酸铁锂及对比电极在0.2C倍率下阻抗测试对比图。
图3为本发明实施例3磷酸铁锂及对比电极在不同充放电电流密度下的倍率性能图。
图4为本发明实施例4三元材料及对比电极在0.2C充放电电流密度下的循环性能测试曲线。
图5为本发明实施例5三元材料及对比电极在0.2C倍率下阻抗测试对比图。
图6为本发明实施例6三元材料及对比电极在不同充放电电流密度下的倍率性能图。
图7为本发明实施例7磷酸铁锂及对比电极在0.2C充放电电流密度下的循环性能测试曲线。
图8为本发明实施例8三元材料及对比电极在不同充放电电流密度下的倍率性能图
图9为本发明实施例9活性炭电极在200mA/g电流密度下的循环稳定性曲线
其中:萜烯树脂简写为TX。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
本发明列举出采用萜烯树脂基复合粘结剂制备锂离子电池或超级电容器电极的方法,并将萜烯树脂基复合粘结剂的锂离子电池与其他粘结剂的锂离子电池或超级电容器进行电化学性能的对比测试:
本发明具体实施例中所用水溶性萜烯树脂乳液(型号为8218水性萜烯树脂增粘乳液)或萜烯树脂固体购自广州松宝化工有限公司。
实施例1:
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为正极活性材料:导电剂:粘结剂=90:5:5。所述粘结剂为萜烯树脂基水系粘结剂,所述萜烯树脂基水系粘结剂包含水溶性萜烯树脂乳液和水溶性高分子助剂,所述水溶性高分子助剂为羧甲基纤维素钠(CMC),所述溶剂为水。所述正极活性材料为磷酸铁锂;所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固体含量为45%,锂离子电池正极浆料的粘度为4000mPa·s。将磷酸铁锂和导电剂混合搅拌至均匀分散;再将羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,将制得的羧甲基纤维素水溶液加入上述体系中搅拌均匀;然后将水溶性萜烯树脂乳液加到上述所得的混合物中(TX/CMC=1/50、1/1和50/1,这里指的是质量比),再加适量去离子水,搅拌均匀,得到磷酸铁锂电极浆料;将制得的浆料均匀涂覆于Al箔上,90℃真空干燥,即得磷酸铁锂正极片。将真空干燥过的极片裁片称重后,将之在手 套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
采用聚偏氟乙烯(PVDF)作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性进行电化学测试。
四、结果分析:
图1为本实施例测试电极及对比电极在0.2C的充放电电流密度下的循环性能测试曲线,表1为其相应的100次循环后容量保持率。从表中可以看出,采用不同比例TX/CMC作为粘结剂制备的磷酸铁锂电极经过100圈循环后,其容量保持率均比采用PVDF作为粘结剂制备的磷酸铁锂电极要高。
表1为采用不同粘结剂制备磷酸铁锂正极材料0.2C倍率下100次循环后的容量保持率
Figure PCTCN2016070066-appb-000001
实施例2:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极采用的TX/PAALi作为粘结剂,PAALi为聚丙烯酸锂,其中TX/PAALi=1:1,这里指的是质量比。
二、对比电极的配制:
分别采用PAALi、CMC和PVDF作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极循环100圈后的阻抗测试。
四、结果分析:
图2为本实施例测试电极及对比电极在0.2C倍率下,分别采用TX/PAALi、PAALi、CMC和PVDF作为粘结剂,磷酸铁锂电极循环100圈后的阻抗测试结果。由图可见,采用TX/PAALi为粘结剂,磷酸铁锂电极的阻抗值比PAALi、CMC和PVDF体系相对减小。
实施例3:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极采用的TX/PAANa作为粘结剂,PAANa为聚丙烯酸钠,其中TX/PAANa=1:1、1:1.5和1.5:1,这里指的是质量比。
二、对比电极的配制:
同实施例1。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性、倍率性能进行电化学测试。
四、结果分析:
图3为本实施例测试电极及对比电极在不同充放电电流密度下的倍率性能测试曲线。从图中可以看出,采用TX/PAANa作为磷酸铁锂粘结剂的电极显示优异的高倍率特性。当倍率高于0.5C时,采用TX/PAANa作为粘结剂的磷酸铁锂远高于PVDF。倍率为5C时,采用TX/PAANa=1.5:1作为粘结剂制备磷酸铁锂的比容量为113.5mAh/g,显著高于采用PVDF粘结剂的磷酸铁锂比容量(55.4mAh/g)。
实施例4:
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为正极活性材料:导电剂:粘结剂=85:9:6。所述粘结剂为萜烯树脂基水系粘结剂,所述萜烯树脂基水系粘结剂包含水溶性萜烯树脂乳液和水溶性高分子助剂,所述水溶性高分子助剂为羧甲基纤维素钠(CMC),所述溶剂为水。所述正极活性材料为三元材料(LiNi1/3Mn1/3Co1/3O2,NMC);所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固 体含量为45%,锂离子电池正极浆料的粘度为3000mPa·s。
将NMC和导电剂混合搅拌至均匀分散;再将羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,将制得的羧甲基纤维素水溶液加入上述体系中搅拌均匀;然后将水溶性萜烯树脂乳液加到上述所得的混合物中(TX/CMC=1/50、1/1和50/1,这里指的是质量比),再加适量去离子水,搅拌均匀,得到NMC电极浆料;将制得的浆料均匀涂覆于Al箔上,90℃真空干燥,即得NMC正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
采用PVDF作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性进行电化学测试。
四、结果分析:
图4为本实施例测试电极及对比电极在0.2C的充放电电流密度下的循环性能测试曲线,表2为其相应的200次循环后容量保持率。从表中可以看出,采用不同比例TX/CMC作为粘结剂制备的NMC电极经过200圈循环后,其容量保持率与采用PVDF作为粘结剂制备的NMC电极相当,甚至更高。
表2为采用不同粘结剂制备三元正极材料0.2C倍率下200次循环后的容量保持率
Figure PCTCN2016070066-appb-000002
实施例5:
一、测试电极的配制:
本实施例与实施例4的区别在于,测试电极采用的TX/PAALi作为粘结剂,其中TX/PAALi=1:1,这里指的是质量比。
二、对比电极的配制:
同实施例4。
三、电化学测试:
对测试电极、对比电极循环200圈后的阻抗测试。
四、结果分析:
图5为本实施例测试电极及对比电极在0.2C倍率下,分别采用TX/PAALi和PVDF作为粘结剂,三元材料电极循环200圈后的阻抗测试结果。由图可见,采用TX/PAALi为三元材料粘结剂电极的阻抗值比PVDF体系相对减小。
实施例6:
一、测试电极的配制:
本实施例与实施例4的区别在于,测试电极采用的TX/PAANa作为粘结剂,其中TX/PAANa=1:1。
二、对比电极的配制:
同实施例4。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性、倍率性能进行电化学测试。
四、结果分析:
图6为本实施例测试电极及对比电极在不同充放电电流密度下的倍率性能曲线。从图中可以看出,采用TX/PAANa作为三元材料粘结剂的电极显示良好的高倍率特性。当倍率高于0.5C时,采用TX/PAANa作为粘结剂三元材料比容量远高于PVDF。倍率为5C时,采用TX/PAANa=1:1作为粘结剂制备三元材料的比容量为116.4mAh/g,显著高于采用PVDF粘结剂的三元材料比容量(106.7mAh/g)。
实施例7:
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、粘结剂和溶剂;且所述正极活性材料、导 电剂和粘结剂的质量比为正极活性材料:导电剂:粘结剂=90:5:5。所述粘结剂为萜烯树脂基油性粘结剂,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯(PVDF),所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50,所述溶剂为N-甲基吡咯烷酮。所述正极活性材料为磷酸铁锂;所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固体含量为45%,锂离子电池正极浆料的粘度为3000mPa·s。
将磷酸铁锂和导电剂混合搅拌至均匀分散;再将油溶性萜烯树脂加入N-甲基吡咯烷酮(NMP)制成萜烯树脂溶液,将制得的萜烯树脂溶液加入上述体系中搅拌均匀;然后将PVDF加到上述所得的混合物中,再加适量NMP,搅拌均匀,得到电极浆料(固含量为45%);将制得的浆料均匀涂覆于Al箔上,充分干燥,即得磷酸铁锂正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
采用PVDF作为粘结剂(无萜烯树脂),按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性进行电化学测试。
四、结果分析:
图7为本实施例测试电极及对比电极在0.2C的充放电电流密度下的循环性能测试曲线,表3为其相应的65次循环后容量保持率。从表中可以看出,采用不同添加比例(1:4、1:25和1:50,这里指的是质量比)TX与PVDF作为复合粘结剂制备的磷酸铁锂电极经过65圈循环后,其容量保持率均比采用PVDF作为粘结剂制备的磷酸铁锂电极要高。
表3为采用不同粘结剂制备磷酸铁锂正极材料0.2C倍率下65次循环后的容量保持率
Figure PCTCN2016070066-appb-000003
Figure PCTCN2016070066-appb-000004
实施例8:
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为正极活性材料:导电剂:粘结剂=85:9:6。所述粘结剂为萜烯树脂基油性粘结剂,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯(PVDF),所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:20,所述溶剂为N-甲基吡咯烷酮(NMP)。所述正极活性材料为三元材料(LiNi1/3Mn1/3Co1/3O2,NMC);所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固体含量为45%,锂离子电池正极浆料的粘度为4000mPa·s。
将三元材料和导电剂混合搅拌至均匀分散;再将油溶性萜烯树脂加入N-甲基吡咯烷酮(NMP)制成萜烯树脂溶液,将制得的萜烯树脂溶液加入上述体系中搅拌均匀;然后将PVDF加到上述所得的混合物中,再加适量NMP,搅拌均匀,得到电极浆料(固含量为45%);将制得的浆料均匀涂覆于Al箔上,充分干燥,即得三元材料正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
采用PVDF作为粘结剂(无萜烯树脂),按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性、倍率性能进行电化学测试。
四、结果分析:
图8为本实施例测试电极及对比电极在不同充放电电流密度下的倍率性能测试曲线。从图中可以看出,采用质量比为1:20的TX-PVDF作为复合粘结剂制备的三元材料电极显示优异的高倍率特性。当倍率高于2C时,采用TX-PVDF作为粘结剂的三元材料的倍率性能优于PVDF。倍率为5C时,采用TX-PVDF作为粘结剂制备三元材料的比容量为113.3mAh/g,高于采用PVDF粘结剂的三元材料比容量(106.7mAh/g)。
实施例9:
一、测试电极的配制:
本发明所述超级电容器电极片的一种实施例,本实施例所述超级电容器电极片包括集流体和负载在集流体上的电极浆料;所述电极浆料包括活性材料、导电剂、粘结剂和溶剂;且所述活性材料、导电剂和粘结剂的质量比为活性材料:导电剂:粘结剂=85:10:5。所述粘结剂为萜烯树脂基油性粘结剂,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯(PVDF),所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:50,所述溶剂为N-甲基吡咯烷酮。所述活性材料为活性炭(C);所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述超级电容器电极片电极浆料的固体含量为40%,超级电容器电极片电极浆料的粘度为4000mPa·s。
将活性炭和导电剂混合搅拌至均匀分散;再将油溶性萜烯树脂加入N-甲基吡咯烷酮(NMP)制成萜烯树脂溶液,将制得的萜烯树脂溶液加入上述体系中搅拌均匀;然后将PVDF加到上述所得的混合物中,再加适量NMP,搅拌均匀,得到电极浆料(固含量为40%);将制得的浆料均匀涂覆于Al箔上,充分干燥,即得活性炭电极片。将真空干燥过的极片裁片称重后,将极片和隔膜放入扣式电池壳中,滴加电解液后封口组装成对称型活性炭超级电容器,进行循环稳定性测试。
二、电化学测试:
测试电极在200mA/g电流密度下的循环稳定性测试。
三、结果分析:
图9为采用TX/PVDF粘结剂制备的活性炭电极,在200mA/g电流密度下,(0-2.5V)电压范围内的循环稳定性曲线。采用TX/PVDF粘结剂制备的活性炭电极,经过1000次的循环,其库伦效率一直保持在97%以上(除前10次外),该 电容器表现出良好的循环稳定性。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 萜烯树脂基复合粘结剂在制备锂离子电池正极电极片或超级电容器电极片中的用途。
  2. 根据权利要求1所述的用途,其特征在于,所述萜烯树脂基复合粘结剂为萜烯树脂基水系粘结剂或萜烯树脂基油性粘结剂;
    所述萜烯树脂基水系粘结剂包含水溶性萜烯树脂乳液和水溶性高分子助剂,所述水溶性高分子助剂为羧甲基纤维素、聚丙烯酸及其金属盐中的一种或几种,所述萜烯树脂乳液中的萜烯树脂和所述水溶性高分子助剂的质量比为50:1~1:50;
    所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯,所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50。
  3. 一种锂离子电池正极电极片,其特征在于,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、粘结剂和溶剂;
    所述粘结剂为萜烯树脂基复合粘结剂;且所述正极活性材料、导电剂和粘结剂的质量比为正极活性材料:导电剂:粘结剂=70~95:1~20:4~10。
  4. 根据权利要求3所述的锂离子电池正极电极片,其特征在于,所述粘结剂为萜烯树脂基水系粘结剂,所述萜烯树脂基水系粘结剂包含水溶性萜烯树脂乳液和水溶性高分子助剂,所述水溶性高分子助剂为羧甲基纤维素、聚丙烯酸及其金属盐中的一种或几种,所述萜烯树脂乳液中的萜烯树脂和所述水溶性高分子助剂的质量比为50:1~1:50;所述溶剂为水。
  5. 根据权利要求3所述的锂离子电池正极电极片,其特征在于,所述粘结剂为萜烯树脂基油性粘结剂,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯,所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50,所述溶剂为N-甲基吡咯烷酮。
  6. 根据权利要求3所述的锂离子电池正极电极片,其特征在于,所述正极活性材料为磷酸铁锂、钴酸锂、锰酸锂或三元材料的一种或多种;所述导电剂为导电碳材料;所述集流体为铝箔;
    所述锂离子电池正极浆料的固体含量为30~75%,锂离子电池正极浆料的粘度为3000~8000mPa·s。
  7. 一种超级电容器电极片,其特征在于,所述超级电容器电极片包括集流体和负载在集流体上的电极浆料;所述电极浆料包括活性材料、导电剂、粘结剂和溶剂;
    所述粘结剂为萜烯树脂基油性粘结剂;且所述活性材料、导电剂和粘结剂的质量比为活性材料:导电剂:粘结剂=70~95:1~20:4~10;
    优选地,所述活性材料为活性炭,所述导电剂为导电碳材料,所述集流体为铝箔集流体,所述超级电容器电极片电极浆料的固体含量为30~75%,超级电容器电极片电极浆料的粘度为3000~8000mPa·s。
  8. 根据权利要求7所述的超级电容器电极片,其特征在于,所述粘结剂为萜烯树脂基油性粘结剂,所述萜烯树脂基油性粘结剂包含油溶性萜烯树脂和油溶性高分子助剂,所述油溶性高分子助剂为聚偏氟乙烯,所述油溶性萜烯树脂和聚偏氟乙烯的质量比为1:4~1:50,所述溶剂为N-甲基吡咯烷酮。
  9. 一种锂离子电池,其特征在于,所述锂离子电池包含如权利要求3-6任一所述的锂离子电池正极电极片。
  10. 一种超级电容器,其特征在于,所述超级电容器包含如权利要求7或8所述的超级电容器电极片。
PCT/CN2016/070066 2015-10-29 2016-01-04 萜烯树脂基复合粘结剂在电化学储能器件中的用途 WO2017071117A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/771,480 US20180351178A1 (en) 2015-10-29 2016-01-04 Application of terpene resin-based composite binder in electrochemical energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510727775.3A CN105355452B (zh) 2015-10-29 2015-10-29 萜烯树脂基复合粘结剂在电化学储能器件中的用途
CN201510727775.3 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017071117A1 true WO2017071117A1 (zh) 2017-05-04

Family

ID=55331400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070066 WO2017071117A1 (zh) 2015-10-29 2016-01-04 萜烯树脂基复合粘结剂在电化学储能器件中的用途

Country Status (3)

Country Link
US (1) US20180351178A1 (zh)
CN (1) CN105355452B (zh)
WO (1) WO2017071117A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579251A (zh) * 2017-08-31 2018-01-12 广东工业大学 一种生产线上锂离子电池的正极浆料及其制备方法
CN115425226B (zh) * 2022-08-18 2023-04-14 楚能新能源股份有限公司 一种三元材料柔性正极及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017520A (zh) * 2014-05-27 2014-09-03 中国科学院广州能源研究所 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
CN104201388A (zh) * 2014-07-31 2014-12-10 湖南德天新能源科技有限公司 复合锂离子电池负极材料的制备方法及石油树脂在制备方法中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029502A1 (en) * 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
WO2013084990A1 (ja) * 2011-12-06 2013-06-13 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
CN102569730A (zh) * 2012-01-31 2012-07-11 中南大学 一种锂硫电池正极极片的制备方法
JP5187791B1 (ja) * 2012-02-24 2013-04-24 株式会社日立製作所 正極合剤層形成用組成物の製造方法およびリチウムイオン二次電池の製造方法
KR101621410B1 (ko) * 2013-09-11 2016-05-16 주식회사 엘지화학 리튬 전극 및 그를 포함하는 리튬 이차전지
KR102183992B1 (ko) * 2014-02-07 2020-11-27 삼성에스디아이 주식회사 양극 활물질, 이를 채용한 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
CN104852013B (zh) * 2015-03-17 2019-01-25 中国科学院广州能源研究所 一种基于水性粘结剂的三维电极极片的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017520A (zh) * 2014-05-27 2014-09-03 中国科学院广州能源研究所 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
CN104201388A (zh) * 2014-07-31 2014-12-10 湖南德天新能源科技有限公司 复合锂离子电池负极材料的制备方法及石油树脂在制备方法中的应用

Also Published As

Publication number Publication date
US20180351178A1 (en) 2018-12-06
CN105355452B (zh) 2019-03-01
CN105355452A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
CN106450102B (zh) 用于锂硫电池的石墨改性隔膜及其制备方法与构成的锂硫电池
CN101457131B (zh) 一种锂离子电池电极材料用水性粘合剂及其制备方法
WO2015180472A1 (zh) 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
CN103117414B (zh) 一种负极钛酸锂电池用电解液、锂离子电池及其制备方法
CN101872856B (zh) 一种磷酸铁锂电池正极浆料、使用该正极浆料的磷酸铁锂电池及其制备方法
CN105261760A (zh) 锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池
WO2017031884A1 (zh) 一种锂电池正极浆料的制备方法
JP7156449B2 (ja) リチウムイオン電池負極用バインダー水溶液
WO2014051043A1 (ja) 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体及び電気化学素子用電極
WO2014008761A1 (zh) 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
CN102340027B (zh) 一种高能量密度的锂离子电池
CN107910521B (zh) 一种钌修饰的氟化碳材料、制备及应用
CN104752729A (zh) 具有电子及离子导电性共性的锂离子电池用水性复合粘结剂的制备方法
CN107958997B (zh) 正极浆料、正极极片及锂离子电池
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN105406081A (zh) 一种锂离子电池正极浆料的制备方法
WO2023123087A1 (zh) 一种水系正极极片及包含该极片的二次电池及用电装置
CN102306788B (zh) 一种锂离子电池及其负极以及该负极使用的粘结剂
CN109599550A (zh) 一种全固态锂离子电池的制作工艺
WO2017071117A1 (zh) 萜烯树脂基复合粘结剂在电化学储能器件中的用途
CN113675389A (zh) 一种石墨复合电极材料及其制备方法
CN103730631B (zh) 一种锂离子电池负极材料及其制备方法
CN106684340A (zh) 一种锂离子电池正极浆料及其制备方法
CN102827541B (zh) 一种涂料、采用该涂料制备的水性柔韧正极片、锂离子电池
JP2018006333A (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858568

Country of ref document: EP

Kind code of ref document: A1