WO2017057651A1 - 還元ガス用ソルダペースト、半田付け製品の製造方法 - Google Patents
還元ガス用ソルダペースト、半田付け製品の製造方法 Download PDFInfo
- Publication number
- WO2017057651A1 WO2017057651A1 PCT/JP2016/078961 JP2016078961W WO2017057651A1 WO 2017057651 A1 WO2017057651 A1 WO 2017057651A1 JP 2016078961 W JP2016078961 W JP 2016078961W WO 2017057651 A1 WO2017057651 A1 WO 2017057651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- temperature
- thixotropic agent
- solder paste
- reducing gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0016—Brazing of electronic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/19—Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/20—Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/04—Heating appliances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/06—Solder feeding devices; Solder melting pans
- B23K3/0607—Solder feeding devices
- B23K3/0638—Solder feeding devices for viscous material feeding, e.g. solder paste feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3612—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
- B23K35/3615—N-compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/003—Cooling means
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
- H05K3/3463—Solder compositions in relation to features of the printed circuit board or the mounting process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/42—Printed circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1157—Using means for chemical reduction
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
- H05K3/3485—Applying solder paste, slurry or powder
Definitions
- the present invention relates to a solder paste for a reducing gas and a method for manufacturing a soldered product, and more particularly to a reducing agent / activator-free solder paste and a method for manufacturing a soldered product using the same.
- solder paste has the advantage of excellent productivity because it can be supplied by printing.
- solder paste contains solder powder and flux.
- the flux component include a reducing agent, an activator, a thixotropic agent (binder), a solvent, and a tackifier resin.
- the reducing agent plays the role of removing the oxide film on the surface of the soldering object and the surface of the solder powder during soldering
- the activator plays the role of improving the reducibility and improving the wettability of the solder.
- the flux remains as a flux residue after soldering.
- the reducing agent and activator have a significant effect on soldering performance, corrosion, and migration. If the reduction effect is high, the solderability is improved.
- these active ingredients are easily ionized and have a strong affinity for water, they are likely to cause corrosion and ion migration. For this reason, when a solder paste containing a reducing agent and an activator is used, it is necessary to clean the flux residue after soldering as described in Patent Documents 1 and 2 (Patent Document 1, paragraph) 0002-0004, Patent Document 2, paragraph 0002).
- an object of the present invention is to provide a reducing agent and activator-free solder paste, and a method for manufacturing a soldered product that uses the solder paste to complete solder bonding.
- solder paste is made only with solder powder, thixotropic agent, and solvent, it does not naturally have a reducing effect, and good solder wettability cannot be obtained.
- the conventional solder paste has a reducing effect by including a reducing agent and an activator.
- the inventors of the present invention cannot obtain sufficient wettability by combining a conventional solder paste and a reducing gas, and in a solder paste excluding a reducing agent and an activator, sufficient wetting can be achieved if the penetration of the reducing gas can be ensured. As a result, the present invention was completed.
- the solder paste for reducing gas according to the first aspect of the present invention is a solder paste for reducing gas used together with a reducing gas, comprising solder powder; a thixotropic agent that is solid at room temperature; a solvent; It is a solder paste, which is free of reducing agent for the purpose of reducing the amount of the active material, and free of the activator for improving the reducing property.
- the “thixotropic agent” makes it possible to prevent the solder powder from being separated from other components or prevent dripping, and the “solvent” makes it possible to adjust the viscosity.
- the solvent is preferably one that can be evaporated at a temperature lower than the temperature at which the solder powder melts.
- the solvent may be one that can be evaporated at a temperature lower than the temperature at which the thixotropic agent melts.
- “Reducing agent” refers to a component that removes an oxide film
- “active agent” refers to a component that improves reducibility.
- “Reducing agent-free” means that it does not contain a reducing agent, or even if it is contained, it is an amount that does not interfere with the effects of the present invention, and “active agent-free” does not contain an active agent. Even if it is included, it means an amount that does not hinder the effects of the present invention. That is, as long as the effect of the present invention is not hindered, other components such as a reducing agent, an activator, and an additive may be included.
- the solder paste of the present invention is essentially a solder paste consisting essentially of three components: solder powder, thixotropic agent, and solvent. If comprised in this way, it is a solder paste with few voids and few flux scattering, Comprising: There are few flux residues and it can obtain the solder paste which does not need washing
- the solder paste for reducing gas according to the second aspect of the present invention is the solder paste for reducing gas according to the first aspect of the present invention, wherein the thixotropic agent is wet in the following methods (1) to (5).
- This is a thixotropic agent having a spread area ratio of 0 to 50%, and the predetermined temperature in the following (3) is the melting point of the thixotropic agent under normal pressure.
- a paste obtained by removing solder powder from a solder paste consisting of three components of solder powder, thixotropic agent, and solvent is 5 ⁇ 5 mm in size, 100 ⁇ m in thickness (metal mask thickness), and nickel-plated copper substrate (20 ⁇ 20 mm, 2 mm in thickness) ).
- the solder paste for reducing gas according to the third aspect of the present invention is the solder paste for reducing gas according to the first aspect or the second aspect of the present invention, wherein the solder powder and the thixotropic agent have a melting temperature. Higher than the temperature at the time of reduction with the reducing gas.
- the solder powder and the thixotropic agent exist as a solid without melting at the temperature during the reduction, so that the reducing gas can easily enter the gap between the solder powder, the thixotropic agent, and the gap between the solder powder and the thixotropic agent. can do.
- the solder paste for reducing gas according to the fourth aspect of the present invention is the solder paste for reducing gas according to any one of the first to third aspects of the present invention, wherein the reducing gas is formic acid. Or hydrogen. If comprised in this way, it will become a solder paste suitable for the gas often used as reducing gas.
- the reducing gas solder paste according to the fifth aspect of the present invention is the reducing gas solder paste according to any one of the first to fourth aspects of the present invention, wherein the thixotropic agent is an amide. It is a thixotropic agent. With this configuration, the thixotropic agent does not hinder the intrusion and reduction of the reducing gas because it is a thixotropic agent that has little wetting and spreading even when solid or melted at the temperature during reduction.
- the solder paste for reducing gas according to the sixth aspect of the present invention is the solder paste for reducing gas according to any one of the first to fifth aspects of the present invention, wherein the thixotropic agent is the above-mentioned In the methods (1) to (5), the thixotropic agent satisfies the ratio of the wet spread area of 0 to 50%, and the predetermined temperature in (3) is the temperature during reduction with the reducing gas.
- the thixotropic agent exists as a solid without melting at the temperature at the time of reduction, or even when melted, its wetting spread is small, so that infiltration and reduction with a reducing gas are not hindered.
- the solder paste for reducing gas according to the seventh aspect of the present invention is the solder paste for reducing gas according to any one of the first to sixth aspects of the present invention, wherein the solvent is a normal pressure.
- the weight loss by thermogravimetry (TG) at 180 ° C. is 25% or more at a heating rate of 10 ° C./min. If comprised in this way, it will become a solder paste suitable for reducing gas whose temperature at the time of a reduction
- a method for manufacturing a soldered product according to the eighth aspect of the present invention includes a solder according to any one of the first to seventh aspects of the present invention as shown in, for example, Method B in FIG.
- Evaporating step B2 for evaporating the solvent by heating to the solder; the solder left by the evaporating step at any temperature lower than the temperature at which the solder powder melts in parallel with or after the evaporating step; A reduction step B3 for reducing the soldering object with a reducing gas; and after the reduction step, the soldering object is heated to an arbitrary temperature equal to or higher than a temperature at which the solder powder melts. And a solder melting step B4 of melting. With this configuration, the solder powder does not melt at the time of reduction, and the reduction of the solder powder and the soldering object can be effectively performed by the gap generated between the solder powders.
- solder paste is free of a reducing agent and an activator, soldering with less voids and less flux scattering is possible.
- the amount of flux residue can be reduced, the flux residue is not ionic, and no cleaning after soldering is required, which can suppress a decrease in reliability due to active components in the flux residue. There is also an advantage that the property is improved.
- a method for manufacturing a soldered product according to a ninth aspect of the present invention is the method for manufacturing a soldered product according to the eighth aspect of the present invention, further comprising a vacuum step of placing the soldering object in a vacuum.
- the solvent is evaporated by heating the soldering object in a vacuum state.
- “Vacuum” refers to a space at a lower pressure than the atmosphere (so-called reduced pressure). If comprised in this way, evaporation of a solvent can be accelerated
- the method for manufacturing a soldered product according to the tenth aspect of the present invention is the method for manufacturing a soldered product according to the ninth aspect of the present invention, wherein a gap is formed between the solder powders by evaporation of the solvent in the evaporation step.
- the reducing step introduces a reducing gas into the gap and reduces the soldering object in a state where the soldering object is in a vacuum. If comprised in this way, it can make it easier for a reducing gas to infiltrate into gaps, such as between solder powder.
- a method for manufacturing a soldered product according to an eleventh aspect of the present invention is the method for manufacturing a soldered product according to the ninth aspect or the tenth aspect of the present invention, wherein the solder melting step includes the soldering object.
- the soldering object In a state where the object is in a vacuum, the soldering object is heated to a temperature higher than the temperature at which the solder powder melts to melt the solder powder, and after the melting, the pressure is increased to form a void inside the solder powder.
- a vacuum breaking step for breaking the vacuum in the vacuum step; and a cooling step for cooling the soldering object after the vacuum breaking step In order to reduce or eliminate the pressure, a vacuum breaking step for breaking the vacuum in the vacuum step; and a cooling step for cooling the soldering object after the vacuum breaking step.
- the voids can be crushed while the solder is melted in the vacuum breaking process, and the solder can be solidified after the cavities are crushed. Can be further suppressed.
- a method for manufacturing a soldered product according to a twelfth aspect of the present invention is the method for manufacturing a soldered product according to any one of the eighth to eleventh aspects of the present invention.
- Formic acid gas If comprised in this way, a solder powder and a soldering target object can be reduce
- solder paste in addition to the feature of the solder paste that is excellent in productivity, it is possible to obtain a solder paste that has less flux residue than conventional products and does not require cleaning. Furthermore, the manufacturing method of the soldering product using the said solder paste can be obtained.
- FIG. 1 is a schematic configuration diagram of a soldering apparatus 1.
- FIG. 4 is a flowchart showing a solder joining procedure using the soldering apparatus 1.
- 10 is another flowchart showing a solder joining procedure using the soldering apparatus 1.
- It is a graph which shows the temperature profile in reflow.
- FIG. 3 is an external view photograph at the time of solder wettability determination in Examples 1 to 4.
- FIG. 7 is an external appearance photograph when solder wettability is determined in Examples 5 to 7.
- FIG. 6 is an external appearance photograph at the time of solder wettability determination in Examples 8 to 9.
- FIG. 6 is an external appearance photograph when solder wettability is determined in Examples 10 to 12.
- FIG. 6 is an external appearance photograph when solder wettability is determined in Comparative Example 2.
- solder paste for reducing gas A solder paste for reducing gas according to the first embodiment of the present invention will be described.
- the solder paste for reducing gas of the present invention contains solder powder and a thixotropic agent and a solvent as flux, but does not contain a reducing agent and an activator. Or even if it contains, it is below the quantity of the grade which does not disturb the effect of this invention.
- the reducing agent is a substance that removes the oxide film on the surface of the soldering object or the surface of the solder powder during soldering, and is, for example, rosin, rosin derivative, or the like.
- the activator is a substance that improves the reducibility and improves the wettability of the solder, and examples thereof include amine-hydrohalides and organic acids.
- examples of the amine-hydrohalide include diethylamine hydrobromide and cyclohexylamine hydrobromide.
- examples of the organic acid include glutaric acid, adipic acid, azelaic acid, sebacic acid, stearic acid, benzoic acid, and the like.
- the reducing gas solder paste of the present invention may contain a compound (additive, etc.) other than the solder powder, thixotropic agent and solvent as long as the effects of the invention can be obtained except for the reducing agent and the activator. .
- the solder powder and the thixotropic agent contained in the solder paste of the present invention do not melt at the reduction temperature by the reducing gas and the atmospheric pressure at the time of reduction. That is, the temperature at which the thixotropic agent melts is an arbitrary temperature higher than the reduction temperature.
- the temperature at which the solder powder melts is an arbitrary temperature higher than the reduction temperature. In the present embodiment, the temperature is preferably 10 to 50 ° C. higher than the reduction temperature.
- the solvent is preferably a solvent that evaporates (vaporizes) at a temperature lower than the reduction temperature.
- the temperature at which the solvent evaporates is any temperature lower than or the same as the reduction temperature, and examples thereof include 0 to 100 ° C.
- the solvent may be any solvent that evaporates below the reduction temperature at a predetermined atmospheric pressure.
- the solder paste of the present invention includes a material having the following relationship at a predetermined atmospheric pressure. Solvent evaporation temperature ⁇ reduction temperature ⁇ melting point of solder powder, melting point of thixotropic agent The above “melting point” means a temperature at which a substance melts regardless of atmospheric pressure.
- the solder powder and the thixotropic agent may be solid at the temperature during the reduction with the reducing gas, and the solvent may be a gas.
- the solder powder, the thixotropic agent, and the solvent are appropriately used in accordance with the temperature during the reduction. Combine.
- a thixotropic agent that melts at the temperature at the time of reduction can be used as a thixotropic agent for the solder paste of the present invention as long as it is a thixotropic agent that has a small wetting spread in the molten state.
- the thixotropic agent may be referred to as a binder or a gelling agent, but the thixotropic agent, the binder, and the gelling agent are synonymous.
- solder powder The alloy composition of the solder powder is not particularly limited. Various solder alloys used today for bump formation and printed circuit board mounting can be used. For example, Sn—Ag solder, Sn—Ag—Cu solder, Sn—Ag—Cu—Bi solder, Sn—Ag—In—Bi solder, Sn—Cu solder used as lead-free solder, Examples thereof include lead-free solder alloy powders such as Sn—Zn solder and Sn—Bi solder, and a melting point changing alloy A-FAP.
- Thixotropic agent promotes viscosity adjustment of solder paste and adhesion of substances.
- the thixotropic agent is solid at room temperature and normal pressure, and does not melt at the pressure and temperature at the time of reduction, but may be melted when the solder powder is melted, and is preferably an active substance (nonionic). Or, although it melts at the atmospheric pressure and temperature at the time of reduction, it is preferable to have a small wet spread in the molten state. Since the temperature at the time of reduction is determined by the type of the reducing gas, it is appropriately selected according to the reducing gas.
- a thixotropic agent having a small wet spread in the molten state can be identified by the following method.
- a thixotropic agent satisfying the ratio of the wet spread area in the following methods (1) to (5) of 0 to 50%, preferably 0 to 25%, particularly preferably 0 to 15% is preferable.
- the predetermined temperature is the melting point of the thixotropic agent under normal pressure.
- a paste obtained by removing solder powder from a three-component solder paste that is, a thixotropic agent + solvent
- a size of 5 ⁇ 5 mm and a thickness of 100 ⁇ m (metal mask thickness) and a nickel-plated copper substrate (20 ⁇ 20 mm, thickness 2 mm) having a size of 5 ⁇ 5 mm and a thickness of 100 ⁇ m (metal mask thickness) and a nickel-plated copper substrate (20 ⁇ 20 mm, thickness 2 mm) ).
- the predetermined temperature is a temperature at the time of reduction with a reducing gas
- the ratio of the wet spread area in the methods (1) to (5) is 0 to 50%, preferably 0 to 25%, particularly preferably. May be a thixotropic agent satisfying 0 to 15%.
- a paste containing a thixotropic agent that is solid at the temperature at the time of reduction is also included when the ratio of the wet spread area is 0%.
- thixotropic agents examples include amide thixotropic agents and sorbitol thixotropic agents.
- An amide thixotropic agent is a compound containing an amide bond (—CONH—), for example, a higher fatty acid amide such as stearic acid amide, an unsaturated fatty acid monoamide such as ethylene bisstearamide, lauric acid amide, or oleic acid amide.
- N-lauryl lauric acid amide substituted amides such as N-stearyl stearic acid amide, methylol amides such as methylol stearic acid amide, ethylene oxide adducts of fatty acid amides, fatty acid ester amides, fatty acid ethanol amides, N-butyl-N′- Substituted ureas such as stearyl urea, saturated fatty acid bisamides such as methylene bis stearic acid amide, ethylene bis lauric acid amide, ethylene bishydroxy stearic acid amide; methylene bis olein Unsaturated fatty bisamide such as amide; aromatic bisamide such as such as m- xylylene bis amide stearic acid.
- substituted amides such as N-stearyl stearic acid amide, methylol amides such as methylol stearic acid amide, ethylene oxide adducts of
- it may be a polyamide obtained by condensation polymerization of diamine and dicarboxylic acid.
- diamine include ethylene diamine, putrescine and excamethylene diamine.
- dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, dodecadioic acid and the like.
- These amide thixotropic agents can be used alone or in combination.
- sorbitol thixotropic agents examples include sorbitol, bis (p-methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, dibenzylidene sorbitol, tribenzylidene sorbitol, and alkyl-substituted dibenzylidene sorbitol having 3 or more carbon atoms. And benzylidene sorbitols.
- amide thixotropic agent and sorbitol thixotropic agent hardened castor oil, beeswax, carnauba wax and the like can be mentioned.
- the thixotropic agents can be used alone or in combination.
- the shape is not particularly limited, and may be granular or flaky. Moreover, you may use what was swollen with the solvent.
- thixotropic agents it is preferable to use hardened castor oil, higher fatty acid amide, or the like because the solder paste at the time of printing can maintain good thixotropy.
- a carboxylic acid amide wax having a melting point of 180 ° C. or higher at normal pressure and a molecular weight of 500 or higher.
- thixotropic agents can increase the viscosity of the solder paste, increase the thixo ratio (improving printability), and improve thermal sag. Although these thixotropic agents remain as residues in the solder, they are extremely small amounts (typically 1% by mass or less) and are not active substances, and therefore do not corrode the soldering object (metal). Therefore, no cleaning is required even if it remains as a residue.
- a low melting point thixotropic agent that melts at a temperature lower than the reduction temperature for the purpose of viscosity adjustment, printability improvement, and storage stability, in a range that does not interfere with the reduction effect of the reducing gas, Furthermore, you may mix
- a solvent will not be restrict
- a solid solvent or a highly viscous solvent may be used.
- glycol type, glycol ether type, alcohol type solvents and the like can be mentioned.
- triethylene glycol monomethyl ether triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monophenyl ether, diethylene glycol monobutyl acetate, Dipropylene glycol, diethylene glycol-2-ethylhexyl ether, ⁇ -terpineol, benzyl alcohol, 2-hexyldecanol, 2-ethyl-1,3-hydroxyhexane, 1,8-hydroxyoctane, butyl benzoate, diethyl adipate, phthalic acid Diethyl, dodecane, tetradecene, Decylbenzene, ethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, hexylene glycol, 1,5-dihydroxypent
- a solvent whose weight loss by thermogravimetry (TG) at 180 ° C. at normal pressure is 25% or more at a rate of temperature increase of 10 ° C./min, more preferably 40% or more, particularly preferably 60% or more. It is a solvent.
- a solvent of 25% or more is preferable because the amount of flux residue is reduced and voids in the bonding layer are reduced.
- the reduction temperature is preferably 150 to 450 ° C.
- the temperature during the reduction is 150 to 300 ° C., preferably 160 to 250 ° C., particularly preferably 170 to 230 ° C.
- the reducing gas is hydrogen, it is 250 to 450 ° C., preferably 260 to 400 ° C., particularly preferably 270 to 350 ° C.
- the average particle size of the solder powder can be in the range of 20 to 45 ⁇ m, for example. However, depending on the size of the printing opening, it may be appropriately changed to a larger diameter or a smaller diameter.
- “average particle size” means a particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
- the solvent evaporates at about 180 ° C. or less, and the thixotropic agent melts at about 210 ° C. or more. It is preferable to use formic acid because it can be reduced at a lower temperature than other reducing gases.
- the composition ratio of the solder powder, thixotropic agent, and solvent is 80 to 99 mass% for the solder powder, 0.1 to 2 mass% for the thixotropic agent, and 0.9 to 18 mass% for the solvent. It is 85 to 95% by mass, the thixotropic agent is 0.5 to 1.5% by mass, and the solvent is 4.5 to 13.5% by mass. For example, 89% by mass of solder powder, 1% by mass of thixotropic agent, 10% by mass of solvent, 90% by mass of solder powder, 1% by mass of thixotropic agent, and 9% by mass of solvent can be mentioned.
- the solder paste of the present application is a paste obtained by mixing solder powder, thixotropic agent, and solvent in the above proportions.
- the amount of the thixotropic agent and the solvent can be appropriately changed depending on the degree of viscosity adjustment.
- the thixotropic agent and the solvent may be mixed with stirring while heating. What is necessary is just to mix with solder powder using a stirrer at normal temperature.
- Method A in FIG. 1 is a conventional method, and the solder paste used includes a solder powder and a flux as a reducing agent, an activator, a thixotropic agent, and a solvent.
- Method B is a method for producing a soldered product of the present invention.
- the solder paste used contains solder powder and a thixotropic agent and a solvent as a flux, but does not contain a reducing agent and an activator.
- the solder paste S ′ is applied to the soldering object T by screen printing or the like (A1).
- A2 evaporation of the solvent starts
- A3 melted flux containing a reducing agent and an activator
- A4 solder melting temperature and performs soldering
- the solder paste S is applied to the soldering object T by screen printing or the like (B1).
- the soldering object T and the solder paste S shown in FIG. 1 are heated, the evaporation of the solvent starts (B2). Furthermore, it heats to reduction temperature and reduces with the reducing gas F (B3). Furthermore, it heats to solder melting temperature and performs soldering (B4).
- the thixotropic agent remains as a residue, but typically no more than 1% and is not an active substance, so no cleaning is necessary.
- the melting temperature of the solder powder and the thixotropic agent is higher than the reduction temperature. Therefore, the solder powder and the thixotropic agent do not melt at the time of reduction.
- the reduction may be performed simultaneously with the evaporation of the solvent or after the evaporation.
- FIG. 2 is a flowchart showing a method for manufacturing a soldered product. 2 and 3, instead of the soldering object T and the solder paste S, description will be made using a substrate W, a solder paste S, and an electronic component P as members to be joined as shown in FIG. (1)
- Solder paste providing step is a step of making the reducing gas solder paste according to the first embodiment of the present invention usable. It may be the production of a solder paste or the preparation of an already produced solder paste.
- solder paste application step The solder paste is applied onto the soldering object using a solder paste printer (or screen printer) or the like.
- Printing is usually performed using a squeegee of a printing press using a mask (form) that is usually called a metal mask, for example, a hole (perforation) in a metal plate having a thickness of about 30 to 300 ⁇ m.
- a manual device that moves the squeegee with a human hand may be used.
- application using a syringe may be sufficient.
- soldering apparatus 1 As a soldering object to which the solder paste S is applied, a substrate W and an electronic component P are used. Formic acid gas is used as the reducing gas. In the following description, the method for manufacturing a soldered product according to the second embodiment of the present invention will be described together with the operation of the soldering apparatus 1, but may be performed by another apparatus.
- FIG. 3 is a schematic configuration diagram of the soldering apparatus 1.
- the soldering apparatus 1 includes a processing unit 10 having a chamber 11 that forms a processing space 11 s that is a space in which a member to be bonded is soldered, and a reducing gas supply unit that supplies formic acid gas F as a reducing gas to the chamber 11.
- a housing 100 for housing them for housing them.
- the soldering device 1 is a device that joins the substrate W and the electronic component P with the solder paste S. Both the substrate W and the electronic component P have a metal portion on the surface, and the metal portion is joined so as to be conducted through solder.
- the substrate W and the electronic component P are carried into the chamber 11 with the solder paste S interposed therebetween, and the solder is melted and joined in the chamber 11.
- the substrate W, the solder paste S, and the electronic component P are stacked and the solder is not melted is referred to as a member to be joined B, and the solder is melted and the substrate W and the electronic component P are joined.
- the product in the state is called a soldered product C.
- the chamber 11 is configured so that the processing space 11s can be sealed by closing the loading / unloading port 11a with the shutter 11d.
- the chamber 11 is made of a material and shape that can withstand the processing space 11 s even when the processing space 11 s is reduced to approximately 10 Pa (absolute pressure).
- a carrier plate 12 on which the member to be joined B is placed and a heater 13 for heating the carrier plate 12 are provided inside the chamber 11.
- the heater 13 is configured so that the carrier plate 12 can be heated to a bonding temperature higher than the melting temperature of the solder.
- the formic acid supply unit 20 guides the formic acid gas F into the chamber 11.
- formic acid gas F is used as the reducing gas.
- any metal oxide other than formic acid gas F can be used as long as it can reduce the metal oxide generated on the bonding surface of substrate W and electronic component P. It may be a carboxylic acid gas, an organic acid gas other than a carboxylic acid, an organic compound gas other than an organic acid, or a reducing gas other than an organic compound. Examples of other reducing gas include hydrogen gas.
- formic acid gas F is used as the reducing gas from the viewpoint of making the reduction temperature lower than the melting temperature of the solder and from the viewpoint of availability.
- the catalyst unit 33 is a device that reduces the concentration of formic acid in the exhaust gas E discharged from the soldering apparatus 1 to a concentration that does not affect the environment.
- the gas G is a general term for gases discharged from the chamber 11.
- the vacuum pump 31 is disposed as a decompression pump that exhausts the gas G in the chamber 11 so that the pressure in the chamber 11 can be reduced to approximately 10 Pa (absolute pressure).
- the control device 50 is configured to open and close the shutter 11d.
- the control device 50 is configured to heat the carrier plate 12 through ON / OFF of the heater 13 and change of output. Further, the control device 50 is configured to supply the formic acid gas F toward the chamber 11. Moreover, the control apparatus 50 is comprised so that the start / stop of the vacuum pump 31 can be controlled.
- the control device 50 stores an operation sequence of the soldering device 1 described later.
- FIG. 4 is a flowchart showing a solder joining procedure of the soldered product C.
- the thixotropic agent a thixotropic agent having a melting point higher than that at the time of reduction, that is, a solid at the temperature at the time of reduction is used.
- the control device 50 activates the vacuum pump 31 and starts exhausting the gas G in the chamber 11. Later (S1), the shutter 11d is opened. At the same time, the carrier plate 12 is moved so that most of the carrier plate 12 comes out of the chamber 11. By discharging the gas G in the chamber 11 from the chamber 11 before opening the shutter 11d, the gas G in the chamber 11 flows out of the soldering apparatus 1 through the loading / unloading port 11a even if the shutter 11d is opened. Can be prevented.
- the control device 50 closes the shutter 11d and seals the inside of the chamber 11.
- the control device 50 exhausts the gas G in the chamber 11 and then the inert gas N. Is introduced.
- the oxygen concentration in the chamber 11 is reduced (inert gas replacement process: S3).
- the oxygen concentration is preferably 5 ppm or less.
- the inert gas N is, for example, nitrogen gas.
- the control device 50 turns on the heater 13 and raises the temperature of the carrier plate 12, and hence the temperature of the member B to be joined, to a temperature at which the solvent contained in the solder paste S evaporates (evaporates) (S 4). .
- the pressure in the chamber 11 can be reduced to a vacuum (reduced pressure) in order to promote the evaporation of the solvent.
- the vaporization temperature is lower than the reduction temperature, but the vaporization temperature may be the same as the following reduction temperature.
- the evaporation of a part of the solvent and the reduction of the bonded member occur simultaneously. That is, there are cases where the (S4) step and the next (S5) step and (S6) step are parallel.
- the control device 50 supplies the formic acid gas F from the formic acid supply unit 20 into the chamber 11 (S5) and keeps the heater 13 ON, thereby controlling the temperature of the carrier plate 12 and thus the temperature of the member B to be joined.
- the temperature is raised to the reduction temperature (S6).
- the reduction temperature is a temperature at which the oxide of the bonded member B is reduced by formic acid.
- the formic acid gas is formed in the gap formed without melting the solder powder and the thixotropic agent. Can easily penetrate, and the oxide film can be suitably removed before the member B to be joined is soldered.
- the formic acid gas F is supplied after the inside of the chamber 11 is evacuated, so that the formic acid gas F easily enters the gap between the solder powder and the thixotropic agent.
- the step (S5) of supplying the formic acid gas F into the chamber 11 and the step (S6) of raising the temperature of the joined member B to the reduction temperature correspond to the reduction step. Note that the formic acid gas F may be supplied after the temperature rise to the reduction temperature is completed.
- the output of the heater 13 is increased while the formic acid gas F atmosphere in the chamber 11 is maintained, and the temperature of the carrier plate 12 and thus the temperature of the member to be joined B are increased to the joining temperature.
- the solder is melted by heating, and the joined members B are soldered (joining step: S7).
- the bonding temperature is an arbitrary temperature higher than the melting temperature of the solder powder contained in the solder paste S, and in this embodiment, the bonding temperature is 30 to 50 ° C. higher than the melting temperature.
- the control device 50 turns off the heater 13. By starting the cooling in this way, the temperature of the member to be joined B decreases and becomes less than the melting point, so that the solder is solidified and becomes the soldered product C. At this time, the solidification of the solder may be accelerated by forcibly cooling the carrier plate 12.
- the operation of the vacuum pump 31 and the main exhaust valve 41v are opened, the formic acid gas F is exhausted from the chamber 11 (S8), and the inert gas N is introduced to bring the inside of the chamber 11 to normal pressure.
- the formic acid gas F discharged from the chamber 11 flows into the catalyst unit 33.
- the formic acid gas F is decomposed by the catalyst unit 33, the formic acid concentration is reduced to a predetermined concentration or less, and is discharged from the soldering apparatus 1 as the exhaust gas E (S9).
- the control device 50 exhausts the gas G in the chamber 11 through the bypass exhaust pipe 42 (S10), and opens the shutter 11d. Thereby, the soldering product C can be taken out from the chamber 11 (S11).
- the control device 50 determines whether or not continuous operation is performed (S12). When the continuous operation is performed, the process returns to the step of exhausting the gas G in the chamber 11 (S1). On the other hand, when the continuous operation is not performed, the maintenance operation is performed (S13).
- FIG. 5 is a flowchart showing a solder joining procedure of the soldered product C.
- FIG. 3 will be referred to as appropriate.
- (S1) to (S6) are the same as the manufacturing method of FIG.
- the control device 50 exhausts the formic acid gas F from the chamber 11 by opening the main exhaust valve 41v and operating the vacuum pump 31, and depressurizes the chamber 11 (S7).
- the output of the heater 13 is increased to raise the temperature of the carrier plate 12 and thus the temperature of the member B to be joined (S8), and the solder is melted.
- Solder joining of the members to be joined B is performed.
- the control device 50 breaks the vacuum in the chamber 11 by introducing an inert gas N (S9).
- the control device 50 turns off the heater 13 (starts cooling (S10)), so that the temperature of the member B to be joined decreases and becomes less than the melting point, so that the solder hardens and becomes the soldered product C.
- the control device 50 exhausts the gas G in the chamber 11 through the bypass exhaust pipe 42 and opens the shutter 11d. Thereby, the soldering product C can be taken out from the chamber 11 (S11).
- (S12) to (S13) are the same as the manufacturing method of FIG.
- the inert gas N is introduced in such a state that the solder is melted, the voids can be compressed and crushed.
- the solder is solidified after crushing the cavity, it is possible to further suppress a decrease in fatigue life due to voids in the solder.
- the soldering apparatus equipment required for performing solder bonding in a vacuum, such as the processing unit 10, the formic acid supply unit 20, the catalyst unit 33, and the control device 50, is provided on the casing 100. Since it is accommodated, the solder joint using the formic acid gas F can be appropriately completed in the soldering apparatus 1. Further, according to the method for manufacturing the soldered product C according to the present embodiment, it is possible to perform appropriate vacuum soldering using the solder paste S and the formic acid gas F.
- the substrate W and the electronic component P are used together with the solder paste S as the member to be bonded.
- the member to be bonded is a member having a metal portion suitable for solder bonding on the surface, the substrate W Or a member other than the electronic component P.
- the temperature of the member B to be bonded is raised in the atmosphere of formic acid gas F to melt the solder paste S.
- the solder B is heated in vacuum (for example, about 100 Pa (absolute pressure)), and the solder is heated.
- the paste S may be melted.
- the process discharge process S8, S9 is performed after the reduction process (S5, S6).
- opening the shutter 11d for taking out the soldered product C from the chamber 11 S11
- the inside of the chamber 11 is not set to a negative pressure (the vacuum pump 31 is turned on).
- the shutter 11d may be opened without operating. Since the solder paste for reducing gas used in the present invention has less flux residue than the conventional solder paste, it is possible to suppress solder scattering even when the members to be joined B are joined in vacuum.
- the method for manufacturing a soldered product of the present application may further include a coating process for coating an object to be soldered that has been soldered.
- a coating process for coating an object to be soldered that has been soldered since there is almost no residue, there is no problem in adhesion with the coating agent. Therefore, the soldering part is appropriately protected by coating by the coating process.
- the present invention makes the composition of the solder paste simpler, reducing the metal oxide, improving the reducibility, and further improving the meltability, which the conventional reducing agent and activator were responsible for. This can be dealt with by introduction of reducing gas and vacuum.
- Solder powder A Sn-3Ag-0.5Cu (abbreviation SAC305), melting point about 220 ° C.
- Thixotropic agent A Polyamide thixotropic agent, melting point 255 ° C.
- B Amide thixotropic agent, melting point 185 ° C
- C hydrogenated castor oil, melting point 30 ° C.
- D Amide thixotropic agent, melting point 130 ° C
- E Amide thixotropic agent, melting point 150 ° C.
- the solder paste of Example 8 was prepared by mixing and stirring with 9.85% by mass.
- the solder paste of Example 9 was produced.
- Solder pastes of Examples 10 to 12 were prepared.
- [Comparative Examples 1 and 2] 90% by mass of lead-free solder alloy powder (Sn: Ag: Cu 96.5: 3.0: 0.5 (% by mass)), 1% by mass of a thixotropic agent, and 9% by mass of a solvent were mixed and stirred.
- Solder pastes of Comparative Examples 1 and 2 were prepared.
- a nickel-plated copper substrate (20 ⁇ 20 mm, thickness 2 mm) was prepared as a test piece, and the solder pastes of Examples and Comparative Examples were applied to one surface of the substrate in a 10 ⁇ 12 mm size to a thickness of 150 ⁇ m (metal mask thickness).
- solder wettability determination As shown in “determination of solder wettability” in FIG. 7, the substrate on which the solder paste was printed was heated under the reflow conditions, and the presence or absence of dewetting was confirmed. The confirmation method is to visually observe the solder part for each board and dewet the base board completely wetted with solder, and no repellency or other repellency is observed. None (solder wettability: ⁇ ), and those with clear repellency, etc., were marked with dewetting (solder wettability: x). [Determination of thixotrope heat] For the paste obtained by removing the solder powder from the solder paste of each example, the ratio of the wet spread area of the paste was measured using the methods (1) to (5) above.
- the “melting point” refers to a temperature at which a substance melts regardless of atmospheric pressure. As described above, in Example 1 where the thixotropic agent did not melt at the reduction temperature, the solder wettability was good even after reflow. In Examples 2 to 12 where the melting point of the thixotropic agent is lower than the reduction temperature, the thixotropic agent seems to have melted at the reduction temperature, but the thixotropic agent has little wetting spread and the reduction effect by the reducing gas is sufficient. It was considered that the solder wettability was improved because of the obtained. The decrease in wettability hinders sufficiently strong soldering. In Comparative Examples 1 and 2, it is considered that the surface of the base material was covered by the thermal dripping (wetting and spreading) of the molten thixotropic agent, and the base material and some solder powders were not sufficiently reduced.
- Solder powder A Sn-3Ag-0.5Cu (abbreviation SAC305), melting point about 220 ° C.
- Thixotropic agent A Polyamide thixotropic agent, melting point 255 ° C.
- B Amide thixotropic agent, melting point 185 ° C
- Solvent A Hexyl diglycol
- Phenyl diglycol C 2-ethylhexyl diglycol
- Activator Succinic acid, salicylic acid Rosin: Acrylic acid modified rosin (KE-604, Arakawa Chemical)
- solder paste for reducing gas [Production of solder paste for reducing gas] [Example 21] A solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 255 ° C. and hexyl diglycol and a SAC305 alloy powder having a solder melting point of 220 ° C. were mixed. [Example 22] A solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 185 ° C. and phenyl diglycol were mixed with a SAC305 alloy powder having a solder melting point of 220 ° C.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 185 ° C. and 2-ethylhexyl diglycol were mixed with a SAC305 alloy powder having a solder melting point of 220 ° C.
- a solder paste was prepared by mixing a thixotropic agent having a melting point of 255 ° C and hexyl diglycol, a flux in which succinic acid and salicylic acid were mixed as an activator, and a SAC305 alloy powder having a solder melting point of 220 ° C.
- a commercial solder paste of SAC305 alloy powder containing a thixotropic agent having a melting point of 255 ° C. and hexyl diglycol and having a solder melting point of 220 ° C. was used.
- Commercial solder paste contains an active agent and rosin.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 255 ° C. and hexyl diglycol and a SAC305 alloy powder having a solder melting point of 220 ° C. were mixed. The produced solder paste was normally used for reflow.
- a nickel-plated copper substrate (20 ⁇ 20 mm, thickness 2 mm) was prepared as a test piece, and the solder pastes of Examples and Comparative Examples were applied to one surface of the substrate in a 10 ⁇ 12 mm size to a thickness of 150 ⁇ m (metal mask thickness).
- Preheating 1 solvent evaporation step: nitrogen atmosphere (atmospheric pressure) 200 ° C. or less
- Preheating 2 reducing step: nitrogen atmosphere (atmospheric pressure) 180 ° C., 60 seconds
- Main heating solvent melting step: nitrogen atmosphere (atmospheric pressure) ), Peak temperature 260 ° C, 220 ° C
- solder wettability determination As shown in “determination of solder wettability” in FIG. 7, the substrate on which the solder paste was printed was heated under the reflow conditions, and the presence or absence of dewetting was confirmed. The confirmation method is to visually observe the solder part for each board and dewet the base board completely wetted with solder, and no repellency or other repellency is observed. None (solder wettability: ⁇ ), and those with clear repellency, etc., were marked with dewetting (solder wettability: x).
- Example 21 In Examples 21 to 23, all the solvent was volatilized at a reduction temperature of 200 ° C., so that formic acid easily penetrated and reduced the solder powder, and thus showed good wettability. In Comparative Examples 21 and 22, the solder wettability after reflow decreased. This is probably because the activator reacted with formic acid and hindered the effect of formic acid.
- Reference Example 21 is an attempt to solder with the composition of Example 21 in a normal reflow furnace, but the solder powder does not melt.
- Reference Example 12 is a product in which soldering was attempted using a solder paste (commercially available product) having the composition of Comparative Example 22 in a normal reflow furnace, but exhibits good wettability. As described above, the composition of Example 21 was not practical at all in a normal reflow environment, but exhibits an extremely excellent effect in a formic acid reflow environment.
- Solder powder A Sn-3Ag-0.5Cu (abbreviation SAC305), melting point about 220 ° C.
- B Sn-5Sb, melting point about 240 ° C.
- Thixotropic agent A Polyamide thixotropic agent, melting point 255 ° C.
- B Amide thixotropic agent, melting point 185 ° C C: hydrogenated castor oil, melting point 30 ° C.
- D Amide thixotropic agent, melting point 130 ° C
- E Amide thixotropic agent, melting point 150 ° C.
- solder paste for reducing gas was prepared by mixing a flux in which a thixotropic agent having a melting point of 255 ° C. and hexyl diglycol and a SAC305 alloy powder having a solder melting point of 220 ° C. were mixed. Hexyl diglycol had a 100% weight loss at 200 ° C. with a TG (differential scanning calorimeter). The reduction temperature was 200 ° C.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 185 ° C.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 185 ° C. and 2-ethylhexyl diglycol were mixed with a SAC305 alloy powder having a solder melting point of 220 ° C. With 2-ethylhexyl diglycol, the weight loss at 180 ° C. with a TG (differential scanning calorimeter) was 47%.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 185 ° C. and 2-ethyl-1,3-hexanediol were mixed, and a SAC305 alloy powder having a solder melting point of 220 ° C.
- 2-ethyl-1,3-hexanediol the weight loss at 180 ° C. with a TG (differential scanning calorimeter) was 52%.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 255 ° C.
- a solder paste was prepared by mixing a flux in which thixotropic agent having a melting point of 130 ° C. and hexyl diglycol were mixed with SAC305 alloy powder having a solder melting point of 220 ° C.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 150 ° C.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 30 ° C. and hexyl diglycol were mixed with a SAC305 alloy powder having a solder melting point of 220 ° C.
- a solder paste was prepared by mixing a flux in which a thixotropic agent having a melting point of 180 ° C. and hexyl diglycol and a SAC305 alloy powder having a solder melting point of 220 ° C. were mixed.
- a nickel-plated copper substrate (20 ⁇ 20 mm, thickness 2 mm) was prepared as a test piece, and the solder pastes of Examples and Comparative Examples were applied to one surface of the substrate in a 10 ⁇ 12 mm size to a thickness of 150 ⁇ m (metal mask thickness).
- solder wettability determination As shown in “determination of solder wettability” in FIG. 7, the substrate on which the solder paste was printed was heated under the reflow conditions, and the presence or absence of dewetting was confirmed. The confirmation method is to visually observe the solder part for each board and dewet the base board completely wetted with solder, and no repellency or other repellency is observed. None (solder wettability: ⁇ ), and those with clear repellency, etc., were marked with dewetting (solder wettability: x).
- Example 31 the thixotropic agent was reduced at a temperature lower than 255 ° C., and the solvent was completely evaporated at a reduction temperature of 200 ° C. Since formic acid easily penetrates and reduces the solder powder, good wettability was exhibited.
- the reduction temperature of 180 ° C. is lower than the thixotropic agent melting point of 185 ° C.
- Phenyl diglycol at a reduction temperature of 180 ° C. has a weight loss rate of 28% at normal pressure, but since the pressure is reduced to 200 Pa, all the solvent is volatilized when formic acid is introduced. Since formic acid easily penetrates and reduces the solder powder, good wettability was exhibited.
- Example 33 was the same as Example 32, and 2-ethylhexyl diglycol at a reduction temperature of 180 ° C. had a weight loss rate of 47% at normal pressure. However, as with Example 32, all the solvent was volatilized when formic acid was introduced. It becomes. Since formic acid easily penetrates and reduces the solder powder, good wettability was exhibited.
- Example 34 was also the same as Examples 32 and 33, and 2-ethyl-1,3-hexanediol at a reduction temperature of 180 ° C. had a weight loss rate of 52% at normal pressure, but as with Examples 32 and 33, formic acid At the time of introduction, the solvent is completely evaporated.
- Example 35 the flux and reduction conditions were the same as in Example 31, but Sn-5Sb was used as the solder powder. Even when the solder powder was Sn-5Sb, it was reduced by formic acid and showed good wettability.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
本発明は、還元剤および活性剤フリーのソルダペースト、当該ソルダペーストを使用して半田接合を完結させる半田付け製品の製造方法である。本発明の還元ガス用ソルダペーストは、還元ガスとともに用いる還元ガス用ソルダペーストであって、半田粉末と;常温で固体のチキソ剤と;溶剤とを含み;酸化膜除去のための還元剤フリー、および還元性向上のための活性剤フリーであるソルダペーストである。
Description
本発明は還元ガス用ソルダペースト、半田付け製品の製造方法に関し、特に還元剤・活性剤フリーのソルダペースト、それを用いた半田付け製品の製造方法に関する。
ソルダペーストは印刷による供給が可能なため生産性に優れるという利点がある。通常、ソルダペーストには半田粉末とフラックスが含まれる。フラックス成分には、還元剤、活性剤、チキソ剤(バインダー)、溶剤、粘着付与剤樹脂などがある。還元剤は、半田付けの際半田付け対象物の表面や半田粉末の表面の酸化膜を除去する役割を果たし、活性剤は、還元性を向上させ半田の濡れ性を向上させる役割を果たす。
フラックスは半田付け後にフラックス残渣として残存する。フラックス成分のうち還元剤や活性剤は、半田付けの性能、腐食、マイグレーションに大きな影響を及ぼす。還元効果が高ければ、半田付け性は向上する。しかし、これらの活性成分はイオン化し易く水との親和性も強いため、腐食やイオンマイグレーションを引き起こし易い。
このような理由により、還元剤と活性剤を含むソルダペーストを用いた場合は、特許文献1、2に記載されているように半田付け後にフラックス残渣の洗浄が必要となる(特許文献1、段落0002~0004、特許文献2、段落0002)。
このような理由により、還元剤と活性剤を含むソルダペーストを用いた場合は、特許文献1、2に記載されているように半田付け後にフラックス残渣の洗浄が必要となる(特許文献1、段落0002~0004、特許文献2、段落0002)。
しかし、フラックス残渣を洗浄液を用いて洗浄する場合、洗浄液は多量で環境負荷やコスト負担が増すという問題がある。さらに、フラックス残渣の洗浄方法を使用できない製品もある。
本発明は上述の課題に鑑み、還元剤および活性剤フリーのソルダペースト、当該ソルダペーストを使用して半田接合を完結させる半田付け製品の製造方法を提供することを目的とする。
本発明は上述の課題に鑑み、還元剤および活性剤フリーのソルダペースト、当該ソルダペーストを使用して半田接合を完結させる半田付け製品の製造方法を提供することを目的とする。
半田粉末、チキソ剤、溶剤のみでソルダペースを作製しても当然に還元効果を有さず、良好な半田濡れ性は得られない。従来のソルダペーストは、還元剤および活性剤を含むことで還元効果を得ていた。本発明者らは、従来のソルダペーストと還元ガスとを組合せると充分な濡れ性が得られないこと、還元剤および活性剤を除いたソルダペーストでは、還元ガスの浸透を担保できれば充分な濡れ性を得られることを見出し、本発明を完成させた。
本発明の第1の態様に係る還元ガス用ソルダペーストは、還元ガスとともに用いる還元ガス用ソルダペーストであって、半田粉末と;常温で固体のチキソ剤と;溶剤とを含み;酸化膜除去のための還元剤フリー、および還元性向上のための活性剤フリーである、ソルダペーストである。
「チキソ剤」は半田粉末と他の成分との分離防止またはだれ防止等を可能とし、「溶剤」は粘度調整等を可能とする。溶剤は半田粉末が溶融する温度よりも低い温度で蒸発できるものが好ましい。溶剤はチキソ剤が溶融する温度よりも低い温度で蒸発できるものであってもよい。「還元剤」は酸化膜を除去する成分をいい、「活性剤」は還元性を向上させる成分をいう。「還元剤フリー」とは還元剤を含まないこと、または、含んだとしても、本発明の効果を妨げない程度の量であることをいい、「活性剤フリー」とは活性剤を含まないこと、または、含んだとしても、本発明の効果を妨げない程度の量であることをいう。すなわち、本発明の効果を妨げない範囲においては、還元剤、活性剤、添加物等のその他成分を含んでもよい。本発明のソルダペーストは、本質的に半田粉末、チキソ剤、溶剤の3成分からなる(essentially consisting of)ソルダペーストである。
このように構成すると、ボイドが少なく、フラックス飛散の少ないソルダペーストであって、フラックス残渣が少なく、洗浄不要のソルダペーストを得ることができる。
「チキソ剤」は半田粉末と他の成分との分離防止またはだれ防止等を可能とし、「溶剤」は粘度調整等を可能とする。溶剤は半田粉末が溶融する温度よりも低い温度で蒸発できるものが好ましい。溶剤はチキソ剤が溶融する温度よりも低い温度で蒸発できるものであってもよい。「還元剤」は酸化膜を除去する成分をいい、「活性剤」は還元性を向上させる成分をいう。「還元剤フリー」とは還元剤を含まないこと、または、含んだとしても、本発明の効果を妨げない程度の量であることをいい、「活性剤フリー」とは活性剤を含まないこと、または、含んだとしても、本発明の効果を妨げない程度の量であることをいう。すなわち、本発明の効果を妨げない範囲においては、還元剤、活性剤、添加物等のその他成分を含んでもよい。本発明のソルダペーストは、本質的に半田粉末、チキソ剤、溶剤の3成分からなる(essentially consisting of)ソルダペーストである。
このように構成すると、ボイドが少なく、フラックス飛散の少ないソルダペーストであって、フラックス残渣が少なく、洗浄不要のソルダペーストを得ることができる。
本発明の第2の態様に係る還元ガス用ソルダペーストは、上記本発明の第1の態様に係る還元ガス用ソルダペーストにおいて、前記チキソ剤が、下記(1)~(5)の方法における濡れ広がり面積の割合が0~50%を満たすチキソ剤であり、下記(3)における所定の温度が、前記チキソ剤の常圧下での融点である。
(1)半田粉末、チキソ剤、溶剤の3成分からなるソルダペーストから半田粉末を除いたペーストをサイズ5×5mm、厚み100μm(メタルマスク厚)で、ニッケルメッキ銅基板(20×20mm、厚み2mm)に塗布する。
(2)塗布してから1分経過後のペーストの面積を測定する。
(3)常温のホットプレートに前記銅基板を設置し、前記銅基板が所定の温度になるまで加熱する。
(4)前記所定の温度に到達した時点で、前記ホットプレートから前記銅基板を取り出し、冷却する。
(5)冷却後、前記銅基板上のペーストの面積を測定する。
なお、濡れ広がり面積の割合が0%のものには、還元時の温度で固体のチキソ剤を含むペーストも含まれる。
このように構成すると、融点においてチキソ剤は溶融してもその場に留まるか濡れ広がりが小さいため、還元ガスによる浸入および還元を妨げない。
(1)半田粉末、チキソ剤、溶剤の3成分からなるソルダペーストから半田粉末を除いたペーストをサイズ5×5mm、厚み100μm(メタルマスク厚)で、ニッケルメッキ銅基板(20×20mm、厚み2mm)に塗布する。
(2)塗布してから1分経過後のペーストの面積を測定する。
(3)常温のホットプレートに前記銅基板を設置し、前記銅基板が所定の温度になるまで加熱する。
(4)前記所定の温度に到達した時点で、前記ホットプレートから前記銅基板を取り出し、冷却する。
(5)冷却後、前記銅基板上のペーストの面積を測定する。
なお、濡れ広がり面積の割合が0%のものには、還元時の温度で固体のチキソ剤を含むペーストも含まれる。
このように構成すると、融点においてチキソ剤は溶融してもその場に留まるか濡れ広がりが小さいため、還元ガスによる浸入および還元を妨げない。
本発明の第3の態様に係る還元ガス用ソルダペーストは、上記本発明の第1の態様または第2の態様に係る還元ガス用ソルダペーストにおいて、前記半田粉末および前記チキソ剤が溶融する温度が、前記還元ガスでの還元時の温度よりも高い。
このように構成すると、還元時の温度において半田粉末とチキソ剤は溶融せずに固体として存在するため、半田粉末間、チキソ剤間、半田粉末とチキソ剤間の間隙に還元ガスが容易に浸入することができる。
このように構成すると、還元時の温度において半田粉末とチキソ剤は溶融せずに固体として存在するため、半田粉末間、チキソ剤間、半田粉末とチキソ剤間の間隙に還元ガスが容易に浸入することができる。
本発明の第4の態様に係る還元ガス用ソルダペーストは、上記本発明の第1の態様~第3の態様のいずれか1の態様に係る還元ガス用ソルダペーストにおいて、前記還元ガスが、ギ酸または水素である。
このように構成すると、還元ガスとしてよく用いられるガスに好適なソルダペーストとなる。
このように構成すると、還元ガスとしてよく用いられるガスに好適なソルダペーストとなる。
本発明の第5の態様に係る還元ガス用ソルダペーストは、上記本発明の第1の態様~第4の態様のいずれか1の態様に係る還元ガス用ソルダペーストにおいて、前記チキソ剤が、アマイド系チキソ剤である。
このように構成すると、還元時の温度において、固体または溶融した場合でも濡れ広がりの小さいチキソ剤であるため、チキソ剤が還元ガスの浸入および還元を妨げない。
このように構成すると、還元時の温度において、固体または溶融した場合でも濡れ広がりの小さいチキソ剤であるため、チキソ剤が還元ガスの浸入および還元を妨げない。
本発明の第6の態様に係る還元ガス用ソルダペーストは、上記本発明の第1の態様~第5の態様のいずれか1の態様に係る還元ガス用ソルダペーストにおいて、前記チキソ剤が、前記(1)~(5)の方法における濡れ広がり面積の割合が0~50%を満たすチキソ剤であり、前記(3)における所定の温度が、前記還元ガスでの還元時の温度である。
このように構成すると、還元時の温度においてチキソ剤は溶融せずに固体として存在するか、溶融したとしてもその濡れ広がりが小さいため、還元ガスによる浸入および還元を妨げない。
このように構成すると、還元時の温度においてチキソ剤は溶融せずに固体として存在するか、溶融したとしてもその濡れ広がりが小さいため、還元ガスによる浸入および還元を妨げない。
本発明の第7の態様に係る還元ガス用ソルダペーストは、上記本発明の第1の態様~第6の態様のいずれか1の態様に係る還元ガス用ソルダペーストにおいて、前記溶剤が、常圧における180℃での熱重量測定(TG)による減量が10℃/minの昇温速度において25%以上である。
このように構成すると、還元時の温度が150~300℃である還元ガスに適したソルダペーストとなる。
このように構成すると、還元時の温度が150~300℃である還元ガスに適したソルダペーストとなる。
本発明の第8の態様に係る半田付け製品の製造方法は、例えば図1の方法Bに示すように、上記本発明の第1の態様~第7の態様のいずれか1の態様に係るソルダペーストSを提供する提供工程と;前記ソルダペーストを半田付け対象物に塗布する塗布工程B1と;前記ソルダペーストを塗布した半田付け対象物を、前記半田粉末が溶融する温度よりも低い任意の温度に加熱して前記溶剤を蒸発させる蒸発工程B2と;前記蒸発工程に並行して、またはその後に、前記半田粉末が溶融する温度よりも低い任意の温度で、前記蒸発工程により残された前記半田粉末と、前記半田付け対象物を還元ガスで還元する還元工程B3と;前記還元工程の後に、前記半田付け対象物を前記半田粉末が溶融する温度以上の任意の温度に加熱して前記半田粉末を溶融する半田溶融工程B4とを備える。
このように構成すると、還元時に半田粉末が溶融せず、半田粉末間等に生じた間隙により、半田粉末および半田付け対象物の還元を効果的に行うことができる。さらに、ソルダペーストは還元剤・活性剤フリーであるため、ボイドが少なく、フラックス飛散の少ない半田付けが可能となる。さらに、フラックス残渣の量を減らすことができる、フラックス残渣にはイオン性がなく、半田付け後の洗浄が不要となる、フラックス残渣中の活性成分による信頼性低下を抑制することができる、ピンコンタクト性が向上するという利点もある。
このように構成すると、還元時に半田粉末が溶融せず、半田粉末間等に生じた間隙により、半田粉末および半田付け対象物の還元を効果的に行うことができる。さらに、ソルダペーストは還元剤・活性剤フリーであるため、ボイドが少なく、フラックス飛散の少ない半田付けが可能となる。さらに、フラックス残渣の量を減らすことができる、フラックス残渣にはイオン性がなく、半田付け後の洗浄が不要となる、フラックス残渣中の活性成分による信頼性低下を抑制することができる、ピンコンタクト性が向上するという利点もある。
本発明の第9の態様に係る半田付け製品の製造方法は、上記本発明の第8の態様に係る半田付け製品の製造方法において、前記半田付け対象物を真空中に置く真空工程とをさらに備え;前記蒸発工程は、前記半田付け対象物が真空中にある状態で加熱して、前記溶剤を蒸発させる。
「真空」とは、大気より低い圧力(いわゆる減圧)の空間をいう。
このように構成すると、溶剤の蒸発を促進させることができる。さらに、常圧時の沸点が還元時の温度よりも高い溶剤であっても効率よく蒸発させることができ、使用可能な溶剤の種類を増やすことができる。
「真空」とは、大気より低い圧力(いわゆる減圧)の空間をいう。
このように構成すると、溶剤の蒸発を促進させることができる。さらに、常圧時の沸点が還元時の温度よりも高い溶剤であっても効率よく蒸発させることができ、使用可能な溶剤の種類を増やすことができる。
本発明の第10の態様に係る半田付け製品の製造方法は、上記本発明の第9の態様に係る半田付け製品の製造方法において、前記蒸発工程の溶剤の蒸発により前記半田粉末間に間隙が生じ、前記還元工程は、前記半田付け対象物が真空中にある状態で、前記間隙に還元ガスを導入し、前記半田付け対象物を還元する。
このように構成すると、半田粉末間等の間隙に還元ガスを浸入し易くすることができる。
このように構成すると、半田粉末間等の間隙に還元ガスを浸入し易くすることができる。
本発明の第11の態様に係る半田付け製品の製造方法は、上記本発明の第9の態様または第10の態様に係る半田付け製品の製造方法において、前記半田溶融工程は、前記半田付け対象物が真空中にある状態で、前記半田付け対象物を前記半田粉末が溶融する温度以上に加熱して半田粉末を溶融し、前記溶融後、圧力を上げて、半田粉末内部の空洞(ボイド)を圧縮して小さくする、または無くすため、前記真空工程の真空を破壊する真空破壊工程と;前記真空破壊工程の後に、前記半田付け対象物を冷却する冷却工程を備える。
このように構成すると、真空破壊工程において半田が溶融している状態で空洞(ボイド)を潰すことができ、空洞を潰した後で半田を固化させることができるため、半田中のボイドによる疲労寿命の低下をさらに抑制することができる。
このように構成すると、真空破壊工程において半田が溶融している状態で空洞(ボイド)を潰すことができ、空洞を潰した後で半田を固化させることができるため、半田中のボイドによる疲労寿命の低下をさらに抑制することができる。
本発明の第12の態様に係る半田付け製品の製造方法は、上記本発明の第8の態様~第11の態様のいずれか1の態様に係る半田付け製品の製造方法において、前記還元ガスがギ酸ガスである。
このように構成すると、300℃より低い温度で半田粉末および半田付け対象物を還元することができる。
このように構成すると、300℃より低い温度で半田粉末および半田付け対象物を還元することができる。
本発明によれば、生産性に優れるというソルダペーストの特長に加え、従来品よりもフラックス残渣が少なく、洗浄が不要なソルダペーストを得ることができる。さらに、当該ソルダペーストを用いた半田付け製品の製造方法を得ることができる。
この出願は、日本国で2015年9月30日に出願された特願2015-195177号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。
[還元ガス用ソルダペースト]
本発明の第1の実施の形態に係る還元ガス用ソルダペーストを説明する。
本発明の還元ガス用ソルダペーストは、半田粉末と、フラックスとして、チキソ剤、溶剤とを含むが、還元剤、活性剤を含まない。または、含むとしても本発明の効果を妨げない程度の量以下である。
ここで還元剤とは、半田付けの際半田付け対象物の表面や半田粉末の表面の酸化膜を除去する物質であり、例えば、ロジン、ロジン誘導体などである。
活性剤とは、還元性の向上や半田の濡れ性を向上させる物質であり、例えば、アミン-ハロゲン化水素酸塩、有機酸などである。アミン-ハロゲン化水素酸塩としては、例えば、ジエチルアミン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩などが挙げられる。有機酸としては、例えば、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ステアリン酸、安息香酸などが挙げられる。
なお、本発明の還元ガス用ソルダペーストは、還元剤と活性剤を除き、発明の効果が得られる限りにおいて、半田粉末、チキソ剤、溶剤以外の化合物(添加物等)を含有してもよい。
本発明の第1の実施の形態に係る還元ガス用ソルダペーストを説明する。
本発明の還元ガス用ソルダペーストは、半田粉末と、フラックスとして、チキソ剤、溶剤とを含むが、還元剤、活性剤を含まない。または、含むとしても本発明の効果を妨げない程度の量以下である。
ここで還元剤とは、半田付けの際半田付け対象物の表面や半田粉末の表面の酸化膜を除去する物質であり、例えば、ロジン、ロジン誘導体などである。
活性剤とは、還元性の向上や半田の濡れ性を向上させる物質であり、例えば、アミン-ハロゲン化水素酸塩、有機酸などである。アミン-ハロゲン化水素酸塩としては、例えば、ジエチルアミン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩などが挙げられる。有機酸としては、例えば、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ステアリン酸、安息香酸などが挙げられる。
なお、本発明の還元ガス用ソルダペーストは、還元剤と活性剤を除き、発明の効果が得られる限りにおいて、半田粉末、チキソ剤、溶剤以外の化合物(添加物等)を含有してもよい。
本発明のソルダペーストを用いて半田付けを行う場合、還元には還元ガスを用いる。本発明のソルダペーストに含まれる半田粉末とチキソ剤は、前記還元ガスによる還元温度および還元時の気圧において溶融しないものが好ましい。すなわち、チキソ剤が溶融する温度は、還元温度よりも高い任意の温度である。半田粉末が溶融する温度は、還元温度よりも高い任意の温度であり、本実施の形態では還元温度よりも10~50℃高い温度であることが好ましい。
さらに、溶剤は還元温度以下で蒸発(気化)するものが好ましい。溶剤が蒸発する温度は、還元温度よりも低いまたは同一の任意の温度であり、例えば0~100℃を挙げることができる。雰囲気の圧力を調整する機構により、常圧での沸点が還元温度よりも高い溶剤であっても、溶剤の蒸発温度を還元温度よりも低くすることができる。このように、溶剤は所定の気圧において還元温度以下で蒸発するものであればよい。
すなわち、本発明のソルダペーストは、所定の気圧において、以下の関係を有する材料を含む。
・溶剤の蒸発温度≦還元温度<半田粉末の融点、チキソ剤の融点
上記の「融点」とは、気圧にかかわらず物質が溶融する温度をいう。
このように、還元ガスによる還元時の温度で、半田粉末とチキソ剤は固体であればよく、溶剤は気体であればよく、還元時の温度に合わせて、半田粉末、チキソ剤、溶剤を適宜組合せる。
または、還元時の温度で溶融するチキソ剤であっても、溶融状態において濡れ広がりの小さいチキソ剤であれば、本発明のソルダペーストのチキソ剤として使用することができる。
なお、以下においてチキソ剤をバインダーまたはゲル化剤と称することもあるが、チキソ剤、バインダー、ゲル化剤は同義である。
さらに、溶剤は還元温度以下で蒸発(気化)するものが好ましい。溶剤が蒸発する温度は、還元温度よりも低いまたは同一の任意の温度であり、例えば0~100℃を挙げることができる。雰囲気の圧力を調整する機構により、常圧での沸点が還元温度よりも高い溶剤であっても、溶剤の蒸発温度を還元温度よりも低くすることができる。このように、溶剤は所定の気圧において還元温度以下で蒸発するものであればよい。
すなわち、本発明のソルダペーストは、所定の気圧において、以下の関係を有する材料を含む。
・溶剤の蒸発温度≦還元温度<半田粉末の融点、チキソ剤の融点
上記の「融点」とは、気圧にかかわらず物質が溶融する温度をいう。
このように、還元ガスによる還元時の温度で、半田粉末とチキソ剤は固体であればよく、溶剤は気体であればよく、還元時の温度に合わせて、半田粉末、チキソ剤、溶剤を適宜組合せる。
または、還元時の温度で溶融するチキソ剤であっても、溶融状態において濡れ広がりの小さいチキソ剤であれば、本発明のソルダペーストのチキソ剤として使用することができる。
なお、以下においてチキソ剤をバインダーまたはゲル化剤と称することもあるが、チキソ剤、バインダー、ゲル化剤は同義である。
・半田粉末
半田粉末の合金組成は特に制限されない。バンプ形成やプリント基板の実装に今日使用されている各種半田合金が使用可能である。例えば、鉛フリー半田として用いられているSn-Ag系半田、Sn-Ag-Cu系半田、Sn-Ag-Cu-Bi系半田、Sn-Ag-In-Bi系半田、Sn-Cu系半田、Sn-Zn系半田、Sn-Bi系半田等の鉛フリー半田合金の粉末や、融点変化型合金A-FAPを挙げることができる。
半田粉末の合金組成は特に制限されない。バンプ形成やプリント基板の実装に今日使用されている各種半田合金が使用可能である。例えば、鉛フリー半田として用いられているSn-Ag系半田、Sn-Ag-Cu系半田、Sn-Ag-Cu-Bi系半田、Sn-Ag-In-Bi系半田、Sn-Cu系半田、Sn-Zn系半田、Sn-Bi系半田等の鉛フリー半田合金の粉末や、融点変化型合金A-FAPを挙げることができる。
・チキソ剤
チキソ剤は、ソルダペーストの粘度調整や物質の固着を促進させる。チキソ剤は、常温・常圧で固体であり、還元時の気圧・温度において溶融しないが半田粉末の溶融時には溶融してもよく、活性物質でない(非イオン性の)ものが好ましい。または、還元時の気圧・温度において溶融するが、溶融状態において濡れ広がりの小さいものが好ましい。還元時の温度は、還元ガスの種類により決まるため、還元ガスに合わせて適宜選択する。
チキソ剤は、ソルダペーストの粘度調整や物質の固着を促進させる。チキソ剤は、常温・常圧で固体であり、還元時の気圧・温度において溶融しないが半田粉末の溶融時には溶融してもよく、活性物質でない(非イオン性の)ものが好ましい。または、還元時の気圧・温度において溶融するが、溶融状態において濡れ広がりの小さいものが好ましい。還元時の温度は、還元ガスの種類により決まるため、還元ガスに合わせて適宜選択する。
溶融状態において濡れ広がりの小さいチキソ剤は、以下の方法で判別することができる。
下記(1)~(5)の方法における濡れ広がり面積の割合が0~50%、好ましくは0~25%、特に好ましくは0~15%を満たすチキソ剤が好ましい。所定の温度とは、チキソ剤の常圧下での融点である。
(1)3成分からなるソルダペーストから半田粉末を除いたペースト(すなわち、チキソ剤+溶剤)をサイズ5×5mm、厚み100μm(メタルマスク厚)で、ニッケルメッキ銅基板(20×20mm、厚み2mm)に塗布する。
(2)塗布してから1分経過後のペーストの面積を測定する。
(3)常温のホットプレートに銅基板を設置し、銅基板が所定の温度になるまで加熱する。
(4)所定の温度に到達した時点で、ホットプレートから銅基板を取り出し、冷却する。冷却は、自然冷却で、室温になるまで行う。
(5)冷却後、銅基板上のペーストの面積を測定する。
下記(1)~(5)の方法における濡れ広がり面積の割合が0~50%、好ましくは0~25%、特に好ましくは0~15%を満たすチキソ剤が好ましい。所定の温度とは、チキソ剤の常圧下での融点である。
(1)3成分からなるソルダペーストから半田粉末を除いたペースト(すなわち、チキソ剤+溶剤)をサイズ5×5mm、厚み100μm(メタルマスク厚)で、ニッケルメッキ銅基板(20×20mm、厚み2mm)に塗布する。
(2)塗布してから1分経過後のペーストの面積を測定する。
(3)常温のホットプレートに銅基板を設置し、銅基板が所定の温度になるまで加熱する。
(4)所定の温度に到達した時点で、ホットプレートから銅基板を取り出し、冷却する。冷却は、自然冷却で、室温になるまで行う。
(5)冷却後、銅基板上のペーストの面積を測定する。
または、所定の温度が、還元ガスでの還元時の温度であって、上記(1)~(5)の方法における濡れ広がり面積の割合が0~50%、好ましくは0~25%、特に好ましくは0~15%を満たすチキソ剤であってもよい。なお、濡れ広がり面積の割合が0%のものには、還元時の温度で固体状のチキソ剤を含むペーストも含まれる。
チキソ剤としては、アマイド系チキソ剤や、ソルビトール系チキソ剤を挙げることができる。アマイド系チキソ剤とは、アマイド結合(-CONH-)を含む化合物であり、例えば、ステアリン酸アマイド等の高級脂肪酸アマイド、エチレンビスステアロアマイド、ラウリン酸アマイド、オレイン酸アマイドなどの不飽和脂肪酸モノアマイド、N-ラウリルラウリン酸アマイド、N-ステアリルステアリン酸アマイドなどの置換アマイド、メチロールステアリン酸アマイドなどのメチロールアマイド、脂肪酸アマイドのエチレンオキシド付加体、脂肪酸エステルアマイド、脂肪酸エタノールアマイド、N-ブチル-N’-ステアリル尿素などの置換尿素等、メチレンビスステアリン酸アマイド、エチレンビスラウリン酸アマイド、エチレンビスヒドロキシステアリン酸アマイドなどの飽和脂肪酸ビスアマイド;、メチレンビスオレイン酸アマイドなどの不飽和脂肪酸ビスアマイド;、m-キシリレンビスステアリン酸アマイドなどの芳香族ビスアマイド等が挙げられる。また、ジアミンとジカルボン酸を縮合重合させて得られるポリアマイドであってもよい。ジアミンとしては、エチレンジアミン、プトレシンやエキサメチレンジアミンが挙げられる。ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、ドデカ2酸などが挙げられる。これらのアマイド系チキソ剤を単独で、あるいは複数種類を混合して用いることができる。また、ソルビトール系チキソ剤としては例えば、ソルビトールや、ビス(p-メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、ジベンジリデンソルビトール、トリベンジリデンソルビトール、炭素原子数3以上のアルキル置換ジベンジリデンソルビトール等のベンジリデンソルビトール類等が挙げられる。その他、アマイド系チキソ剤やソルビトール系チキソ剤以外のものとしては、硬化ひまし油、蜜ロウ、カルナバワックス等が挙げられる。前記チキソ剤は、単独で、あるいは複数種類を混合して用いることができる。形状は特に制限されず、粒状やフレーク状であってもよい。また、溶剤で膨潤したものを用いてもよい。前記チキソ剤の中でも、硬化ひまし油や高級脂肪酸アマイド等を用いることが印刷時のソルダペーストに良好なチキソ性を保持させることができるので好ましい。特に好ましくは、常圧時の融点180℃以上かつ、分子量が500以上のカルボン酸アマイド系ワックスである。
これらのチキソ剤は、ソルダペーストの粘度を上げる、チキソ比を上げる(印刷性が向上する)、熱ダレ性を向上させることができる。これらのチキソ剤は半田内に残渣として残るが極少量(典型的には1質量%以下)であり、活性物質ではないため半田付け対象物(金属)を腐食させることがない。よって、残渣として残っても洗浄は不要である。
なお、本願のソルダペーストには、粘度調整、印刷性向上、貯蔵安定性という目的で、還元温度よりも低い温度で溶融する低融点のチキソ剤を、還元ガスの還元効果を妨げない範囲において、さらに配合してもよい。
チキソ剤の融点(常圧時)は、例えば80~270℃を挙げることができる。
なお、本願のソルダペーストには、粘度調整、印刷性向上、貯蔵安定性という目的で、還元温度よりも低い温度で溶融する低融点のチキソ剤を、還元ガスの還元効果を妨げない範囲において、さらに配合してもよい。
チキソ剤の融点(常圧時)は、例えば80~270℃を挙げることができる。
・溶剤
溶剤は、半田粉末、チキソ剤を分散させ、ソルダペーストに構造粘性を付与(ゲル化)するものであって、粘度調整ができるものであれば特に制限されない。一般に用いられる液体溶剤に加えて、固体溶剤や高粘性溶剤であってもよい。
例えば、グリコール系、グリコールエーテル系、アルコール系などの溶剤を挙げることができる。具体的には、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノブチルアセテート、ジプロピレングリコール、ジエチレングリコール-2-エチルヘキシルエーテル、α-テルピネオール、ベンジルアルコール、2-ヘキシルデカノール、2-エチル-1,3-ヒドロキシヘキサン、1,8-ヒドロキシオクタン、安息香酸ブチル、アジピン酸ジエチル、フタル酸ジエチル、ドデカン、テトラデセン、ドデシルベンゼン、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ヘキシレングリコール、1,5-ジヒドロキシペンタン、メチルカルビトール、ブチルカルビトール、イソステアリルアルコール、オレイルアルコール、オクチルドデカノール、キミルアルコール、スレアリルアルコール、セチルアルコール、デシルテトラアルコール、ヘキシルデカノール、ベヘニルアルコール、ラウリルアルコール等が挙げられる。前記溶媒は、単独で、あるいは複数種類を混合して用いることができる。
溶剤は、半田粉末、チキソ剤を分散させ、ソルダペーストに構造粘性を付与(ゲル化)するものであって、粘度調整ができるものであれば特に制限されない。一般に用いられる液体溶剤に加えて、固体溶剤や高粘性溶剤であってもよい。
例えば、グリコール系、グリコールエーテル系、アルコール系などの溶剤を挙げることができる。具体的には、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノブチルアセテート、ジプロピレングリコール、ジエチレングリコール-2-エチルヘキシルエーテル、α-テルピネオール、ベンジルアルコール、2-ヘキシルデカノール、2-エチル-1,3-ヒドロキシヘキサン、1,8-ヒドロキシオクタン、安息香酸ブチル、アジピン酸ジエチル、フタル酸ジエチル、ドデカン、テトラデセン、ドデシルベンゼン、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ヘキシレングリコール、1,5-ジヒドロキシペンタン、メチルカルビトール、ブチルカルビトール、イソステアリルアルコール、オレイルアルコール、オクチルドデカノール、キミルアルコール、スレアリルアルコール、セチルアルコール、デシルテトラアルコール、ヘキシルデカノール、ベヘニルアルコール、ラウリルアルコール等が挙げられる。前記溶媒は、単独で、あるいは複数種類を混合して用いることができる。
好ましくは、常圧における180℃での熱重量測定(TG)による減量が10℃/minの昇温速度において25%以上である溶剤、より好ましくは40%以上の溶剤、特に好ましくは60%以上の溶剤である。25%以上の溶剤であると、フラックス残渣の量が少なくなり、かつ接合層内のボイドが減るため好ましい。
・還元ガス
還元ガス用ソルダペーストとともに用いる還元ガスとしては、水素、ギ酸などのカルボン酸のガス、カルボン酸以外の有機酸のガス、有機酸以外の有機化合物のガス、有機化合物以外の他の還元性のガスを挙げることができる。
常圧、真空に関わらず、還元時の温度は150~450℃が好ましい。例えば還元ガスがギ酸の場合は、還元時の温度は150~300℃、好ましくは160~250℃、特に好ましくは170~230℃である。還元ガスが水素の場合は、250~450℃、好ましくは260~400℃、特に好ましくは270~350℃である。
還元ガス用ソルダペーストとともに用いる還元ガスとしては、水素、ギ酸などのカルボン酸のガス、カルボン酸以外の有機酸のガス、有機酸以外の有機化合物のガス、有機化合物以外の他の還元性のガスを挙げることができる。
常圧、真空に関わらず、還元時の温度は150~450℃が好ましい。例えば還元ガスがギ酸の場合は、還元時の温度は150~300℃、好ましくは160~250℃、特に好ましくは170~230℃である。還元ガスが水素の場合は、250~450℃、好ましくは260~400℃、特に好ましくは270~350℃である。
半田粉末の平均粒径は、例えば20~45μmの範囲を挙げることができる。しかし、印刷開口のサイズにより、より大径またははより小径のものに適宜変更してもよい。
なお、本明細書において、「平均粒径」は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
なお、本明細書において、「平均粒径」は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
一例として、還元ガスにギ酸を用いて、還元温度を約200℃とした場合は、溶剤には約180℃以下で蒸発するもの、チキソ剤には約210℃以上で溶融するものが好ましい。なお、ギ酸を用いると他の還元ガスよりも低い温度で還元できるため好ましい。
半田粉末、チキソ剤、溶剤の組成比は、半田粉末が80~99質量%、チキソ剤が0.1~2質量%、溶剤が0.9~18質量%であり、好ましくは、半田粉末が85~95質量%、チキソ剤が0.5~1.5質量%、溶剤が4.5~13.5質量%である。例えば、半田粉末が89質量%、チキソ剤が1質量%、溶剤が10質量%、または、半田粉末が90質量%、チキソ剤が1質量%、溶剤が9質量%を挙げることができる。
本願のソルダペーストは、半田粉末、チキソ剤、溶剤を上記割合で混合して、ペースト状にしたものである。なお、チキソ剤や溶剤の量は粘度調整の程度により適宜変更することができる。チキソ剤、溶剤は、加熱しながら撹拌して混合すればよい。半田粉末との混合は、常温で撹拌機を用いて混合すればよい。
本願のソルダペーストは、半田粉末、チキソ剤、溶剤を上記割合で混合して、ペースト状にしたものである。なお、チキソ剤や溶剤の量は粘度調整の程度により適宜変更することができる。チキソ剤、溶剤は、加熱しながら撹拌して混合すればよい。半田粉末との混合は、常温で撹拌機を用いて混合すればよい。
[半田付け製品の製造方法]
図1を参照して、従来法と比較しながら本発明の第2の実施の形態に係る半田付け製品の製造方法の概要を説明する。図1の方法Aは従来法であり、使用するソルダペーストは、半田粉末と、フラックスとして、還元剤、活性剤、チキソ剤、溶剤を含む。方法Bは本発明の半田付け製品の製造方法であり、使用するソルダペーストは、半田粉末と、フラックスとして、チキソ剤、溶剤を含むが、還元剤、活性剤を含まない。
図1を参照して、従来法と比較しながら本発明の第2の実施の形態に係る半田付け製品の製造方法の概要を説明する。図1の方法Aは従来法であり、使用するソルダペーストは、半田粉末と、フラックスとして、還元剤、活性剤、チキソ剤、溶剤を含む。方法Bは本発明の半田付け製品の製造方法であり、使用するソルダペーストは、半田粉末と、フラックスとして、チキソ剤、溶剤を含むが、還元剤、活性剤を含まない。
以下、図1では被接合部材として半田付け対象物TとソルダペーストSを用いて説明する。
まず方法Aでは、スクリーン印刷等により半田付け対象物TにソルダペーストS’を塗布する(A1)。図1に示す、半田付け対象物TとソルダペーストS’を加熱すると、溶剤の蒸発が始まる(A2)。さらに加熱して、還元剤、活性剤を含む溶融したフラックスにより還元する(A3)。さらに半田溶融温度まで加熱し、半田付けを行う(A4)。フラックスが10%前後のフラックス残渣として残るため、洗浄して除去する(A5)。
まず方法Aでは、スクリーン印刷等により半田付け対象物TにソルダペーストS’を塗布する(A1)。図1に示す、半田付け対象物TとソルダペーストS’を加熱すると、溶剤の蒸発が始まる(A2)。さらに加熱して、還元剤、活性剤を含む溶融したフラックスにより還元する(A3)。さらに半田溶融温度まで加熱し、半田付けを行う(A4)。フラックスが10%前後のフラックス残渣として残るため、洗浄して除去する(A5)。
一方で方法Bでは、スクリーン印刷等により半田付け対象物TにソルダペーストSを塗布する(B1)。図1に示す半田付け対象物TとソルダペーストSを加熱すると、溶剤の蒸発が始まる(B2)。さらに還元温度まで加熱し、還元ガスFにより還元する(B3)。さらに半田溶融温度まで加熱し、半田付けを行う(B4)。チキソ剤が残渣として残るが、典型的には1%以下であり活性物質ではないため洗浄は不要である。方法Bでは、半田粉末とチキソ剤は溶融する温度が還元温度よりも高いため、還元時に溶融せず、半田粉末間、チキソ剤間、半田粉末とチキソ剤間に間隙が生じ、還元ガスの浸入、還元を容易にする。または、還元時に溶融するチキソ剤であっても溶融時の濡れ広がりが小さいため、その場に留まり、還元ガスの浸入、還元を妨げない。なお、還元は、溶剤の蒸発と同時であってもよく、蒸発後であってもよい。
図2を参照して、本発明の第2の実施の形態に係る半田付け製品の製造方法をより詳細に説明する。図2は、半田付け製品の製造方法を示すフローチャートである。
以下、図2、3では半田付け対象物TとソルダペーストSに代えて、被接合部材として、図3に示すように基板W、ソルダペーストS、電子部品Pとを用いて説明する。
(1)ソルダペーストの提供工程
ソルダペーストの提供工程とは、上記本発明の第1の実施の形態に係る還元ガス用ソルダペーストを使用できる状態にする工程である。ソルダペーストの製造であっても、すでに製造されたソルダペーストの準備であってもよい。
以下、図2、3では半田付け対象物TとソルダペーストSに代えて、被接合部材として、図3に示すように基板W、ソルダペーストS、電子部品Pとを用いて説明する。
(1)ソルダペーストの提供工程
ソルダペーストの提供工程とは、上記本発明の第1の実施の形態に係る還元ガス用ソルダペーストを使用できる状態にする工程である。ソルダペーストの製造であっても、すでに製造されたソルダペーストの準備であってもよい。
(2)ソルダペーストの塗布工程
ソルダペーストをソルダペースト印刷機(またはスクリーン印刷機)等を用いて半田付け対象物の上に塗布する。通常はメタルマスクと呼ばれる、例えば、薄さが約30~300μm程度の金属板に穴を開けたマスク(型)を用い、印刷機のスキージを使って印刷を行う。人間の手でスキージを動かす手動の装置を使用してもよい。または、シリンジを用いた塗布であってもよい。
ソルダペーストをソルダペースト印刷機(またはスクリーン印刷機)等を用いて半田付け対象物の上に塗布する。通常はメタルマスクと呼ばれる、例えば、薄さが約30~300μm程度の金属板に穴を開けたマスク(型)を用い、印刷機のスキージを使って印刷を行う。人間の手でスキージを動かす手動の装置を使用してもよい。または、シリンジを用いた塗布であってもよい。
(3)溶剤の蒸発工程、被接合部材の還元工程、半田溶融工程
溶剤の蒸発工程、被接合部材の還元工程、半田溶融工程について、図3に記載の半田付け装置1を用いてより詳細に説明する。
ソルダペーストSを塗布した半田付け対象物として、基板Wと電子部品Pとを用いている。還元ガスとしては、ギ酸ガスを用いている。
なお、以下の説明において、本発明の第2の実施の形態である半田付け製品の製造方法は、半田付け装置1の作用と併せて説明するが、他の装置によって行われるものでもよい。
溶剤の蒸発工程、被接合部材の還元工程、半田溶融工程について、図3に記載の半田付け装置1を用いてより詳細に説明する。
ソルダペーストSを塗布した半田付け対象物として、基板Wと電子部品Pとを用いている。還元ガスとしては、ギ酸ガスを用いている。
なお、以下の説明において、本発明の第2の実施の形態である半田付け製品の製造方法は、半田付け装置1の作用と併せて説明するが、他の装置によって行われるものでもよい。
まず図3を参照して、半田付け装置1を説明する。図3は、半田付け装置1の概略構成図である。半田付け装置1は、被接合部材の半田接合が行われる空間である処理空間11sを形成するチャンバ11を有する処理部10と、還元ガスとしてのギ酸ガスFをチャンバ11に供給する還元ガス供給部としてのギ酸供給部20と、半田付け装置1内のギ酸ガスFを排出する前に濃度を低下させる還元ガス処理部としての触媒ユニット33と、半田付け装置1の動作を制御する制御装置50と、これらを収容する筐体100とを備えている。
半田付け装置1は、基板Wと電子部品Pとを、ソルダペーストSで接合する装置となっている。基板Wおよび電子部品Pは、共に、表面に金属部分を有しており、当該金属部分が半田を介して導通するように接合されることとなる。基板Wおよび電子部品Pは、ソルダペーストSを挟んだ状態でチャンバ11に搬入され、チャンバ11内で半田が溶融されて接合される。以下、基板W、ソルダペーストS、電子部品Pが積重されて半田が溶融していない状態のものを被接合部材Bといい、半田が溶融して基板Wと電子部品Pとが接合された状態のものを半田付け製品Cということとする。
チャンバ11は、シャッタ11dで搬入出口11aを塞ぐことにより、処理空間11sを密閉することができるように構成されている。チャンバ11は、処理空間11sを、概ね10Pa(絶対圧力)に減圧しても耐えうるような材料や形状が採用されている。
チャンバ11の内部には、被接合部材Bが載置されるキャリアプレート12と、キャリアプレート12を加熱するヒータ13とが設けられている。
チャンバ11の内部には、被接合部材Bが載置されるキャリアプレート12と、キャリアプレート12を加熱するヒータ13とが設けられている。
ヒータ13は、キャリアプレート12を、半田の溶融温度よりも高い接合温度まで加熱することができるように構成されている。
ギ酸供給部20は、ギ酸ガスFをチャンバ11内に導く。なお、本説明では、還元ガスとしてギ酸ガスFを用いているが、基板Wおよび電子部品Pの接合面に生成された金属酸化物を還元することができるものであれば、ギ酸ガスF以外のカルボン酸のガス、カルボン酸以外の有機酸のガス、有機酸以外の有機化合物のガス、有機化合物以外の他の還元性のガスであってもよい。他の還元性のガスとして、例えば水素ガスが挙げられる。本説明では、還元温度を半田の溶融温度よりも低くする観点、および入手容易性の観点から、還元ガスとしてギ酸ガスFを用いることとしている。
触媒ユニット33は、半田付け装置1から排出される排出ガスE中のギ酸の濃度を、環境に影響を与えない濃度に低下させる機器である。なお、気体Gは、チャンバ11から排出されるガスの総称である。
真空ポンプ31は、チャンバ11内の圧力を概ね10Pa(絶対圧力)に減圧することができるようにチャンバ11内の気体Gを排出する減圧ポンプとして配設される。
制御装置50は、シャッタ11dを開閉させることができるように構成されている。また、制御装置50は、ヒータ13のON-OFFおよび出力の変更を介して、キャリアプレート12の加熱を行うことができるように構成されている。また、制御装置50は、ギ酸ガスFをチャンバ11に向けて供給することができるように構成されている。また、制御装置50は、真空ポンプ31の発停を制御することができるように構成されている。また、制御装置50は、後述する半田付け装置1の動作のシーケンスが記憶されている。
引き続き図4を参照して、本発明の実施の形態に係る半田付け製品Cの製造方法を説明する。図4は、半田付け製品Cの半田接合手順を示すフローチャートである。以下の説明で半田付け装置1の構成について言及しているときは、適宜図3を参照することとする。なお、チキソ剤には還元時の温度よりも高い融点をもつもの、すなわち還元時の温度において個体のものを用いている。
半田付け装置1に被接合部材Bを搬入するため、シャッタ11dを開けるボタン(不図示)を押すと、制御装置50は、真空ポンプ31を作動させ、チャンバ11内の気体Gの排気を開始した後(S1)、シャッタ11dを開にする。併せて、キャリアプレート12の大部分がチャンバ11の外側に出るようにキャリアプレート12を移動させる。シャッタ11dを開ける前にチャンバ11内の気体Gをチャンバ11から排出させることで、シャッタ11dを開けてもチャンバ11内の気体Gが搬入出口11aを介して半田付け装置1の外に流出することを防ぐことができる。シャッタ11dが開になり、キャリアプレート12の大部分がチャンバ11の外側に出て、キャリアプレート12に被接合部材Bが載置されたら、キャリアプレート12のチャンバ11内への移動に伴って被接合部材Bがチャンバ11内に搬入される(被接合部材搬入工程:S2)。
被接合部材Bがチャンバ11内に搬入されたら、制御装置50は、シャッタ11dを閉じて、チャンバ11内を密閉する。次に、シャッタ11dが開の時にチャンバ11内に流入した大気を除去し、不活性ガスの雰囲気とするため、制御装置50は、チャンバ11内の気体Gの排気を行い、その後不活性ガスNを導入する。この工程を繰り返すことにより、チャンバ11内の酸素濃度を低下させる(不活性ガス置換工程:S3)。酸素濃度は5ppm以下が好ましい。不活性ガスNは、例えば窒素ガスである。
次に制御装置50は、ヒータ13をONにして、キャリアプレート12の温度、ひいては被接合部材Bの温度を、ソルダペーストSに含まれる溶剤が気化(蒸発)する温度に昇温する(S4)。気化する温度まで昇温するにつれて溶剤が蒸発しソルダペーストSから除去される。本実施の形態では、溶剤の蒸発を促進するため、チャンバ11内の圧力を真空に(減圧)することができる。
本実施の形態では、気化する温度が還元温度よりも低い場合で説明しているが、気化する温度は下記の還元温度と同一でもよい。同一の場合は、溶剤の一部の蒸発と被接合部材の還元が同時に起こることになる。すなわち、(S4)工程と次工程である(S5)工程および(S6)工程が並行する場合が存在する。
本実施の形態では、気化する温度が還元温度よりも低い場合で説明しているが、気化する温度は下記の還元温度と同一でもよい。同一の場合は、溶剤の一部の蒸発と被接合部材の還元が同時に起こることになる。すなわち、(S4)工程と次工程である(S5)工程および(S6)工程が並行する場合が存在する。
次に制御装置50は、ギ酸ガスFをギ酸供給部20からチャンバ11内に供給する(S5)と共に、ヒータ13をONに維持して、キャリアプレート12の温度、ひいては被接合部材Bの温度を還元温度に昇温する(S6)。還元温度は、ギ酸によって被接合部材Bの酸化物が還元される温度である。ここで、本実施の形態では、還元温度はソルダペーストSに含まれる半田粉末およびチキソ剤の溶融温度よりも低くなっているため、半田粉末およびチキソ剤が溶融せず形成された間隙にギ酸ガスが浸入し易く、被接合部材Bが半田接合される前に酸化膜を好適に除去することができる。ギ酸ガスFの供給は、チャンバ11内を真空にしてから行うことにより、半田粉末、チキソ剤の間隙にギ酸ガスFが浸入し易くなる。ギ酸ガスFをチャンバ11内に供給する工程(S5)および被接合部材Bの温度を還元温度に昇温する工程(S6)が還元工程に相当する。なお、還元温度への昇温が完了後にギ酸ガスFを供給してもよい。
還元工程(S5、S6)が終了したら、チャンバ11内のギ酸ガスF雰囲気を維持したまま、ヒータ13の出力を上げて、キャリアプレート12の温度、ひいては被接合部材Bの温度を接合温度に昇温して半田を溶融させ、被接合部材Bの半田接合を行う(接合工程:S7)。接合温度は、ソルダペーストSに含まれる半田粉末の溶融温度よりも高い任意の温度であり、本実施の形態では溶融温度よりも30~50℃高い温度としている。
被接合部材Bの半田が溶融したら、制御装置50は、ヒータ13をOFFにする。このように冷却を開始することで、被接合部材Bの温度が低下し、融点未満になると、半田が固まって半田付け製品Cとなる。このとき、キャリアプレート12を強制的に冷却することで半田の固化を早めてもよい。次に、真空ポンプ31の作動およびメイン排気弁41vを開にしてチャンバ11内からギ酸ガスFを排出し(S8)、不活性ガスNを導入することで、チャンバ11内を常圧とする。チャンバ11内から排出されたギ酸ガスFは、触媒ユニット33に流入する。ギ酸ガスFは、触媒ユニット33でギ酸が分解され、ギ酸の濃度が所定の濃度以下に低減されて、排出ガスEとして半田付け装置1から排出される(S9)。半田付け製品Cが製造されると、制御装置50は、バイパス排気管42を介したチャンバ11内の気体Gの排気を行い(S10)、シャッタ11dを開にする。これにより、半田付け製品Cをチャンバ11から取り出すことができる(S11)。
半田付け製品Cがチャンバ11から搬出されたら、制御装置50は、連続運転が行われるか否かを判断する(S12)。連続運転が行われる場合は、チャンバ11内の気体Gの排気を行う工程(S1)に戻る。他方、連続運転が行われない場合は、メンテナンス運転を行う(S13)。
図5を参照して、本発明の実施の形態に係る半田付け製品Cの他の製造方法を説明する。図5は、半田付け製品Cの半田接合手順を示すフローチャートである。以下の説明で半田付け装置1の構成について言及しているときは、適宜図3を参照することとする。
(S1)~(S6)は、図4の製造方法と同様である。
(S6)が終了したら、制御装置50は、真空ポンプ31の作動およびメイン排気弁41vを開にすることで、チャンバ11内からギ酸ガスFを排出し、チャンバ11内を減圧する(S7)。チャンバ11内の減圧(真空)を維持したまま、ヒータ13の出力を上げて、キャリアプレート12の温度、ひいては被接合部材Bの温度を接合温度に昇温し(S8)、半田を溶融させ、被接合部材Bの半田接合を行う。被接合部材Bの半田接合を行ったら、制御装置50は、不活性ガスNを導入する(S9)ことで、チャンバ11内の真空を破壊する。制御装置50は、ヒータ13をOFFにする(冷却を開始する(S10))ことで、被接合部材Bの温度が低下し、融点未満になると、半田が固まって、半田付け製品Cとなる。半田付け製品Cが製造されると、制御装置50は、バイパス排気管42を介したチャンバ11内の気体Gの排気を行い、シャッタ11dを開にする。これにより、半田付け製品Cをチャンバ11から取り出すことができる(S11)。
(S12)~(S13)は、図4の製造方法と同様である。
このように半田が溶融した状態で不活性ガスNを導入すると、空洞(ボイド)を圧縮し潰すことができる。空洞を潰した後で半田を固化させると、半田中のボイドによる疲労寿命の低下をさらに抑制することができる。
(S6)が終了したら、制御装置50は、真空ポンプ31の作動およびメイン排気弁41vを開にすることで、チャンバ11内からギ酸ガスFを排出し、チャンバ11内を減圧する(S7)。チャンバ11内の減圧(真空)を維持したまま、ヒータ13の出力を上げて、キャリアプレート12の温度、ひいては被接合部材Bの温度を接合温度に昇温し(S8)、半田を溶融させ、被接合部材Bの半田接合を行う。被接合部材Bの半田接合を行ったら、制御装置50は、不活性ガスNを導入する(S9)ことで、チャンバ11内の真空を破壊する。制御装置50は、ヒータ13をOFFにする(冷却を開始する(S10))ことで、被接合部材Bの温度が低下し、融点未満になると、半田が固まって、半田付け製品Cとなる。半田付け製品Cが製造されると、制御装置50は、バイパス排気管42を介したチャンバ11内の気体Gの排気を行い、シャッタ11dを開にする。これにより、半田付け製品Cをチャンバ11から取り出すことができる(S11)。
(S12)~(S13)は、図4の製造方法と同様である。
このように半田が溶融した状態で不活性ガスNを導入すると、空洞(ボイド)を圧縮し潰すことができる。空洞を潰した後で半田を固化させると、半田中のボイドによる疲労寿命の低下をさらに抑制することができる。
以上で説明したように、半田付け装置1によれば、筐体100に、処理部10、ギ酸供給部20、触媒ユニット33、制御装置50等、真空中で半田接合を行うのに要する機器が収容されているので、ギ酸ガスFを用いた半田接合を適切に半田付け装置1内で完結させることができる。また、本実施の形態に係る半田付け製品Cの製造方法によれば、ソルダペーストSとギ酸ガスFを用いて適切な真空半田付けを行うことができる。
以上の説明では、被接合部材として、ソルダペーストSとともに基板W、電子部品Pを用いて説明したが、被接合部材は、半田接合に適した金属部分を表面に有する部材であれば、基板Wや電子部品P以外の部材であってもよい。
また以上の説明では、被接合部材Bを、ギ酸ガスFの雰囲気下で昇温しソルダペーストSを溶融することとしたが、真空(例えば100Pa(絶対圧力)程度)中で昇温してソルダペーストSを溶融することとしてもよい。被接合部材Bを真空中で溶融する場合は、処理排出工程(S8、S9)が、還元工程(S5、S6)の後に行われることとなる。なお、半田付け製品Cをチャンバ11から取り出す(S11)ためのシャッタ11dを開ける際に、チャンバ11にギ酸ガスFがほとんど存在しない場合は、チャンバ11内を負圧にせずに(真空ポンプ31を作動させず)、シャッタ11dを開けることとしてもよい。
なお、本発明で使用する還元ガス用ソルダペーストは、従来のソルダペーストよりもフラックス残渣が少ないため、被接合部材Bを真空中で接合した場合でも半田飛散を抑制することができる。
なお、本発明で使用する還元ガス用ソルダペーストは、従来のソルダペーストよりもフラックス残渣が少ないため、被接合部材Bを真空中で接合した場合でも半田飛散を抑制することができる。
本願の半田付け製品の製造方法は、さらに半田接合が完了した半田付け対象物をコーティングするコーティング工程を備えてもよい。本発明による半田接合では、残渣がほとんど無いためコーティング剤との密着性に問題が生じない。よって、コーティング工程によりコーティングすることにより、半田付け部が適切に保護される。
以上のとおり、本願発明はソルダペーストの組成をよりシンプルなものとし、従来の還元剤および活性剤が担っていた酸化金属の還元や還元性の向上、さらには溶融性の向上を、装置側の還元ガスの導入および真空によって対応できるようにしたものである。
次に、本発明の実施例について比較例と併せて説明する。なお、本発明は下記の実施例に限定して解釈されるものではない。
[1.チキソ剤融点]
次の実施例では、チキソ剤融点と、半田融点、還元温度との関係を示す。
次の実施例では、チキソ剤融点と、半田融点、還元温度との関係を示す。
[材料]
・半田粉末A:Sn-3Ag-0.5Cu(略称SAC305)、融点約220℃
・チキソ剤A:ポリアマイド系チキソ剤、融点255℃
B:アマイド系チキソ剤、融点185℃
C:硬化ヒマシ油、融点30℃
D:アマイド系チキソ剤、融点130℃
E:アマイド系チキソ剤、融点150℃
F:ソルビトール系チキソ剤、融点180℃
G:アマイド系チキソ剤、融点80℃
・溶剤A:ヘキシルジグリコール(HeDG、ジエチレングリコールモノヘキシルエーテル)
B:フェニルジグリコール
C:2-エチルヘキシルジグリコール
D:2-エチル-1,3-ヘキサンジオール
E:テトライソステアリン酸ジグリセリル+HeDG 1:1混合物
・半田粉末A:Sn-3Ag-0.5Cu(略称SAC305)、融点約220℃
・チキソ剤A:ポリアマイド系チキソ剤、融点255℃
B:アマイド系チキソ剤、融点185℃
C:硬化ヒマシ油、融点30℃
D:アマイド系チキソ剤、融点130℃
E:アマイド系チキソ剤、融点150℃
F:ソルビトール系チキソ剤、融点180℃
G:アマイド系チキソ剤、融点80℃
・溶剤A:ヘキシルジグリコール(HeDG、ジエチレングリコールモノヘキシルエーテル)
B:フェニルジグリコール
C:2-エチルヘキシルジグリコール
D:2-エチル-1,3-ヘキサンジオール
E:テトライソステアリン酸ジグリセリル+HeDG 1:1混合物
[還元ガス用ソルダペーストの作製]
[実施例1~4]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤1質量%と、溶剤9質量%と混合攪拌して、実施例1~4のソルダペーストを作製した。
[実施例5~7]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤2質量%(チキソ剤倍量)と、溶剤8質量%と混合攪拌して、実施例5~7のソルダペーストを作製した。
[実施例8]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤0.15質量%(チキソ剤85%減量)と、溶剤9.85質量%と混合攪拌して、実施例8のソルダペーストを作製した。
[実施例9]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤2質量%(チキソ剤倍量)と、溶剤8質量%と混合攪拌して、実施例9のソルダペーストを作製した。
[実施例10~12]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤1質量%と、溶剤9質量%と混合攪拌して、実施例10~12のソルダペーストを作製した。
[比較例1~2]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤1質量%と、溶剤9質量%と混合攪拌して、比較例1~2のソルダペーストを作製した。
[実施例1~4]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤1質量%と、溶剤9質量%と混合攪拌して、実施例1~4のソルダペーストを作製した。
[実施例5~7]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤2質量%(チキソ剤倍量)と、溶剤8質量%と混合攪拌して、実施例5~7のソルダペーストを作製した。
[実施例8]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤0.15質量%(チキソ剤85%減量)と、溶剤9.85質量%と混合攪拌して、実施例8のソルダペーストを作製した。
[実施例9]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤2質量%(チキソ剤倍量)と、溶剤8質量%と混合攪拌して、実施例9のソルダペーストを作製した。
[実施例10~12]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤1質量%と、溶剤9質量%と混合攪拌して、実施例10~12のソルダペーストを作製した。
[比較例1~2]
鉛フリー半田合金粉末(Sn:Ag:Cu=96.5:3.0:0.5(質量%))90質量%と、チキソ剤1質量%と、溶剤9質量%と混合攪拌して、比較例1~2のソルダペーストを作製した。
[試験片の作製]
試験片として、ニッケルメッキ銅基板(20×20mm、厚み2mm)を準備し、前記基板の一面に実施例および比較例のソルダペーストを10×12mmサイズで150μm厚み(メタルマスク厚)に塗布した。
試験片として、ニッケルメッキ銅基板(20×20mm、厚み2mm)を準備し、前記基板の一面に実施例および比較例のソルダペーストを10×12mmサイズで150μm厚み(メタルマスク厚)に塗布した。
[リフロー条件]
リフロー条件は、図6の「温度プロファイル」に示すとおりである。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):ギ酸+窒素雰囲気(大気圧、ギ酸濃度3%Vol)、200℃、60秒
本加熱(半田溶融工程):真空雰囲気(200Pa)、ピーク温度260℃、220℃以上、加熱時間30秒
リフロー条件は、図6の「温度プロファイル」に示すとおりである。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):ギ酸+窒素雰囲気(大気圧、ギ酸濃度3%Vol)、200℃、60秒
本加熱(半田溶融工程):真空雰囲気(200Pa)、ピーク温度260℃、220℃以上、加熱時間30秒
[半田濡れ性判定]
図7の「半田濡れ性判定」で示すとおり、ソルダペーストが印刷された基板を、前記リフロー条件で加熱後、ディウェッティングの有無を確認した。確認方法は、各基板ごとに半田部分を目視で観察して、下地基板が半田で完全に濡れ、全くはじき等の状態が見られないもの、はじき等の状態がごくわずかなものをディウェッティング無し(半田濡れ性:○)、明確にはじき等が確認できるものをディウェッティング有り(半田濡れ性:×)とした。
[チキソ剤の熱だれ判定]
各実施例のソルダペーストから半田粉末を除いたペーストについて、上記(1)~(5)の方法を用いてペーストの濡れ広がり面積の割合を測定した。
図7の「半田濡れ性判定」で示すとおり、ソルダペーストが印刷された基板を、前記リフロー条件で加熱後、ディウェッティングの有無を確認した。確認方法は、各基板ごとに半田部分を目視で観察して、下地基板が半田で完全に濡れ、全くはじき等の状態が見られないもの、はじき等の状態がごくわずかなものをディウェッティング無し(半田濡れ性:○)、明確にはじき等が確認できるものをディウェッティング有り(半田濡れ性:×)とした。
[チキソ剤の熱だれ判定]
各実施例のソルダペーストから半田粉末を除いたペーストについて、上記(1)~(5)の方法を用いてペーストの濡れ広がり面積の割合を測定した。
上記の「融点」とは、気圧にかかわらず物質が溶融する温度をいう。
上記のとおり、還元温度においてチキソ剤が溶融しない実施例1ではリフロー後も半田濡れ性は良好であった。また、チキソ剤の融点が還元温度よりも低い実施例2~12は、還元温度においてチキソ剤は溶融していると思われるが、チキソ剤の濡れ広がりが小さく、還元ガスによる還元効果を十分に得られたため半田濡れ性が良好となったと考えられる。濡れ性の低下は十分に強度のある半田付けを妨げるものである。比較例1~2は、溶融したチキソ剤の熱だれ(濡れ広がり)により基材表面が覆われ、基材および一部の半田粉末の還元が不十分であったためと考えられる。
上記のとおり、還元温度においてチキソ剤が溶融しない実施例1ではリフロー後も半田濡れ性は良好であった。また、チキソ剤の融点が還元温度よりも低い実施例2~12は、還元温度においてチキソ剤は溶融していると思われるが、チキソ剤の濡れ広がりが小さく、還元ガスによる還元効果を十分に得られたため半田濡れ性が良好となったと考えられる。濡れ性の低下は十分に強度のある半田付けを妨げるものである。比較例1~2は、溶融したチキソ剤の熱だれ(濡れ広がり)により基材表面が覆われ、基材および一部の半田粉末の還元が不十分であったためと考えられる。
[2.ソルダペーストの成分]
次の実施例では、本発明のソルダペーストが効果を奏するための成分構成を示す。
次の実施例では、本発明のソルダペーストが効果を奏するための成分構成を示す。
[材料]
・半田粉末A:Sn-3Ag-0.5Cu(略称SAC305)、融点約220℃
・チキソ剤A:ポリアマイド系チキソ剤、融点255℃
B:アマイド系チキソ剤、融点185℃
・溶剤A:ヘキシルジグリコール
B:フェニルジグリコール
C:2-エチルヘキシルジグリコール
・活性剤:コハク酸、サリチル酸
・ロジン:アクリル酸変性ロジン(荒川化学製KE-604)
・半田粉末A:Sn-3Ag-0.5Cu(略称SAC305)、融点約220℃
・チキソ剤A:ポリアマイド系チキソ剤、融点255℃
B:アマイド系チキソ剤、融点185℃
・溶剤A:ヘキシルジグリコール
B:フェニルジグリコール
C:2-エチルヘキシルジグリコール
・活性剤:コハク酸、サリチル酸
・ロジン:アクリル酸変性ロジン(荒川化学製KE-604)
[還元ガス用ソルダペーストの作製]
[実施例21]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例22]
融点185℃のチキソ剤とフェニルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例23]
融点185℃のチキソ剤と2-エチルヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例21]
融点255度のチキソ剤とヘキシルジグリコール、活性剤としてコハク酸とサリチル酸を混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例22]
融点255℃のチキソ剤とヘキシルジグリコールを含み、半田融点220℃のSAC305合金粉の市販ソルダペーストを用いた。市販ソルダペーストは、活性剤およびロジンを含む。
[参考例21]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。作製したソルダペーストを通常リフローで用いた。
[参考例22]
融点255℃のチキソ剤とヘキシルジグリコールを含み、半田融点220℃のSAC305合金粉の市販ソルダペーストを用いた。市販ソルダペーストは、活性剤およびロジンを含む。市販ソルダペーストを通常リフローで用いた。
[実施例21]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例22]
融点185℃のチキソ剤とフェニルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例23]
融点185℃のチキソ剤と2-エチルヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例21]
融点255度のチキソ剤とヘキシルジグリコール、活性剤としてコハク酸とサリチル酸を混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例22]
融点255℃のチキソ剤とヘキシルジグリコールを含み、半田融点220℃のSAC305合金粉の市販ソルダペーストを用いた。市販ソルダペーストは、活性剤およびロジンを含む。
[参考例21]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。作製したソルダペーストを通常リフローで用いた。
[参考例22]
融点255℃のチキソ剤とヘキシルジグリコールを含み、半田融点220℃のSAC305合金粉の市販ソルダペーストを用いた。市販ソルダペーストは、活性剤およびロジンを含む。市販ソルダペーストを通常リフローで用いた。
[試験片の作製]
試験片として、ニッケルメッキ銅基板(20×20mm、厚み2mm)を準備し、前記基板の一面に実施例および比較例のソルダペーストを10×12mmサイズで150μm厚み(メタルマスク厚)に塗布した。
試験片として、ニッケルメッキ銅基板(20×20mm、厚み2mm)を準備し、前記基板の一面に実施例および比較例のソルダペーストを10×12mmサイズで150μm厚み(メタルマスク厚)に塗布した。
[リフロー条件]
リフロー条件は、図6の「温度プロファイル」に示すとおりである。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):ギ酸+窒素雰囲気(真空雰囲気(200Pa)、ギ酸濃度3%Vol)、180℃、60秒
本加熱(半田溶融工程):真空雰囲気(200Pa)、ピーク温度260℃、220℃以上、加熱時間30秒
[通常リフロー条件]
リフロー条件は、図6の「温度プロファイル」において、窒素雰囲気(大気圧)にて実施するものである。窒素雰囲気は、予備加熱1、2、本加熱を問わず一定としている。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):窒素雰囲気(大気圧)180℃、60秒
本加熱(半田溶融工程):窒素雰囲気(大気圧)、ピーク温度260℃、220℃
リフロー条件は、図6の「温度プロファイル」に示すとおりである。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):ギ酸+窒素雰囲気(真空雰囲気(200Pa)、ギ酸濃度3%Vol)、180℃、60秒
本加熱(半田溶融工程):真空雰囲気(200Pa)、ピーク温度260℃、220℃以上、加熱時間30秒
[通常リフロー条件]
リフロー条件は、図6の「温度プロファイル」において、窒素雰囲気(大気圧)にて実施するものである。窒素雰囲気は、予備加熱1、2、本加熱を問わず一定としている。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):窒素雰囲気(大気圧)180℃、60秒
本加熱(半田溶融工程):窒素雰囲気(大気圧)、ピーク温度260℃、220℃
[半田濡れ性判定]
図7の「半田濡れ性判定」で示すとおり、ソルダペーストが印刷された基板を、前記リフロー条件で加熱後、ディウェッティングの有無を確認した。確認方法は、各基板ごとに半田部分を目視で観察して、下地基板が半田で完全に濡れ、全くはじき等の状態が見られないもの、はじき等の状態がごくわずかなものをディウェッティング無し(半田濡れ性:○)、明確にはじき等が確認できるものをディウェッティング有り(半田濡れ性:×)とした。
図7の「半田濡れ性判定」で示すとおり、ソルダペーストが印刷された基板を、前記リフロー条件で加熱後、ディウェッティングの有無を確認した。確認方法は、各基板ごとに半田部分を目視で観察して、下地基板が半田で完全に濡れ、全くはじき等の状態が見られないもの、はじき等の状態がごくわずかなものをディウェッティング無し(半田濡れ性:○)、明確にはじき等が確認できるものをディウェッティング有り(半田濡れ性:×)とした。
実施例21~23は、還元温度200℃においてすべて溶剤が揮発した状態であるためギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
比較例21および22は、リフロー後半田濡れ性は低下した。活性剤がギ酸と反応し、ギ酸の効果を妨げたためと考えられる。
参考例21は通常リフロー炉で実施例21の組成の半田付けを試みた物であるが、半田粉末が溶融しない。参考例12は通常リフロー炉で比較例22の組成のソルダペースト(市販品)を用いて半田付けを試みた物であるが、良好な濡れ性を示す。このように、実施例21の組成は通常リフロー環境では全く実用性がなかったものであるが、ギ酸リフロー環境ではきわめて優れた効果を発揮する。
比較例21および22は、リフロー後半田濡れ性は低下した。活性剤がギ酸と反応し、ギ酸の効果を妨げたためと考えられる。
参考例21は通常リフロー炉で実施例21の組成の半田付けを試みた物であるが、半田粉末が溶融しない。参考例12は通常リフロー炉で比較例22の組成のソルダペースト(市販品)を用いて半田付けを試みた物であるが、良好な濡れ性を示す。このように、実施例21の組成は通常リフロー環境では全く実用性がなかったものであるが、ギ酸リフロー環境ではきわめて優れた効果を発揮する。
[3.工法]
次の実施例では、本発明のソルダペーストが効果を奏するための工法を示す。
次の実施例では、本発明のソルダペーストが効果を奏するための工法を示す。
[材料]
・半田粉末A:Sn-3Ag-0.5Cu(略称SAC305)、融点約220℃
B:Sn-5Sb、融点約240℃
・チキソ剤A:ポリアマイド系チキソ剤、融点255℃
B:アマイド系チキソ剤、融点185℃
C:硬化ヒマシ油、融点30℃
D:アマイド系チキソ剤、融点130℃
E:アマイド系チキソ剤、融点150℃
F:ソルビトール系チキソ剤、融点180℃
・溶剤A:ヘキシルジグリコール(HeDG)
B:フェニルジグリコール
C:2-エチルヘキシルジグリコール
D:2-エチル-1,3-ヘキサンジオール
E:テトライソステアリン酸ジグリセリル+HeDG 1:1混合物
・半田粉末A:Sn-3Ag-0.5Cu(略称SAC305)、融点約220℃
B:Sn-5Sb、融点約240℃
・チキソ剤A:ポリアマイド系チキソ剤、融点255℃
B:アマイド系チキソ剤、融点185℃
C:硬化ヒマシ油、融点30℃
D:アマイド系チキソ剤、融点130℃
E:アマイド系チキソ剤、融点150℃
F:ソルビトール系チキソ剤、融点180℃
・溶剤A:ヘキシルジグリコール(HeDG)
B:フェニルジグリコール
C:2-エチルヘキシルジグリコール
D:2-エチル-1,3-ヘキサンジオール
E:テトライソステアリン酸ジグリセリル+HeDG 1:1混合物
[還元ガス用ソルダペーストの作製]
[実施例31]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。ヘキシルジグリコールはTG(示差走査熱量計)での200℃での減量は100%であった。還元温度は200℃とした。
[実施例32]
融点185℃のチキソ剤とフェニルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。フェニルジグリコールはTG(示差走査熱量計)での180℃での減量は28%であった。
[実施例33]
融点185℃のチキソ剤と2-エチルヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。2-エチルヘキシルジグリコールはTG(示差走査熱量計)での180℃での減量は47%であった。
[実施例34]
融点185℃のチキソ剤と2-エチル-1,3-ヘキサンジオールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。2-エチル-1,3-ヘキサンジオールはTG(示差走査熱量計)での180℃での減量は52%であった。
[実施例35]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点240℃のSn-5Sb合金粉を混合したソルダペーストを作製した。ヘキシルジグリコールはTG(示差走査熱量計)での180℃での減量は78%であった。
[実施例36]
融点130℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例37]
融点150℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例31]
融点30℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例32]
融点180℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例31]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。ヘキシルジグリコールはTG(示差走査熱量計)での200℃での減量は100%であった。還元温度は200℃とした。
[実施例32]
融点185℃のチキソ剤とフェニルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。フェニルジグリコールはTG(示差走査熱量計)での180℃での減量は28%であった。
[実施例33]
融点185℃のチキソ剤と2-エチルヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。2-エチルヘキシルジグリコールはTG(示差走査熱量計)での180℃での減量は47%であった。
[実施例34]
融点185℃のチキソ剤と2-エチル-1,3-ヘキサンジオールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。2-エチル-1,3-ヘキサンジオールはTG(示差走査熱量計)での180℃での減量は52%であった。
[実施例35]
融点255℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点240℃のSn-5Sb合金粉を混合したソルダペーストを作製した。ヘキシルジグリコールはTG(示差走査熱量計)での180℃での減量は78%であった。
[実施例36]
融点130℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[実施例37]
融点150℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例31]
融点30℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[比較例32]
融点180℃のチキソ剤とヘキシルジグリコールを混合したフラックスと、半田融点220℃のSAC305合金粉を混合したソルダペーストを作製した。
[試験片の作製]
試験片として、ニッケルメッキ銅基板(20×20mm、厚み2mm)を準備し、前記基板の一面に実施例および比較例のソルダペーストを10×12mmサイズで150μm厚み(メタルマスク厚)に塗布した。
試験片として、ニッケルメッキ銅基板(20×20mm、厚み2mm)を準備し、前記基板の一面に実施例および比較例のソルダペーストを10×12mmサイズで150μm厚み(メタルマスク厚)に塗布した。
[リフロー条件]
リフロー条件は、図6の「温度プロファイル」に示すとおりである。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):ギ酸+窒素雰囲気(大気圧、ギ酸濃度3%Vol)、200℃、60秒
本加熱(半田溶融工程):真空雰囲気(200Pa)、ピーク温度260℃、220℃以上、加熱時間30秒
リフロー条件は、図6の「温度プロファイル」に示すとおりである。
予備加熱1(溶剤蒸発工程):窒素雰囲気(大気圧)200℃以下
予備加熱2(還元工程):ギ酸+窒素雰囲気(大気圧、ギ酸濃度3%Vol)、200℃、60秒
本加熱(半田溶融工程):真空雰囲気(200Pa)、ピーク温度260℃、220℃以上、加熱時間30秒
[半田濡れ性判定]
図7の「半田濡れ性判定」で示すとおり、ソルダペーストが印刷された基板を、前記リフロー条件で加熱後、ディウェッティングの有無を確認した。確認方法は、各基板ごとに半田部分を目視で観察して、下地基板が半田で完全に濡れ、全くはじき等の状態が見られないもの、はじき等の状態がごくわずかなものをディウェッティング無し(半田濡れ性:○)、明確にはじき等が確認できるものをディウェッティング有り(半田濡れ性:×)とした。
図7の「半田濡れ性判定」で示すとおり、ソルダペーストが印刷された基板を、前記リフロー条件で加熱後、ディウェッティングの有無を確認した。確認方法は、各基板ごとに半田部分を目視で観察して、下地基板が半田で完全に濡れ、全くはじき等の状態が見られないもの、はじき等の状態がごくわずかなものをディウェッティング無し(半田濡れ性:○)、明確にはじき等が確認できるものをディウェッティング有り(半田濡れ性:×)とした。
実施例31はチキソ剤融点255℃より低い温度で還元し、還元温度200℃においてすべて溶剤が揮発した状態である。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例32の還元温度180℃はチキソ剤融点185℃より低い温度である。還元温度180℃でのフェニルジグリコールは常圧で28%の減量率であるが、200Paまで減圧するため、ギ酸導入時にはすべて溶剤が揮発した状態となる。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例33は実施例32と同様で、還元温度180℃での2-エチルヘキシルジグリコールは常圧で47%の減量率であるが、実施例32と同様にギ酸導入時にはすべて溶剤が揮発した状態となる。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例34も実施例32、33と同様で還元温度180℃での2-エチル-1,3-ヘキサンジオールは常圧で52%の減量率であるが、実施例32、33と同様にギ酸導入時にはすべて溶剤が揮発した状態となる。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例35は実施例31とフラックス、還元条件は同様であるが、半田粉はSn-5Sbを用いた。半田粉をSn-5Sbとしてもギ酸によって還元され、良好な濡れ性を示した。
還元温度に於いてチキソ剤が溶融する実施例36~37でもリフロー後良好な半田濡れ性を示した。これは、チキソ剤の溶融による濡れ広がりが小さく、基材および半田粉末の還元を妨げなかったためと考えられる。
還元温度に於いてチキソ剤が溶融する比較例31~32ではリフロー後半田濡れ性は低下した。濡れ性の低下は十分に強度のある半田付けを妨げるものである。これは、チキソ剤の溶融により適切な間隙が形成できず、溶融したチキソ剤が基材表面を覆い、基材および一部の半田粉末の還元が不十分であったためと考えられる。
実施例32の還元温度180℃はチキソ剤融点185℃より低い温度である。還元温度180℃でのフェニルジグリコールは常圧で28%の減量率であるが、200Paまで減圧するため、ギ酸導入時にはすべて溶剤が揮発した状態となる。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例33は実施例32と同様で、還元温度180℃での2-エチルヘキシルジグリコールは常圧で47%の減量率であるが、実施例32と同様にギ酸導入時にはすべて溶剤が揮発した状態となる。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例34も実施例32、33と同様で還元温度180℃での2-エチル-1,3-ヘキサンジオールは常圧で52%の減量率であるが、実施例32、33と同様にギ酸導入時にはすべて溶剤が揮発した状態となる。ギ酸が容易に侵入して半田粉末を還元するため、良好な濡れ性を示した。
実施例35は実施例31とフラックス、還元条件は同様であるが、半田粉はSn-5Sbを用いた。半田粉をSn-5Sbとしてもギ酸によって還元され、良好な濡れ性を示した。
還元温度に於いてチキソ剤が溶融する実施例36~37でもリフロー後良好な半田濡れ性を示した。これは、チキソ剤の溶融による濡れ広がりが小さく、基材および半田粉末の還元を妨げなかったためと考えられる。
還元温度に於いてチキソ剤が溶融する比較例31~32ではリフロー後半田濡れ性は低下した。濡れ性の低下は十分に強度のある半田付けを妨げるものである。これは、チキソ剤の溶融により適切な間隙が形成できず、溶融したチキソ剤が基材表面を覆い、基材および一部の半田粉末の還元が不十分であったためと考えられる。
本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ程度で、参照してここに組み込む。
本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。
本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予期しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の変更および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。
1 半田付け装置
11 チャンバ
11s 処理空間
20 ギ酸供給部
31 真空ポンプ
33 触媒ユニット
41v メイン排気弁
42 バイパス排気管
50 制御装置
100 筐体
C 半田付け製品
B 被接合部材
F 還元ガス、ギ酸ガス
G 気体
M 型、メタルマスク
N 不活性ガス
P 電子部品
Q スキージ
S’S ソルダペースト
T 半田付け対象物
W 基板
11 チャンバ
11s 処理空間
20 ギ酸供給部
31 真空ポンプ
33 触媒ユニット
41v メイン排気弁
42 バイパス排気管
50 制御装置
100 筐体
C 半田付け製品
B 被接合部材
F 還元ガス、ギ酸ガス
G 気体
M 型、メタルマスク
N 不活性ガス
P 電子部品
Q スキージ
S’S ソルダペースト
T 半田付け対象物
W 基板
Claims (12)
- 還元ガスとともに用いる還元ガス用ソルダペーストであって、
半田粉末と;
常温で固体のチキソ剤と;
溶剤とを含み;
酸化膜除去のための還元剤フリー、および還元性向上のための活性剤フリーである、
還元ガス用ソルダペースト。 - 前記チキソ剤は、下記(1)~(5)の方法における濡れ広がり面積の割合が0~50%を満たすチキソ剤であり、
下記(3)における所定の温度は、前記チキソ剤の常圧下での融点である、
請求項1に記載の還元ガス用ソルダペースト。
(1)半田粉末、チキソ剤、溶剤の3成分からなるソルダペーストから半田粉末を除いたペーストをサイズ5×5mm、厚み100μm(メタルマスク厚)で、ニッケルメッキ銅基板(20×20mm、厚み2mm)に塗布する。
(2)塗布してから1分経過後のペーストの面積を測定する。
(3)常温のホットプレートに前記銅基板を設置し、前記銅基板が所定の温度になるまで加熱する。
(4)前記所定の温度に到達した時点で、前記ホットプレートから前記銅基板を取り出し、冷却する。
(5)冷却後、前記銅基板上のペーストの面積を測定する。 - 前記半田粉末および前記チキソ剤が溶融する温度は、前記還元ガスでの還元時の温度よりも高い、
請求項1または請求項2に記載の還元ガス用ソルダペースト。 - 前記還元ガスは、ギ酸または水素である、
請求項1~請求項3のいずれか1項に記載の還元ガス用ソルダペースト。 - 前記チキソ剤は、アマイド系チキソ剤である、
請求項1~請求項4のいずれか1項に記載の還元ガス用ソルダペースト。 - 前記チキソ剤は、前記(1)~(5)の方法における濡れ広がり面積の割合が0~50%を満たすチキソ剤であり、
前記(3)における所定の温度は、前記還元ガスでの還元時の温度である、
請求項1~請求項5のいずれか1項に記載の還元ガス用ソルダペースト。 - 前記溶剤は、常圧における180℃での熱重量測定(TG)による減量が10℃/minの昇温速度において25%以上である、
請求項1~請求項6のいずれか1項に記載の還元ガス用ソルダペースト。 - 請求項1~請求項7のいずれか1項に記載のソルダペーストを提供する提供工程と;
前記ソルダペーストを半田付け対象物に塗布する塗布工程と;
前記ソルダペーストを塗布した半田付け対象物を、前記半田粉末が溶融する温度よりも低い任意の温度に加熱して前記溶剤を蒸発させる蒸発工程と;
前記蒸発工程に並行して、またはその後に、前記半田粉末が溶融する温度よりも低い任意の温度で、前記蒸発工程により残された前記半田粉末と、前記半田付け対象物を還元ガスで還元する還元工程と;
前記還元工程の後に、前記半田付け対象物を前記半田粉末が溶融する温度以上の任意の温度に加熱して前記半田粉末を溶融する半田溶融工程とを備える;
半田付け製品の製造方法。 - 前記半田付け対象物を真空中に置く真空工程とをさらに備え;
前記蒸発工程は、前記半田付け対象物が真空中にある状態で加熱して、前記溶剤を蒸発させる、
請求項8に記載の半田付け製品の製造方法。 - 前記蒸発工程の溶剤の蒸発により前記半田粉末間に間隙が生じ、
前記還元工程は、前記半田付け対象物が真空中にある状態で、前記間隙に還元ガスを導入し、前記半田付け対象物を還元する、
請求項9に記載の半田付け製品の製造方法。 - 前記半田溶融工程は、前記半田付け対象物が真空中にある状態で、前記半田付け対象物を前記半田粉末が溶融する温度以上に加熱して、半田粉末を溶融し、
前記溶融後、圧力を上げて、半田粉末内部の空洞(ボイド)を圧縮して小さくする、または無くすため、前記真空工程の真空を破壊する真空破壊工程と;
前記真空破壊工程の後に、前記半田付け対象物を冷却する冷却工程を備える;
請求項9または請求項10に記載の半田付け製品の製造方法。 - 前記還元ガスはギ酸ガスである、
請求項8~請求項11のいずれか1項に記載の半田付け製品の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017534860A JP6281157B2 (ja) | 2015-09-30 | 2016-09-29 | 還元ガス用ソルダペースト、半田付け製品の製造方法 |
CN201680053663.7A CN108025402B (zh) | 2015-09-30 | 2016-09-29 | 还原气体用焊料膏、焊接制品的制造方法 |
PL16851822T PL3357629T3 (pl) | 2015-09-30 | 2016-09-29 | Pasta lutownicza do gazu redukującego i sposób wytwarzania produktu lutowanego |
EP16851822.3A EP3357629B1 (en) | 2015-09-30 | 2016-09-29 | Solder paste for reduction gas, and method for producing soldered product |
US15/764,165 US10610981B2 (en) | 2015-09-30 | 2016-09-29 | Solder paste for reduction gas, and method for producing soldered product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-195177 | 2015-09-30 | ||
JP2015195177 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057651A1 true WO2017057651A1 (ja) | 2017-04-06 |
Family
ID=58424029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078961 WO2017057651A1 (ja) | 2015-09-30 | 2016-09-29 | 還元ガス用ソルダペースト、半田付け製品の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10610981B2 (ja) |
EP (1) | EP3357629B1 (ja) |
JP (1) | JP6281157B2 (ja) |
CN (1) | CN108025402B (ja) |
HU (1) | HUE055786T2 (ja) |
PL (1) | PL3357629T3 (ja) |
TW (1) | TWI666085B (ja) |
WO (1) | WO2017057651A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018096917A1 (ja) * | 2016-11-22 | 2018-05-31 | 千住金属工業株式会社 | はんだ付け方法 |
WO2019172410A1 (ja) | 2018-03-09 | 2019-09-12 | 株式会社オリジン | フラックス、ソルダペースト、はんだ付けプロセス、はんだ付け製品の製造方法、bgaパッケージの製造方法 |
CN110391146A (zh) * | 2018-04-20 | 2019-10-29 | 台湾积体电路制造股份有限公司 | 利用预先去氧化物工艺的接合及其执行装置 |
WO2020071357A1 (ja) | 2018-10-01 | 2020-04-09 | 株式会社弘輝 | 接合構造体の製造方法 |
JP2020055037A (ja) * | 2018-09-28 | 2020-04-09 | 荒川化学工業株式会社 | 鉛フリーはんだフラックス、鉛フリーソルダペースト |
WO2020194592A1 (ja) * | 2019-03-27 | 2020-10-01 | 三菱電機株式会社 | 接合構造体およびこれを用いた半導体装置ならびに半導体装置の製造方法 |
EP3715041A4 (en) * | 2017-11-24 | 2020-12-30 | Senju Metal Industry Co., Ltd | FLUX, AND BRAZING PULP |
JP2021007963A (ja) * | 2019-06-28 | 2021-01-28 | 株式会社タムラ製作所 | はんだ組成物及び電子回路実装基板 |
WO2021125158A1 (ja) | 2019-12-18 | 2021-06-24 | 株式会社オリジン | はんだ付け基板の製造方法及びはんだ付け装置 |
US11342302B2 (en) | 2018-04-20 | 2022-05-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding with pre-deoxide process and apparatus for performing the same |
US20230326903A1 (en) * | 2022-04-08 | 2023-10-12 | Kulicke And Soffa Industries, Inc. | Bonding systems, and methods of providing a reducing gas on a bonding system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102227913B1 (ko) * | 2017-05-05 | 2021-03-17 | 핑크 게엠베하 써모시스테메 | 컴포넌트들의 임시 연결을 위한 접착제를 사용하는 솔더링 장치 및 컴포넌트들의 솔더 연결을 생성하는 방법 |
US10881007B2 (en) * | 2017-10-04 | 2020-12-29 | International Business Machines Corporation | Recondition process for BGA using flux |
JP6410164B1 (ja) * | 2018-02-28 | 2018-10-24 | 千住金属工業株式会社 | フラックス及びソルダペースト |
US11581239B2 (en) * | 2019-01-18 | 2023-02-14 | Indium Corporation | Lead-free solder paste as thermal interface material |
JP2020150202A (ja) * | 2019-03-15 | 2020-09-17 | キオクシア株式会社 | 半導体装置の製造方法 |
JP6860729B2 (ja) * | 2019-07-26 | 2021-04-21 | 株式会社オリジン | はんだ付製品製造装置及びはんだ付製品の製造方法 |
KR20220038385A (ko) * | 2019-07-26 | 2022-03-28 | 가부시키가이샤 오리진 | 땜납붙이 제품 제조 장치 및 땜납붙이 제품의 제조 방법 |
TWI733301B (zh) * | 2020-01-09 | 2021-07-11 | 廣化科技股份有限公司 | 焊料膏組成物及包含其之焊接方法 |
JP7068370B2 (ja) * | 2020-03-19 | 2022-05-16 | 千住金属工業株式会社 | はんだ合金、はんだボールおよびはんだ継手 |
JP6754091B1 (ja) | 2020-03-30 | 2020-09-09 | 千住金属工業株式会社 | フラックス、はんだペーストおよびはんだ付け製品の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02290693A (ja) * | 1989-04-27 | 1990-11-30 | Matsushita Electric Ind Co Ltd | はんだペーストおよびそれを用いた印刷配線板のはんだ付け方法 |
JPH08108292A (ja) * | 1994-10-06 | 1996-04-30 | Nippondenso Co Ltd | はんだ付け方法 |
JP2000197990A (ja) * | 1998-12-28 | 2000-07-18 | Nakamura Jiko:Kk | ブレ―ジングペ―スト |
JP2004025305A (ja) * | 2002-04-16 | 2004-01-29 | Tadatomo Suga | 無残渣ソルダペースト |
JP2006167735A (ja) * | 2004-12-14 | 2006-06-29 | Hitachi Ltd | 機器、構造材等の製造法 |
JP2010114197A (ja) * | 2008-11-05 | 2010-05-20 | Toshiba Corp | 半導体部品の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2064801A5 (ja) * | 1969-08-26 | 1971-07-23 | Du Pont | |
JPH04220192A (ja) * | 1990-12-14 | 1992-08-11 | Senju Metal Ind Co Ltd | 低残渣はんだペースト |
JPH11221668A (ja) | 1998-02-05 | 1999-08-17 | Nishimoto Denki Seisakusho:Kk | 洗浄を必要としない半田付け方法 |
JP2001058259A (ja) * | 1999-06-18 | 2001-03-06 | Shinko Seiki Co Ltd | 半田付け方法及び半田付け装置 |
US6887319B2 (en) * | 2002-04-16 | 2005-05-03 | Senju Metal Industry Co., Ltd. | Residue-free solder paste |
JP4818181B2 (ja) | 2007-03-30 | 2011-11-16 | 富士通株式会社 | 半田ペースト、部品搭載方法及び部品搭載装置 |
JP5807221B2 (ja) * | 2010-06-28 | 2015-11-10 | アユミ工業株式会社 | 接合構造体製造方法および加熱溶融処理方法ならびにこれらのシステム |
JP5700504B2 (ja) * | 2010-08-05 | 2015-04-15 | 株式会社デンソー | 半導体装置接合材 |
JP5453385B2 (ja) * | 2011-12-26 | 2014-03-26 | 千住金属工業株式会社 | ソルダペースト |
-
2016
- 2016-09-29 WO PCT/JP2016/078961 patent/WO2017057651A1/ja active Application Filing
- 2016-09-29 EP EP16851822.3A patent/EP3357629B1/en active Active
- 2016-09-29 HU HUE16851822A patent/HUE055786T2/hu unknown
- 2016-09-29 CN CN201680053663.7A patent/CN108025402B/zh active Active
- 2016-09-29 PL PL16851822T patent/PL3357629T3/pl unknown
- 2016-09-29 JP JP2017534860A patent/JP6281157B2/ja active Active
- 2016-09-29 US US15/764,165 patent/US10610981B2/en active Active
- 2016-09-30 TW TW105131581A patent/TWI666085B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02290693A (ja) * | 1989-04-27 | 1990-11-30 | Matsushita Electric Ind Co Ltd | はんだペーストおよびそれを用いた印刷配線板のはんだ付け方法 |
JPH08108292A (ja) * | 1994-10-06 | 1996-04-30 | Nippondenso Co Ltd | はんだ付け方法 |
JP2000197990A (ja) * | 1998-12-28 | 2000-07-18 | Nakamura Jiko:Kk | ブレ―ジングペ―スト |
JP2004025305A (ja) * | 2002-04-16 | 2004-01-29 | Tadatomo Suga | 無残渣ソルダペースト |
JP2006167735A (ja) * | 2004-12-14 | 2006-06-29 | Hitachi Ltd | 機器、構造材等の製造法 |
JP2010114197A (ja) * | 2008-11-05 | 2010-05-20 | Toshiba Corp | 半導体部品の製造方法 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018096917A1 (ja) * | 2016-11-22 | 2018-05-31 | 千住金属工業株式会社 | はんだ付け方法 |
JPWO2018096917A1 (ja) * | 2016-11-22 | 2018-11-22 | 千住金属工業株式会社 | はんだ付け方法 |
US20190373741A1 (en) * | 2016-11-22 | 2019-12-05 | Senju Metal Industry Co., Ltd. | Soldering Method |
US10645818B2 (en) | 2016-11-22 | 2020-05-05 | Senju Metal Industry Co., Ltd. | Soldering method |
US11130202B2 (en) | 2017-11-24 | 2021-09-28 | Senju Metal Industry Co., Ltd. | Flux, and solder paste |
EP3715041A4 (en) * | 2017-11-24 | 2020-12-30 | Senju Metal Industry Co., Ltd | FLUX, AND BRAZING PULP |
CN111836695A (zh) * | 2018-03-09 | 2020-10-27 | 株式会社欧利生 | 助焊剂、焊膏、焊接制程、焊接制品的制造方法、bga封装件的制造方法 |
JP7356112B2 (ja) | 2018-03-09 | 2023-10-04 | 株式会社オリジン | フラックス、ソルダペースト、はんだ付けプロセス、はんだ付け製品の製造方法、bgaパッケージの製造方法 |
TWI806984B (zh) * | 2018-03-09 | 2023-07-01 | 日商歐利生電氣股份有限公司 | 助焊劑、焊膏、焊接製程、焊接製品的製造方法、bga封裝件的製造方法 |
JPWO2019172410A1 (ja) * | 2018-03-09 | 2021-03-25 | 株式会社オリジン | フラックス、ソルダペースト、はんだ付けプロセス、はんだ付け製品の製造方法、bgaパッケージの製造方法 |
WO2019172410A1 (ja) | 2018-03-09 | 2019-09-12 | 株式会社オリジン | フラックス、ソルダペースト、はんだ付けプロセス、はんだ付け製品の製造方法、bgaパッケージの製造方法 |
CN110391146A (zh) * | 2018-04-20 | 2019-10-29 | 台湾积体电路制造股份有限公司 | 利用预先去氧化物工艺的接合及其执行装置 |
US11342302B2 (en) | 2018-04-20 | 2022-05-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding with pre-deoxide process and apparatus for performing the same |
JP2020055037A (ja) * | 2018-09-28 | 2020-04-09 | 荒川化学工業株式会社 | 鉛フリーはんだフラックス、鉛フリーソルダペースト |
JP7331579B2 (ja) | 2018-09-28 | 2023-08-23 | 荒川化学工業株式会社 | 鉛フリーはんだフラックス、鉛フリーソルダペースト |
KR20210029820A (ko) | 2018-10-01 | 2021-03-16 | 가부시키가이샤 코키 | 접합 구조체의 제조 방법 |
US11446752B2 (en) | 2018-10-01 | 2022-09-20 | Koki Company Limited | Method for producing joined structure |
WO2020071357A1 (ja) | 2018-10-01 | 2020-04-09 | 株式会社弘輝 | 接合構造体の製造方法 |
WO2020194592A1 (ja) * | 2019-03-27 | 2020-10-01 | 三菱電機株式会社 | 接合構造体およびこれを用いた半導体装置ならびに半導体装置の製造方法 |
JP6993386B2 (ja) | 2019-06-28 | 2022-02-04 | 株式会社タムラ製作所 | はんだ組成物及び電子回路実装基板 |
JP2021007963A (ja) * | 2019-06-28 | 2021-01-28 | 株式会社タムラ製作所 | はんだ組成物及び電子回路実装基板 |
WO2021125158A1 (ja) | 2019-12-18 | 2021-06-24 | 株式会社オリジン | はんだ付け基板の製造方法及びはんだ付け装置 |
JP2021094582A (ja) * | 2019-12-18 | 2021-06-24 | 株式会社オリジン | はんだ付け基板の製造方法及びはんだ付け装置 |
JP7145839B2 (ja) | 2019-12-18 | 2022-10-03 | 株式会社オリジン | はんだ付け基板の製造方法及びはんだ付け装置 |
US20230326903A1 (en) * | 2022-04-08 | 2023-10-12 | Kulicke And Soffa Industries, Inc. | Bonding systems, and methods of providing a reducing gas on a bonding system |
US12062636B2 (en) * | 2022-04-08 | 2024-08-13 | Kulicke And Soffa Industries, Inc. | Bonding systems, and methods of providing a reducing gas on a bonding system |
Also Published As
Publication number | Publication date |
---|---|
TW201718163A (zh) | 2017-06-01 |
TWI666085B (zh) | 2019-07-21 |
EP3357629B1 (en) | 2021-01-27 |
PL3357629T3 (pl) | 2021-10-25 |
US20190009375A1 (en) | 2019-01-10 |
HUE055786T2 (hu) | 2021-12-28 |
US10610981B2 (en) | 2020-04-07 |
CN108025402B (zh) | 2019-05-31 |
JPWO2017057651A1 (ja) | 2017-11-24 |
CN108025402A (zh) | 2018-05-11 |
EP3357629A4 (en) | 2019-04-17 |
JP6281157B2 (ja) | 2018-02-21 |
EP3357629A1 (en) | 2018-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6281157B2 (ja) | 還元ガス用ソルダペースト、半田付け製品の製造方法 | |
TWI806984B (zh) | 助焊劑、焊膏、焊接製程、焊接製品的製造方法、bga封裝件的製造方法 | |
TWI270432B (en) | Residue-free solder paste | |
TWI653116B (zh) | 焊接製品的製造方法 | |
JP6160608B2 (ja) | 急加熱工法用フラックス及び急加熱工法用ソルダペースト | |
EP3034230B1 (en) | Flux, solder paste and soldered joint | |
JP2011147982A (ja) | はんだ、電子部品、及び電子部品の製造方法 | |
JP7017603B2 (ja) | 半田ペースト組成物およびそれを用いた半田付け方法 | |
WO2021045131A1 (ja) | はんだペースト及びはんだ接合体 | |
JP2017177122A (ja) | 高温Pbフリーはんだペースト及びその製造方法 | |
JP6506035B2 (ja) | はんだバンプの形成方法 | |
JP2017177121A (ja) | 高温用Pbフリーはんだペースト及びその製造方法 | |
JP2016157766A (ja) | はんだバンプのリフロー方法 | |
TW202434388A (zh) | 焊接方法 | |
WO2020262631A1 (ja) | フラックス及びソルダペースト | |
JP2004216403A (ja) | はんだ用bta誘導体、それを用いたはんだ、それを用いたフラックス、それを用いたはんだペースト | |
JP2020131257A (ja) | フラックス及びソルダペースト | |
JP2005021972A (ja) | 無鉛ハンダ接合用フラックス及びソルダーペースト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017534860 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851822 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016851822 Country of ref document: EP |