WO2017047504A1 - モールド成形体及びモールド成形体の製造方法 - Google Patents

モールド成形体及びモールド成形体の製造方法 Download PDF

Info

Publication number
WO2017047504A1
WO2017047504A1 PCT/JP2016/076501 JP2016076501W WO2017047504A1 WO 2017047504 A1 WO2017047504 A1 WO 2017047504A1 JP 2016076501 W JP2016076501 W JP 2016076501W WO 2017047504 A1 WO2017047504 A1 WO 2017047504A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
polypeptide
protein
spider silk
Prior art date
Application number
PCT/JP2016/076501
Other languages
English (en)
French (fr)
Inventor
潤一 菅原
香里 関山
あゆみ 安部
潤一 下方
純一 野場
伸治 平井
Original Assignee
Spiber株式会社
小島プレス工業株式会社
テクノハマ株式会社
国立大学法人室蘭工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社, 小島プレス工業株式会社, テクノハマ株式会社, 国立大学法人室蘭工業大学 filed Critical Spiber株式会社
Priority to CN201680053666.0A priority Critical patent/CN108137814B/zh
Priority to US15/760,497 priority patent/US10961285B2/en
Priority to EP16846375.0A priority patent/EP3351584B1/en
Priority to JP2017539870A priority patent/JP6830604B2/ja
Publication of WO2017047504A1 publication Critical patent/WO2017047504A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2089/00Use of proteins, e.g. casein, gelatine or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a molded article and a method for producing the molded article.
  • Patent Document 1 contains fibers to exert a reinforcing effect, and it is difficult to obtain high strength with the matrix resin itself. Moreover, the molded object exceeding a bending elastic modulus 4.5GPa was not able to be obtained with biodegradable material.
  • an object of the present invention is to provide a biodegradable molded article that exhibits an excellent bending elastic modulus without using an additive material such as a reinforcing fiber and a method for producing the same.
  • the present invention is a molded article of a composition containing a polypeptide, wherein the polypeptide is at least one selected from the group consisting of a natural spider silk protein and a polypeptide derived from the natural spider silk protein.
  • a molded body is provided.
  • the molded body has biodegradability, and uses a natural spider silk protein and / or a polypeptide protein derived from the natural spider silk protein as a raw material, and is obtained by molding the raw material. Due to these characteristics, a very high flexural modulus (for example, more than 4.5 GPa) is exhibited without using additive materials such as reinforcing fibers. Furthermore, since it is also possible to impart transparency to the molded body, there are applications that can be applied compared to resins that lack high transparency while having high strength, such as phenol resins and polyether ether ketone (PEEK). There is an advantage that it increases remarkably. In addition, since spider silk proteins can be variously modified, the performance can be easily optimized according to the end use.
  • PEEK polyether ether ketone
  • the flexural modulus is preferably 4.7 GPa or more, more preferably 5.0 GPa or more, and even more preferably 5.2 GPa or more. Although there is no restriction
  • the flexural modulus can be 10.0 GPa or less, and further 7.0 GPa or less.
  • the mold molded body may be provided as a heat and pressure molded body.
  • the mold molded body means one molded with a mold (mold) and the like, but by performing heating and pressurization, it becomes a molded body having further excellent bending elastic modulus.
  • the molded article can be produced by a production method including a step of heating and pressurizing a composition containing at least one selected from the group consisting of natural spider silk proteins and polypeptides derived from natural spider silk proteins.
  • a biodegradable molded article that exhibits an excellent bending elastic modulus without using an additive material such as a reinforcing fiber, and a method for producing the same.
  • FIG. 1 It is a schematic cross section of a pressure molding machine.
  • A is a schematic cross-sectional view of a pressure molding machine before introduction of a composition, (b) immediately after introduction of the composition, and (c) a state in which the composition is heated and pressurized.
  • 2 is a photograph of a molded product of Example 1.
  • the molded product according to the embodiment is composed of a composition containing a natural spider silk protein and / or a polypeptide derived from the natural spider silk protein.
  • the molded body can be obtained by introducing the above composition into a mold (mold) and molding it, and can be heated and / or pressurized in the molding process.
  • the composition typically has a powder form (lyophilized powder or the like) or a fiber form (fibers obtained by spinning, etc.), and the molded product is a natural spider silk protein having such a shape. And / or a fused product of a composition comprising a polypeptide derived from a natural spider silk protein.
  • Examples of natural spider silk proteins include large splint bookmark protein and weft protein.
  • Large splint bookmark protein is produced by spider large bottle-like wire and has a characteristic of excellent toughness.
  • Examples of the large sphincter bookmark thread protein include large bottle-shaped lines spidroins MaSp1 and MaSp2 derived from Nephilacavipes and ADF3 and ADF4 derived from Araneusdiadematus.
  • the weft protein is produced in the flagellate form of the spider, and the weft protein includes, for example, the flagellate silkworm protein derived from the American spider spider (Nephilalavipes).
  • polypeptide derived from a natural spider silk protein examples include a recombinant spider silk protein, for example, a mutant, analog or derivative of a natural spider silk protein.
  • a recombinant spider silk protein that is a large sphincter bookmark thread protein is particularly suitable.
  • the molded product is a molded product of only natural spider silk protein and / or a polypeptide derived from natural spider silk protein (hereinafter sometimes collectively referred to as “spider silk polypeptide”). However, it may be a molded article obtained by adding an additive component (for example, plasticizer, colorant, filler such as layered silicate or basic calcium phosphate, moisture, synthetic resin, etc.) to the spider silk polypeptide. . When using additional components, such as a plasticizer, it is preferable to make it 50 mass% or less of the total amount of spider silk polypeptides.
  • an additive component for example, plasticizer, colorant, filler such as layered silicate or basic calcium phosphate, moisture, synthetic resin, etc.
  • additional components such as a plasticizer, it is preferable to make it 50 mass% or less of the total amount of spider silk polypeptides.
  • the molded product of the spider silk polypeptide has transparency. Transparency can be judged visually, but when the optical transmittance meter is used, for example, when the integration time is 0.1 seconds in the wavelength range of 220 to 800 nm, the transmittance is preferably 50% or more. It is.
  • FIG. 1 is a schematic cross-sectional view of a pressure molding machine that can be used to manufacture a molded body.
  • a pressure molding machine 10 shown in FIG. 1 includes a mold 2 in which a through hole is formed and which can be heated, and an upper pin 4 and a lower pin 6 that can move up and down in the through hole of the mold 2.
  • a composition containing a spider silk polypeptide is introduced into a gap formed by inserting the upper pin 4 or the lower pin 6 into the mold 2, and the upper pin 4 and the mold 2 are heated while the mold 2 is heated.
  • a molded product can be obtained by compressing the composition with the lower pins 6.
  • FIG. 2 shows a process chart for obtaining a molded product.
  • (A) is before introduction of the composition,
  • (b) is immediately after introduction of the composition, and
  • (c) is in a state where the composition is heated and pressurized.
  • It is a schematic cross section of a pressure molding machine.
  • the composition is introduced into the through hole in a state where only the lower pin 6 is inserted into the through hole of the mold 2, and as shown in FIG.
  • the upper pin 4 is inserted into the through-hole and lowered, the heating of the mold 2 is started, and the composition 8a before being heated and pressurized is heated and pressurized in the through-hole.
  • the upper pin 4 is lowered until reaching a predetermined pressure, and heating and pressurization are continued until the composition reaches a predetermined temperature in the state shown in FIG. 8b is obtained. Thereafter, the temperature of the mold 2 is lowered using a cooler (for example, a spot cooler), and when the composition 8b reaches a predetermined temperature, the upper pin 4 or the lower pin 6 is removed from the mold 2 and the contents Is taken out to obtain a molded body.
  • the pressurization may be performed by lowering the upper pin 4 with the lower pin 6 fixed, but both the lowering of the upper pin 4 and the raising of the lower pin 6 may be performed.
  • the heating is preferably performed at 80 to 300 ° C, more preferably 100 to 180 ° C, and still more preferably 100 to 130 ° C.
  • the pressurization is preferably performed at 5 kN or more, more preferably 10 kN or more, and further preferably 20 kN or more.
  • the time for continuing the treatment under the condition is preferably 0 to 100 minutes, more preferably 1 to 50 minutes, and further preferably 5 to 30 minutes.
  • the molded product of the composition containing the spider silk polypeptide is preferably produced using a polypeptide derived from a natural spider silk protein, this production method will be described in detail below.
  • the unit of the amino acid sequence represented by Formula 1: REP1-REP2 (1) is 2
  • the polypeptide containing preferably 5 or more, more preferably 10 or more is mentioned.
  • the polypeptide derived from the large sputum dragline protein includes a unit of the amino acid sequence represented by Formula 1: REP1-REP2 (1), and the C-terminal sequence is represented by any one of SEQ ID NOs: 1 to 3.
  • the unit of the amino acid sequence represented by Formula 1: REP1-REP2 (1) may be the same or different.
  • the polypeptide derived from the large sputum bookmark thread protein preferably has a molecular weight of 500 kDa or less, more preferably 300 kDa, from the viewpoint of productivity when producing a recombinant protein using a microorganism such as Escherichia coli as a host. Or less, more preferably 200 kDa or less.
  • REP1 means polyalanine.
  • alanine arranged continuously is preferably 2 residues or more, more preferably 3 residues or more, still more preferably 4 residues or more, particularly preferably 5 residues or more. is there.
  • alanine continuously arranged is preferably 20 residues or less, more preferably 16 residues or less, still more preferably 12 residues or less, and particularly preferably 10 residues.
  • REP2 is an amino acid sequence consisting of 10 to 200 amino acids, and the total number of residues of glycine, serine, glutamine and alanine contained in the amino acid sequence is 40% of the total number of amino acid residues. Above, preferably 60% or more, more preferably 70% or more.
  • REP1 corresponds to a crystalline region that forms a crystalline ⁇ -sheet within the fiber
  • REP2 is an amorphous region that is more flexible within the fiber and largely lacks a regular structure.
  • [REP1-REP2] corresponds to a repetitive region (repetitive sequence) composed of a crystal region and an amorphous region, and is a characteristic sequence of a bookmark thread protein.
  • the amino acid sequence shown in SEQ ID NO: 1 is identical to the amino acid sequence consisting of the 50-residue amino acid at the C-terminal of the amino acid sequence of ADF3 (NCBI accession numbers: AAC47010, GI: 1263287), and shown in SEQ ID NO: 2.
  • the amino acid sequence is the same as the amino acid sequence obtained by removing 20 residues from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1, and the amino acid sequence shown in SEQ ID NO: 3 is from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1. It is identical to the amino acid sequence with 29 residues removed.
  • polypeptide containing two or more amino acid sequence units represented by Formula 1: REP1-REP2 (1) for example, a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 can be used.
  • the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 7 is an ADF3 amino acid sequence (NCBI activator) in which an amino acid sequence (SEQ ID NO: 4) consisting of a start codon, a His10 tag and an HRV3C protease (Humanrinovirus 3C protease) recognition site is added to the N-terminus. Session number: AAC47010, GI: 1263287), and the translation was mutated to terminate at the 543rd amino acid residue.
  • one or more amino acids in the amino acid sequence represented by SEQ ID NO: 7 are substituted, deleted, inserted, and A protein having an amino acid sequence added and having a repeating region consisting of a crystalline region and an amorphous region can be used.
  • “one or more” means, for example, 1 to 40, 1 to 35, 1 to 30, 1 to 25, 1 to 20, 1 to 15, 1 to 10, Or it means one or several.
  • “one or several” means 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, Means 2 or 1.
  • Examples of the polypeptide containing two or more amino acid sequence units represented by Formula 1: REP1-REP2 (1) include an ADF4-derived recombinant protein having the amino acid sequence represented by SEQ ID NO: 8. It is done.
  • the amino acid sequence shown in SEQ ID NO: 8 consists of a partial amino acid sequence of ADF4 obtained from the NCBI database (NCBI accession numbers: AAC47011, GI: 1263289) at the N-terminus with a start codon, His10 tag and HRV3C protease (Humanrhinovirus).
  • 3C protease) amino acid sequence consisting of a recognition site SEQ ID NO: 4
  • polypeptide containing two or more units of the amino acid sequence represented by Formula 1: REP1-REP2 (1) one or more amino acids in the amino acid sequence represented by SEQ ID NO: 8 are substituted, deleted, inserted, and A polypeptide having a repeating region consisting of an amino acid sequence added and / or a crystalline region and an amorphous region may be used.
  • examples of the polypeptide including two or more units of the amino acid sequence represented by Formula 1: REP1-REP2 (1) include a MaSp2-derived recombinant protein having the amino acid sequence represented by SEQ ID NO: 9. It is done.
  • the amino acid sequence shown in SEQ ID NO: 9 consists of a partial sequence of MaSp2 obtained from the NCBI database (NCBI accession numbers: AAT75313, GI: 50363147) at the N-terminus with a start codon, His10 tag and HRV3C protease (Humanrhinovirus 3C protease). ) Amino acid sequence consisting of a recognition site is added.
  • polypeptide containing two or more amino acid sequence units represented by Formula 1: REP1-REP2 (1) one or more amino acids in the amino acid sequence represented by SEQ ID NO: 9 are substituted, deleted, inserted, and A polypeptide having a repeating region consisting of an amino acid sequence added and / or a crystalline region and an amorphous region may be used.
  • polypeptide derived from the weft protein examples include a polypeptide containing 10 or more, preferably 20 or more, more preferably 30 or more amino acid sequence units represented by Formula 2: REP3 (2).
  • the polypeptide derived from the weft protein preferably has a molecular weight of 500 kDa or less, more preferably 300 kDa or less, and even more preferably, when producing recombinant protein using a microorganism such as Escherichia coli as a host. Is 200 kDa or less.
  • REP3 means an amino acid sequence composed of Gly-Pro-Gly-Gly-X
  • X means one amino acid selected from the group consisting of Ala, Ser, Tyr and Val.
  • a great feature of spider silk is that the weft does not have a crystal region but has a repeating region consisting of an amorphous region. It is presumed that the large splint bookmark yarn has both high stress and stretchability because it has a repetitive region consisting of a crystal region and an amorphous region. On the other hand, the weft yarn is inferior in stress to the large splint guide yarn, but has high stretchability. This is considered to be because most of the weft is composed of amorphous regions.
  • Examples of the polypeptide containing 10 or more units of the amino acid sequence represented by REP3 (2) include a recombinant protein derived from flagellar silk protein having the amino acid sequence represented by SEQ ID NO: 10.
  • the amino acid sequence shown in SEQ ID NO: 10 is obtained from the N-terminal corresponding to the repeat part and motif of the partial sequence of flagellar silk protein of American spider spider (NCBI accession numbers: AAF36090, GI: 7106224) obtained from the NCBI database.
  • PR1 sequence An amino acid sequence from the 1220th residue to the 1659th residue (referred to as PR1 sequence) and a partial sequence of American flagella silk protein obtained from the NCBI database (NCBI accession number: AAC38847, GI: 2833649) A C-terminal amino acid sequence from the 816th residue to the 907th residue from the C-terminal is linked, and an amino acid sequence (SEQ ID NO: 4) consisting of a start codon, His10 tag and HRV3C protease recognition site is added to the N-terminal of the combined sequence.
  • SEQ ID NO: 4 an amino acid sequence consisting of a start codon, His10 tag and HRV3C protease recognition site is added to the N-terminal of the combined sequence.
  • polypeptide containing 10 or more units of the amino acid sequence represented by Formula 2: REP3 (2) one or more amino acids in the amino acid sequence represented by SEQ ID NO: 10 are substituted, deleted, inserted and / or A polypeptide having a repeating region consisting of an added amino acid sequence and consisting of an amorphous region may be used.
  • the polypeptide can be produced using a host transformed with an expression vector containing a gene encoding the polypeptide.
  • the method for producing the gene is not particularly limited, and a gene encoding a natural spider silk protein is amplified and cloned from a spider-derived cell by polymerase chain reaction (PCR) or the like, or chemically synthesized.
  • the method of chemical synthesis of the gene is not particularly limited, and for example, AKTA oligopilotplus 10/100 (GE Healthcare Japan, Inc.) based on the amino acid sequence information of the natural spider silk protein obtained from the NCBI web database. It is possible to synthesize by synthesizing oligonucleotides that are automatically synthesized by PCR or the like.
  • a gene encoding a protein consisting of an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N-terminus of the above amino acid sequence may be synthesized. Good.
  • a plasmid, phage, virus or the like capable of expressing a protein from a DNA sequence
  • the plasmid type expression vector is not particularly limited as long as it can express the target gene in the host cell and can amplify itself.
  • Escherichia coli Rosetta (DE3) is used as a host
  • a pET22b (+) plasmid vector, a pCold plasmid vector, or the like can be used.
  • the host for example, animal cells, plant cells, microorganisms and the like can be used.
  • the polypeptide used in the present invention is preferably a polypeptide derived from ADF3, which is one of the two main dragline proteins of Araneusdiadematus.
  • ADF3 polypeptide derived from ADF3
  • An advantage of this polypeptide is that it has basically high elongation and toughness and is easy to synthesize.
  • ADF3Kai gene A partial amino acid sequence of ADF3 (NCBI accession number: AAC47010, GI: 1263287), which is one of the two main dragline proteins of the Nigori spider, was obtained from the NCBI web database, A gene encoding the start codon and the amino acid sequence (SEQ ID NO: 5) consisting of a His10 tag and an HRV3C protease (Humanrinovirus 3C protease) recognition site (SEQ ID NO: 4) at the N-terminus of the same sequence is consigned to GenScript. did.
  • a pUC57 vector (with an NdeI site immediately upstream of the 5 ′ end and an Xba I site immediately downstream of the 5 ′ end) into which the ADF3Kai gene consisting of the base sequence shown in SEQ ID NO: 6 had been introduced was obtained. Thereafter, the gene was treated with restriction enzymes with Nde I and EcoR I and recombined into a pET22b (+) expression vector.
  • pET22b (+) expression vector containing the ADF3Kai-noNR gene sequence obtained above was transformed into E. coli Rosetta (DE3). After culturing the obtained single colony in 2 mL of LB medium containing ampicillin for 15 hours, 1.4 mL of the same culture solution was added to 140 mL of LB medium containing ampicillin, and cultured at 37 ° C. and 200 rpm. The culture was continued until the OD 600 was 3.5. Then, OD 600 of the culture broth of 3.5, added with 50% glucose 140mL in 2 ⁇ YT medium 7L containing ampicillin, and further cultured until an OD 600 of 4.0.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the dissolved protein solution is centrifuged (11,000 ⁇ g, 10 minutes, room temperature) with the above Tommy Seiko centrifuge, and the supernatant is dialyzed (Sanko Junyaku Co., Ltd., cellulose tube 36/32). Was dialyzed with water.
  • the white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed with a freeze dryer, and the lyophilized powder was recovered.
  • the degree of purification of the target protein ADF3Kai-noNR in the obtained lyophilized powder was confirmed by image analysis of the results of polyacrylamide gel electrophoresis (CBB staining) of the powder using Totallab (nonlinear dynamics ltd.). As a result, the purity of ADF3Kai-noNR was about 85%.
  • Example 1 Method for producing molded body> 1.35 g of the lyophilized powder (hereinafter referred to as “sample”) obtained in the above “Polypeptide Preparation Example” was weighed out, and this sample was used as a mold 2 (cylindrical mold) of the pressure molding machine 10 shown in FIG. And has a rectangular through hole having a cross section of 35 mm ⁇ 15 mm.). At this time, the sample was added so that the thickness was uniform. After all the samples have been introduced, heating of the mold 2 is started and the upper pin 4 and the lower pin 6 are inserted into the through-hole using a hand press machine (NT-100H-V09, manufactured by NPa System Co., Ltd.).
  • NT-100H-V09 manufactured by NPa System Co., Ltd.
  • the sample was pressurized by being inserted into. At this time, the pressure condition of the sample was controlled to be 40 kN. Stop heating when the sample temperature reaches 200 ° C, cool with a spot cooler (TS-25EP-1 manufactured by Trusco Nakayama Co., Ltd.), take out when the sample temperature reaches 50 ° C, and deburr. After the process, a molded body having a rectangular parallelepiped shape of 35 mm ⁇ 15 mm ⁇ 2 mm was obtained. In Example 1, heating was stopped when the temperature of the sample reached 200 ° C., cooled by a spot cooler, and taken out when the temperature of the sample reached 50 ° C. That is, the heating temperature (X) was 200 ° C., and the annealing time (Y) was 0 minutes because rapid cooling was started immediately after reaching the heating temperature.
  • Example 2 A molded body was obtained in the same manner as in Example 1 except that the heating temperature (X) was 100 ° C., the annealing time (Y) was 30 minutes, and the pressing condition was 30 kN.
  • Examples 2 to 17 A molded body was obtained in the same manner as in Example 1 except that the heating temperature (X) and the annealing time (Y) were changed as shown in Table 2 below and the pressing condition was changed to 30 kN.
  • Example 18 A molded body was obtained in the same manner as in Example 1 except that the heating temperature (X), the annealing time (Y), and the pressure conditions were as shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

ポリペプチドを含む組成物のモールド成形体であって、前記ポリペプチドは、天然クモ糸タンパク質及び天然クモ糸タンパク質に由来するポリペプチドからなる群より選ばれる少なくとも1種である、モールド成形体を提供する。

Description

モールド成形体及びモールド成形体の製造方法
 本発明は、モールド成形体及びモールド成形体の製造方法に関する。
 軽量化、コストダウン、成形加工の容易化等を目的として、金属材料を有機材料で代替する試みがなされている。このような有機材料としては、樹脂の硬度の高いフェノール樹脂が用いられることが多く、曲げ弾性率や曲げ強度を更に上昇させるため、フェノール樹脂を含有するマトリックス樹脂に、フェノール樹脂繊維を添加する手法が知られている(例えば、特許文献1参照)。また、環境保全意識の高まりから、以前から脱石油材料であるバイオプラスチックが注目されているが、シルク粉末を樹脂化することで曲げ弾性率4.5GPaの成形体を得られることが知られている(例えば、非特許文献1参照)。
特開2014-80491号公報
平井伸治、月刊機能材料誌、2014年6月、「廃棄物由来動物タンパク質を用いた環境調和型シルクおよび羊毛樹脂」
 しかしながら、特許文献1に開示されるような材料は、繊維を含有させて補強効果を発揮させるものであり、マトリックス樹脂自体で高強度を得ることは困難であった。また、生分解性材料により曲げ弾性率4.5GPaを超える成形体を得ることはできなかった。
 そこで、本発明の目的は、強化繊維等の添加材料を用いなくとも、優れた曲げ弾性率を発揮する生分解性の成形体及びその製造方法を提供することにある。
 本発明は、ポリペプチドを含む組成物のモールド成形体であって、上記ポリペプチドは、天然クモ糸タンパク質及び天然クモ糸タンパク質に由来するポリペプチドからなる群より選ばれる少なくとも1種である、モールド成形体を提供する。
 上記成形体は、生分解性を有しており、また天然クモ糸タンパク質及び/又は天然クモ糸タンパク質に由来するポリペプチドタンパク質を原料とすること、そして当該原料をモールド成形したものであることを特徴としており、これらの特徴に起因して、強化繊維等の添加材料を用いなくとも、非常に高い曲げ弾性率(例えば、4.5GPa超)を発揮する。更に、成形体に透明性を付与することも可能であることから、フェノール樹脂やポリエーテルエーテルケトン(PEEK)など、高強度でありながら透明性に欠ける樹脂に比較して、適用可能な用途が格段に増えるという利点がある。加えて、クモ糸タンパク質は種々の遺伝子改変が可能なことから、最終用途に合わせて性能の最適化を容易に図ることができる。なお、曲げ弾性率は、4.7GPa以上が好ましく、5.0GPa以上、更には5.2GPa以上がより好ましい。曲げ弾性率の上限について制限はないが、例えば、15.0GPa以下とすることができる。曲げ弾性率は、10.0GPa以下、更には7.0GPa以下とすることが可能である。
 上記モールド成形体は、加熱加圧成形体として提供されてもよい。モールド成形体は、鋳型(モールド)で成形されたもの等を意味するが、加熱及び加圧を行うことにより、更に曲げ弾性率の優れた成形体となる。
 上記モールド成形体は、天然クモ糸タンパク質及び天然クモ糸タンパク質に由来するポリペプチドからなる群より選ばれる少なくとも1種を含む組成物を、加熱及び加圧する工程を備える製造方法で製造可能である。
 本発明によれば、強化繊維等の添加材料を用いなくとも、優れた曲げ弾性率を発揮する生分解性の成形体、及びその製造方法が提供される。
加圧成形機の模式断面図である。 (a)は組成物導入前、(b)は組成物導入直後、(c)は組成物を加熱及び加圧している状態、の加圧成形機の模式断面図である。 実施例1のモールド成形体の写真である。
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。
 実施形態に係るモールド成形体は、天然クモ糸タンパク質及び/又は天然クモ糸タンパク質に由来するポリペプチドを含む組成物からなるものである。モールド成形体は、鋳型(モールド)に上記組成物を導入し成形加工する等して得ることができ、成形加工の工程において、加熱及び/又は加圧することが可能である。組成物は、典型的には粉末状(凍結乾燥粉末等)又は繊維状(紡糸して得られる繊維等)の形状を有しており、モールド成形体は、そのような形状の天然クモ糸タンパク質及び/又は天然クモ糸タンパク質に由来するポリペプチドを含む組成物の融着体であり得る。
 天然クモ糸タンパク質としては、例えば、大吐糸管しおり糸タンパク質、横糸タンパク質が挙げられる。
 大吐糸管しおり糸タンパク質はクモの大瓶状線で産生されるものであり、強靭性に優れるという特徴を有する。大吐糸管しおり糸タンパク質としては、アメリカジョロウグモ(Nephilaclavipes)に由来する大瓶状線スピドロインMaSp1やMaSp2、ニワオニグモ(Araneusdiadematus)に由来するADF3やADF4などが挙げられる。
 横糸タンパク質としては、クモの鞭毛状線(flagelliformgland)で産生されるものであり、横糸タンパク質としては、例えばアメリカジョロウグモ(Nephilaclavipes)に由来する鞭毛状絹タンパク質(flagelliformsilk protein)が含まれる。
 天然クモ糸タンパク質に由来するポリペプチドとしては、組換えクモ糸タンパク質、例えば、天然型クモ糸タンパク質の変異体、類似体又は誘導体等が挙げられる。このようなポリペプチドとしては、大吐糸管しおり糸タンパク質の組換えクモ糸タンパク質が特に好適である。
 モールド成形体は、天然クモ糸タンパク質及び/又は天然クモ糸タンパク質に由来するポリペプチド(以下、これらを併せて「クモ糸ポリペプチド」と総称する場合がある。)のみのモールド成形体であってもよいが、クモ糸ポリペプチドに添加成分(例えば、可塑剤、着色剤、層状ケイ酸塩や塩基性リン酸カルシウム等のフィラー、水分、合成樹脂等)を添加したもののモールド成形体であってもよい。可塑剤等の添加成分を用いる場合は、クモ糸ポリペプチドの合計量の50質量%以下にすることが好ましい。また、他のタンパク質、例えば絹フィブロイン、大豆タンパク質、カゼイン、ケラチン、コラーゲン、乳清タンパク質や、ポリペプチドを得る過程で生じる夾雑物が含まれていてもよい。なお、モールド成形体は、上記の添加成分を含有させない場合であっても本発明の効果を奏する。
 クモ糸ポリペプチドのモールド成形体は、透明性を有するものであることが好ましい。透明性は目視で判断可能であるが、光学透過率測定器を用い、例えば220~800nmの波長範囲で0.1秒間の積算時間とした場合に、透過率が50%以上であるものが好適である。
 モールド成形体は、加圧成形機を用いて作製可能である。図1は、モールド成形体を製造するために用いることのできる加圧成形機の模式断面図である。図1に示す加圧成形機10は、貫通孔が形成され加温可能な金型2と、金型2の貫通孔内で上下動が可能な上側ピン4及び下側ピン6とを備えるものであり、金型2に、上側ピン4又は下側ピン6を挿入して生じる空隙に、クモ糸ポリペプチドを含む組成物を導入して、金型2を加温しつつ、上側ピン4及び下側ピン6で組成物を圧縮することで、モールド成形体を得ることができる。
 図2は、モールド成形体を得る工程図を示すものであり、(a)は組成物導入前、(b)は組成物導入直後、(c)は組成物を加熱及び加圧している状態の加圧成形機の模式断面図である。図2(a)に示すように、金型2の貫通孔に下側ピン6のみを挿入した状態で貫通孔内に組成物を導入し、図2(b)に示すように、金型2の貫通孔に上側ピン4を挿入して下降させ、金型2の加熱を開始して、加熱加圧前の組成物8aを貫通孔内で加熱加圧する。あらかじめ定めた加圧力に至るまで上側ピン4を下降させ、図2(c)に示す状態で組成物が所定の温度に達するまで、加熱及び加圧を継続して、加熱加圧後の組成物8bを得る。その後、冷却器(例えばスポットクーラー)を用いて金型2の温度を下降させ、組成物8bが所定の温度になったところで、上側ピン4又は下側ピン6を金型2から抜き取り、内容物を取り出して、モールド成形体を得る。加圧に関しては、下側ピン6を固定した状態で上側ピン4を下降させて実施してもよいが、上側ピン4の下降と下側ピン6の上昇の両方を実施してもよい。
 加熱は、80~300℃で行うことが好ましく、100~180℃がより好ましく、100~130℃が更に好ましい。加圧は、5kN以上で行うことが好ましく、10kN以上がより好ましく、20kN以上が更に好ましい。また、所定の加熱加圧条件に達した後、その条件での処理を続ける時間(保温条件)は、0~100分が好ましく、1~50分がより好ましく5~30分が更に好ましい。
 クモ糸ポリペプチドを含む組成物のモールド成形体は、天然クモ糸タンパク質に由来するポリペプチドを用いて作製することが好ましいことから、この製造方法について、以下詳述する。
 クモ糸ポリペプチドを含む組成物のモールド成形体の原料となる、大吐糸管しおり糸タンパク質に由来するポリペプチドとしては、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上、好ましくは5以上、より好ましくは10以上含むポリペプチドが挙げられる。或いは、大吐糸管しおり糸タンパク質に由来するポリペプチドは、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。なお、大吐糸管しおり糸タンパク質に由来するポリペプチドにおいて、式1:REP1-REP2(1)で示されるアミノ酸配列の単位は、同一であってもよく、異なっていてもよい。上記大吐糸管しおり糸タンパク質に由来するポリペプチドは、大腸菌等の微生物を宿主とした組み換えタンパク質生産を行う場合、生産性の観点から、分子量が500kDa以下であることが好ましく、より好ましくは300kDa以下であり、さらに好ましくは200kDa以下である。
 式1において、REP1は、ポリアラニンを意味している。REP1において、連続して並んでいるアラニンは、2残基以上であることが好ましく、より好ましくは3残基以上であり、さらに好ましくは4残基以上であり、特に好ましくは5残基以上である。また、REP1において、連続して並んでいるアラニンは、20残基以下であることが好ましく、より好ましくは16残基以下であり、さらに好ましくは12残基以下であり、特に好ましくは10残基以下である。式1において、REP2は、10~200残基のアミノ酸からなるアミノ酸配列であり、アミノ酸配列中に含まれるグリシン、セリン、グルタミン及びアラニンの合計残基数がアミノ酸残基数全体に対して40%以上、好ましくは60%以上、より好ましくは70%以上である。
 大吐糸管しおり糸において、REP1は、繊維内で結晶βシートを形成する結晶領域に該当し、REP2は、繊維内でより柔軟性があり大部分が規則正しい構造を欠いている無定型領域に該当する。そして、[REP1-REP2]は、結晶領域と無定型領域からなる繰り返し領域(反復配列)に該当し、しおり糸タンパク質の特徴的配列である。
 配列番号1に示されるアミノ酸配列は、ADF3のアミノ酸配列(NCBIアクセッション番号:AAC47010、GI:1263287)のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
 式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドとしては、例えば、配列番号7に示されるアミノ酸配列からなるポリペプチドを用いることができる。配列番号7に示されるアミノ酸配列からなるポリペプチドは、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Humanrhinovirus3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号4)を付加したADF3のアミノ酸配列(NCBIアクセッション番号:AAC47010、GI:1263287)において、翻訳が第543番目アミノ酸残基で終止するように変異させたものである。
 また、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドとしては、配列番号7に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、結晶領域と無定型領域からなる繰り返し領域を有するタンパク質を用いることができる。本発明において、「1又は複数個」とは、例えば、1~40個、1~35個、1~30個、1~25個、1~20個、1~15個、1~10個、或は1又は数個を意味する。また、本発明において、「1又は数個」は、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、又は1個を意味する。
 また、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドとしては、例えば、配列番号8に示されているアミノ酸配列を有する、ADF4由来の組換えタンパク質が挙げられる。配列番号8に示されているアミノ酸配列は、NCBIデータベースから入手したADF4の部分的なアミノ酸配列(NCBIアクセッション番号:AAC47011、GI:1263289)のN末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Humanrhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号4)を付加したものである。また、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドとしては、配列番号8に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、結晶領域と無定型領域からなる繰り返し領域を有するポリペプチドを用いてもよい。また、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドとしては、例えば、配列番号9に示されているアミノ酸配列を有する、MaSp2由来の組換えタンパク質が挙げられる。配列番号9に示されているアミノ酸配列は、NCBIデータベースから入手したMaSp2の部分的な配列(NCBIアクセッション番号:AAT75313、GI:50363147)のN末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Humanrhinovirus3Cプロテアーゼ)認識サイトからなるアミノ酸配列を付加したものである。また、式1:REP1-REP2(1)で示されるアミノ酸配列の単位を2以上含むポリペプチドとしては、配列番号9に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、結晶領域と無定型領域からなる繰り返し領域を有するポリペプチドを用いてもよい。
 横糸タンパク質に由来するポリペプチドとしては、式2:REP3(2)で示されるアミノ酸配列の単位を10以上、好ましくは20以上、より好ましくは30以上含むポリペプチドが挙げられる。横糸タンパク質に由来するポリペプチドは、大腸菌等の微生物を宿主とした組み換えタンパク質生産を行う場合、生産性の観点から、分子量が500kDa以下であることが好ましく、より好ましくは300kDa以下であり、さらに好ましくは200kDa以下である。
 式(2)において、REP3はGly-Pro-Gly-Gly-Xから構成されるアミノ酸配列を意味し、XはAla、Ser、Tyr及びValからなる群から選ばれる一つのアミノ酸を意味する。
 クモ糸において、横糸は結晶領域を持たず、無定形領域からなる繰り返し領域を持つことが大きな特徴である。大吐糸管しおり糸などにおいては結晶領域と無定形領域からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つと推測される。一方、横糸については、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。これは横糸の大部分が無定形領域によって構成されているためだと考えられている。
 式2:REP3(2)で示されるアミノ酸配列の単位を10以上含むポリペプチドとしては、例えば、配列番号10に示されるアミノ酸配列を有する、鞭毛状絹タンパク質由来の組換えタンパク質が挙げられる。配列番号10に示されているアミノ酸配列は、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分配列(NCBIアクセッション番号:AAF36090、GI:7106224)のリピート部分及びモチーフに該当するN末端から1220残基目から1659残基目までのアミノ酸配列(PR1配列と記す。)と、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分配列(NCBIアクセッション番号:AAC38847、GI:2833649)のC末端から816残基目から907残基目までのC末端アミノ酸配列を結合し、結合した配列のN末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ認識サイトからなるアミノ酸配列(配列番号4)を付加したアミノ酸配列である。また、式2:REP3(2)で示されるアミノ酸配列の単位を10以上含むポリペプチドとしては、配列番号10に示されるアミノ酸配列において1又は複数個のアミノ酸が置換、欠失、挿入及び/又は付加されたアミノ酸配列からなり、無定形領域からなる繰り返し領域を有するポリペプチドを用いてもよい。
 ポリペプチドは、ポリペプチドをコードする遺伝子を含有する発現ベクターで形質転換した宿主を用いて製造することができる。遺伝子の製造方法は特に制限されず、天然型クモ糸タンパク質をコードする遺伝子をクモ由来の細胞からポリメラーゼ連鎖反応(PCR)などで増幅しクローニングするか、若しくは化学的に合成する。遺伝子の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した天然型クモ糸タンパク質のアミノ酸配列情報をもとに、AKTAoligopilotplus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結して合成することができる。この際に、タンパク質の精製や確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるタンパク質、をコードする遺伝子を合成してもよい。
 発現ベクターとしては、DNA配列からタンパク質を発現し得るプラスミド、ファージ、ウイルスなどを用いることができる。プラスミド型発現ベクターとしては、宿主細胞内で目的の遺伝子が発現し、かつそれ自体が増幅することのできるものであればよく、特に限定されない。例えば宿主として大腸菌Rosetta(DE3)を用いる場合は、pET22b(+)プラスミドベクター、pColdプラスミドベクターなどを用いることができる。中でも、タンパク質の生産性の観点から、pET22b(+)プラスミドベクターを用いることが好ましい。宿主としては、例えば動物細胞、植物細胞、微生物などを用いることができる。
 本発明で使用するポリペプチドは、ニワオニグモ(Araneusdiadematus)の2つの主要なしおり糸タンパク質の一つであるADF3由来のポリペプチドであることが好ましい。このポリペプチドは強伸度及びタフネスが基本的に高く、合成し易いことも利点として挙げられる。
 以下、実施例により本発明を更に詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に制限されるものではない。
<遺伝子合成>
(1)ADF3Kaiの遺伝子の合成
 ニワオニグモの2つの主要なしおり糸タンパク質の一つであるADF3の部分的なアミノ酸配列(NCBIアクセッション番号:AAC47010、GI:1263287)をNCBIのウェブデータベースより取得し、同配列のN末端に開始コドン及びHis10タグおよびHRV3Cプロテアーゼ(Humanrhinovirus 3Cプロテアーゼ)認識サイトからなる(配列番号4)を付加したアミノ酸配列(配列番号5)、をコードする遺伝子を、GenScript社に合成受託した。その結果、配列番号6で示す塩基配列からなるADF3Kaiの遺伝子が導入されたpUC57ベクター(遺伝子の5’末端直上流にNdeIサイト、及び5’末端直下流にXba Iサイト有り)を取得した。その後、同遺伝子をNde I及びEcoR Iで制限酵素処理し、pET22b(+)発現ベクターに組み換えた。
(2)ADF3Kai-noNRの遺伝子の合成
 上記で得られたADF3Kaiの遺伝子が導入されたpET22b(+)ベクターを鋳型に、PrimeStar MutagenesisBasal Kit(タカラバイオ株式会社製)を用いた部位特異的変異導入により、ADF3Kaiのアミノ酸配列(配列番号5)における第543番目のアミノ酸残基バリン(Val)に対応するコドンGTGを終止コドンTAAに変異させ、配列番号11に示すADF3Kai-noNRの遺伝子をpET22b(+)上に構築した。変異の導入の正確性については、3130xlGenetic Analyzer(Applied Biosystems)を用いたシーケンス反応により確認した。なお、ADF3Kai-noNRのアミノ酸配列は配列番号7で示すとおりである。
<タンパク質の発現>
 上記で得られたADF3Kai-noNRの遺伝子配列を含むpET22b(+)発現ベクターを、大腸菌Rosetta(DE3)に形質転換した。得られたシングルコロニーを、アンピシリンを含む2mLのLB培地で15時間培養後、同培養液1.4mLを、アンピシリンを含む140mLのLB培地に添加し、37℃、200rpmの条件下で、培養液のOD600が3.5になるまで培養した。次に、OD600が3.5の培養液を、アンピシリンを含む7Lの2×YT培地に50%グルコース140mLと共に加え、OD600が4.0になるまでさらに培養した。その後、得られたOD600が4.0の培養液に、終濃度が0.5mMになるようにイソプロピル-β-チオガラクトピラノシド(IPTG)を添加してタンパク質発現を誘導した。IPTG添加後2時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製したタンパク質溶液をポリアクリルアミドゲルに泳動させたところ、IPTG添加に依存して目的サイズのバンドが観察され、目的とするタンパク質が発現していることを確認した。ADF3Kai-noNRのタンパク質を発現している大腸菌を冷凍庫(-20℃)で保存した。
<ポリペプチド調製例>
(I)遠沈管(50mL)に、ADF3Kai-noNRのタンパク質を発現している大腸菌の菌体約4.5gと、緩衝液AI(20mMTris-HCl、pH7.4)30mlを添加し、ミキサー(GE社製、SI-0286、レベル10)で菌体を分散させた後、遠心分離機(トミー精工製、MX-305)で遠心分離(10,000rpm、10分、室温)し、上清を捨てた。
(II)遠心分離で得られた沈殿物(菌体)に緩衝液AIを30mLと、0.1MのPMSF(イソプロパノールで溶解)を0.3mL添加し、上記GE社製のミキサー(レベル10)で3分間分散させた。その後、超音波破砕機(SONIC&MATERIALSINC製、VCX500)を用いて菌体を破砕し、遠心分離(10,000rpm、10分、室温)した。
(III)遠心分離で得られた沈殿物に緩衝液AIを30mL加え、ミキサー(IKA社製、T18ベーシック ウルトラタラックス、レベル2)で3分間分散させた後、上記トミー精工製の遠心分離機で遠心分離(10,000rpm、10分、室温)し、上清を除去した。
(IV)上清を捨てた遠沈管に7.5Mの尿素緩衝液I(7.5M 尿素、10mM リン酸二水素ナトリウム、20mM NaCl、1mMTris-HCl、pH7.0)を加え、上記SMT社製の超音波破砕機(レベル7)で沈殿を良く分散させた。その後、上記タイテック社製のシェイカー(200rpm、60℃)で120分間溶解させた。溶解後のタンパク質溶液を上記トミー精工製の遠心分離機で遠心分離(11,000×g、10分、室温)し、上清を透析チューブ(三光純薬株式会社製、セルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分をのぞき、凍結乾燥粉末を回収した。得られた凍結乾燥粉末における目的タンパク質ADF3Kai-noNRの精製度は、粉末のポリアクリルアミドゲル電気泳動(CBB染色)の結果をTotallab(nonlineardynamics ltd.)を用いて画像解析することにより確認した。その結果、ADF3Kai-noNRの精製度は約85%であった。
(実施例1)
<モールド成形体の作製方法>
 上記「ポリペプチド調製例」で得られた凍結乾燥粉末(以下「サンプル」という。)を1.35g量り取り、このサンプルを図1に示す加圧成形機10の金型2(円柱形状の金型であり、断面が35mm×15mmの長方形状の貫通孔を有している。)の貫通孔内に導入した。この際、厚みが均等になるようにサンプルを加えていった。全てのサンプルを導入した後、金型2の加熱を開始するとともに、ハンドプレス機(NPaシステム株式会社製、NT-100H-V09)を用いて、上側ピン4と下側ピン6を貫通孔内に挿入することでサンプルの加圧を行った。この際、サンプルの加圧条件が40kNとなるように制御した。サンプルの温度が200℃になったところで加熱を中止し、スポットクーラー(トラスコ中山株式会社製、TS-25EP-1)で冷却して、サンプルの温度が50℃になったところで取り出し、バリ取りを行った後、35mm×15mm×2mmの直方体形状のモールド成形体を得た。
 実施例1では、サンプルの温度が200℃になったところで加熱を中止し、スポットクーラーで冷却して、サンプルの温度が50℃になったところで取り出した。すなわち加熱温度(X)は200℃であり、加熱温度に到達した直後に急冷を開始したためアニール時間(Y)は0分であった。
(実施例2)
 加熱温度(X)を100℃、及びアニール時間(Y)30分、加圧条件を30kNにした他は、実施例1と同様にしてモールド成形体を得た。
<曲げ弾性率及び曲げ強度測定方法>
 得られたモールド成形体については、恒温恒湿槽(espec社製、LHL-113)で20℃/65%の条件下で1日静置した後、以下の測定を行った。
 すなわち、オートグラフ(島津製作所株式会社製、AG-Xplus)にて籠治具を用いて、三点曲げ試験を行った。使用したロードセルは50kNであった。この際、三点曲げの支点間距離を27mmに固定し、測定速度を1mm/分とした。また、モールド成形体のサイズをマイクロノギスで測定し、治具に設置し測定を行った。曲げ弾性率は0.05~0.25%までの変位(ひずみ)から求めた。
<透明性測定方法>
 得られたモールド成形体について、厚さ方向(2mm厚)の透明性を目視で測定し、透明性がある場合を○、ない場合を×とした。すなわち、モールド成形体をSpiber社のロゴが印刷された紙の上に載せ、ロゴが見えるかどうかで透明性を確認した。
(比較例1~4)
 ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリメタクリル酸メチル(PMMA)、ABS樹脂(ABS)を用いて、実施例1と同様にして35mm×15mm×2mmの直方体形状の成形体を得た。これらの成形体について、恒温恒湿槽(espec社製、LHL-113)で20℃/65%の条件下で1日静置した後、実施例1と同様に、曲げ弾性率、曲げ強度及び透明性を測定した。
 実施例と比較例の結果をまとめて、以下の表1に示す。実施例1の透明性を評価したときのモールド成形体の写真を図3に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2~17)
 加熱温度(X)及びアニール時間(Y)を以下の表2の通り変化させ、加圧条件を30kNにした他は、実施例1と同様にしてモールド成形体を得た。
Figure JPOXMLDOC01-appb-T000002
(実施例18~23)
 加熱温度(X)、アニール時間(Y)及び加圧条件を以下の表3の通りにした他は、実施例1と同様にしてモールド成形体を得た。
Figure JPOXMLDOC01-appb-T000003
 実施例5~7、16~17について実施例1と同様にして曲げ弾性率及び曲げ強度を測定し、表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
2…金型、4…上側ピン、6…下側ピン、8a…加熱加圧前の組成物、8b…加熱加圧後の組成物、10…加圧成形機。

Claims (4)

  1.  ポリペプチドを含む組成物のモールド成形体であって、
     前記ポリペプチドは、天然クモ糸タンパク質及び天然クモ糸タンパク質に由来するポリペプチドからなる群より選ばれる少なくとも1種である、モールド成形体。
  2.  前記モールド成形体は、曲げ弾性率が4.5GPaを超えている成形体である、請求項1に記載のモールド成形体。
  3.  前記モールド成形体は、加熱加圧成形体である、請求項1又は2に記載のモールド成形体。
  4.  天然クモ糸タンパク質及び天然クモ糸タンパク質に由来するポリペプチドからなる群より選ばれる少なくとも1種を含む組成物を、加熱及び加圧する工程を備える、モールド成形体の製造方法。
PCT/JP2016/076501 2015-09-18 2016-09-08 モールド成形体及びモールド成形体の製造方法 WO2017047504A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680053666.0A CN108137814B (zh) 2015-09-18 2016-09-08 模压成形体和模压成形体的制造方法
US15/760,497 US10961285B2 (en) 2015-09-18 2016-09-08 Molded article and method for producing molded article
EP16846375.0A EP3351584B1 (en) 2015-09-18 2016-09-08 Molded article and method for producing molded article
JP2017539870A JP6830604B2 (ja) 2015-09-18 2016-09-08 モールド成形体及びモールド成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185777 2015-09-18
JP2015185777 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047504A1 true WO2017047504A1 (ja) 2017-03-23

Family

ID=58289277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076501 WO2017047504A1 (ja) 2015-09-18 2016-09-08 モールド成形体及びモールド成形体の製造方法

Country Status (5)

Country Link
US (1) US10961285B2 (ja)
EP (1) EP3351584B1 (ja)
JP (1) JP6830604B2 (ja)
CN (1) CN108137814B (ja)
WO (1) WO2017047504A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110132A (ja) * 2015-12-17 2017-06-22 国立大学法人室蘭工業大学 動物繊維成形物及びその製造方法
WO2018034111A1 (ja) * 2016-08-19 2018-02-22 国立研究開発法人理化学研究所 フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
WO2018043698A1 (ja) * 2016-09-02 2018-03-08 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
WO2018173887A1 (ja) * 2017-03-22 2018-09-27 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
WO2019054503A1 (ja) * 2017-09-15 2019-03-21 Spiber株式会社 モールド成形用組成物、成形体及び成形体の製造方法
WO2019117296A1 (ja) * 2017-12-15 2019-06-20 国立大学法人室蘭工業大学 成形体の製造方法および成形体
WO2019131924A1 (ja) * 2017-12-27 2019-07-04 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
WO2019194146A1 (ja) 2018-04-03 2019-10-10 Spiber株式会社 成形体及びその製造方法
JP2020055916A (ja) * 2018-09-28 2020-04-09 Spiber株式会社 モールド成形体、モールド成形体の製造方法、およびモールド成形体の柔軟性調整方法
JP2021008414A (ja) * 2019-06-28 2021-01-28 Spiber株式会社 タンパク質層接合体
WO2021066049A1 (ja) 2019-09-30 2021-04-08 Spiber株式会社 タンパク質接着剤、接合体及びその製造方法
US11174572B2 (en) 2015-08-20 2021-11-16 Riken Composite molding composition including fibroin-like protein, and method for producing composite molding composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265913A (zh) * 2018-08-09 2019-01-25 南京欧纳壹有机光电有限公司 一种高强度工程塑料及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171049A (ja) * 1991-12-25 1993-07-09 Nissei Kk 生分解性成形物
JP2010526582A (ja) * 2007-05-10 2010-08-05 エラスティン・スペシャルティーズ,インコーポレイテッド 関節の再構成、修復およびクッションのための合成ペプチド材料
WO2014103799A1 (ja) * 2012-12-26 2014-07-03 スパイバー株式会社 クモ糸タンパク質フィルム及びその製造方法
JP2014129639A (ja) * 2011-06-01 2014-07-10 Spiber Inc 人造ポリペプチド繊維の製造方法
JP2014198715A (ja) * 2013-03-15 2014-10-23 岡本株式会社 タンパク質繊維
WO2014175179A1 (ja) * 2013-04-25 2014-10-30 スパイバー株式会社 ポリペプチドパーティクル及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001648A (ja) * 2000-06-21 2002-01-08 Toray Ind Inc 研磨用パッドおよびそれを用いた研磨装置及び研磨方法
JP2001315056A (ja) * 1999-12-22 2001-11-13 Toray Ind Inc 研磨用パッドおよびそれを用いた研磨装置及び研磨方法
US20050153118A1 (en) * 2003-09-10 2005-07-14 Carlo Licata Production of pulp and materials utilizing pulp from fibrous proteins
EP2097117B1 (en) * 2006-12-11 2013-05-22 Medizinische Hochschule Hannover Implant of cross-linked spider silk threads
JP5171049B2 (ja) * 2007-01-26 2013-03-27 パナソニック株式会社 光学フィルタ
KR101837481B1 (ko) 2010-03-17 2018-03-13 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 생체흡수성 기판 상 이식가능한 바이오의료 장치
US20130072598A1 (en) * 2011-03-18 2013-03-21 Board Of Regents Of The University Of Nebraska Thermoplastics from Distillers Dried Grains and Feathers
IN2014DN05883A (ja) * 2011-12-23 2015-05-22 Solazyme Inc
JP2014080491A (ja) 2012-10-16 2014-05-08 Sumitomo Bakelite Co Ltd フェノール樹脂組成物および成形体
SG11201502932TA (en) 2012-10-17 2015-05-28 Univ Nanyang Tech Compounds and methods for the production of suckerin and uses thereof
WO2014089578A1 (en) * 2012-12-07 2014-06-12 Cornell University Crosslinked thermoset resins and methods thereof
EP2940032B1 (en) * 2012-12-27 2018-04-25 Spiber Inc. Extraction method for hydrophilic recombinant protein
JPWO2017047503A1 (ja) * 2015-09-18 2018-07-05 Spiber株式会社 モールド成形体及びモールド成形体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171049A (ja) * 1991-12-25 1993-07-09 Nissei Kk 生分解性成形物
JP2010526582A (ja) * 2007-05-10 2010-08-05 エラスティン・スペシャルティーズ,インコーポレイテッド 関節の再構成、修復およびクッションのための合成ペプチド材料
JP2014129639A (ja) * 2011-06-01 2014-07-10 Spiber Inc 人造ポリペプチド繊維の製造方法
WO2014103799A1 (ja) * 2012-12-26 2014-07-03 スパイバー株式会社 クモ糸タンパク質フィルム及びその製造方法
JP2014198715A (ja) * 2013-03-15 2014-10-23 岡本株式会社 タンパク質繊維
WO2014175179A1 (ja) * 2013-04-25 2014-10-30 スパイバー株式会社 ポリペプチドパーティクル及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351584A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174572B2 (en) 2015-08-20 2021-11-16 Riken Composite molding composition including fibroin-like protein, and method for producing composite molding composition
JP2017110132A (ja) * 2015-12-17 2017-06-22 国立大学法人室蘭工業大学 動物繊維成形物及びその製造方法
WO2018034111A1 (ja) * 2016-08-19 2018-02-22 国立研究開発法人理化学研究所 フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
JP7088511B2 (ja) 2016-08-19 2022-06-21 国立研究開発法人理化学研究所 フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
JPWO2018034111A1 (ja) * 2016-08-19 2019-07-18 国立研究開発法人理化学研究所 フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
WO2018043698A1 (ja) * 2016-09-02 2018-03-08 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
WO2018173887A1 (ja) * 2017-03-22 2018-09-27 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
WO2019054503A1 (ja) * 2017-09-15 2019-03-21 Spiber株式会社 モールド成形用組成物、成形体及び成形体の製造方法
JPWO2019054503A1 (ja) * 2017-09-15 2021-01-28 Spiber株式会社 モールド成形用組成物、成形体及び成形体の製造方法
JP7219899B2 (ja) 2017-12-15 2023-02-09 国立大学法人室蘭工業大学 成形体の製造方法および成形体
JPWO2019117296A1 (ja) * 2017-12-15 2020-12-17 国立大学法人室蘭工業大学 成形体の製造方法および成形体
WO2019117296A1 (ja) * 2017-12-15 2019-06-20 国立大学法人室蘭工業大学 成形体の製造方法および成形体
WO2019131924A1 (ja) * 2017-12-27 2019-07-04 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
WO2019194146A1 (ja) 2018-04-03 2019-10-10 Spiber株式会社 成形体及びその製造方法
US11981088B2 (en) 2018-04-03 2024-05-14 Spiber Inc. Molded article and method for production thereof
JP2020055916A (ja) * 2018-09-28 2020-04-09 Spiber株式会社 モールド成形体、モールド成形体の製造方法、およびモールド成形体の柔軟性調整方法
JP2021008414A (ja) * 2019-06-28 2021-01-28 Spiber株式会社 タンパク質層接合体
WO2021066049A1 (ja) 2019-09-30 2021-04-08 Spiber株式会社 タンパク質接着剤、接合体及びその製造方法

Also Published As

Publication number Publication date
CN108137814A (zh) 2018-06-08
JP6830604B2 (ja) 2021-02-17
US10961285B2 (en) 2021-03-30
EP3351584A1 (en) 2018-07-25
EP3351584A4 (en) 2019-02-06
CN108137814B (zh) 2021-08-24
US20190040109A1 (en) 2019-02-07
JPWO2017047504A1 (ja) 2018-07-05
EP3351584B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2017047504A1 (ja) モールド成形体及びモールド成形体の製造方法
WO2017047503A1 (ja) モールド成形体及びモールド成形体の製造方法
WO2018043698A1 (ja) モールド成形体及びモールド成形体の製造方法
JP7088511B2 (ja) フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
WO2017094722A1 (ja) タンパク質溶液を製造する方法
Dams‐Kozlowska et al. Purification and cytotoxicity of tag‐free bioengineered spider silk proteins
WO2020067554A1 (ja) 成形体の製造方法および構造タンパク質成形体
WO2018173887A1 (ja) モールド成形体及びモールド成形体の製造方法
WO2020067548A1 (ja) 難燃性タンパク質成形体及びその製造方法
WO2018163758A1 (ja) モールド成形体及びモールド成形体の製造方法
AU2021219838A1 (en) Recombinant silk solids and films
US10246493B2 (en) De novo structural protein design for manufacturing high strength materials
JP7219899B2 (ja) 成形体の製造方法および成形体
Xie et al. Secretion‐Catalyzed Assembly of Protein Biomaterials on a Bacterial Membrane Surface
JP2021080304A (ja) タンパク質成形体用素材、タンパク質成形体、及びタンパク質成形体の製造方法
WO2019131924A1 (ja) モールド成形体及びモールド成形体の製造方法
JP2021008414A (ja) タンパク質層接合体
JP2021054989A (ja) タンパク質成形体とその製造方法
WO2019194231A1 (ja) タンパク質組成物及びその製造方法
JP2020055762A (ja) モールド成形体の製造方法
JP2020055916A (ja) モールド成形体、モールド成形体の製造方法、およびモールド成形体の柔軟性調整方法
JPWO2019054503A1 (ja) モールド成形用組成物、成形体及び成形体の製造方法
JP2020125429A (ja) タンパク質成形体の製造方法、タンパク質成形体の物性をコントロールする方法、及びタンパク質成形体の品質を評価する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE