WO2017043352A1 - 内視鏡用変倍光学系、及び内視鏡 - Google Patents

内視鏡用変倍光学系、及び内視鏡 Download PDF

Info

Publication number
WO2017043352A1
WO2017043352A1 PCT/JP2016/075158 JP2016075158W WO2017043352A1 WO 2017043352 A1 WO2017043352 A1 WO 2017043352A1 JP 2016075158 W JP2016075158 W JP 2016075158W WO 2017043352 A1 WO2017043352 A1 WO 2017043352A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
endoscope
positive
Prior art date
Application number
PCT/JP2016/075158
Other languages
English (en)
French (fr)
Inventor
藤井 宏明
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201680002885.6A priority Critical patent/CN107076967B/zh
Priority to US15/513,327 priority patent/US10036883B2/en
Priority to DE112016000121.5T priority patent/DE112016000121B4/de
Priority to JP2017515249A priority patent/JP6674450B2/ja
Publication of WO2017043352A1 publication Critical patent/WO2017043352A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/15Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective compensation by means of only one movement or by means of only linearly related movements, e.g. optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Definitions

  • the present invention relates to an endoscope variable magnification optical system and an endoscope incorporating the endoscope variable magnification optical system.
  • endoscopes In the medical field, endoscopes (fiberscopes or electronic scopes) are generally known as devices for observing the inside of a patient's body cavity and are in practical use. Some endoscopes of this type are equipped with a variable magnification optical system having a variable magnification function in order to precisely observe a lesion.
  • Patent Document 1 Japanese Patent No. 3845331
  • the variable power optical system for an endoscope described in Patent Document 1 includes, in order from the object side, a first lens group having a negative power, a second lens group having a positive power, and a third lens having a positive power. And the fourth lens group having negative power, and the second and third lens groups while changing the object distance without changing the total length from the first lens group to the image plane. By moving it, the focal length of the entire system can be changed while maintaining the in-focus state.
  • variable power optical system for an endoscope described in Patent Document 1 is configured to move the second and third lens groups having positive power, and therefore, a design related to variable power control. High degree of freedom.
  • the aberration is not sufficiently corrected, and particularly the axial chromatic aberration and the lateral chromatic aberration change greatly during zooming.
  • the axial chromatic aberration and the lateral chromatic aberration are overcorrected as the distance is changed to the telephoto end side, and the optical performance is greatly deteriorated.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to mount an endoscope variable magnification optical system in which aberrations are well corrected and the endoscope variable magnification optical system. It is to provide an endoscope.
  • An endoscope variable power optical system includes, in order from the object side, a first lens group having a negative power, a second lens group having a positive power, and a concave surface on the object side.
  • the first lens group is a fixed lens group, while maintaining a constant distance from the lens surface closest to the object side to the image plane of the first lens group.
  • the optical image is zoomed by moving at least the second lens group in the optical axis direction with respect to this lens group.
  • the magnification of the second lens group at the telephoto end is defined as m 2t
  • the magnification of the second lens group at the wide-angle end is defined as m 2w
  • the amount of movement of the second lens group required to change from the telephoto end to the wide-angle end or from the wide-angle end to the telephoto end is defined as d (unit: mm)
  • the focal length of the second lens group is defined as f 2 (unit: mm)
  • the focal length of the second lens group is defined as f 2 (unit: mm)
  • the following two conditional expressions ⁇ 1 ⁇ m 2t ⁇ m 2w ⁇ 0.35 0.3 ⁇ d / f 2 ⁇ 0.6 It is good also as composition which satisfies.
  • the first lens group may have at least one single lens and one cemented lens.
  • the first lens group may have at least a negative lens and a cemented lens, or a cemented lens having negative power and a meniscus lens having a concave surface facing the object side.
  • the second lens group includes, in order from the object side, a positive lens and a cemented lens having a positive power, and the focal length of the positive lens in the second lens group is f 21.
  • f 21 the focal length of the positive lens in the second lens group.
  • the second lens group may be composed of a positive lens, a positive lens, and a cemented lens having a positive power in order from the object side.
  • the two positive lenses included in the second lens group have different focal lengths, and the combined focal length of the two positive lenses is defined as f c (unit: mm).
  • the longer focal length of the focal lengths of the lens is defined as f p (unit: mm)
  • the following conditional expression 0.3 ⁇ f c / f p It is good also as composition which satisfies.
  • variable power optical system for an endoscope includes a diaphragm that moves integrally with the second lens group on the optical axis between the first and second lens groups. It is good also as a structure.
  • an endoscope according to an embodiment of the present invention is a device in which the above-described endoscope variable magnification optical system is mounted at the tip.
  • an endoscope variable magnification optical system in which aberrations are favorably corrected, and an endoscope equipped with the endoscope variable magnification optical system.
  • FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system for an endoscope according to Example 1 of the present invention. It is a lens arrangement
  • FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system for an endoscope according to Example 2 of the present invention.
  • FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system for an endoscope according to Example 3 of the present invention. It is a lens arrangement
  • FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system for an endoscope according to Example 4 of the present invention. It is a lens arrangement
  • FIG. 10 is various aberration diagrams of the variable magnification optical system for an endoscope according to Example 5 of the present invention. It is a lens arrangement
  • FIG. 11 is a diagram illustrating various aberrations of the variable magnification optical system for an endoscope according to Example 7 of the present invention.
  • FIG. 1 is an external view showing an external appearance of an electronic scope 1 according to an embodiment of the present invention.
  • the electronic scope 1 includes an insertion portion flexible tube 11 that is sheathed by a flexible sheath 11 a.
  • the distal end portion (bending portion 14) of the insertion portion flexible tube 11 is remotely operated from the hand operating portion 13 connected to the proximal end of the insertion portion flexible tube 11 (specifically, the bending operation knob 13a is rotated). )
  • the bending mechanism is a well-known mechanism incorporated in a general endoscope, and bends the bending portion 14 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob 13a.
  • the proximal end of the distal end portion 12 covered with a hard resin housing is connected to the distal end of the bending portion 14.
  • the imaging region by the electronic scope 1 moves.
  • an endoscope variable magnification optical system 100 (blocks shown by hatching in FIG. 1) is incorporated.
  • the endoscope variable power optical system 100 forms an image of light from a subject on a light receiving surface of a solid-state imaging device (not shown) in order to collect image data of the subject in the imaging region.
  • a solid-state imaging device include a CCD (Charge-Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor.
  • variable magnification optical system 100 for an endoscope according to Examples 1 to 7 of the present invention will be described.
  • FIG. 2 (a) and 2 (b) are cross-sectional views showing the arrangement of the variable magnification optical system 100 for an endoscope according to the first embodiment of the present invention and the optical components arranged in the subsequent stage.
  • FIG. 2A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 2B is a sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • the variable magnification optical system 100 for endoscope includes, in order from the object (subject) side, a first lens group G1, a diaphragm S, a second lens group G2, A third lens group G3 is included.
  • the variable power optical system for endoscope 100 according to the first embodiment is a distance from the lens surface closest to the object side of the first lens group G1 to the image plane (that is, the total length of the variable power optical system for endoscope 100). ) Is kept constant, and the in-focus state is maintained by moving the second lens group G2 in the optical axis direction AX with respect to the first lens group G1 and the third lens group G3 which are fixed lens groups.
  • each optical lens constituting each lens group G1 to G3 has a rotationally symmetric shape about the optical axis AX of the zooming optical system 100 for endoscope.
  • a color correction filter F for a solid-state image sensor is disposed at the subsequent stage of the third lens group G3.
  • the color correction filter F is bonded to a cover glass CG that protects the solid-state image sensor.
  • the first lens group G1 is a lens group having a negative power and disposed closer to the object side than the stop S.
  • the first lens group G1 includes at least a negative lens L1, and a cemented lens CL1 in which the negative lens L2 and the positive lens L3 are cemented in order from the object side.
  • the reason that it is described as “having at least” is that there may be a configuration example in which another optical element such as a parallel plate is additionally arranged within the scope of the technical idea of the present invention. In the description of the second lens group G2 and the third lens group G3, it is expressed as “having at least” for the same reason.
  • the first lens group G1 includes one single lens and one cemented lens.
  • the first lens group G1 By configuring the first lens group G1 to include one single lens and one cemented lens (in the first embodiment, one negative lens and one cemented lens having positive or negative power), By dispersing the negative power in the first lens group G1 and having a positive power, coma and chromatic aberration are corrected well as a group. As a result, fluctuations in aberrations in the entire system are suppressed, and aberrations are well suppressed at each magnification from the wide-angle end to the telephoto end.
  • the second lens group G2 is a lens group having a positive power.
  • the second lens group G2 includes at least a cemented lens CL2 having a positive power obtained by cementing the positive lens L4, the negative lens L5, and the positive lens L6 in order from the object side.
  • the second lens group G2 moves in the direction of the optical axis AX together with the stop S in order to change the optical image formed on the light receiving surface of the solid-state imaging device.
  • the diaphragm S is a plate-like member having a predetermined circular aperture centered on the optical axis AX, or the lens surface closest to the diaphragm S of the second lens group G2 (in the configuration example of FIG. 2, the object of the positive lens L4) This is a light-shielding film coated on a side surface r7) other than a predetermined circular region centered on the optical axis AX.
  • the thickness of the diaphragm S is very thin compared to the thickness of each optical lens constituting the endoscope variable magnification optical system 100, and is ignored in calculating the optical performance of the endoscope variable magnification optical system 100. There is no problem. Therefore, in the present specification, the description will be made assuming that the thickness of the diaphragm S is zero.
  • the third lens group G3 includes at least a meniscus lens L7 and a positive lens L8 with a concave surface facing the object side in order from the object side.
  • a meniscus lens L7 having a concave surface facing the object side is arranged on the image side of the second lens group G2, that is, in the third lens group G3, and is obtained when observing the body cavity using the electronic scope 1.
  • a large magnification can be imposed on the third lens group G3. Therefore, the first lens group G1 and the second lens group G2 can be reduced in size, which is advantageous for designing the electronic scope 1 to have a smaller diameter.
  • the positive lens L8 on the image side with respect to the meniscus lens L7, it is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration that are largely generated in the meniscus lens L7. Thereby, the aberration is satisfactorily suppressed at each magnification from the wide-angle end to the telephoto end.
  • the magnification of the second lens group G2 at the telephoto end is defined as m2t
  • the magnification of the second lens group G2 at the wide-angle end is defined as m.
  • the amount of movement of the second lens group G2 required to change from the telephoto end to the wide-angle end or from the wide-angle end to the telephoto end is defined as d (unit: mm)
  • the second lens group G2 Is defined as f 2 (unit: mm)
  • the following two conditional expressions (1) and (2) -1 ⁇ m 2t ⁇ m 2w ⁇ -0.35 ⁇ (1) 0.3 ⁇ d / f 2 ⁇ 0.6 (2) It is the composition which satisfies.
  • magnification m 2w in the conditional expression (1) becomes a right value or more, since the magnification m 2w of the second lens group G2 at the wide angle end is low, movement of the second lens group G2 required magnification The amount increases, and the total length of the variable magnification optical system 100 for endoscope becomes longer. As a result, in order to accommodate the endoscope variable magnification optical system 100 having a long overall length, the entire length of the distal end portion 12 of the electronic scope 1 that is a hard portion must be increased. Further, in the conditional expression (1), when the magnification m 2w is equal to or larger than the value on the right side, the magnification m 2t of the second lens group G2 at the telephoto end is relatively large. The change in the best object distance when moved is increased. Therefore, fine focus adjustment cannot be performed.
  • the best object distance becomes shorter as it approaches the telephoto end from the wide-angle end and becomes the shortest when it reaches the telephoto end.
  • the magnification m 2t is equal to or less than the value on the left side in the conditional expression (1), the best object distance becomes the shortest before reaching the telephoto end. Therefore, the usability of the electronic scope 1 when observing the inside of the body cavity is deteriorated.
  • conditional expression (2) when the value of the middle side is equal to or greater than the value of the right side, the power of the second lens group G2 becomes too strong or the moving amount d becomes too large.
  • the multiplication ratio is too large.
  • the effective F number (on the telephoto end side) at the time of magnified observation increases, resulting in a lack of light quantity and a decrease in resolution. For example, the depth of field becomes narrow or difficult to observe.
  • variable magnification optical system 100 for endoscope defines the focal length of the positive lens in the second lens group G2 as f 21 (unit: mm), and the entire system at the wide angle end. Is defined as f w (unit: mm), the following conditional expression (3) 2 ⁇ f 21 / f w ⁇ 6 (3) It is the composition which satisfies.
  • each lens in the second lens group G2 (for example, change in aberration when decentering occurs on the arrangement surface / shape surface with respect to the optical axis AX) Amount) is reduced.
  • Conditional Expression (3) when the value of the middle side is equal to or greater than the value of the right side, the power of the cemented lens in the second lens group G2 becomes too strong, and the eccentricity sensitivity of the cemented lens increases.
  • astigmatism and lateral chromatic aberration greatly occur due to the decentering of the cemented lens.
  • the amount of movement of the second lens group G2 at the time of zooming becomes large, it is disadvantageous for the miniaturization design of the zooming optical system 100 for endoscopes.
  • Table 1 shows a specific numerical configuration (design value) of the variable magnification optical system 100 for an endoscope according to the first embodiment (and an optical component arranged at the subsequent stage).
  • the value at the wide-angle end (surface data) is shown in the upper left column
  • the value (surface data) at the telephoto end is shown in the upper right column.
  • the surface number NO shown in Table 1 is a number assigned in order to each surface (including the diaphragm S) arranged in order from the object side to the image side in FIG.
  • R (unit: mm) is the radius of curvature of each surface of the optical member
  • D (unit: mm) is the optical member thickness or optical member interval on the optical axis AX
  • N (d) is the d line ( The refractive index at a wavelength of 588 nm), and ⁇ d, the Abbe number of the d line.
  • Table 1 shows specifications (various data) of the endoscope variable magnification optical system 100 according to the first embodiment. Specifically, effective F number, focal length of whole system (unit: mm), optical magnification, half angle of view (unit: degree), BF (back focus) (unit: mm), image height (unit: mm) The full length (unit: mm) of the variable magnification optical system 100 for endoscopes is shown. In Table 1, values at the wide-angle end (various data) are shown in the lower left column, and values (various data) at the telephoto end are shown in the lower right column.
  • Graphs A to D in FIG. 3A are various aberration diagrams when the zooming position is at the wide angle end in the zooming optical system 100 for an endoscope according to the first embodiment.
  • Graphs A to D in FIG. 3B are various aberration diagrams when the zoom position is at the telephoto end in the zoom optical system for endoscope 100 according to the first embodiment.
  • Graphs A in FIGS. 3A and 3B show spherical aberration and axial chromatic aberration at d-line, g-line (wavelength 436 nm), and C-line (wavelength 656 nm).
  • Graphs B in FIGS. 3A and 3B show lateral chromatic aberration at d-line, g-line, and C-line.
  • the solid line indicates the aberration at the d line
  • the dotted line indicates the aberration at the g line
  • the alternate long and short dash line indicates the aberration at the C line.
  • Graph C in FIGS. 3A and 3B shows astigmatism.
  • a solid line indicates a sagittal component
  • a dotted line indicates a meridional component.
  • a graph D in FIGS. 3A and 3B shows distortion.
  • the vertical axis represents the image height
  • the horizontal axis represents the aberration amount.
  • the vertical axis of the graph D represents the image height
  • the horizontal axis represents the distortion.
  • the zooming optical system 100 for an endoscope according to the first embodiment is small, but at each zooming position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • FIGS. 4A and 4B are cross-sectional views showing the arrangement of the variable magnification optical system 100 for an endoscope according to the second embodiment of the present invention and the optical components arranged in the subsequent stage.
  • FIG. 4A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 4B is a sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • the zooming optical system for endoscope 100 according to the second embodiment has the same lens configuration as the zooming optical system for endoscope 100 according to the first embodiment.
  • Graphs A to D of FIG. 5A are various aberration diagrams when the zoom position is at the wide-angle end in the zoom optical system for endoscope 100 according to the second embodiment.
  • Graphs A to D in FIG. 5B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the second embodiment.
  • Table 2 shows specific numerical configurations and specifications of optical components including the endoscope variable magnification optical system 100 according to the second embodiment.
  • the zooming optical system 100 for an endoscope according to the second embodiment is small, but at each zooming position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • FIG. 6 (a) and 6 (b) are cross-sectional views showing the arrangement of the magnification changing optical system 100 for an endoscope according to the third embodiment of the present invention and optical components arranged in the subsequent stage.
  • FIG. 6A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 6B is a cross-sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • the endoscope variable power optical system 100 according to the third embodiment has the same lens configuration as the endoscope variable power optical system 100 according to the first embodiment.
  • Graphs A to D in FIG. 7A are various aberration diagrams when the zoom position is at the wide-angle end in the zoom optical system 100 for an endoscope according to the third embodiment.
  • Graphs A to D in FIG. 7B are various aberration diagrams when the zoom position is at the telephoto end in the zoom optical system for endoscope 100 according to the third embodiment.
  • Table 3 shows specific numerical configurations and specifications of optical components including the endoscope variable magnification optical system 100 according to the third embodiment.
  • variable power optical system 100 for endoscope is small, but at each variable power position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • FIG. 8 (a) and 8 (b) are cross-sectional views showing the arrangement of the variable magnification optical system 100 for an endoscope according to the fourth embodiment of the present invention and the optical components arranged in the subsequent stage.
  • FIG. 8A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 8B is a cross-sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • the zooming optical system 100 for an endoscope according to the fourth embodiment has the same lens configuration as the zooming optical system 100 for an endoscope according to the first embodiment.
  • Graphs A to D in FIG. 9A are various aberration diagrams when the zooming position is at the wide angle end in the zooming optical system 100 for an endoscope according to the fourth embodiment.
  • Graphs A to D in FIG. 9B are various aberration diagrams when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the fourth embodiment.
  • Table 4 shows specific numerical configurations and specifications of optical components including the endoscope variable magnification optical system 100 according to the fourth embodiment.
  • the zooming optical system 100 for endoscope according to the fourth embodiment is small, but at each zooming position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • FIG. 10 (a) and 10 (b) are cross-sectional views showing the arrangement of the variable magnification optical system 100 for an endoscope according to the fifth embodiment of the present invention and optical components arranged in the subsequent stage.
  • FIG. 10A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 10B is a sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • the endoscope variable power optical system 100 according to the fifth embodiment has the same lens configuration as the endoscope variable power optical system 100 according to the first embodiment.
  • Graphs A to D in FIG. 11A are various aberration diagrams when the zoom position is at the wide-angle end in the zoom optical system for endoscope 100 according to the fifth embodiment.
  • Graphs A to D in FIG. 11B are graphs showing various aberrations when the zooming position is at the telephoto end in the zooming optical system 100 for an endoscope according to the fifth embodiment.
  • Table 5 shows specific numerical configurations and specifications of optical components including the endoscope variable magnification optical system 100 according to the fifth embodiment.
  • the zooming optical system 100 for an endoscope according to the fifth embodiment is small, but at each zooming position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • FIG. 12 (a) and 12 (b) are cross-sectional views showing the arrangement of an endoscope variable magnification optical system 100 according to Example 6 of the present invention and optical components arranged in the subsequent stage.
  • FIG. 12A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 12B is a cross-sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • variable power optical system 100 for endoscope according to the sixth embodiment is different from the variable power optical system 100 for endoscope according to the first embodiment except for the second lens group G2.
  • the lens configuration is the same.
  • the second lens group G2 is a lens group having a positive power.
  • the second lens group G2 includes at least a cemented lens CL2 having a positive power obtained by cementing the positive lens L4, the positive lens L4 ', and the negative lens L5 and the positive lens L6 in order from the object side.
  • the cemented lens CL2 may be a lens in which a negative lens and a positive lens are arranged in order from the object side, or a lens in which a positive lens and a negative lens are arranged in order from the object side.
  • the second lens group G2 is a moving lens group.
  • the second lens group G2 is configured to include two positive lenses and a cemented lens, and the second lens group G2 has a strong positive power by sharing the power burden with the two positive lenses.
  • the decentering sensitivity in the second lens group G2 can be reduced. Further, by arranging the cemented lens closest to the image side in the second lens group G2, off-axis rays pass through a position away from the optical axis AX, which is advantageous in reducing lateral chromatic aberration.
  • the focal lengths of the two positive lenses included in the second lens group G2 are different from each other, and the combined focal length of the two positive lenses is Is defined as f c (unit: mm), and the longer focal length of the two positive lenses is defined as f p (unit: mm), the following conditional expression (4) 0.3 ⁇ f c / f p (4) It is the composition which satisfies.
  • conditional expression (4) when the value on the right side is less than or equal to the value on the left side, the power burden is not properly shared by the two positive lenses (the power of one of the two positive lenses is too strong). Therefore, the effect of reducing the eccentricity sensitivity in the second lens group G2 is low.
  • Graphs A to D in FIG. 13A are graphs showing various aberrations when the zooming position is at the wide-angle end in the zooming optical system 100 for an endoscope according to the sixth embodiment.
  • Graphs A to D in FIG. 13B are various aberration diagrams when the zoom position is at the telephoto end in the zoom optical system for endoscope 100 according to the sixth embodiment.
  • Table 6 shows specific numerical configurations and specifications of optical components including the endoscope variable magnification optical system 100 according to the sixth embodiment.
  • the zooming optical system 100 for an endoscope according to Example 6 is small, but at each zooming position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • FIGS. 14 (a) and 14 (b) are cross-sectional views showing the arrangement of an endoscope variable magnification optical system 100 according to Example 7 of the present invention and optical components arranged in the subsequent stage.
  • FIG. 14A is a cross-sectional view showing the lens arrangement when the zoom position is at the wide-angle end.
  • FIG. 14B is a sectional view showing the lens arrangement when the zoom position is at the telephoto end.
  • variable magnification optical system 100 for endoscope according to the seventh embodiment is different from the variable magnification optical system 100 for endoscope according to the sixth embodiment except for the first lens group G1.
  • the lens configuration is the same.
  • the first lens group G1 according to the seventh embodiment is a lens group having a negative power and disposed closer to the object side than the stop S.
  • the first lens group G1 according to Example 7 includes a negative lens L1 ′ and a positive lens L2 ′ in order from the object side, a cemented lens CL1 ′ having negative power, and a meniscus having a concave surface facing the object side. It has at least a lens L3 ′.
  • the first lens group G1 By configuring the first lens group G1 to include one single lens and one cemented lens (in the seventh embodiment, one cemented lens having a negative power and one meniscus lens), By dispersing the negative power in the lens group G1 and having a positive power, coma and chromatic aberration are corrected well as a group. As a result, fluctuations in aberrations in the entire system are suppressed, and aberrations are well suppressed at each magnification from the wide-angle end to the telephoto end.
  • Graphs A to D in FIG. 15A are graphs showing various aberrations when the zoom position is at the wide-angle end in the zoom optical system for endoscope 100 according to the seventh embodiment.
  • Graphs A to D in FIG. 15B are graphs showing various aberrations when the zoom position is at the telephoto end in the zoom optical system for endoscope 100 according to the seventh embodiment.
  • Table 7 shows specific numerical configurations and specifications of optical components including the endoscope variable magnification optical system 100 according to the seventh embodiment.
  • the zooming optical system 100 for endoscope according to the seventh embodiment is small, but at each zooming position from the wide-angle end to the telephoto end.
  • Optical performance (particularly correction of astigmatism, coma and chromatic aberration) is good.
  • Table 8 is a list of values calculated when the conditional expressions (1) to (4) are applied in each of the first to seventh embodiments.
  • the endoscope variable power optical system 100 according to each of Examples 1 to 5 satisfies the conditional expressions (1) to (3) as shown in Table 8.
  • the variable magnification optical system 100 for an endoscope according to each of Examples 6 and 7 satisfies the conditional expressions (1), (2), and (4).
  • an effect is achieved by satisfying each conditional expression.
  • the embodiment of the present invention is not limited to the contents described above, and various modifications are possible within the scope of the technical idea of the present invention.
  • the embodiment of the present application also includes an embodiment that is exemplarily specified in the specification or a combination of obvious embodiments and the like as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡用変倍光学系を、物体側から順に、負のパワーを持つ第一のレンズ群、正のパワーを持つ第二のレンズ群、物体側に凹面を向けたメニスカスレンズ及び正レンズを少なくとも有する第三のレンズ群からなる構成とし、第一のレンズ群の最も物体側のレンズ面から像面までの距離を一定に保ちながら、固定レンズ群である該第一のレンズ群に対して少なくとも第二のレンズ群を光軸方向に移動させることで光学像を変倍させる構成とする。

Description

内視鏡用変倍光学系、及び内視鏡
 本発明は、内視鏡用変倍光学系、及び内視鏡用変倍光学系が組み込まれた内視鏡に関する。
 医療分野において、患者の体腔内を観察するための機器として、内視鏡(ファイバスコープ又は電子スコープ)が一般に知られ、実用に供されている。この種の内視鏡には、病変観察を精細に行うため、変倍機能を持つ変倍光学系を搭載したものがある。
 例えば特許第3845331号公報(以下、「特許文献1」と記す。)に、内視鏡用変倍光学系の具体的構成が記載されている。特許文献1に記載の内視鏡用変倍光学系は、物体側から順に、負のパワーを持つ第一のレンズ群、正のパワーを持つ第二のレンズ群、正のパワーを持つ第三の3レンズ群、負のパワーを持つ第四のレンズ群からなり、第一のレンズ群から像面までの全長を変化させることなく、物体距離を変化させながら第二及び第三のレンズ群を移動させることにより、合焦状態を保持したまま全系の焦点距離を変化させることが可能な構成となっている。
 このように、特許文献1に記載の内視鏡用変倍光学系は、正のパワーを持つ第二、第三の2つのレンズ群を移動させる構成となっているため、変倍制御に関する設計の自由度が高い。しかし、かかる構成では収差が十分に補正されず、特に、変倍時に軸上色収差や倍率色収差が大きく変化する。望遠端側に変化するほど軸上色収差や倍率色収差が過剰補正となってしまい、光学性能の劣化が大きくなる。
 近年、電子スコープには、高画素の撮像素子が搭載されていることが多い。しかし、内視鏡用変倍光学系で収差が大きく発生してしまうと、撮像素子が高画素であっても画質の高い画像が得られないという問題が指摘される。
 本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、収差が良好に補正された内視鏡用変倍光学系及び該内視鏡用変倍光学系を搭載した内視鏡を提供することである。
 本発明の一実施形態に係る内視鏡用変倍光学系は、物体側から順に、負のパワーを持つ第一のレンズ群、正のパワーを持つ第二のレンズ群、物体側に凹面を向けたメニスカスレンズ及び正レンズを少なくとも有する第三のレンズ群からなり、第一のレンズ群の最も物体側のレンズ面から像面までの距離を一定に保ちながら、固定レンズ群である該第一のレンズ群に対して少なくとも第二のレンズ群を光軸方向に移動させることで光学像を変倍させる構成となっている。
 また、本発明の一実施形態に係る内視鏡用変倍光学系は、望遠端での第二のレンズ群の倍率をm2tと定義し、広角端での該第二のレンズ群の倍率をm2wと定義し、該望遠端から該広角端に又は該広角端から該望遠端に変化するために必要な該第二のレンズ群の移動量をd(単位:mm)と定義し、該第二のレンズ群の焦点距離をf(単位:mm)と定義した場合に、次の2つの条件式
-1<m2t<m2w<-0.35
0.3<d/f<0.6
を満たす構成としてもよい。
 また、本発明の一実施形態において、第一のレンズ群は、1枚の単レンズと1つの接合レンズを少なくとも有する構成としてもよい。
 また、本発明の一実施形態において、第一のレンズ群は、負レンズと接合レンズ、又は負のパワーを持つ接合レンズと物体側に凹面を向けたメニスカスレンズを少なくとも有する構成としてもよい。
 また、本発明の一実施形態において、第二のレンズ群は、物体側から順に、正レンズ、正のパワーを持つ接合レンズからなり、第二のレンズ群内の正レンズの焦点距離をf21(単位:mm)と定義し、広角端での第一から第三のレンズ群の合成焦点距離をf(単位:mm)と定義した場合に、次の条件式
2<f21/f<6
を満たす構成としてもよい。
 また、本発明の一実施形態において、第二のレンズ群は、物体側から順に、正レンズ、正レンズ、正のパワーを持つ接合レンズからなる構成としてもよい。
 この場合、第二のレンズ群が有する2枚の正レンズは焦点距離が互いに異なっており、2枚の正レンズの合成焦点距離をf(単位:mm)と定義し、該2枚の正レンズの焦点距離のうち長い方の焦点距離をf(単位:mm)と定義した場合に、次の条件式
0.3<f/f
を満たす構成としてもよい。
 また、本発明の一実施形態に係る内視鏡用変倍光学系は、第一と第二のレンズ群との間に光軸上を該第二のレンズ群と一体に移動する絞りを有する構成としてもよい。
 また、本発明の一実施形態に係る内視鏡は、上記の内視鏡用変倍光学系が先端に搭載された機器である。
 本発明の一実施形態によれば、収差が良好に補正された内視鏡用変倍光学系及び該内視鏡用変倍光学系を搭載した内視鏡が提供される。
本発明の一実施形態に係る電子スコープの外観を示す外観図である。 本発明の実施例1に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例1に係る内視鏡用変倍光学系の各種収差図である。 本発明の実施例2に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例2に係る内視鏡用変倍光学系の各種収差図である。 本発明の実施例3に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例3に係る内視鏡用変倍光学系の各種収差図である。 本発明の実施例4に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例4に係る内視鏡用変倍光学系の各種収差図である。 本発明の実施例5に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例5に係る内視鏡用変倍光学系の各種収差図である。 本発明の実施例6に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例6に係る内視鏡用変倍光学系の各種収差図である。 本発明の実施例7に係る内視鏡用変倍光学系の構成を示すレンズ配置図である。 本発明の実施例7に係る内視鏡用変倍光学系の各種収差図である。
 以下、図面を参照して、本発明の一実施形態に係る内視鏡用変倍光学系、及び内視鏡用変倍光学系を有する電子スコープについて説明する。
 図1は、本発明の一実施形態に係る電子スコープ1の外観を示す外観図である。図1に示されるように、電子スコープ1は、可撓性を有するシース11aによって外装された挿入部可撓管11を備えている。挿入部可撓管11の先端部分(湾曲部14)は、挿入部可撓管11の基端に連結された手元操作部13からの遠隔操作(具体的には、湾曲操作ノブ13aの回転操作)に応じて湾曲する。湾曲機構は、一般的な内視鏡に組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を湾曲させる。湾曲部14の先端には、硬質性を有する樹脂製筐体によって外装された先端部12の基端が連結している。先端部12の方向が湾曲操作ノブ13aの回転操作による湾曲動作に応じて変わることにより、電子スコープ1による撮影領域が移動する。
 先端部12の樹脂製筐体の内部には、内視鏡用変倍光学系100(図1中斜線で示されたブロック)が組み込まれている。内視鏡用変倍光学系100は、撮影領域中の被写体の画像データを採取するため、被写体からの光を固体撮像素子(図示省略)の受光面上に結像させる。固体撮像素子としては、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが挙げられる。
 次に、本発明の実施例1~7に係る内視鏡用変倍光学系100について説明する。
 図2(a)、図2(b)は、本発明の実施例1に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図2(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図2(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 本実施例1に係る内視鏡用変倍光学系100は、図2に示されるように、物体(被写体)側から順に、第一のレンズ群G1、絞りS、第二のレンズ群G2、第三のレンズ群G3を有している。本実施例1に係る内視鏡用変倍光学系100は、第一のレンズ群G1の最も物体側のレンズ面から像面までの距離(すなわち、内視鏡用変倍光学系100の全長)を一定に保ちながら、固定レンズ群である第一のレンズ群G1及び第三のレンズ群G3に対して第二のレンズ群G2を光軸方向AXに移動させることで、合焦状態を保持しつつ全系の焦点距離(第一のレンズ群G1から第三のレンズ群までの合成焦点距離)を変化させ、光学像を変倍させる構成となっている。各レンズ群G1~G3を構成する各光学レンズは、内視鏡用変倍光学系100の光軸AXを中心として回転対称な形状を有している。第三のレンズ群G3の後段には、固体撮像素子用の色補正フィルタFが配置されている。色補正フィルタFは、固体撮像素子を保護するカバーガラスCGに接着されている。
 第一のレンズ群G1は、絞りSよりも物体側に配置された負のパワーを持つレンズ群である。第一のレンズ群G1は、物体側から順に、負レンズL1、負レンズL2と正レンズL3とを接合した接合レンズCL1を少なくとも有している。「少なくとも有している」と記載したのは、本発明の技術的思想の範囲において、平行平板等の別の光学素子を追加配置する構成例もあり得るからである。第二のレンズ群G2、第三のレンズ群G3の説明においても、同様の理由で「少なくとも有している」と表現している。
 言い換えると、第一のレンズ群G1は、1枚の単レンズと1つの接合レンズを含む構成となっている。
 第一のレンズ群G1を1枚の単レンズと1つの接合レンズ(本実施例1では、1枚の負レンズと正又は負のパワーを持つ1つの接合レンズ)を含む構成とすることにより、第一のレンズ群G1内での負のパワーを分散して正のパワーを持つことで群としてコマ収差及び色収差が良好に補正される。これにより、全系での収差の変動が抑えられ、広角端から望遠端に至るまでの各倍率で収差が良好に抑えられる。
 第二のレンズ群G2は、正のパワーを持つレンズ群である。第二のレンズ群G2は、物体側から順に、正レンズL4、負レンズL5と正レンズL6とを接合した正のパワーを持つ接合レンズCL2を少なくとも有している。第二のレンズ群G2は、固体撮像素子の受光面上に結像される光学像を変倍するため、絞りSと一体に光軸AX方向に移動する。第二のレンズ群G2と絞りSとを一体に移動させることにより、望遠端にしたときの非点収差の発生が効果的に抑えられる。
 絞りSは、光軸AXを中心とした所定の円形開口を有する板状部材、又は第二のレンズ群G2の絞りSに最も近いレンズ面(図2の構成例においては、正レンズL4の物体側の面r7)であって光軸AXを中心とした所定の円形領域以外にコーティングされた遮光膜である。絞りSの厚みは、内視鏡用変倍光学系100を構成する各光学レンズの厚みと比べて非常に薄く、内視鏡用変倍光学系100の光学性能を計算する上で無視しても差し支えない。そのため、本明細書においては、絞りSの厚みをゼロとみなして説明を進める。
 第三のレンズ群G3は、物体側から順に、物体側に凹面を向けたメニスカスレンズL7、正レンズL8を少なくとも有している。物体側に凹面を向けたメニスカスレンズL7を第二のレンズ群G2の像側、すなわち、第三のレンズ群G3内に配置することにより、電子スコープ1を用いて体腔内を観察する際に求められる倍率を第三のレンズ群G3に大きく負担させることができる。そのため、第一のレンズ群G1及び第二のレンズ群G2を小型化させることができ、電子スコープ1の細径化設計に有利となる。加えて、メニスカスレンズL7よりも像側に正レンズL8を配置することにより、メニスカスレンズL7で大きく発生する軸上色収差及び倍率色収差を良好に補正することができる。これにより、広角端から望遠端に至るまでの各倍率で収差が良好に抑えられる。
 本実施例1に係る内視鏡用変倍光学系100は、望遠端での第二のレンズ群G2の倍率をm2tと定義し、広角端での第二のレンズ群G2の倍率をm2wと定義し、望遠端から広角端に又は広角端から望遠端に変化するために必要な第二のレンズ群G2の移動量をd(単位:mm)と定義し、第二のレンズ群G2の焦点距離をf(単位:mm)と定義した場合に、次の2つの条件式(1)(2)
-1<m2t<m2w<-0.35・・・(1)
0.3<d/f<0.6・・・(2)
を満たす構成となっている。
 条件式(1)及び(2)が満たされることにより、内視鏡用変倍光学系100を精細なフォーカス調整に適した構成でありつつも小型化に設計することが可能となる。
 条件式(1)において倍率m2wが右辺の値以上となる場合、広角端での第二のレンズ群G2の倍率m2wが低いことから、変倍に必要な第二のレンズ群G2の移動量が大きくなり、内視鏡用変倍光学系100の全長が長くなる。この結果、全長の長い内視鏡用変倍光学系100を収容する必要上、硬質部分である電子スコープ1の先端部12の全長を長くしなければならない。また、条件式(1)において倍率m2wが右辺の値以上となる場合、望遠端での第二のレンズ群G2の倍率m2tが相対的に大きくなることから、第二のレンズ群G2を移動させたときの最良物体距離の変化が大きくなる。そのため、精細なフォーカス調整ができなくなる。
 体腔内を観察する際の電子スコープ1の使い勝手を考慮すると、最良物体距離は、広角端から望遠端に近付くほど短くなり、望遠端に到達したときに最も短くなるのが好ましい。しかし、条件式(1)において倍率m2tが左辺の値以下となる場合、最良物体距離が望遠端に到達する前に最も短くなってしまう。そのため、体腔内を観察する際の電子スコープ1の使い勝手が悪くなる。
 条件式(2)において中辺の値が右辺の値以上となる場合、第二のレンズ群G2のパワーが強くなりすぎる又は移動量dが大きくなりすぎることから、広角端と望遠端との変倍比が大きくなりすぎる。これにより、拡大観察時の(望遠端側での)実効Fナンバが大きくなり、光量不足や解像度の低下が発生して、例えば被写界深度が狭くなったり観察し難くなったりする。
 条件式(2)において中辺の値が左辺の値以下となる場合、第二のレンズ群G2のパワーが弱くなりすぎる又は移動量dが小さくなりすぎることから、第二のレンズ群G2の僅かな移動でフォーカス調整を行わなければならない。そのため、精度の高いフォーカス調整機構が必要となり、電子スコープ1を高コスト化させたり大型化させたりしてしまう。また、フォーカス調整の範囲が狭くなりすぎるため、体腔内を観察する際の電子スコープ1の使い勝手が悪くなる。
 また、本実施例1に係る内視鏡用変倍光学系100は、第二のレンズ群G2内の正レンズの焦点距離をf21(単位:mm)と定義し、広角端での全系の焦点距離をf(単位:mm)と定義した場合に、次の条件式(3)
2<f21/f<6・・・(3)
を満たす構成となっている。
 条件式(3)が満たされることにより、第二のレンズ群G2内の各レンズの偏芯感度(例えば光軸AXに対して配置面・形状面での偏芯が生じたときの収差の変化量)が低減される。
 条件式(3)において中辺の値が右辺の値以上となる場合、第二のレンズ群G2内の接合レンズのパワーが強くなりすぎて、接合レンズの偏芯感度が大きくなる。ここでは、特に、接合レンズの偏心により非点収差や倍率色収差が大きく発生する。また、変倍時における第二のレンズ群G2の移動量が大きくなるため、内視鏡用変倍光学系100の小型化設計に不利である。
 条件式(3)において中辺の値が左辺の値以下となる場合、第二のレンズ群G2内の正レンズのパワーが強くなりすぎて、正レンズの偏芯感度が大きくなる。ここでは、特に、正レンズの偏心により非点収差が大きく発生する。また、望遠端に近いほど球面収差が大きく発生して、解像度が低下する。
 表1に、本実施例1に係る内視鏡用変倍光学系100(及びその後段に配置された光学部品)の具体的数値構成(設計値)を示す。表1中、左上欄に広角端での値(面データ)を示し、右上欄に望遠端での値(面データ)を示す。表1に示される面番号NOは、図2中、物体側から像側に並ぶ各面(絞りSを含む。)に順に付した番号である。表1において、R(単位:mm)は光学部材の各面の曲率半径を、D(単位:mm)は光軸AX上の光学部材厚又は光学部材間隔を、N(d)はd線(波長588nm)の屈折率を、νdはd線のアッベ数を、それぞれ示す。
 また、表1に、本実施例1に係る内視鏡用変倍光学系100の仕様(各種データ)を示す。具体的には、実効Fナンバ、全系の焦点距離(単位:mm)、光学倍率、半画角(単位:degree)、BF(バックフォーカス)(単位:mm)、像高(単位:mm)、内視鏡用変倍光学系100の全長(単位:mm)を示す。表1中、左下欄に広角端での値(各種データ)を示し、右下欄に望遠端での値(各種データ)を示す。
Figure JPOXMLDOC01-appb-T000001
 図3(a)のグラフA~Dは、本実施例1に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図3(b)のグラフA~Dは、本実施例1に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。図3(a)、(b)のグラフAは、d線、g線(波長436nm)、C線(波長656nm)での球面収差及び軸上色収差を示す。図3(a)、(b)のグラフBは、d線、g線、C線での倍率色収差を示す。グラフA、B中、実線はd線での収差を、点線はg線での収差を、一点鎖線はC線での収差を、それぞれ示す。図3(a)、(b)のグラフCは、非点収差を示す。グラフC中、実線はサジタル成分を、点線はメリディオナル成分を、それぞれ示す。図3(a)、(b)のグラフDは、歪曲収差を示す。グラフA~Cの縦軸は像高を、横軸は収差量を、それぞれ示す。グラフDの縦軸は像高を、横軸は歪曲率を、それぞれ示す。なお、広角端と望遠端との中間域においては、図3(a)と図3(b)とが示す範囲内で各種収差が変化する。また、本実施例1の各表又は各図面についての説明は、以降の各数値実施例で提示される各表又は各図面においても適用する。
 本実施例1に係る内視鏡用変倍光学系100は、図2及び図3並びに表1から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
 図4(a)、図4(b)は、本発明の実施例2に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図4(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図4(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 図4に示されるように、本実施例2に係る内視鏡用変倍光学系100は、本実施例1に係る内視鏡用変倍光学系100とレンズ構成が同一である。
 図5(a)のグラフA~Dは、本実施例2に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図5(b)のグラフA~Dは、本実施例2に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。
 表2は、本実施例2に係る内視鏡用変倍光学系100を含む各光学部品の具体的数値構成及び仕様を示す。
Figure JPOXMLDOC01-appb-T000002
 本実施例2に係る内視鏡用変倍光学系100は、図4及び図5並びに表2から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
 図6(a)、図6(b)は、本発明の実施例3に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図6(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図6(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 図6に示されるように、本実施例3に係る内視鏡用変倍光学系100は、本実施例1に係る内視鏡用変倍光学系100とレンズ構成が同一である。
 図7(a)のグラフA~Dは、本実施例3に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図7(b)のグラフA~Dは、本実施例3に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。
 表3は、本実施例3に係る内視鏡用変倍光学系100を含む各光学部品の具体的数値構成及び仕様を示す。
Figure JPOXMLDOC01-appb-T000003
 本実施例3に係る内視鏡用変倍光学系100は、図6及び図7並びに表3から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
 図8(a)、図8(b)は、本発明の実施例4に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図8(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図8(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 図8に示されるように、本実施例4に係る内視鏡用変倍光学系100は、本実施例1に係る内視鏡用変倍光学系100とレンズ構成が同一である。
 図9(a)のグラフA~Dは、本実施例4に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図9(b)のグラフA~Dは、本実施例4に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。
 表4は、本実施例4に係る内視鏡用変倍光学系100を含む各光学部品の具体的数値構成及び仕様を示す。
Figure JPOXMLDOC01-appb-T000004
 本実施例4に係る内視鏡用変倍光学系100は、図8及び図9並びに表4から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
 図10(a)、図10(b)は、本発明の実施例5に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図10(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図10(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 図10に示されるように、本実施例5に係る内視鏡用変倍光学系100は、本実施例1に係る内視鏡用変倍光学系100とレンズ構成が同一である。
 図11(a)のグラフA~Dは、本実施例5に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図11(b)のグラフA~Dは、本実施例5に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。
 表5は、本実施例5に係る内視鏡用変倍光学系100を含む各光学部品の具体的数値構成及び仕様を示す。
Figure JPOXMLDOC01-appb-T000005
 本実施例5に係る内視鏡用変倍光学系100は、図10及び図11並びに表5から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
 図12(a)、図12(b)は、本発明の実施例6に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図12(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図12(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 図12に示されるように、本実施例6に係る内視鏡用変倍光学系100は、第二のレンズ群G2以外は、本実施例1に係る内視鏡用変倍光学系100とレンズ構成が同一である。
 本実施例6に係る第二のレンズ群G2は、正のパワーを持つレンズ群である。第二のレンズ群G2は、物体側から順に、正レンズL4、正レンズL4’、負レンズL5と正レンズL6とを接合した正のパワーを持つ接合レンズCL2を少なくとも有している。接合レンズCL2は、物体側から順に負レンズ、正レンズが並ぶものであっても、物体側から順に正レンズ、負レンズが並ぶものであってもよい。
 内視鏡用変倍光学系100の小型化には、移動レンズ群である第二のレンズ群G2に強いパワーを持たせる必要がある。しかし、第二のレンズ群G2のパワーを単純に強くしただけでは光学性能が劣化する(ここでは、特に、非点収差について偏芯感度が増大する)虞がある。そこで、第二のレンズ群G2を2枚の正レンズと接合レンズを含む構成として、パワーの負担を2枚の正レンズに分担させることにより、第二のレンズ群G2に強い正のパワーを持たせつつ、第二のレンズ群G2内における偏芯感度を低減させることができる。また、第二のレンズ群G2内で接合レンズを最も像側に配置することで、軸外光線が光軸AXから離れた位置を通るため、倍率色収差の低減に有利である。
 なお、第二のレンズ群G2内の正レンズの枚数は単純に多ければ多いほど良いというわけではない。例えば、第二のレンズ群G2内の正レンズの枚数を3枚以上に増やしたとしても、正レンズが2枚の構成と比べて偏芯感度を低減させる効果が大きく得られるわけではない。正レンズの枚数を3枚以上に増やした場合、部品点数の増加によってコストが増加したり内視鏡用変倍光学系100の全長が長くなったりするなど、却ってデメリットが大きい。
 また、本実施例6に係る内視鏡用変倍光学系100は、第二のレンズ群G2が有する2枚の正レンズの焦点距離が互いに異なっており、2枚の正レンズの合成焦点距離をf(単位:mm)と定義し、2枚の正レンズの焦点距離のうち長い方の焦点距離をf(単位:mm)と定義した場合に、次の条件式(4)
0.3<f/f・・・(4)
を満たす構成となっている。
 条件式(4)において右辺の値が左辺の値以下となる場合、パワーの負担を2枚の正レンズに適切に分担させられていない(2枚の正レンズのうち一方のパワーが強すぎる)ため、第二のレンズ群G2内における偏芯感度の低減の効果が低い。
 図13(a)のグラフA~Dは、本実施例6に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図13(b)のグラフA~Dは、本実施例6に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。
 表6は、本実施例6に係る内視鏡用変倍光学系100を含む各光学部品の具体的数値構成及び仕様を示す。
Figure JPOXMLDOC01-appb-T000006
 本実施例6に係る内視鏡用変倍光学系100は、図12及び図13並びに表6から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
 図14(a)、図14(b)は、本発明の実施例7に係る内視鏡用変倍光学系100及びその後段に配置された光学部品の配置を示す断面図である。図14(a)は、変倍位置が広角端にあるときのレンズ配置を示す断面図である。図14(b)は、変倍位置が望遠端にあるときのレンズ配置を示す断面図である。
 図14に示されるように、本実施例7に係る内視鏡用変倍光学系100は、第一のレンズ群G1以外は、本実施例6に係る内視鏡用変倍光学系100とレンズ構成が同一である。
 本実施例7に係る第一のレンズ群G1は、絞りSよりも物体側に配置された負のパワーを持つレンズ群である。本実施例7に係る第一のレンズ群G1は、物体側から順に、負レンズL1’と正レンズL2’とを接合した負のパワーを持つ接合レンズCL1’、物体側に凹面を向けたメニスカスレンズL3’を少なくとも有している。
 第一のレンズ群G1を1枚の単レンズと1つの接合レンズ(本実施例7では、負のパワーを持つ1つの接合レンズと1枚のメニスカスレンズ)を含む構成とすることにより、第一のレンズ群G1内での負のパワーを分散して正のパワーを持つことで群としてコマ収差及び色収差が良好に補正される。これにより、全系での収差の変動が抑えられ、広角端から望遠端に至るまでの各倍率で収差が良好に抑えられる。
 図15(a)のグラフA~Dは、本実施例7に係る内視鏡用変倍光学系100において変倍位置が広角端にあるときの各種収差図である。図15(b)のグラフA~Dは、本実施例7に係る内視鏡用変倍光学系100において変倍位置が望遠端にあるときの各種収差図である。
 表7は、本実施例7に係る内視鏡用変倍光学系100を含む各光学部品の具体的数値構成及び仕様を示す。
Figure JPOXMLDOC01-appb-T000007
 本実施例7に係る内視鏡用変倍光学系100は、図14及び図15並びに表7から判るように、小型でありながらも、広角端から望遠端に至るまでの各変倍位置で光学性能(特に、非点収差、コマ収差、色収差の補正)が良好である。
(条件式の検証)
 表8は、本実施例1~7の各実施例において、条件式(1)~(4)の各条件式を適用したときに算出される値の一覧表である。
Figure JPOXMLDOC01-appb-T000008
 本実施例1~5の各実施例に係る内視鏡用変倍光学系100は、表8に示されるように、条件式(1)~(3)を満たす。また、本実施例6、7の各実施例に係る内視鏡用変倍光学系100は、表8に示されるように、条件式(1)、(2)、(4)を満たす。本実施例1~7の各実施例では、各条件式を満たすことによる効果が奏される。
 以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明した内容に限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施形態等又は自明な実施形態等を適宜組み合わせた内容も本願の実施形態に含まれる。

Claims (9)

  1.  物体側から順に、負のパワーを持つ第一のレンズ群、正のパワーを持つ第二のレンズ群、物体側に凹面を向けたメニスカスレンズ及び正レンズを少なくとも有する第三のレンズ群からなり、
     前記第一のレンズ群の最も物体側のレンズ面から像面までの距離を一定に保ちながら、固定レンズ群である該第一のレンズ群に対して少なくとも前記第二のレンズ群を光軸方向に移動させることで光学像を変倍させる、
    内視鏡用変倍光学系。
  2.  望遠端での前記第二のレンズ群の倍率をm2tと定義し、広角端での該第二のレンズ群の倍率をm2wと定義し、該望遠端から該広角端に又は該広角端から該望遠端に変化するために必要な該第二のレンズ群の移動量をd(単位:mm)と定義し、該第二のレンズ群の焦点距離をf(単位:mm)と定義した場合に、次の2つの条件式
    -1<m2t<m2w<-0.35
    0.3<d/f<0.6
    を満たす、
    請求項1に記載の内視鏡用変倍光学系。
  3.  前記第一のレンズ群は、
      1枚の単レンズと1つの接合レンズを少なくとも有する、
    請求項1又は請求項2に記載の内視鏡用変倍光学系。
  4.  前記第一のレンズ群は、
      負レンズと接合レンズ、又は負のパワーを持つ接合レンズと物体側に凹面を向けたメニスカスレンズを少なくとも有する、
    請求項3に記載の内視鏡用変倍光学系。
  5.  前記第二のレンズ群は、
      物体側から順に、正レンズ、正のパワーを持つ接合レンズからなり、
      前記第二のレンズ群内の正レンズの焦点距離をf21(単位:mm)と定義し、広角端での前記第一から前記第三のレンズ群の合成焦点距離をf(単位:mm)と定義した場合に、次の条件式
    2<f21/f<6
    を満たす、
    請求項1から請求項4の何れか一項に記載の内視鏡用変倍光学系。
  6.  前記第二のレンズ群は、
      物体側から順に、正レンズ、正レンズ、正のパワーを持つ接合レンズからなる、
    請求項1から請求項4の何れか一項に記載の内視鏡用変倍光学系。
  7.  前記第二のレンズ群が有する2枚の正レンズは焦点距離が互いに異なっており、
     前記2枚の正レンズの合成焦点距離をf(単位:mm)と定義し、該2枚の正レンズの焦点距離のうち長い方の焦点距離をf(単位:mm)と定義した場合に、次の条件式
    0.3<f/f
    を満たす、
    請求項6に記載の内視鏡用変倍光学系。
  8.  前記第一と前記第二のレンズ群との間に光軸上を該第二のレンズ群と一体に移動する絞りを有する、
    請求項1から請求項7の何れか一項に記載の内視鏡用変倍光学系。
  9.  請求項1から請求項8の何れか一項に記載の内視鏡用変倍光学系を先端に搭載した、
    内視鏡。
PCT/JP2016/075158 2015-09-07 2016-08-29 内視鏡用変倍光学系、及び内視鏡 WO2017043352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680002885.6A CN107076967B (zh) 2015-09-07 2016-08-29 内窥镜用变倍光学系统及内窥镜
US15/513,327 US10036883B2 (en) 2015-09-07 2016-08-29 Endoscope magnification optical system and endoscope
DE112016000121.5T DE112016000121B4 (de) 2015-09-07 2016-08-29 Endoskop-Vergrößerungsoptik und Endoskop
JP2017515249A JP6674450B2 (ja) 2015-09-07 2016-08-29 内視鏡用変倍光学系、及び内視鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-176174 2015-09-07
JP2015176174 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043352A1 true WO2017043352A1 (ja) 2017-03-16

Family

ID=58239487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075158 WO2017043352A1 (ja) 2015-09-07 2016-08-29 内視鏡用変倍光学系、及び内視鏡

Country Status (5)

Country Link
US (1) US10036883B2 (ja)
JP (1) JP6674450B2 (ja)
CN (1) CN107076967B (ja)
DE (1) DE112016000121B4 (ja)
WO (1) WO2017043352A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017145208A1 (ja) * 2016-02-24 2018-08-16 パナソニックIpマネジメント株式会社 ズームレンズ系、ズームレンズ系を有する撮像装置及び撮像装置を有する車両
WO2019163744A1 (ja) * 2018-02-23 2019-08-29 Hoya株式会社 内視鏡用変倍光学系及び内視鏡
WO2019180984A1 (ja) * 2018-03-22 2019-09-26 オリンパス株式会社 内視鏡対物光学系
JP2020056995A (ja) * 2018-10-01 2020-04-09 キヤノン株式会社 光学系及びそれを有する撮像装置
US10898061B2 (en) 2016-02-23 2021-01-26 Hoya Corporation Endoscope magnification optical system, endoscope, and endoscope system
JPWO2020157801A1 (ja) * 2019-01-28 2021-10-14 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036764A2 (en) 2014-09-02 2016-03-10 United Therapeutics Corporation Automated bioreactor system, system for automatically implementing protocol for decellularizing organ, and waste decontamination system
DE102017107106A1 (de) 2017-04-03 2018-10-04 Hoya Corporation Endoskop mit weitwinkeloptik und arbeitskanal
JP2019049680A (ja) 2017-09-12 2019-03-28 Hoya株式会社 内視鏡用対物レンズユニット及び内視鏡
JP6861131B2 (ja) 2017-09-12 2021-04-21 Hoya株式会社 内視鏡用対物レンズユニット及び内視鏡
DE102018102268A1 (de) 2018-02-01 2019-08-01 Olympus Winter & Ibe Gmbh Optisches System eines Stereo-Videoendoskops
EP3751325B1 (en) * 2018-03-28 2024-04-10 Sony Group Corporation Optical system for rigid scope, imaging device, and endoscopic system
CN108873275B (zh) * 2018-06-11 2020-12-29 青岛奥美克医疗科技有限公司 变焦适配器光学系统、变焦适配器及内窥镜系统
WO2020208748A1 (ja) * 2019-04-10 2020-10-15 オリンパス株式会社 内視鏡対物光学系
CN114002826B (zh) * 2022-01-04 2022-05-03 极限人工智能有限公司 一种光学镜头、内窥镜成像系统及内窥镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136811A (ja) * 1988-11-18 1990-05-25 Canon Inc 小型のズームレンズ
JP2004334070A (ja) * 2003-05-12 2004-11-25 Minolta Co Ltd 撮像レンズ装置
JP2005189284A (ja) * 2003-12-24 2005-07-14 Konica Minolta Opto Inc 撮像レンズ装置とズームレンズ
JP2005189638A (ja) * 2003-12-26 2005-07-14 Nagano Kogaku Kenkyusho:Kk ズームレンズ
JP2012047909A (ja) * 2010-08-25 2012-03-08 Olympus Corp 内視鏡用結像光学系及びそれを備えた内視鏡
WO2014129089A1 (ja) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系及び撮像装置
WO2015025843A1 (ja) * 2013-08-22 2015-02-26 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880611A (ja) * 1981-11-10 1983-05-14 Olympus Optical Co Ltd 内視鏡用対物レンズ
JP3051035B2 (ja) * 1994-10-18 2000-06-12 富士写真光機株式会社 内視鏡用対物レンズ
JPH0980305A (ja) * 1995-09-11 1997-03-28 Fuji Photo Optical Co Ltd 内視鏡対物レンズ
JP3845331B2 (ja) 2002-04-05 2006-11-15 ペンタックス株式会社 内視鏡対物光学系
JP4426236B2 (ja) 2003-09-17 2010-03-03 Hoya株式会社 内視鏡対物光学系
JP4964551B2 (ja) * 2006-09-29 2012-07-04 富士フイルム株式会社 内視鏡用対物レンズおよびそれを用いた内視鏡用撮像装置
JP4920572B2 (ja) * 2007-12-21 2012-04-18 オリンパスメディカルシステムズ株式会社 内視鏡用対物レンズ
JP5148403B2 (ja) * 2008-07-28 2013-02-20 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系
EP2420880B1 (en) * 2009-04-16 2015-12-02 Olympus Corporation Objective optical system
CN102687053B (zh) * 2009-12-11 2014-11-05 奥林巴斯医疗株式会社 物镜光学系统
JP5031930B2 (ja) * 2009-12-24 2012-09-26 オリンパスメディカルシステムズ株式会社 内視鏡用対物レンズ及びそれを用いた内視鏡
WO2011125539A1 (ja) * 2010-04-07 2011-10-13 オリンパスメディカルシステムズ株式会社 対物レンズ及びそれを用いた内視鏡
JP5438620B2 (ja) * 2010-07-29 2014-03-12 富士フイルム株式会社 ズームレンズおよび撮像装置
JP5566814B2 (ja) * 2010-08-31 2014-08-06 富士フイルム株式会社 変倍光学系および撮像装置
JP5653243B2 (ja) * 2011-02-10 2015-01-14 Hoya株式会社 内視鏡用光学系、及び内視鏡
JPWO2017043351A1 (ja) * 2015-09-07 2018-06-21 Hoya株式会社 内視鏡用変倍光学系、及び内視鏡
JP6046322B1 (ja) * 2016-02-23 2016-12-14 Hoya株式会社 内視鏡用変倍光学系及び内視鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136811A (ja) * 1988-11-18 1990-05-25 Canon Inc 小型のズームレンズ
JP2004334070A (ja) * 2003-05-12 2004-11-25 Minolta Co Ltd 撮像レンズ装置
JP2005189284A (ja) * 2003-12-24 2005-07-14 Konica Minolta Opto Inc 撮像レンズ装置とズームレンズ
JP2005189638A (ja) * 2003-12-26 2005-07-14 Nagano Kogaku Kenkyusho:Kk ズームレンズ
JP2012047909A (ja) * 2010-08-25 2012-03-08 Olympus Corp 内視鏡用結像光学系及びそれを備えた内視鏡
WO2014129089A1 (ja) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系及び撮像装置
WO2015025843A1 (ja) * 2013-08-22 2015-02-26 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898061B2 (en) 2016-02-23 2021-01-26 Hoya Corporation Endoscope magnification optical system, endoscope, and endoscope system
JPWO2017145208A1 (ja) * 2016-02-24 2018-08-16 パナソニックIpマネジメント株式会社 ズームレンズ系、ズームレンズ系を有する撮像装置及び撮像装置を有する車両
US10967794B2 (en) 2016-02-24 2021-04-06 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device having zoom lens system, and vehicle having imaging device
CN111630429B (zh) * 2018-02-23 2022-06-14 Hoya株式会社 内窥镜用变倍光学系统及内窥镜
CN111630429A (zh) * 2018-02-23 2020-09-04 Hoya株式会社 内窥镜用变倍光学系统及内窥镜
JPWO2019163744A1 (ja) * 2018-02-23 2020-10-22 Hoya株式会社 内視鏡用変倍光学系及び内視鏡
WO2019163744A1 (ja) * 2018-02-23 2019-08-29 Hoya株式会社 内視鏡用変倍光学系及び内視鏡
CN111886531A (zh) * 2018-03-22 2020-11-03 奥林巴斯株式会社 内窥镜物镜光学系统
JPWO2019180984A1 (ja) * 2018-03-22 2021-02-12 オリンパス株式会社 対物光学系、撮像装置、内視鏡、及び内視鏡システム
WO2019180984A1 (ja) * 2018-03-22 2019-09-26 オリンパス株式会社 内視鏡対物光学系
CN111886531B (zh) * 2018-03-22 2022-06-03 奥林巴斯株式会社 内窥镜物镜光学系统
US11751754B2 (en) 2018-03-22 2023-09-12 Olympus Corporation Objective optical system, image pickup apparatus, endoscope and endoscope system
JP2020056995A (ja) * 2018-10-01 2020-04-09 キヤノン株式会社 光学系及びそれを有する撮像装置
JP7387312B2 (ja) 2018-10-01 2023-11-28 キヤノン株式会社 光学系及びそれを有する撮像装置
JPWO2020157801A1 (ja) * 2019-01-28 2021-10-14 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法
JP7254271B2 (ja) 2019-01-28 2023-04-10 株式会社ニコン 変倍光学系、光学機器

Also Published As

Publication number Publication date
DE112016000121T5 (de) 2017-06-08
CN107076967A (zh) 2017-08-18
US10036883B2 (en) 2018-07-31
CN107076967B (zh) 2020-09-01
DE112016000121B4 (de) 2019-07-04
JPWO2017043352A1 (ja) 2018-06-21
JP6674450B2 (ja) 2020-04-01
US20180003944A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6674450B2 (ja) 内視鏡用変倍光学系、及び内視鏡
WO2017145265A1 (ja) 内視鏡用変倍光学系及び内視鏡
JP6046322B1 (ja) 内視鏡用変倍光学系及び内視鏡
JP5601924B2 (ja) 内視鏡用変倍光学系、及び内視鏡
JP6195808B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP5624377B2 (ja) ズームレンズおよび撮像装置
WO2017043351A1 (ja) 内視鏡用変倍光学系、及び内視鏡
JP5567224B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP5653243B2 (ja) 内視鏡用光学系、及び内視鏡
JP2876252B2 (ja) 内視鏡対物レンズ
JP4313539B2 (ja) 非球面合成樹脂レンズを有するズームレンズ
JP5567225B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP6001229B2 (ja) 内視鏡対物光学系
JP6503383B2 (ja) ズーム撮像装置
JP2008116877A (ja) 内視鏡用対物レンズ
CN107703606B (zh) 内窥镜用物镜光学系统以及内窥镜
JP5082486B2 (ja) ズームレンズと、これを有する光学装置
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡
WO2024166167A1 (ja) 対物光学系、内視鏡及び撮像装置
WO2019159778A1 (ja) 内視鏡用光学系及び内視鏡
JP6807264B2 (ja) ズームレンズ及び撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515249

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15513327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000121

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844214

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16844214

Country of ref document: EP

Kind code of ref document: A1