WO2019159778A1 - 内視鏡用光学系及び内視鏡 - Google Patents

内視鏡用光学系及び内視鏡 Download PDF

Info

Publication number
WO2019159778A1
WO2019159778A1 PCT/JP2019/004186 JP2019004186W WO2019159778A1 WO 2019159778 A1 WO2019159778 A1 WO 2019159778A1 JP 2019004186 W JP2019004186 W JP 2019004186W WO 2019159778 A1 WO2019159778 A1 WO 2019159778A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
endoscope
positive
object side
Prior art date
Application number
PCT/JP2019/004186
Other languages
English (en)
French (fr)
Inventor
藤井 宏明
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2020500428A priority Critical patent/JPWO2019159778A1/ja
Priority to CN201980009777.5A priority patent/CN111656244A/zh
Publication of WO2019159778A1 publication Critical patent/WO2019159778A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope optical system and an endoscope used for an endoscope objective lens unit.
  • the endoscope includes an imaging element that images a living tissue illuminated with illumination light and an objective lens unit attached to the imaging element at a distal end portion of an insertion part that is inserted into a human body.
  • the objective lens unit is required to have a very small size and high optical performance in order to reduce the size of the tip.
  • the optical performance required for the objective lens unit has a wide viewing angle (for example, the viewing angle is 150 degrees or more, further 160 degrees or more and less than 180 degrees), and the peripheral light amount of the subject image is reduced. Suppression, and lens aberration within an appropriate range. Moreover, in the objective lens unit of the endoscope, it is also required to reduce the outer diameter of the lens.
  • the endoscope imaging unit includes a first meniscus lens having a negative refractive power with an objective optical system including a spherical lens and a plane-parallel plate and a convex surface facing the object side, and has a negative refractive power as a whole.
  • a first group having at least one convex lens, and having a positive refractive power as a whole, and an aperture stop disposed between the first group and the second group.
  • the focal length of the objective optical system, the maximum image height within the display area of the solid-state imaging device, the focal length of the first group, and the optical axis from the image side surface of the first lens of the first group to the aperture stop There is a predetermined relationship with the upper air equivalent length.
  • the present invention provides an endoscope optical system and an internal endoscope that are small in size, have a wide viewing angle, and can suppress error fluctuations with respect to target performance due to variations in the optical system during assembly and the arrangement position of components.
  • An object is to provide an endoscope.
  • One embodiment of the present invention is an endoscope optical system used in an endoscope objective lens unit.
  • the endoscope optical system is In order from the object side, a first lens group, a diaphragm, and a second lens group are provided.
  • the first lens group in order from the object side, A meniscus lens having negative power and a convex surface on the object side; A positive lens having a positive power and at least one surface being flat, or a flat plate,
  • the second lens group is in order from the object side.
  • a positive lens with positive power, A cemented lens obtained by cementing a negative lens having a negative power and a positive lens having a positive power, or a positive lens having a positive power and a negative lens having a negative power.
  • the radius of curvature, f [mm] is the total focal length of the entire system
  • DF is the distance on the optical axis from the object-side surface of the meniscus lens to the stop
  • DFa is the The distance between the image side surface of the meniscus lens and the stop is the sum of the distances of the air intervals on the optical axis).
  • the DFa / DF is preferably 0.2 or more and 0.25 or less. It is preferable that the formula (4): 0.35 ⁇ DFa / f ⁇ 0.6 is satisfied. Furthermore, DF / f is preferably 1.8 or more and 2.5 or less, and more preferably 1.9 or more and 2.5 or less.
  • One embodiment of the present invention is also an endoscope optical system used for an endoscope objective lens unit.
  • the endoscope optical system is In order from the object side, a first lens group, a diaphragm, and a second lens group are provided.
  • the first lens group in order from the object side, A meniscus lens having negative power and a convex surface on the object side; A positive lens having a positive power and at least one surface being flat, or a flat plate,
  • the second lens group is in order from the object side.
  • a positive lens with positive power, A cemented lens obtained by cementing a negative lens having a negative power and a positive lens having a positive power, or a positive lens having a positive power and a negative lens having a negative power.
  • the radius of curvature, f [mm] is the total focal length of the entire system
  • DF is the distance on the optical axis from the object-side surface of the meniscus lens to the stop
  • DFa is the This is the sum of the distances of the air intervals on the optical axis between the image side surface of the first meniscus lens and the stop.
  • the object side surface of the positive lens or the flat plate in the first lens group is in contact with a part of the image side surface of the meniscus lens.
  • One aspect of the present invention includes: the endoscope optical system; and an imaging device configured to receive an image of an object formed by the endoscope optical system. It is a endoscope.
  • endoscope optical system and endoscope although having a small size, it has a wide viewing angle and can suppress error fluctuations with respect to target performance due to variations in the arrangement position of the optical system and parts during assembly. it can.
  • FIG. 4 It is a figure which shows another example of the lens structure of the optical system for endoscopes of one Embodiment.
  • (A)-(d) is various aberration diagrams of Example 4 having the lens configuration shown in FIG. It is a figure which shows another example of the lens structure of the optical system for endoscopes of one Embodiment.
  • (A) to (d) are various aberration diagrams of Example 5 having the lens configuration shown in FIG. It is a figure which shows another example of the lens structure of the optical system for endoscopes of one Embodiment.
  • (A) to (d) are various aberration diagrams of Example 6 having the lens configuration shown in FIG.
  • FIG. 1 is an external view showing an external appearance of an endoscope 1 according to an embodiment.
  • the endoscope 1 includes an insertion portion flexible tube 11 covered with a flexible sheath 11a.
  • the bending portion 14 provided at the distal end portion of the insertion portion flexible tube 11 is bent in accordance with the rotation operation of the bending operation knob 13 a from the hand operation portion 13 connected to the proximal end of the insertion portion flexible tube 11.
  • the bending mechanism is a well-known mechanism incorporated in a general endoscope, and bends the bending portion 14 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob 13a.
  • the proximal end of the distal end portion 12 covered with a hard resin housing is connected to the distal end of the bending portion 14.
  • the direction of the distal end portion 12 changes depending on the bending operation by the rotation operation of the bending operation knob 13a.
  • the imaging area by the endoscope 1 moves.
  • An endoscope optical system 100 that is used as an objective lens unit having a wide viewing angle and maintaining lens performance suitable for observation is incorporated in the resin casing of the distal end portion 12. .
  • the endoscope optical system 100 forms an image of light from the subject on a light receiving surface of an imaging element (not shown) and collects the image data on the imaging element in order to collect image data of the subject in the imaging region.
  • the image sensor include a CCD (Charge-Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor.
  • FIG. 2 is a diagram illustrating an example of the configuration of the endoscope optical system 100 according to the embodiment.
  • the endoscope optical system 100 includes a first lens group G1, a diaphragm S, and a second lens group G2 in order from the object (subject) side.
  • the first lens group G1 includes, in order from the object side, a lens L1 that is a meniscus lens having negative power and a convex surface on the object side, and a flat plate L2.
  • a positive lens having a positive power and at least one surface being a flat surface can be used. It is also referred to as an optical member L2 using the symbol “L2”.
  • the optical member L2 is also referred to as a flat plate L2 or a lens L2 as a positive lens.
  • the second lens group G2 includes, in order from the object side, a lens L3 that is a positive lens having a positive power, a cemented lens CL in which a negative lens L4 having a negative power and a positive lens L5 having a positive power are cemented.
  • the cemented lens CL the negative lens L4 is disposed on the object side and the positive lens L5 is disposed on the image side.
  • the positive lens L5 is disposed on the object side and the negative lens L4 is the image. It may be arranged on the side.
  • the diaphragm S is a plate-like member having a predetermined circular opening centered on the optical axis AX.
  • the thickness of the diaphragm S is very small compared to the thickness of each optical lens constituting the endoscope optical system 100.
  • a color correction filter F and a cover glass CG for the image sensor are provided at the subsequent stage of the second lens group G2, and the color correction filter F is bonded to the cover glass CG.
  • “X” in FIG. 2 indicates an imaging position on the optical axis AX.
  • the endoscope optical system 100 having such a lens configuration satisfies the following expressions (1) to (3).
  • rp1 [mm] is the radius of curvature of the object side surface of the lens L1
  • rp2 [mm] is the lens L1.
  • the radius of curvature of the image side surface, f [mm] is the total focal length of the entire system
  • DF is the distance on the optical axis AX from the object side surface of the lens L1 to the stop S.
  • DFa is the sum of the distances of the air intervals on the optical axis AX from the image side surface of the lens L1 to the stop S.
  • the object side surface of the lens L1 that is a meniscus lens is a convex surface, it is possible to suppress a decrease in the amount of peripheral light due to surface reflection.
  • the shape of the convex surface on the object side and the concave surface on the image side of the lens L1 is defined by Expression (1). With this definition, even with incident light having a large angle of view (for example, an angle of view of 80 degrees or more), the angle of incidence on the lens L1 can be suppressed, and image distortion can be further reduced.
  • SF 1 is less than 1.2, the object-side surface of the lens L1 approaches a flat surface.
  • SF 1 that defines the shape of the lens L1 is 1.2 or more and 1.35 or less.
  • the expression (2) is expressed as DF, which is the length along the optical axis AX of the first lens group G1 (distance on the optical axis AX from the object side surface of the lens L1 to the stop S).
  • the ratio range divided by the combined focal length f is mainly set to shorten the DF.
  • DF so as to satisfy Expression (2), it is possible to suppress the length of the first lens group G1 and to suppress an increase in the outer diameter (effective diameter) of the lens L1.
  • DF / f is 1.5 or more, the length of the first lens group G1 is increased, the negative power of the lens L1 is decreased, the variation in the shape error of the lens L1, and the optical members and parts during assembly.
  • DF / f is 2.5 or less, the length of the first lens group G1 is limited. Therefore, the outer diameter (effective diameter) of the first lens group G1 can be suppressed, and the tip 12 Can be reduced in size.
  • DF / f is preferably 1.8 or more and 2.5 or less, and more preferably 1.9 or more and 2.5 or less.
  • Formula (3) is set so that the length DFA of the air interval of the first lens group G1 is shortened so that DFA / DF is within a predetermined range.
  • DFa / DF is 0.15 or more
  • the power of the lens L1 and further the lens L2 in the case of a positive lens
  • the length of the first lens group G1 can be shortened, the outer diameter (effective diameter) of the first lens group G1 can be suppressed, and the distal end portion 12 can be reduced in size.
  • the flat surface of the lens L2 when the object side surface of the lens L2 is a flat surface, as shown in FIG. 2, the flat surface is brought into contact with the outer peripheral plane of the concave surface on the image side, and the tip 12 Therefore, it is possible to suppress variation in the arrangement position of the optical member during assembly. Further, when the image side surface of the lens L2 is a flat surface, the distance between the lens L3 and the lens L3 can be shortened and the opposing surfaces of the lenses can be brought into contact with each other to be assembled in the distal end portion 12. Variation in the arrangement position of the optical member at the time can be suppressed.
  • the lens configuration of the present embodiment even if the viewing angle is a wide viewing angle of 150 degrees or more, preferably 160 degrees or more, the surface on the image side of the lens L1 is expressed by the equation (1). Since the convex surface satisfies the requirement, it is possible to suppress the shortage of the peripheral light amount. Further, image distortion can be reduced. Further, according to the expressions (2) and (3), the outer diameter (effective diameter) of the lens L1 can be suppressed, and the effective radius of the object side surface of the lens L1 can be made lower than the maximum image height.
  • the lens configuration of this embodiment can obtain lens aberration suitable for the endoscope 1 as will be described later.
  • DFA / DF is preferably not less than 0.2 and not more than 0.25, instead of equation (3).
  • Formula (4) is determined so that the length DFa of the air interval of the first lens group G1 is shortened so that DFa / f is within a predetermined range.
  • the lenses can be assembled by partially abutting each other, variations in the arrangement positions of the optical members and components during assembly are reduced. Furthermore, the length of the first lens group G1 can be shortened to reduce the outer diameter (effective diameter) of the first lens group G1.
  • the object-side surface of the optical member L2 (positive lens or flat plate) in the first lens group G1 is in contact with a part of the image-side surface of the lens L1. This is preferable from the viewpoint that variations in the arrangement positions of members and parts can be reduced.
  • a flat plate L2 is used on the image side of the lens L1, but instead of the flat plate L2, a lens L2 having at least one plane positive power is used.
  • the lens L2 is a positive lens in which the object-side surface is a convex surface and the image-side surface is a flat surface.
  • the lens L2 is a positive lens in which the object-side surface is a flat surface and the image-side surface is a convex surface.
  • Example 1 The configuration of the endoscope optical system 100 shown in FIG. Specific numerical values (design values) of Example 1 are shown in Table 1.
  • the surface number NO shown in the upper column (surface data) of Table 1 corresponds to the surface code rn (n is a natural number) in FIG. 2 except for the surface number 5 corresponding to the aperture S.
  • R [mm] is the radius of curvature of each surface of the optical member including the lens
  • D [mm] is the thickness of the optical member on the optical axis AX or the optical member interval
  • N (d) Denotes the refractive index of the d-line (wavelength 588 nm)
  • VD denotes the Abbe number of the d-line.
  • D when the surface number NO is n corresponds to Dn (n is a natural number) shown in FIG.
  • FIG. 2 shows the location of the dimension D.
  • Dn is an interval between the surface code rn and the surface code r (n + 1).
  • Dn is a distance between optical members, it is an air interval.
  • the lower column (various data) in Table 1 shows the specifications of Example 1 (effective F number, focal length [mm] of the entire system). Each of optical magnification, half angle of view [degree], and image height [mm] is shown.
  • SF 1 , DF / f, DFa / DF, and DFa / f of Example 1 as will be described later (see Table 7), the expressions (1) to (3) and (4) are satisfied.
  • FIG. 3A to 3D are various aberration diagrams of Example 1.
  • FIG. 3A shows spherical aberration and axial chromatic aberration at d-line (wavelength 588 nm), g-line (wavelength 436 nm), and C-line (wavelength 656 nm).
  • FIG. 3B shows chromatic aberration of magnification at d-line, g-line, and C-line.
  • the solid line indicates the aberration at the d-line
  • the dotted line indicates the aberration at the g-line
  • the alternate long and short dash line indicates the aberration at the C-line.
  • FIG. 3C shows astigmatism.
  • FIG. 3A shows spherical aberration and axial chromatic aberration at d-line (wavelength 588 nm), g-line (wavelength 436 nm), and C-line (wavelength 656 nm).
  • FIG. 3B shows chromatic aberration of magnification at d
  • FIG. 3C shows distortion aberration.
  • the vertical axis represents the image height
  • the horizontal axis represents the aberration amount.
  • the vertical axis represents the image height
  • the horizontal axis represents the distortion (in%).
  • the effective diameter (outer diameter) of the lens L1 can be suppressed while the half angle of view is 87.3 degrees (viewing angle 174.6 degrees), and the radial direction of the entire endoscope optical system 100 is reduced.
  • the size is reduced.
  • the aberration is satisfactorily suppressed (see FIGS. 3A to 3D). Therefore, the first embodiment has a small viewing angle, has a wide viewing angle, and can suppress an error variation with respect to the target performance including the viewing angle due to variations in arrangement positions of components and optical members during assembly. Suitable as an objective lens unit for the mirror 1.
  • Example 2 The lens configuration of the endoscope optical system 100 shown in FIG. FIG. 4 is a diagram illustrating another example of the configuration of the endoscope optical system 100.
  • the endoscope optical system 100 according to the second embodiment includes a first lens group G1, an aperture S, and a second lens group G2 in order from the object (subject) side, similarly to the lens configuration according to the first embodiment.
  • the lens configuration of Example 2 is different from the lens configuration of Example 1 in that instead of the flat plate L2, a positive lens having a convex surface on the object side and a flat surface on the image side is used. The dimensions are also different.
  • This positive lens is referred to as a lens L2 using the same reference numeral as that of the flat plate L2 shown in FIG.
  • Example 2 Specific numerical values (design values) of Example 2 are shown in Table 2.
  • Table 2 shows the same items as in Table 1.
  • SF 1 , DF / f, DFa / DF, and DFa / f of Example 2 the expressions (1) to (3) and (4) are satisfied as described later (see Table 7).
  • FIGS. 5A to 5D are various aberration diagrams of Example 2.
  • FIG. FIGS. 5A to 5D show spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, and distortion, respectively, similarly to FIGS. 3A to 3D.
  • the effective diameter of the lens L1 can be suppressed while the half angle of view is 85.2 degrees (viewing angle 170.4 degrees), and the radial dimension of the entire endoscope optical system 100 is suppressed. It is the composition which was made.
  • the aberration is satisfactorily suppressed (see FIGS. 5A to 5D). Therefore, the second embodiment has a small viewing angle and a wide viewing angle, and can suppress an error variation with respect to the target performance including the viewing angle due to variations in arrangement positions of components and optical members during assembly. Suitable as an objective lens unit for the mirror 1.
  • the lens configuration of the endoscope optical system 100 shown in FIG. FIG. 6 is a diagram illustrating an example of another lens configuration of the endoscope optical system 100.
  • the endoscope optical system 100 according to the third embodiment includes a first lens group G1, a diaphragm S, and a second lens group G2 in order from the object (subject) side, similarly to the lens configuration according to the first embodiment.
  • the lens configuration of Example 3 is different from the lens configuration of Example 1 in that instead of the flat plate L2, a positive lens having a convex surface on the object side and a flat surface on the image side is used. The dimensions are also different.
  • This positive lens is referred to as a lens L2 using the same reference numeral as that of the flat plate L2 shown in FIG.
  • the curvature radius R3 of the convex surface on the object side of the lens L2 of the third embodiment is larger than the curvature radius R3 of the convex surface on the object side of the lens L2 of the second embodiment.
  • Example 3 Specific numerical values (design values) of Example 3 are shown in Table 3.
  • Table 3 shows the same items as in Table 1.
  • SF 1 , DF / f, DFa / DF, and DFa / f of Example 3 as will be described later (see Table 7), the expressions (1) to (3) and (4) are satisfied.
  • FIGS. 7A to 7D are various aberration diagrams of Example 3.
  • FIG. FIGS. 7A to 7D show spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, and distortion, respectively, similarly to FIGS. 3A to 3D.
  • the effective diameter of the lens L1 can be suppressed while the half angle of view is set to 80.0 degrees (viewing angle 160.0 degrees), and the radial dimension of the entire endoscope optical system 100 is suppressed. It is the composition which was made.
  • the aberration is satisfactorily suppressed (see FIGS. 7A to 7D). Therefore, the third embodiment has a small viewing angle and a wide viewing angle, and can suppress an error variation with respect to the target performance including the viewing angle due to variations in arrangement positions of components and optical members during assembly. Suitable as an objective lens unit for the mirror 1.
  • Example 4 The lens configuration of the endoscope optical system 100 shown in FIG. FIG. 8 is a diagram illustrating an example of another lens configuration of the endoscope optical system 100.
  • the endoscope optical system 100 according to the fourth embodiment includes a first lens group G1, an aperture S, and a second lens group G2 in order from the object (subject) side.
  • the difference from the configuration of the second embodiment is that instead of the flat plate L2, a positive lens having a plane on the object side and a convex surface on the image side is used. The dimensions are different.
  • This positive lens is referred to as a lens L2 using the same reference numeral as that of the flat plate L2 shown in FIG.
  • Example 4 Specific numerical values (design values) of Example 4 are shown in Table 4.
  • Table 4 shows the same items as in Table 1.
  • SF 1 , DF / f, DFa / DF, and DFa / f of Example 4 as will be described later (see Table 7), the expressions (1) to (3) and (4) are satisfied.
  • FIGS. 9A to 9D show spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, and distortion, respectively, similarly to FIGS. 3A to 3D.
  • the effective diameter of the lens L1 can be suppressed while the half angle of view is 84.5 degrees (viewing angle 169.0 degrees), and the radial dimension of the entire endoscope optical system 100 is suppressed. It is the composition which was made.
  • the aberration is satisfactorily suppressed (see FIGS. 9A to 9D). Therefore, the fourth embodiment has a small viewing angle, has a wide viewing angle, and can suppress an error variation with respect to the target performance including the viewing angle due to variations in arrangement positions of components and optical members during assembly. Suitable as an objective lens unit for the mirror 1.
  • the lens configuration of the endoscope optical system 100 shown in FIG. FIG. 10 is a diagram illustrating an example of another lens configuration of the endoscope optical system 100.
  • the endoscope optical system 100 according to the fifth embodiment includes a first lens group G1, a diaphragm S, and a second lens group G2 in order from the object (subject) side, similarly to the lens configuration of the embodiment.
  • the difference from the lens configuration of Example 1 is that, instead of the flat plate L2, a positive lens having a plane on the object side and a convex surface on the image side is used. Other lens dimensions are also different.
  • This positive lens is referred to as a lens L2 using the same reference numeral as that of the flat plate L2 shown in FIG.
  • the curvature radius R4 of the convex surface on the object side of the lens L2 of the fifth embodiment is larger than the curvature radius R4 of the convex surface on the object side of the lens L2 shown in Table 4 of the fourth embodiment, and other dimensions are the same as those of the lens of the fourth embodiment. Different from dimensions.
  • Example 5 Specific numerical values (design values) of Example 5 are shown in Table 5.
  • Table 5 shows the same items as in Table 1.
  • FIG. 11A to 11D are various aberration diagrams of Example 5.
  • FIG. 11A to 11D show spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, and distortion aberration, respectively, as in FIGS. 3A to 3D.
  • the effective diameter of the lens L1 can be suppressed while the half angle of view is 88.1 degrees (viewing angle 176.2 degrees), and the radial dimension of the entire endoscope optical system 100 is suppressed. It is the composition which was made.
  • the aberration is satisfactorily suppressed (see FIGS. 11A to 11D). Therefore, the fifth embodiment has a small viewing angle, has a wide viewing angle, and can suppress a variation in error with respect to the target performance including the viewing angle due to variations in arrangement positions of components and optical members during assembly. Suitable as an objective lens unit for the mirror 1.
  • the lens configuration of the endoscope optical system 100 shown in FIG. FIG. 12 is a diagram illustrating an example of another lens configuration of the endoscope optical system 100.
  • the endoscope optical system 100 according to the sixth embodiment includes a first lens group G1, a diaphragm S, and a second lens group G2 in order from the object (subject) side, similarly to the lens configuration according to the first embodiment.
  • the lens configuration of Example 6 is different from the lens configuration of Example 1 in that the dimensions of each lens are different.
  • Example 6 Specific numerical values (design values) of Example 6 are shown in Table 6. Table 6 shows the same items as in Table 1. Regarding SF 1 , DF / f, DFa / DF, and DFa / f of Example 6, as will be described later (see Table 7), the expressions (1) to (3) and (4) are satisfied.
  • FIGS. 13A to 13D are various aberration diagrams of Example 6.
  • FIG. FIGS. 13A to 13D show spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, and distortion, respectively, similarly to FIGS. 3A to 3D.
  • the effective diameter of the lens L1 can be suppressed while the half angle of view is 82.1 degrees (viewing angle 164.2 degrees), and the radial dimension of the entire endoscope optical system 100 is suppressed. It is the composition which was made.
  • the aberration is satisfactorily suppressed (see FIGS. 13A to 13D).
  • the sixth embodiment has a small viewing angle, has a wide viewing angle, and can suppress a variation in viewing angle due to variations in the positions of components and optical members during assembly.
  • an objective lens unit of the endoscope 1 Is suitable.
  • Table 7 shows the numerical values of SF 1 , DF / f, DFa / DF, and DFa / f of each example. As shown in Table 7, Examples 1 to 7 all satisfy the expressions (1) to (4).
  • the endoscope optical system and endoscope according to the present invention have been described in detail.
  • the endoscope optical system and endoscope according to the present invention are not limited to the above-described embodiments or examples. It goes without saying that various improvements and changes may be made without departing from the spirit of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)

Abstract

光学系は、物体側から順に、第1のレンズ群、絞り、第2のレンズ群を備え、前記第1のレンズ群は、物体側に凸面を有する負のメニスカスレンズと、片面が平面である正レンズあるいは平板を有し、前記第2のレンズ群は、正レンズと接合レンズを有する。光学系は、1.2≦SF≦1.35、1.5≦DF/f≦2.5、0.15≦DFa/DF≦0.3を満足する。SFは、(rp1+rp2)/(rp1-rp2)、rp1[mm]及びrp2[mm]は、前記メニスカスレンズの、物体側及び像側の曲率半径であり、f[mm]は全系の合成焦点距離、DFは、前記メニスカスレンズの物体側の面と前記絞りの間の距離、DFaは、前記メニスカスレンズの像側の面と前記絞りとの間の空気間隔の距離の和である。

Description

内視鏡用光学系及び内視鏡
 本発明は、内視鏡対物レンズユニットに用いる内視鏡用光学系及び内視鏡に関する。
 今日、人体内部の生体組織を検査するために内視鏡が用いられる。内視鏡は、人体内に挿入される挿入部の先端部に、照明光で照明された生体組織を撮像する撮像素子及び撮像素子に付随した対物レンズユニットを備える。対物レンズユニットは、先端部の小型化のために、極めて小さいサイズであり高い光学性能を有することが求められる。
 対物レンズユニットに求められる光学性能として、広い視野角を有すること(例えば、視野角は150度以上、さらには、160度以上であって、180度未満)、被写体の像の周辺光量の低下を抑制すること、及び、レンズ収差を適正な範囲内にすること、が含まれる。また、内視鏡の対物レンズユニットにおいて、レンズの外径を小さくすることも求められる。
 このような対物レンズユニットに関して、画像の中心と周辺の倍率のバランスが良好であり、外径が細く、部品や組立のばらつきによる視野角の変動が小さい、最大視野角が150度以上である内視鏡撮像ユニットが知られている(特許文献1)。
 当該内視鏡撮像ユニットは、対物光学系が球面レンズと平行平面板とよりなり、物体側に凸面を向けた負の屈折力を有するメニスカス形状の第1レンズを含み全体として負の屈折力を有する第1群と、少なくとも1枚の凸レンズを含み全体として正の屈折力を有する第2群と、第1群と第2群との間に配置された明るさ絞りと、より構成される。対物光学系の焦点距離と、固体撮像素子の表示エリア内での最大像高と、第1群の焦点距離と、第1群の第1レンズの像側の面から明るさ絞りまでの光軸上の空気換算長との間には、所定の関係を有する。
特許第4575198号公報
 しかし、上記対物光学系では、組立時の部品や対物光学系の位置のばらつきにより、視野角の変動が十分に抑制されない。このため、目標とする視野角を得ることが難しい。このため、上記対物光学系は、小型でありながら、広い視野角を有し、組立時の部品や光学系の位置のばらつきによる、視野角を含む目標性能に対する誤差変動を抑えることができない。
 そこで、本発明は、小型でありながら、広い視野角を有し、組立時の光学系や部品の配置位置のばらつきによる目標性能に対する誤差変動を抑えることができる、内視鏡用光学系及び内視鏡を提供することを目的とする。
 本発明の一態様は、内視鏡対物レンズユニットに用いる内視鏡用光学系である。当該内視鏡用光学系は、
 物体の側から順に、第1のレンズ群、絞り、第2のレンズ群を備え、
 前記第1のレンズ群は、物体の側から順に、
 負のパワーを持ち、物体側に凸面を有するメニスカスレンズと、
 正のパワーを持ち、少なくとも片面が平面である正レンズ、あるいは平板と、を有し、
 前記第2のレンズ群は、物体の側から順に、
 正のパワーを持つ正レンズと、
 負のパワーを持つ負レンズ及び正のパワーを持つ正レンズ、あるいは正のパワーを持つ正レンズ及び負のパワーを持つ負レンズ、を接合した接合レンズと、を有する。
 前記内視鏡用光学系は、
 式(1):1.2≦SF≦1.35、
 式(2):1.5≦DF/f≦2.5、
 式(3):0.15≦DFa/DF≦0.3、
(SFは、SF=(rp1+rp2)/(rp1-rp2)であり、rp1[mm]及びrp2[mm]は、それぞれ、前記メニスカスレンズの物体側の面の曲率半径及び像側の面の曲率半径であり、f[mm]は、全系の合成焦点距離であり、DFは、前記メニスカスレンズの物体側の面から前記絞りまでの間の光軸上の距離であり、DFaは、前記メニスカスレンズの像側の面から前記絞りまでの間の、前記光軸上の空気間隔の距離の和である)を満足する。
 前記DFa/DFは、0.2以上0.25以下である、ことが好ましい。
 式(4):0.35≦DFa/f≦0.6、を満足することが好ましい。
 さらに、DF/fは、1.8以上2.5以下であることが好ましく、1.9以上2.5以下であることがより好ましい。
 本発明の一態様も、内視鏡対物レンズユニットに用いる内視鏡用光学系である。当該内視鏡用光学系は、
 物体の側から順に、第1のレンズ群、絞り、第2のレンズ群を備え、
 前記第1のレンズ群は、物体の側から順に、
 負のパワーを持ち、物体側に凸面を有するメニスカスレンズと、
 正のパワーを持ち、少なくとも片面が平面である正レンズ、あるいは平板と、を備え、
 前記第2のレンズ群は、物体の側から順に、
 正のパワーを持つ正レンズと、
 負のパワーを持つ負レンズ及び正のパワーを持つ正レンズ、あるいは正のパワーを持つ正レンズ及び負のパワーを持つ負レンズ、を接合した接合レンズと、を有する。
 前記内視鏡用光学系は、
 式(1):1.2≦SF≦1.35、
 式(2):1.5≦DF/f≦2.5、
 式(4):0.35≦DFa/f≦0.6、
(SFは、SF=(rp1+rp2)/(rp1-rp2)であり、rp1[mm]及びrp2[mm]は、それぞれ前記メニスカスレンズの、物体側の面の曲率半径及び像側の面の曲率半径であり、f[mm]は、全系の合成焦点距離であり、DFは、前記メニスカスレンズの物体側の面から前記絞りまでの間の光軸上の距離であり、DFaは、前記第メニスカスレンズの像側の面から前記絞りまでの間の、前記光軸上の空気間隔の距離の和である)を満足する。
 このとき、式(3):0.15≦DFa/DF≦0.3、を満足することが好ましい。
 前記第1のレンズ群における前記正レンズあるいは前記平板の物体側の面は、前記メニスカスレンズの像側の面の一部と当接する、ことが好ましい。
 本発明の一態様は、前記内視鏡用光学系と、前記内視鏡用光学系により結像した物体の像を受光するように構成された撮像素子と、を備えることを特徴とする内視鏡である。
 上述の内視鏡用光学系及び内視鏡によれば、小型でありながら、広い視野角を有し、組立時の光学系や部品の配置位置のばらつきによる目標性能に対する誤差変動を抑えることができる。
本実施形態の内視鏡用光学系を搭載した内視鏡の構成の一例を模式的に示す図である。 一実施形態の内視鏡用光学系のレンズ構成の一例を示す図である。 (a)~(d)は、図2に示すレンズ構成の実施例1の各種収差図である。 一実施形態の内視鏡用光学系のレンズ構成の別の一例を示す図である。 (a)~(d)は、図4に示すレンズ構成の実施例2の各種収差図である。 一実施形態の内視鏡用光学系のレンズ構成の別の一例を示す図である。 (a)~(d)は、図6に示すレンズ構成の実施例3の各種収差図である。 一実施形態の内視鏡用光学系のレンズ構成の別の一例を示す図である。 (a)~(d)は、図8に示すレンズ構成の実施例4の各種収差図である。 一実施形態の内視鏡用光学系のレンズ構成の別の一例を示す図である。 (a)~(d)は、図10に示すレンズ構成の実施例5の各種収差図である。 一実施形態の内視鏡用光学系のレンズ構成の別の一例を示す図である。 (a)~(d)は、図12に示すレンズ構成の実施例6の各種収差図である。
 以下、一実施形態の内視鏡用光学系及び内視鏡について、図面を参照しながら説明する。図1は、一実施形態に係る内視鏡1の外観を示す外観図である。
 内視鏡1は、図1に示されるように、可撓性を有するシース11aによって外装された挿入部可撓管11を備えている。挿入部可撓管11の先端部分に設けられる湾曲部14は、挿入部可撓管11の基端に連結された手元操作部13からの、湾曲操作ノブ13aの回転操作に応じて湾曲する。湾曲機構は、一般的な内視鏡に組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を湾曲させる。湾曲部14の先端には、硬質性を有する樹脂製筐体によって外装された先端部12の基端が連結している。挿入部可撓管11、先端部12、及び湾曲部14が、体腔内に挿入された状態で、先端部12の方向が湾曲操作ノブ13aの回転操作による湾曲動作に応じて変わることにより、内視鏡1による撮影領域が移動する。
 このような先端部12の樹脂製筐体の内部には、広い視野角を有し、観察に適したレンズ性能を保持した、対物レンズユニットとして用いる内視鏡用光学系100が組み込まれている。内視鏡用光学系100は、撮影領域中の被写体の画像データを採取するため、被写体からの光の像を撮像素子(図示省略)の受光面上に結像させ撮像素子に受光させる。撮像素子としては、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが挙げられる。
 図2は、一実施形態の内視鏡用光学系100の構成の一例を示す図である。内視鏡用光学系100は、図2に示されるように、物体(被写体)側から順に、第1のレンズ群G1、絞りS、第2のレンズ群G2を備える。
 第1のレンズ群G1は、物体側から順に、負のパワーを持ち、物体側に凸面を有するメニスカスレンズであるレンズL1と、平板L2と、を有する。なお、後述する種々の変形したレンズ構成において、平板L2に代えて、正のパワーを持ち、少なくとも片面が平面である正レンズを用いることができるため、平板L2と上記正レンズを纏めて、同じ符号“L2”を用いて光学部材L2ともいう。光学部材L2は、場合によって平板L2あるいは正レンズとしてのレンズL2ともいう。
 第2のレンズ群G2は、物体側から順に、正のパワーを持つ正レンズであるレンズL3と、負のパワーを持つ負レンズL4及び正のパワーを持つ正レンズL5を接合した接合レンズCLと、を有する。なお、接合レンズCLは、負レンズL4が物体側に配置され、正レンズL5が像側に配置されているが、一実施形態では、正レンズL5が物体側に配置され、負レンズL4が像側に配置されてもよい。
 絞りSは、光軸AXを中心とした所定の円形開口を有する板状部材である。絞りSの厚みは、内視鏡用光学系100を構成する各光学レンズの厚みと比べて非常に薄い。
 第2のレンズ群G2の後段には、撮像素子用の色補正フィルタF及びカバーガラスCGが設けられ、色補正フィルタFはカバーガラスCGに接着されている。図2中の“×”は、光軸AX上の結像位置を示す。
 このようなレンズ構成の内視鏡用光学系100は、下記式(1)~(3)を満足する。
 式(1):1.2≦SF≦1.35
 式(2):1.5≦DF/f≦2.5
 式(3):0.15≦DFa/DF≦0.3
 ここで、SFは、SF=(rp1+rp2)/(rp1-rp2)であり、rp1[mm]は、レンズL1の物体側の面の曲率半径であり、rp2[mm]は、レンズL1の像側の面の曲率半径であり、f[mm]は、全系の合成焦点距離であり、DFは、レンズL1の物体側の面から絞りSまでの間の光軸AX上の距離であり、DFaは、レンズL1の像側の面から絞りSまでの間の、光軸AX上の空気間隔の距離の和である。
 本実施形態では、メニスカスレンズであるレンズL1の物体側の面を凸面とするので、表面反射による周辺光量の低下を抑えることができる。このとき、式(1)により、レンズL1の物体側の凸面と像側の凹面の形状を規定する。この規定により、大きな画角(例えば80度以上の画角)となる入射光でもレンズL1への入射角は抑えられ、さらに像の歪を低減することができる。SFが1.2未満の場合、レンズL1の物体側の面は平面に近づくので、この面に入射する入射角が大きい光(大きな画角となる方向から入射する光)は、表面反射が大きくなって、周辺光量が不足しやすい。SFが1.35を超える場合、先端部12の先端面であるレンズL1の物体側の凸面の突出量は増大して、レンズL1の凸面に異物が付着し易くなる他、先端面となるレンズL1の凸面の洗浄が困難になり、使い勝手が悪化する。さらに、第1のレンズ群G1の外径(有効径)が大きくなり先端部12の小型化に適さなくなる。したがって、レンズL1の形状を定めるSFは、1.2以上1.35以下である。 
 式(2)は、第1のレンズ群G1の光軸AXに沿った長さ(レンズL1の物体側の面から絞りSまでの間の光軸AX上の距離)であるDFを、全系の合成焦点距離fで割った比の範囲を示し、主にDFを短くするように設定されている。式(2)を満足するようにDFを設定することにより、第1のレンズ群G1の長さを抑えレンズL1の外径(有効径)の増大を抑えることができる。DF/fを1.5以上とする場合、第1のレンズ群G1の長さが長くなり、レンズL1の負のパワーが小さくなり、レンズL1の形状誤差のばらつき及び組立時の光学部材や部品の配置位置のばらつきに起因する、レンズ性能の目標に対するレンズ性能の誤差の感度を小さくすることができ、また、像の歪を小さくでき、内視鏡1による被写体の観察に適する。DF/fを2.5以下とする場合、第1のレンズ群G1の上記長さが制限されるので、第1のレンズ群G1の外径(有効径)を抑えることができ、先端部12を小型にすることができる。上記観点から、DF/fは、1.8以上2.5以下であることが好ましく、1.9以上2.5以下であることがより好ましい。
 式(3)は、第1のレンズ群G1の空気間隔の長さDFaを短くして、DFa/DFが所定の範囲内になるように定める。DFa/DFを0.15以上とする場合、レンズL1、さらにレンズL2(正レンズの場合)のパワーを抑えることができる。この結果、レンズL1,L2の形状誤差のばらつき及び組立時の光学部材や部品の配置位置のばらつきに起因する、レンズ性能の目標に対するレンズ性能の誤差の感度を小さくすることができ、さらに、像の歪が小さくなり、内視鏡1による被写体の観察に適する。DFa/DFを0.3以下とする場合、レンズL1、レンズL2、さらには、レンズL3を部分的に当接させて組み立てることが容易になり、上記組立時の配置位置のばらつきは生じ難くなる他、第1のレンズ群G1の長さが短くでき、第1レンズ群G1の外径(有効径)が抑えられ、先端部12を小型にすることができる。
 本実施形態のレンズ構成において、レンズL2の物体側の面が平面である場合、この平面を、図2に示すように、像側の凹面の外周側の平面と当接させて、先端部12内に組み付けることができるので、組立時の光学部材の配置位置のばらつきを抑えることができる。
 また、レンズL2の像側の面が平面である場合、レンズL3との離間距離を短くして、レンズの対向する面同士を当接させて、先端部12内に組み付けることができるので、組立時の光学部材の配置位置のばらつきを抑えることができる。
 このように本実施形態のレンズ構成によれば、視野角が150度以上、好ましくは160度以上の広い視野角を有していても、レンズL1の像側の面を、式(1)を満足するような凸面とするので、周辺光量不足を抑制することができる。さらに、像の歪を低減することができる。また、式(2)、(3)により、レンズL1の外径(有効径)を抑えることができ、レンズL1の物体側の面の有効半径を最大像高さよりも低くすることができる。また、レンズの一部同士を当接させて先端部12に組み付けることができるので、レンズを配置するための機械部品を用いる場合に比べて、組立時の部品や光学部材の配置位置のばらつきを抑えることができ、視野角を含む目標性能に対する誤差の変動を抑制することができる。本実施形態のレンズ構成は、後述するように、内視鏡1に適したレンズ収差を得ることができる。
 一実施形態によれば、式(3)の代わりに、DFa/DFは、0.2以上0.25以下であることが好ましい。これにより、式(3)による上述した効果はより一層向上する。
 また、本実施形態のレンズ構成において、上記式(1)~(3)のうち、式(3)の代わりに、下記式(4)を用いることもできる。また、一実施形態によれば、式(1)~(3)に加えて式(4)を満足することも好ましい。
 式(4):0.35≦DFa/f≦0.6
 式(4)は、第1のレンズ群G1の空気間隔の長さDFaを短くして、DFa/fが所定の範囲内になるように定める。内視鏡用光学系100が式(4)を満足することにより、レンズL1,L2の形状誤差のばらつき及び組立時の光学部材の配置位置のばらつきに起因する、レンズ性能の目標に対するレンズ性能の誤差感度を小さくし、さらに、像の歪を抑制する。さらに、レンズ同士を部分的に当接させて組み立てることができるので、組立時の光学部材や部品の配置位置のばらつきが小さくなる。さらに、第1のレンズ群G1の長さを短くして第1レンズ群G1の外径(有効径)を小さくすることができる。
 上述したように、第1のレンズ群G1における光学部材L2(正レンズあるいは平板)の物体側の面は、レンズL1の像側の面の一部と当接することが、レンズの組立時の光学部材や部品の配置位置のばらつきを小さくすることができる点から好ましい。
 上述した内視鏡用光学系100の図2に示すレンズ構成では、レンズL1の像側に、平板L2を用いるが、平板L2に代えて、少なくとも片面が平面の正のパワーを持つレンズL2を用いることができる。
 一実施形態によれば、レンズL2は、物体側の面が凸面であり、像側の面が平面である正レンズである。また、別の一実施形態によれば、レンズL2は、物体側の面が平面であり、像側の面が凸面である正レンズである。
 以下、種々の実施例を用いてレンズ性能を説明する。
(実施例1)
 図2に示す内視鏡用光学系100の構成を、実施例1として用いた。
 実施例1の具体的な数値(設計値)は、表1に示される。表1の上欄(面データ)に示される面番号NOは、絞りSに対応する面番号5を除き、図2中の面符号rn(nは自然数)に対応する。表1の上欄において、R[mm]はレンズを含む光学部材の各面の曲率半径を、D[mm]は光軸AX上の光学部材の厚さ又は光学部材間隔を、N(d)はd線(波長588nm)の屈折率を、VDはd線のアッベ数を、それぞれ示す。表1において、面番号NOがnであるときのDは、図2に示すDn(nは自然数)に対応する。図2にはDの寸法の場所が示されている。図2に示すように、Dnは、面符号rnと面符号r(n+1)の間の間隔をいう。Dnが光学部材間距離である場合、空気間隔である。 表1の下欄(各種データ)は、実施例1の仕様(実効Fナンバー、全系の焦点距離[mm]
光学倍率、半画角[度]、像高[mm]のそれぞれを示す。
 実施例1のSF、DF/f、DFa/DF、及びDFa/fについては、後述する(表7参照)ように、式(1)~(3)及び(4)を満足する。
Figure JPOXMLDOC01-appb-T000001
 図3(a)~(d)は、実施例1の各種収差図である。図3(a)は、d線(波長588nm)、g線(波長436nm)、C線(波長656nm)での球面収差及び軸上色収差を示す。図3(b)は、d線、g線、C線での倍率色収差を示す。図3(a),(b)中、実線はd線における収差を、点線はg線における収差を、一点鎖線はC線における収差を、それぞれ示す。図3(c)は、非点収差を示す。図3(c)中、実線はサジタル成分“S”を、点線はメリディオナル成分“M”を、それぞれ示す。図3(d)は、歪曲収差を示す。図3(a)~(c)の縦軸は像高を、横軸は収差量を、それぞれ示す。図3(d)の縦軸は像高を、横軸は歪曲率(%表示)を、それぞれ示す。なお、実施例1の表1または図3(a)~(d)についての符号や文言の説明は、以降の実施例の各表または各図においても適用する。
 実施例1では、半画角を87.3度(視野角174.6度)としつつ、レンズL1の有効径(外径)を抑えることができ、内視鏡用光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、収差が良好に抑えられている(図3(a)~(d)参照)。したがって、実施例1は、小型でありながら、広い視野角を有し、組立時の部品や光学部材の配置位置のばらつきによる、視野角を含む目標性能に対する誤差変動を抑えることができ、内視鏡1の対物レンズユニットとして適している。
(実施例2)
 図4に示す内視鏡用光学系100のレンズ構成を、実施例2として用いた。図4は、内視鏡用光学系100の構成の別の一例を示す図である。実施例2の内視鏡用光学系100は、実施例1のレンズ構成と同様に、物体(被写体)側から順に、第1のレンズ群G1、絞りS、第2のレンズ群G2を備える。実施例2のレンズ構成において、実施例1のレンズ構成と異なる点は、平板L2の代わりに、物体側の面が凸面、像側の面が平面の正レンズを用いた点であり、その他の寸法も異なる。この正レンズは、図2に示す平板L2と同じ符号を用いてレンズL2とする。
 実施例2の具体的な数値(設計値)は、表2に示される。表2は、表1と同じ項目について示している。
 実施例2のSF、DF/f、DFa/DF、及びDFa/fについては、後述する(表7参照)ように、式(1)~(3)及び(4)を満足する。
Figure JPOXMLDOC01-appb-T000002
 図5(a)~(d)は、実施例2の各種収差図である。図5(a)~(d)はそれぞれ、図3(a)~(d)と同様に、球面収差及び軸上色収差、倍率色収差、非点収差、及び歪曲収差を示す。
 実施例2でも、半画角を85.2度(視野角170.4度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、収差が良好に抑えられている(図5(a)~(d)参照)。したがって、実施例2は、小型でありながら、広い視野角を有し、組立時の部品や光学部材の配置位置のばらつきによる、視野角を含む目標性能に対する誤差変動を抑えることができ、内視鏡1の対物レンズユニットとして適している。
(実施例3)
 図6に示す内視鏡用光学系100のレンズ構成を、実施例3として用いた。図6は、内視鏡用光学系100の別のレンズ構成の一例を示す図である。実施例3の内視鏡用光学系100は、実施例1のレンズ構成と同様に、物体(被写体)側から順に、第1のレンズ群G1、絞りS、第2のレンズ群G2を備える。
 実施例3のレンズ構成において、実施例1のレンズ構成と異なる点は、平板L2の代わりに、物体側の面が凸面、像側の面が平面の正レンズを用いた点であり、その他の寸法も異なる。この正レンズは、図2に示す平板L2と同じ符号を用いてレンズL2とする。実施例3のレンズL2の物体側の凸面の曲率半径R3は、実施例2のレンズL2の物体側の凸面の曲率半径よりR3も大きい。
 実施例3の具体的な数値(設計値)は、表3に示される。表3は、表1と同じ項目について示している。
 実施例3のSF、DF/f、DFa/DF、及びDFa/fについては、後述する(表7参照)ように、式(1)~(3)及び(4)を満足する。
Figure JPOXMLDOC01-appb-T000003
 図7(a)~(d)は、実施例3の各種収差図である。図7(a)~(d)はそれぞれ、図3(a)~(d)と同様に、球面収差及び軸上色収差、倍率色収差、非点収差、及び歪曲収差を示す。
 実施例3でも、半画角を80.0度(視野角160.0度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、収差が良好に抑えられている(図7(a)~(d)参照)。したがって、実施例3は、小型でありながら、広い視野角を有し、組立時の部品や光学部材の配置位置のばらつきによる、視野角を含む目標性能に対する誤差変動を抑えることができ、内視鏡1の対物レンズユニットとして適している。
(実施例4)
 図8に示す内視鏡用光学系100のレンズ構成を、実施例4として用いた。図8は、内視鏡用光学系100の別のレンズ構成の一例を示す図である。実施例4の内視鏡用光学系100は、実施例2に示すレンズ構成と同様に、物体(被写体)側から順に、第1のレンズ群G1、絞りS、第2のレンズ群G2を備える。
 実施例4のレンズ構成において、実施例2の構成と異なる点は、平板L2の代わりに、物体側の面が平面、像側の面が凸面の正レンズを用いた点であり、さらに、他の寸法も異なる。この正レンズは、図2に示す平板L2と同じ符号を用いてレンズL2とする。
 実施例4の具体的な数値(設計値)は、表4に示される。表4は、表1と同じ項目について示している。
 実施例4のSF、DF/f、DFa/DF、及びDFa/fについては、後述する(表7参照)ように、式(1)~(3)及び(4)を満足する。
Figure JPOXMLDOC01-appb-T000004
 図9(a)~(d)は、実施例4の各種収差図である。図9(a)~(d)はそれぞれ、図3(a)~(d)と同様に、球面収差及び軸上色収差、倍率色収差、非点収差、及び歪曲収差を示す。
 実施例4でも、半画角を84.5度(視野角169.0度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、収差が良好に抑えられている(図9(a)~(d)参照)。したがって、実施例4は、小型でありながら、広い視野角を有し、組立時の部品や光学部材の配置位置のばらつきによる、視野角を含む目標性能に対する誤差変動を抑えることができ、内視鏡1の対物レンズユニットとして適している。
(実施例5)
 図10に示す内視鏡用光学系100のレンズ構成を、実施例5として用いた。図10は、内視鏡用光学系100の別のレンズ構成の一例を示す図である。実施例5の内視鏡用光学系100は、実施例のレンズ構成と同様に、物体(被写体)側から順に、第1のレンズ群G1、絞りS、第2のレンズ群G2を備える。
 実施例5のレンズ構成において、実施例1のレンズ構成と異なる点は、平板L2の代わりに、物体側の面が平面、像側の面が凸面の正レンズを用いた点にあり、さらに、他のレンズの寸法も異なる。この正レンズは、図2に示す平板L2と同じ符号を用いてレンズL2とする。実施例5のレンズL2の物体側の凸面の曲率半径R4は、実施例4の表4に示すレンズL2の物体側の凸面の曲率半径R4よりも大きく、他の寸法も実施例4のレンズの寸法と異なる。
 実施例5の具体的な数値(設計値)は、表5に示される。表5は、表1と同じ項目について示している。
 実施例5のSF、DF/f、DFa/DF、及びDFa/fについては、後述する(表7参照)ように、式(1)~(3)及び(4)を満足する。
Figure JPOXMLDOC01-appb-T000005
 図11(a)~(d)は、実施例5の各種収差図である。図11(a)~(d)はそれぞれ、図3(a)~(d)と同様に、球面収差及び軸上色収差、倍率色収差、非点収差、及び歪曲収差を示す。
 実施例5でも、半画角を88.1度(視野角176.2度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、収差が良好に抑えられている(図11(a)~(d)参照)。したがって、実施例5は、小型でありながら、広い視野角を有し、組立時の部品や光学部材の配置位置のばらつきによる、視野角を含む目標性能に対する誤差変動を抑えることができ、内視鏡1の対物レンズユニットとして適している。
(実施例6)
 図12に示す内視鏡用光学系100のレンズ構成を、実施例6として用いた。図12は、内視鏡用光学系100の別のレンズ構成の一例を示す図である。実施例6の内視鏡用光学系100は、実施例1のレンズ構成と同様に、物体(被写体)側から順に、第1のレンズ群G1、絞りS、第2のレンズ群G2を備える。
 実施例6のレンズ構成において、実施例1のレンズ構成と異なる点は、各レンズの寸法を異ならせた点である。
 実施例6の具体的な数値(設計値)は、表6に示される。表6は、表1と同じ項目について示している。
 実施例6のSF、DF/f、DFa/DF、及びDFa/fについては、後述する(表7参照)ように、式(1)~(3)及び(4)を満足する。
Figure JPOXMLDOC01-appb-T000006
 図13(a)~(d)は、実施例6の各種収差図である。図13(a)~(d)はそれぞれ、図3(a)~(d)と同様に、球面収差及び軸上色収差、倍率色収差、非点収差、及び歪曲収差を示す。
 実施例6でも、半画角を82.1度(視野角164.2度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、収差が良好に抑えられている(図13(a)~(d)参照)。したがって、実施例6は、小型でありながら、広い視野角を有し、部品や組立時の光学部材の位置のばらつきによる視野角の変動を抑えることができ、内視鏡1の対物レンズユニットとして適している。
 表7は、各実施例のSF、DF/f、DFa/DF、及びDFa/fの数値を示す。
表7に示すように、実施例1~7は、いずれも式(1)~(4)を満足する。
Figure JPOXMLDOC01-appb-T000007
 以上、本発明の内視鏡用光学系及び内視鏡について詳細に説明したが、本発明の内視鏡用光学系及び内視鏡は上記実施形態あるいは実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
1 内視鏡
11 挿入部可撓管
11a シース
12 先端部
13 手元操作部
13a 湾曲操作ノブ
14 湾曲部
100 内視鏡用変倍光学系

Claims (5)

  1.  内視鏡対物レンズユニットに用いる内視鏡用光学系であって、
     物体の側から順に、第1のレンズ群、絞り、第2のレンズ群を備え、
     前記第1のレンズ群は、物体の側から順に、
     負のパワーを持ち、物体側に凸面を有するメニスカスレンズと、
     正のパワーを持ち、少なくとも片面が平面である正レンズ、あるいは平板と、を有し、
     前記第2のレンズ群は、物体の側から順に、
     正のパワーを持つ正レンズと、
     負のパワーを持つ負レンズ及び正のパワーを持つ正レンズ、あるいは正のパワーを持つ正レンズ及び負のパワーを持つ負レンズ、を接合した接合レンズと、を有し、
     式(1):1.2≦SF≦1.35、
     式(2):1.5≦DF/f≦2.5、
     式(3):0.15≦DFa/DF≦0.3、
    (SFは、SF=(rp1+rp2)/(rp1-rp2)であり、rp1[mm]及びrp2[mm]は、それぞれ、前記メニスカスレンズの物体側の面の曲率半径及び像側の面の曲率半径であり、f[mm]は、全系の合成焦点距離であり、DFは、前記メニスカスレンズの物体側の面から前記絞りまでの間の光軸上の距離であり、DFaは、前記メニスカスレンズの像側の面から前記絞りまでの間の、前記光軸上の空気間隔の距離の和である)
     を満足する、内視鏡用光学系。
  2.  前記DFa/DFは、0.2以上0.25以下である、請求項1に記載の内視鏡用光学系。
  3.  内視鏡対物レンズユニットとして用いる内視鏡用光学系であって、
     物体の側から順に、第1のレンズ群、絞り、第2のレンズ群を備え、
     前記第1のレンズ群は、物体の側から順に、
     負のパワーを持ち、物体側に凸面を有するメニスカスレンズと、
     正のパワーを持ち、少なくとも片面が平面である正レンズ、あるいは平板と、を備え、
     前記第2のレンズ群は、物体の側から順に、
     正のパワーを持つ正レンズと、
     負のパワーを持つ負レンズ及び正のパワーを持つ正レンズを接合した接合レンズと、を有し、
     式(1):1.2≦SF≦1.35、
     式(2):1.5≦DF/f≦2.5、
     式(4):0.35≦DFa/f≦0.6、
    (SFは、SF=(rp1+rp2)/(rp1-rp2)であり、rp1[mm]及びrp2[mm]は、それぞれ前記メニスカスレンズの、物体側の面の曲率半径及び像側の面の曲率半径であり、f[mm]は、全系の合成焦点距離であり、DFは、前記メニスカスレンズの物体側の面から前記絞りまでの間の光軸上の距離であり、DFaは、前記第メニスカスレンズの像側の面から前記絞りまでの間の、前記光軸上の空気間隔の距離の和である)
     を満足する、内視鏡用光学系。
  4.  前記第1のレンズ群における前記正レンズあるいは前記平板の物体側の面は、前記メニスカスレンズの像側の面の一部と当接する、請求項1~3のいずれか1項に記載の内視鏡用光学系。
  5.  請求項1~4のいずれか1項に記載の内視鏡用光学系と、
     前記内視鏡用光学系により結像した物体の像を受光するように構成された撮像素子と、を備えることを特徴とする内視鏡。
PCT/JP2019/004186 2018-02-13 2019-02-06 内視鏡用光学系及び内視鏡 WO2019159778A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020500428A JPWO2019159778A1 (ja) 2018-02-13 2019-02-06 内視鏡用光学系及び内視鏡
CN201980009777.5A CN111656244A (zh) 2018-02-13 2019-02-06 内窥镜用光学系统及内窥镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-023348 2018-02-13
JP2018023348 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159778A1 true WO2019159778A1 (ja) 2019-08-22

Family

ID=67619913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004186 WO2019159778A1 (ja) 2018-02-13 2019-02-06 内視鏡用光学系及び内視鏡

Country Status (3)

Country Link
JP (1) JPWO2019159778A1 (ja)
CN (1) CN111656244A (ja)
WO (1) WO2019159778A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251272A (ja) * 2005-03-10 2006-09-21 Olympus Medical Systems Corp 内視鏡撮像ユニット
JP2009151191A (ja) * 2007-12-21 2009-07-09 Olympus Medical Systems Corp 内視鏡用対物レンズ
US20090290236A1 (en) * 2008-05-22 2009-11-26 General Electric Company Endoscope objective lens with large entrance pupil diameter and high numerical aperture
JP2010276923A (ja) * 2009-05-29 2010-12-09 Fujifilm Corp 内視鏡用対物レンズおよび内視鏡
WO2011152099A1 (ja) * 2010-06-01 2011-12-08 Hoya株式会社 内視鏡用対物レンズ、及び内視鏡

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226882B2 (ja) * 2012-01-06 2013-07-03 オリンパスメディカルシステムズ株式会社 内視鏡用対物レンズ
JP6576289B2 (ja) * 2016-04-04 2019-09-18 富士フイルム株式会社 内視鏡用対物光学系および内視鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251272A (ja) * 2005-03-10 2006-09-21 Olympus Medical Systems Corp 内視鏡撮像ユニット
JP2009151191A (ja) * 2007-12-21 2009-07-09 Olympus Medical Systems Corp 内視鏡用対物レンズ
US20090290236A1 (en) * 2008-05-22 2009-11-26 General Electric Company Endoscope objective lens with large entrance pupil diameter and high numerical aperture
JP2010276923A (ja) * 2009-05-29 2010-12-09 Fujifilm Corp 内視鏡用対物レンズおよび内視鏡
WO2011152099A1 (ja) * 2010-06-01 2011-12-08 Hoya株式会社 内視鏡用対物レンズ、及び内視鏡

Also Published As

Publication number Publication date
CN111656244A (zh) 2020-09-11
JPWO2019159778A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP5601924B2 (ja) 内視鏡用変倍光学系、及び内視鏡
JP6636128B2 (ja) 内視鏡用変倍光学系、内視鏡及び内視鏡システム
JP6674450B2 (ja) 内視鏡用変倍光学系、及び内視鏡
JP4265909B2 (ja) 内視鏡用対物レンズ
JP5668059B2 (ja) 内視鏡用対物レンズ、及び内視鏡
JP5653243B2 (ja) 内視鏡用光学系、及び内視鏡
WO2017043351A1 (ja) 内視鏡用変倍光学系、及び内視鏡
JP6046322B1 (ja) 内視鏡用変倍光学系及び内視鏡
JP2876252B2 (ja) 内視鏡対物レンズ
JP2004337346A (ja) 対物レンズ及びそれを用いた内視鏡
JP2011013647A (ja) 内視鏡用対物レンズ、及び内視鏡
WO2016208367A1 (ja) 内視鏡用対物光学系
WO2018235352A1 (ja) 内視鏡用対物光学系
JP4197897B2 (ja) 撮影光学系およびそれを用いた内視鏡
JP2008083316A (ja) 内視鏡対物光学系
CN107703606B (zh) 内窥镜用物镜光学系统以及内窥镜
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡
WO2019159778A1 (ja) 内視鏡用光学系及び内視鏡
JP7220802B2 (ja) 内視鏡用対物光学系及び内視鏡
JP2005148508A (ja) 内視鏡用対物レンズ
JP7302034B2 (ja) 内視鏡用対物光学系及び内視鏡
WO2023100350A1 (ja) 内視鏡対物光学系及びそれを備えた内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754959

Country of ref document: EP

Kind code of ref document: A1