WO2011152099A1 - 内視鏡用対物レンズ、及び内視鏡 - Google Patents

内視鏡用対物レンズ、及び内視鏡 Download PDF

Info

Publication number
WO2011152099A1
WO2011152099A1 PCT/JP2011/055597 JP2011055597W WO2011152099A1 WO 2011152099 A1 WO2011152099 A1 WO 2011152099A1 JP 2011055597 W JP2011055597 W JP 2011055597W WO 2011152099 A1 WO2011152099 A1 WO 2011152099A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
objective lens
endoscope objective
endoscope
group
Prior art date
Application number
PCT/JP2011/055597
Other languages
English (en)
French (fr)
Inventor
幸子 藤井
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US13/696,645 priority Critical patent/US9140888B2/en
Priority to CN201180026600.XA priority patent/CN102918441B/zh
Priority to JP2012518278A priority patent/JP5668059B2/ja
Priority to EP11789510.2A priority patent/EP2579083B1/en
Publication of WO2011152099A1 publication Critical patent/WO2011152099A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV

Definitions

  • the present invention relates to an endoscope for diagnosing the inside of a living body and an endoscope objective lens incorporated in a distal end portion of the endoscope. Specifically, the present invention is small and wide while maintaining good optical performance.
  • the present invention relates to an endoscope objective lens designed for a viewing angle and an endoscope.
  • Endoscopes are generally known as devices for diagnosing the inside of a patient's body cavity and are in practical use. It is desired that the distal end portion of this type of endoscope be designed to be small so that it can be smoothly inserted into a minute gap.
  • the minimum design possible outer shape of the tip is substantially defined by a large-sized mounting component.
  • An example of the large-sized mounting component is an endoscope objective lens. Selecting a small endoscope objective lens as the mounted component is one of effective means for reducing the size of the tip.
  • the endoscope objective lens is designed to have a wide observation field, that is, a wide field angle in order to reduce oversight of a lesioned part by an operator.
  • a wide observation field that is, a wide field angle
  • the field curvature increases in proportion to the square, and there is a problem that the image quality is deteriorated.
  • An endoscope objective lens is required to have a small size and a wide viewing angle while suppressing deterioration of optical performance in order to obtain an image used for accurate diagnosis.
  • Patent Document 1 A specific configuration example of such an endoscope objective lens is described in Japanese Patent No. 3359092 (hereinafter referred to as “Patent Document 1”).
  • the endoscope objective lens described in Patent Document 1 uses a high-refractive index lens to achieve both a reduction in size and a wide viewing angle while suppressing deterioration in optical performance.
  • Conventional endoscope objective lenses such as the endoscope objective lens described in Patent Document 1 generally have a viewing angle of about 140 ° in view of maintenance of optical performance and dimensional constraints. is there. At such a viewing angle, it is necessary to change the direction of the distal end portion by bending the bending portion of the endoscope, for example, when observing the tube wall in the large intestine or the back side of the fold.
  • the lumen diameter is small, the movement of the distal end portion is limited, and thus the distal end portion may not be changed to a desired orientation.
  • the diagnosis is advanced while changing the tip portion in various directions, the operation is complicated and the diagnosis time is prolonged. This is undesirable because it is a burden on both the operator and the patient.
  • Patent Document 1 in order to further widen the viewing angle, it is necessary to design an endoscope objective lens using a lens having a higher refractive index.
  • a lens having a higher refractive index there is a possibility that lateral chromatic aberration will occur greatly and image quality will deteriorate.
  • a color shift appears more prominently in the vicinity of the observation visual field, and a problem is pointed out that optical performance suitable for lumen observation cannot be achieved.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope objective lens that is designed to have a small size and a wide viewing angle while maintaining good optical performance, and an endoscope. Is to provide.
  • An objective lens for an endoscope includes, in order from the object side, a first lens group having a negative power, a diaphragm, and a second lens group having a positive power.
  • the first lens group includes at least a negative front group side lens having a concave surface facing the image side and a positive front group side lens having a convex surface facing the image side in order from the object side.
  • the second lens group includes at least a positive rear group side lens having a convex surface facing the image side and a cemented lens in which a negative lens and a positive lens are cemented in order from the object side.
  • the focal length of the first lens group is defined as f F (unit: mm) in order to achieve both a small size and a wide viewing angle while maintaining good optical performance.
  • the combined focal length of the second lens group and the second lens group is defined as f (unit: mm), and the radius of curvature of the object side surface of the negative front group side lens is defined as R 1 (unit: mm).
  • the upper limit of the condition (1) If the upper limit of the condition (1) is exceeded, the negative power of the first lens group is excessive, so it is difficult to correct various aberrations such as coma and chromatic aberration when trying to design a wide viewing angle.
  • the magnification of the second lens group since the magnification of the second lens group must be set high, the magnification change of the second lens group due to the error in the group interval between the first lens group and the second lens group during assembly is changed. It is difficult to hold down. Because the viewing angle change with magnification change is large, it is difficult to guarantee a viewing angle that satisfies the specifications. If the lower limit of the condition (1) is not reached, it is difficult to design with the lens outer diameter being reduced, and it is not suitable for downsizing.
  • the image plane collapses greatly when the first lens group is assembled eccentrically with respect to the optical axis, and the image quality deteriorates around the observation field. Prone to occur.
  • the image plane tilting ideally remains symmetrically with respect to the optical axis, but remains asymmetrical with respect to the optical axis depending on the amount and direction of eccentricity when the imaging lens is assembled. A phenomenon.
  • the negative front group side lens has a smaller radius of curvature of the object-side surface and increases the amount of protrusion of the surface, so that the cleaning performance is reduced and the lens is easily damaged.
  • the value falls below the lower limit of the condition (2), the resolution around the observation visual field where the tube wall or the like is displayed is lowered, which is not suitable for lumen observation.
  • the negative front group side lens has a large radius of curvature of the object side surface, the angle of incidence on the surface becomes large and light loss is likely to occur.
  • the focal length of the negative front group side lens is defined as f 1 in order to further suppress the deterioration of the optical performance around the observation visual field, which is a concern when the viewing angle is widened. If the following condition (3) ⁇ 1.8 ⁇ f 1 /f ⁇ 1.1 (3) It is good also as composition which satisfies.
  • the power of the negative front group side lens is strong, so it is difficult to correct astigmatism and chromatic aberration well, and the peripheral resolution decreases.
  • the power of the negative front group side lens is weak, so that it is unsuitable for a design that increases the viewing angle while suppressing the effective light beam radius.
  • the focal length of the positive rear group side lens is defined as f 3
  • the objective lens for an endoscope defines the maximum image height on the imaging plane as y in order to effectively avoid a decrease in resolution near the center of the observation field while increasing the resolution around the observation field.
  • the lower intermediate image height than the height y is defined as y i
  • a half field angle corresponding to the maximum image height y is defined as omega m
  • 60 ° ⁇ ⁇ i ⁇ ⁇ m It is good also as composition which satisfies.
  • the object side surface may be a flat surface in order to effectively reduce the resolution around the observation field due to image plane tilting.
  • the incident angle of the light beam incident on the maximum image height y to the object side surface of the negative front lens group lens is ⁇
  • the condition (6) is not satisfied, for example, if the negative front group side lens is formed using a high refractive index glass material, the light amount loss due to surface reflection is large.
  • the endoscope objective lens according to the present invention has the following condition (7) when the maximum image height on the imaging plane is defined as y in order to guarantee the insulation performance of the electronic scope, for example. 2.0 ⁇ R 1 /y ⁇ 5.5 (7) It is good also as composition which satisfies.
  • the edge thickness of the negative front group side lens cannot be sufficiently secured, so it is difficult to secure an edge thickness sufficient to guarantee the insulation performance.
  • the incident angle of the negative front group side lens on the object side surface is large, the amount of light loss due to surface reflection increases. If the lower limit of condition (7) is not reached, the object-side surface of the negative front group side lens increases in the amount of protrusion, so that the cleaning property is lowered and the surface is easily damaged.
  • the maximum image height on the imaging plane is defined as y in order to suppress the amount of light loss due to surface reflection while suppressing the projection amount of the object side surface in the negative front group side lens.
  • the effective luminous flux radius of the negative front lens group at the maximum image height y is defined as D
  • the upper limit of condition (8) is exceeded, the projection amount of the object side surface of the negative front group side lens is suppressed, but the amount of light loss due to surface reflection increases because the incident angle to the surface is large. In addition, it is difficult to reduce the total length (dimension in the optical axis direction) of the endoscope objective lens. If the lower limit of condition (8) is not reached, light loss due to surface reflection is suppressed on the object-side surface of the negative front group side lens, while the amount of protrusion on the surface increases, resulting in deterioration in cleaning properties and damage. It becomes easy.
  • the second lens group may further include a positive lens between the positive rear lens group side lens and the cemented lens in order to more appropriately correct the curvature of field that increases as the viewing angle increases.
  • An endoscope according to an embodiment of the present invention that solves the above-described problems is characterized in that the above-described endoscope objective lens is mounted on the tip.
  • an endoscope objective lens and an endoscope that are designed to have a small size and a wide viewing angle while maintaining good optical performance are provided.
  • FIG. 6 is a diagram showing various aberrations of the endoscope objective lens according to Example 1 of the present invention. It is sectional drawing which shows arrangement
  • FIG. 1 is an external view showing the external appearance of the electronic scope 1 of the present embodiment.
  • the electronic scope 1 has a flexible tube 11 covered with a flexible sheath (outer skin) 11a.
  • a distal end portion 12 Connected to the distal end of the flexible tube 11 is a distal end portion 12 that is sheathed by a rigid resin casing.
  • the bending portion 14 at the connecting portion between the flexible tube 11 and the distal end portion 12 is remotely operated from the hand operating portion 13 connected to the proximal end of the flexible tube 11 (specifically, the rotation of the bending operation knob 13a).
  • the operation is flexible.
  • This bending mechanism is a well-known mechanism incorporated in a general electronic scope, and is configured to bend the bending portion 14 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob 13a. By changing the direction of the distal end portion 12 according to the bending operation by the above operation, the imaging region by the electronic scope 1 moves.
  • An endoscope objective lens 100 (a block surrounded by a broken line in FIG. 1) is incorporated in the resin casing of the distal end portion 12.
  • the endoscope objective lens 100 forms an image of light from the subject on a light receiving surface of a solid-state imaging device (not shown) in order to collect image data of the subject in the imaging region.
  • the electronic scope 1 of the present embodiment is assumed to be an endoscope for observing the digestive system, for example.
  • the electronic scope 1 is required to be small and have a wide viewing angle in order to capture a thin lumen such as the large intestine with a wide field of view.
  • the external dimensions of the distal end portion 12 are reduced by designing the endoscope objective lens 100, which is a large-sized mounting component, to be small.
  • the endoscope objective lens 100 is also designed to have a wide viewing angle while being small in size in order to widen the observation field and reduce oversight of lesions and the like by the operator.
  • the viewing angle of the endoscope objective lens 100 is preferably, for example, 170 ° or more.
  • FIG. 2 is a cross-sectional view showing the arrangement of an endoscope objective lens 100 according to Embodiment 1 (details will be described later) of the present invention and optical components arranged at the subsequent stage.
  • the endoscope objective lens 100 according to the embodiment of the present invention will be described in detail with reference to FIG.
  • the endoscope objective lens 100 has at least a first lens group G1, a diaphragm S, and a second lens group G2 in order from the object (subject) side.
  • Each optical lens constituting the first lens group G1 and the second lens group G2 has a rotationally symmetric shape about the optical axis AX of the endoscope objective lens 100.
  • a color correction filter F for a solid-state image sensor is disposed at the subsequent stage of the second lens group G2.
  • the color correction filter F is bonded to a cover glass CG that protects the solid-state image sensor.
  • the first lens group G1 is a lens group disposed closer to the object side than the stop S.
  • the first lens group G1 includes, in order from the object side, at least a negative lens L1 having a concave surface facing the image side and a positive lens L2 having a convex surface facing the image side.
  • the first lens group G1 has a negative power as a whole in order to widen the viewing angle of the endoscope objective lens 100, that is, to capture a subject over a wide range. If the power of the negative lens L1 is increased to widen the viewing angle, the asymmetry between the first lens group G1 and the second lens group G2 increases, so that it becomes difficult to correct distortion aberration and negative.
  • the positive lens L2 is disposed in front of the aperture stop S and the strong negative power from the negative lens L1 is canceled in the first lens group G1.
  • the positive lens L2 has a flat surface on the object side in order to effectively suppress a decrease in resolution around the observation field due to image plane tilting that easily occurs when the negative lens L1 has a wide viewing angle.
  • the second lens group G2 is a lens group disposed closer to the image side than the stop S.
  • the second lens group G2 includes at least a cemented lens CL in which a positive lens L3, a negative lens L4, and a positive lens L5 are cemented in order from the object side.
  • the second lens group G2 has a positive power as a whole in order to form an image of a wide range of subjects captured by the first lens group G1 on the light receiving surface of the solid-state imaging device.
  • the emission angle becomes large. Therefore, it is difficult to ensure a sufficient exit pupil distance.
  • the positive lens L3 is arranged with the convex surface facing the image side. Further, the chromatic aberration of magnification generated in the first lens group G1 increases as the negative power of the first lens group G1 is increased to increase the viewing angle. In order to efficiently correct the lateral chromatic aberration generated in the first lens group G1, the present embodiment employs a configuration in which the cemented lens CL is disposed in the second lens group G2 that passes through the position where the off-axis ray is the highest. is doing.
  • the object-side surface and the image-side surface of each optical component are referred to as a first surface and a second surface, respectively.
  • the diaphragm S is a plate-like member having a predetermined circular opening centered on the optical axis AX, or a lens surface closest to the diaphragm S of the first lens group G1 (in the configuration example of FIG. 2, a positive lens L2).
  • the light-shielding film is coated on the second surface r4) other than a predetermined circular region centered on the optical axis AX.
  • the thickness of the diaphragm S is very thin compared to the thickness of each optical lens such as the negative lens L1 and the positive lens L2, and can be ignored in calculating the optical performance of the endoscope objective lens 100. Therefore, in the present specification, the description will be made assuming that the thickness of the diaphragm S is 0.
  • the endoscope objective lens 100 defines the focal length of the first lens group G1 as f F (unit: mm), and is the entire system (combination of the first lens group G1 and the second lens group G2).
  • the focal length is defined as f (unit: mm)
  • the radius of curvature of the first surface of the negative lens L1 is defined as R 1 (unit: mm)
  • the radius of curvature of the second surface of the negative lens L1 is defined as R 2 (unit). : Mm)
  • SF (R 1 + R 2 ) / (R 1 ⁇ R 2 ) It is configured to satisfy.
  • Condition (1) defines a ratio of the focal length f F and the focal length f of the entire system of the first lens group G1. If the upper limit of the condition (1) is exceeded, it is suitable for the design of the endoscope objective lens 100 with a small diameter, but the negative power in the first lens group G1 is excessive, so if a wide viewing angle design is attempted, a coma It is difficult to satisfactorily correct various aberrations such as aberration and chromatic aberration. Further, since the magnification of the second lens group G2 must be set high, the second lens group G2 due to an error in the group spacing between the first lens group G1 and the second lens group G2 at the time of assembly. It is difficult to suppress the change in magnification. Because the viewing angle change with magnification change is large, it is difficult to guarantee a viewing angle that satisfies the specifications.
  • the value is below the lower limit of the condition (1), it is advantageous for correction of various aberrations, but it is difficult to design by reducing the outer diameter of the endoscope objective lens 100 and is not suitable for miniaturization.
  • the magnification of the first lens group G1 must be set high, the image surface is greatly tilted when the first lens group G1 is assembled eccentrically with respect to the optical axis AX. Deterioration of image quality is likely to occur.
  • Condition (2) defines the shape of the negative lens L1.
  • the change in the angle of view at the peripheral image height is very gradual (that is, the magnification is very high around the observation field) and the peripheral resolution is high. In this case, it seems preferable because the tube wall displayed around the observation visual field can be observed with high resolution.
  • the existing insertion feeling when the electronic scope is pushed into the lumen (for example, the insertion feeling obtained during insertion of the electronic scope with a viewing angle of 140 °) is lost.
  • the sense of insertion here refers to a sense of grasping how much the surgeon has inserted the electronic scope into the body cavity through an image displayed on the screen.
  • the negative lens L1 has a reduced radius of curvature on the first surface and an increased amount of protrusion on the first surface, so that the cleaning performance is reduced and there is a risk of colliding with other structures and the like when the electronic scope 1 is managed. Get higher.
  • the protrusion amount of the first surface is defined as the distance in the optical axis AX direction between the tangential plane of the first surface on the optical axis AX and the outermost periphery of the effective light beam diameter of the first surface.
  • the lower limit of the condition (2) If the lower limit of the condition (2) is not reached, the change in the angle of view in the peripheral image height is abrupt (that is, the magnification around the observation field is low), and the difference in insertion feeling from the existing electronic scope is small. Becomes easier to handle. However, since the resolution around the observation visual field where the tube wall or the like is displayed is lowered as a price, it is not suitable for lumen observation. Further, the negative lens L1 has a large radius of curvature on the first surface and a small amount of protrusion on the first surface, so that the cleaning property is improved and the risk of breakage is reduced, while the incident angle on the first surface is large. Light loss is likely to occur.
  • various aberrations such as coma and chromatic aberration are favorably corrected even when the endoscope objective lens 100 is designed to have a small viewing angle and a wide viewing angle. Further, high resolution can be maintained around the observation field without impairing the insertion feeling of the existing electronic scope. In addition, viewing angle changes and image plane tilts caused by assembly errors can be effectively suppressed. Further, the light loss can be effectively suppressed while improving the cleaning property and ease of handling of the electronic scope 1. In addition, since an aspheric lens is not essential for correcting various aberrations, the burden of design development is reduced and processing is easy.
  • Endoscope objective lens 100 the focal length of the negative lens L1 when defined as f 1, the following conditions (3) ⁇ 1.8 ⁇ f 1 /f ⁇ 1.1 (3) It is good also as composition which satisfies.
  • Condition (3) defines the ratio of the focal length f 1 of the negative lens L1 and the focal length f of the entire system.
  • the condition (3) is satisfied, the deterioration of the optical performance around the observation visual field, which is a concern when the viewing angle is widened, can be more suitably suppressed.
  • the upper limit of the condition (3) is exceeded, the power of the negative lens L1 is strong, so that it is difficult to correct astigmatism and chromatic aberration well, and the peripheral resolution is lowered.
  • the power of the negative lens L1 is weak, so that it is not suitable for a design that increases the viewing angle while suppressing the effective light beam radius.
  • Endoscope objective lens 100 when the focal length of the positive lens L3 is defined as f 3, the following condition (4) 2.0 ⁇ f 3 /f ⁇ 4.0 (4) It is good also as composition which satisfies.
  • Condition (4) defines a ratio of the focal length f 3 of the positive lens L3 and the focal length f of the entire system.
  • the condition (4) it is possible to widen the viewing angle while keeping the curvature of field in a state suitable for observing a planned subject (here, a colon wall, etc.).
  • the upper limit of the condition (4) since the positive power of the endoscope objective lens 100 as a whole is strong, the Petzval sum becomes large, and the image plane tends to tilt downward when the lumen diameter of the observation target is thin. Therefore, the resolution around the observation visual field where the tube wall and the like are displayed is lowered, and it is difficult to observe the tube wall and the like with a clear image.
  • the curvature of the first surface of the positive lens L3 becomes small, coma increases and it is difficult to correct it.
  • the lower limit of the condition (4) since the positive power of the endoscope objective lens 100 as a whole is weak, the Petzval sum becomes small, and the image plane tends to be excessively inclined when the luminal diameter of the observation target is large. . Therefore, the resolution around the observation visual field where the tube wall and the like are displayed is lowered, and it is difficult to observe the tube wall and the like with a clear image.
  • the curvature radius of the cemented surface must be set small in order to increase the power of the negative lens L4 constituting the cemented lens CL.
  • the range of the diameter of the lumen to be observed in the present embodiment is defined as ⁇ as the lumen diameter and y as the maximum image height on the imaging plane (light-receiving surface of the solid-state imaging device). As shown. 10y ⁇ ⁇ ⁇ 20y
  • the endoscope objective lens 100 defines an intermediate image height lower than the maximum image height y as y i , defines a half angle of view corresponding to the maximum image height y as ⁇ m, and corresponds to the intermediate image height y i .
  • the half angle of view is defined as ⁇ i
  • the following condition (5) 1.3 ⁇ sin ( ⁇ i /1.3) ⁇ y i /f ⁇ 3.0 ⁇ sin( ⁇ i /3.0) (5)
  • 60 ° ⁇ ⁇ i ⁇ ⁇ m It may be configured to satisfy
  • the half angle of view that prescribes the condition (5) is defined as an inclination angle formed by an incident light ray incident on the object-side surface (first surface of the negative lens L1) of the endoscope objective lens 100 and the optical axis AX. Is done.
  • FIG. 21 is a diagram illustrating the relationship between the image height and the angle of view that define the condition (5).
  • the most object side surface (first surface of the negative lens L1) and the most image side surface (second surface of the positive lens L5 constituting the cemented lens CL) of the endoscope objective lens 100 are respectively shown. These are referred to as the first side and the final side.
  • the visual field range from the half angle of view ⁇ i to ⁇ m is a gaze region in which the tube wall and the like are reflected in the lumen observation.
  • this visual field range is referred to as “tube wall visual field range”.
  • a range on the image plane corresponding to the tube wall visual field range (from the intermediate image height y i to the outermost periphery of the effective pixel region) is referred to as a “tube wall imaging range”.
  • the upper limit of the condition (5) is exceeded, since the tube wall imaging range is wide, the subject in the tube wall visual field range can be imaged with high resolution.
  • a reduction in resolution in the vicinity of the visual field center inside the tube wall visual field range is unavoidable. For example, when a lesion is found and brought to the center of the visual field, the lesion cannot be imaged with high resolution.
  • the tube wall imaging range is narrow, so that the subject in the tube wall visual field range cannot be imaged with high resolution, and is not suitable for lumen observation.
  • the condition (5) is satisfied, a subject in the tube wall visual field range can be imaged with high resolution, and a decrease in resolution near the center of the visual field can be effectively avoided.
  • the endoscope objective lens 100 satisfies the following condition (6). ⁇ ⁇ 75 ° (6) It may be configured to satisfy.
  • the incident angle ⁇ that defines the condition (6) is defined as the incident angle of the light incident on the maximum image height y to the first surface of the negative lens L1.
  • the incident angle is represented by an angle formed by the incident light beam and the normal line of the tangent plane at the intersection of the incident light beam and the incident surface.
  • condition (6) When the condition (6) is satisfied, light loss due to surface reflection is effectively suppressed.
  • condition (6) when a high refractive index glass material having a refractive index exceeding 1.8, for example, is used for the negative lens L1, a surface reflection exceeding 30% occurs and the light amount loss is remarkable. That is, it is not desirable because the room for selecting the lens material is narrowed.
  • the endoscope objective lens 100 satisfies the following condition (7). 2.0 ⁇ R 1 /y ⁇ 5.5 (7) It is good also as composition which satisfies.
  • the condition (7) When the condition (7) is satisfied, it is possible to effectively suppress the light amount loss due to the surface reflection on the first surface while sufficiently securing the edge thickness in the negative lens L1.
  • the inside and the outside of the distal end portion 12 are insulated through a thick material having a low dielectric constant.
  • the upper limit of the condition (7) it is difficult to ensure an edge thickness sufficient to guarantee sufficient insulation performance.
  • the incident angle with respect to the 1st surface of the negative lens L1 is large, the light quantity loss amount by surface reflection increases.
  • the amount of protrusion of the first surface of the negative lens L1 increases, so that the cleaning performance is lowered and the risk of colliding with other structures or the like when managing the electronic scope 1 is increased.
  • the radius of curvature of the second surface of the negative lens L1 must be set small, resulting in poor workability.
  • the endoscope objective lens 100 satisfies the following condition (8). 2.0 ⁇ D / y ⁇ 3.0 (8) It is good also as composition which satisfies.
  • the condition (8) When the condition (8) is satisfied, it is possible to suppress the light amount loss due to the surface reflection while suppressing the protrusion amount of the first surface in the negative lens L1.
  • the upper limit of the condition (8) When the upper limit of the condition (8) is exceeded, the amount of protrusion of the first surface of the negative lens L1 is suppressed, but the amount of light loss due to surface reflection increases because the angle of incidence on the first surface is large. Further, it is difficult to reduce the overall length (dimension in the optical axis AX direction) of the endoscope objective lens 100, and it is not suitable for downsizing the distal end portion 12.
  • the endoscope objective lens 100 of each numerical example 1 to 6 is disposed at the distal end portion 12 of the electronic scope 1 shown in FIG.
  • Table 1 shows specific numerical configurations (design values) of the endoscope objective lens 100 (and optical components arranged in the subsequent stage) according to the first embodiment.
  • the surface number n shown in Table 1 corresponds to the surface code rn in FIG. 2 except for the surface number 5 corresponding to the stop S.
  • R unit: mm
  • D unit: mm
  • N is the d line ( The refractive index at a wavelength of 588 nm)
  • ⁇ d the Abbe number of the d line.
  • Table 2 shows the specifications (F number, focal length (unit: mm), optical magnification, half angle of view (unit: deg), image height (unit: mm)) of the objective lens 100 for endoscope. .
  • FIGS. 3A to 3D are graphs showing various aberrations of the endoscope objective lens 100 according to the first embodiment.
  • FIG. 3A shows spherical aberration and axial chromatic aberration at d-line, g-line (436 nm), and C-line (656 nm).
  • FIG. 3B shows chromatic aberration of magnification at d-line, g-line, and C-line.
  • 3 (a) and 3 (b) the solid line indicates the aberration at the d line
  • the dotted line indicates the aberration at the g line
  • the alternate long and short dash line indicates the aberration at the C line.
  • FIG. 3C shows astigmatism.
  • FIG. 3A shows spherical aberration and axial chromatic aberration at d-line, g-line (436 nm), and C-line (656 nm).
  • FIG. 3B shows chromatic aberration of magnification at d-line, g-line,
  • FIG. 3C shows distortion aberration.
  • 3A to 3C the vertical axis represents the image height, and the horizontal axis represents the aberration amount.
  • the vertical axis represents the image height, and the horizontal axis represents the distortion.
  • Tables 1 and 2 and FIGS. 3 (a) to 3 (d) the objective lens 100 for an endoscope according to the first embodiment is small and has a wide viewing angle, and various aberrations are favorably corrected. I understand that In addition, the description about each table
  • FIG. 4 is a cross-sectional view showing the arrangement of optical components including the endoscope objective lens 100 according to the second embodiment.
  • the endoscope objective lens 100 according to the second embodiment has the same configuration as the endoscope objective lens 100 according to the first embodiment.
  • 5A to 5D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective lens 100 according to the second embodiment.
  • Table 3 shows the specific numerical configuration of each optical component including the endoscope objective lens 100 of the second embodiment
  • Table 4 shows the specifications of the endoscope objective lens 100 of the second embodiment.
  • the objective lens 100 for endoscope according to the second embodiment has a small and wide viewing angle, and various aberrations are corrected well. I understand that
  • FIG. 6 is a sectional view showing the arrangement of optical components including the endoscope objective lens 100 according to the third embodiment.
  • the endoscope objective lens 100 of Example 3 has a half angle of view exceeding 95 °. Therefore, it is difficult to correct the curvature of field well with the same lens arrangement as in the first or second embodiment. Therefore, as shown in FIG. 6, the endoscope objective lens 100 according to the third embodiment has a positive curvature of field by disposing the positive lens L6 between the positive lens L3 and the cemented lens CL. It is corrected. That is, in the third embodiment, the second lens group G2 has a three-lens configuration including a positive lens L3, a positive lens L6, and a cemented lens CL.
  • the first lens group G1 has the same configuration as that of the first embodiment.
  • 7A to 7D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective lens 100 according to the third embodiment.
  • Table 5 shows specific numerical configurations of optical components including the endoscope objective lens 100 of the third embodiment
  • Table 6 shows specifications of the endoscope objective lens 100 of the third embodiment.
  • the objective lens 100 for an endoscope according to the third embodiment has a small and wide viewing angle, and various aberrations are well corrected. I understand that
  • FIG. 8 is a cross-sectional view showing the arrangement of optical components including the endoscope objective lens 100 according to the fourth embodiment.
  • the endoscope objective lens 100 according to the fourth embodiment has the same configuration as the endoscope objective lens 100 according to the first embodiment.
  • FIGS. 9A to 9D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective lens 100 according to the fourth embodiment.
  • Table 7 shows the specific numerical configuration of each optical component including the endoscope objective lens 100 of the fourth embodiment
  • Table 8 shows the specifications of the endoscope objective lens 100 of the fourth embodiment.
  • the objective lens 100 for an endoscope according to the fourth embodiment has a small and wide viewing angle, and various aberrations are corrected well. I understand that
  • FIG. 10 is a cross-sectional view showing the arrangement of optical components including the endoscope objective lens 100 according to the fifth embodiment.
  • the endoscope objective lens 100 according to the fifth embodiment has the same configuration as the endoscope objective lens 100 according to the first embodiment.
  • 11A to 11D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective lens 100 according to the fifth embodiment.
  • Table 9 shows specific numerical configurations of the optical components including the endoscope objective lens 100 according to the fifth embodiment
  • Table 10 shows specifications of the endoscope objective lens 100 according to the fifth embodiment. .
  • the objective lens 100 for endoscope according to the fifth example has a small and wide viewing angle, and various aberrations are corrected well. I understand that
  • FIG. 12 is a cross-sectional view showing the arrangement of optical components including the endoscope objective lens 100 according to the sixth embodiment.
  • the endoscope objective lens 100 according to the sixth embodiment has the same number of configurations as the endoscope objective lens 100 according to the first embodiment, as shown in FIG.
  • FIGS. 13A to 13D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective lens 100 according to the sixth embodiment.
  • Table 11 shows a specific numerical configuration of each optical component including the endoscope objective lens 100 according to the sixth embodiment
  • Table 12 shows specifications of the endoscope objective lens 100 according to the sixth embodiment. .
  • the objective lens 100 for an endoscope according to the sixth embodiment has a small and wide viewing angle, and various aberrations are well corrected. I understand that
  • Table 13 is a list of values calculated when the conditions excluding the condition (5) are applied to the seven examples obtained by adding the comparative example 1 to the first to sixth examples. Regarding the condition (5), the relationship between the image height and the angle of view in each example is shown in FIGS. Comparative Example 1 is Example 1 of Patent Document 1.
  • the endoscope objective lens 100 according to the first to sixth embodiments can satisfy the conditions (1) and (2) at the same time as shown in Table 13 and can be used in the diagrams or tables presented in the description of the respective embodiments. As shown, various aberrations are satisfactorily corrected while being small and having a wide viewing angle. In contrast, the endoscope objective lens of Comparative Example 1 does not satisfy the condition (2) as shown in Table 13. Therefore, when it is designed to maintain the optical performance while suppressing the outer dimensions in the comparative example 1, it is difficult to widen the viewing angle. According to another aspect, in order to widen the viewing angle in Comparative Example 1 (for example, to obtain a viewing angle exceeding 140 °), at least one of optical performance and miniaturization must be sacrificed. For example, when the optical performance is sacrificed, a significant decrease in resolution is inevitable around the observation visual field where the tube wall and the like are displayed.
  • the endoscope objective lens 100 of Examples 1 to 6 further satisfies the conditions (3), (4), and (6) to (8) as shown in Table 13. Therefore, in Examples 1 to 6, further effects are achieved by satisfying each condition.
  • the endoscope objective lens of Comparative Example 1 does not satisfy the conditions (3), (7), and (8) as shown in Table 13. In Comparative Example 1, for example, since the upper limit of the condition (3) is exceeded, it is difficult to satisfactorily correct astigmatism and chromatic aberration, and the resolution can be further lowered around the observation field.
  • FIGS. 14 to 19 are diagrams showing the relationship between the image height and the angle of view that define the condition (5) in Examples 1 to 6, respectively.
  • FIG. 20 is a diagram illustrating the relationship between the image height and the angle of view that define the condition (5) in the first comparative example. 14 to 20, the vertical axis represents the image height (unit: mm), and the horizontal axis represents the field angle (unit: deg). In each figure, a solid line (thick line) indicates the value of condition (5) in each example, and two upper and lower solid lines (thin lines) indicate the upper and lower limits of condition (5).
  • the endoscope objective lens 100 of Examples 1 to 5 satisfies the condition (5) within an angle of view that satisfies the specifications, as shown in FIGS. Therefore, a subject in the tube wall visual field range can be imaged with high resolution, and a decrease in resolution near the center of the visual field can be effectively avoided.
  • the endoscope objective lens 100 according to the sixth embodiment slightly exceeds the upper limit of the condition (5) within the angle of view that satisfies the specifications, so that the resolution near the center of the field of view decreases.
  • the endoscope objective lens 100 of Comparative Example 1 falls below the lower limit of the condition (5) within the angle of view satisfying the specifications, and thus captures the subject in the tube wall visual field range with high resolution. It cannot be seen that it is not suitable for luminal observation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 物体側から順に、負のパワーを持つ第一のレンズ群、絞り、正のパワーを持つ第二のレンズ群を有し、第一のレンズ群を、物体側から順に、少なくとも、像側に凹面を向けた負の前群側レンズ、像側に凸面を向けた正の前群側レンズで構成し、第二のレンズ群を、物体側から順に、少なくとも、像側に凸面を向けた正の後群側レンズ、負のレンズと正のレンズとを接合した接合レンズで構成した内視鏡用対物レンズを、所定の条件を満たすように構成した。

Description

内視鏡用対物レンズ、及び内視鏡
 本発明は、生体内を診断するための内視鏡、及び該内視鏡の先端部に組み込まれる内視鏡用対物レンズに関連し、詳しくは、光学性能を良好に維持しつつ小型かつ広視野角に設計された内視鏡用対物レンズ、及び内視鏡に関する。
 患者の体腔内を診断するための機器として、内視鏡(ファイバスコープ又は電子スコープ)が一般に知られ、実用に供されている。この種の内視鏡の先端部は、微小な隙間にも円滑に挿入できるように小型に設計されることが望まれる。先端部の設計上可能な最小外形は、寸法の大きい搭載部品によって実質的に規定される。寸法の大きい搭載部品には、例えば内視鏡用対物レンズがある。搭載部品として小型な内視鏡用対物レンズを選択することは、先端部を小型化する有効な手段の一つである。
 内視鏡用対物レンズには、術者による病変部等の見落としを減らすため、観察視野を広範にする、つまり広視野角に設計することも望まれる。しかし、光学レンズにおいては、一般に、視野角を広くするほど像面湾曲が二乗に比例して大きくなり、画質を劣化させる問題がある。内視鏡用対物レンズには、正確な診断に供される画像を得るため、光学性能の劣化をおさえつつ小型かつ広視野角であることが要求される。このような内視鏡用対物レンズの具体的構成例が特許第3359092号公報(以下、「特許文献1」と記す。)に記載されている。特許文献1に記載された内視鏡用対物レンズは、高屈折率レンズを用いることにより、光学性能の劣化をおさえつつ小型化と広視野角化を両立させている。
 特許文献1に記載された内視鏡用対物レンズをはじめとする従来の内視鏡用対物レンズでは、光学性能の維持及び寸法上の制約を鑑みると、視野角として140°程度が一般的である。この程度の視野角では、例えば大腸内の管壁やヒダの裏側等を観察するときに内視鏡の湾曲部を湾曲させて先端部の向きを変える必要がある。しかし、例えば管腔径が細い場合等は先端部の動きが制限されるため、先端部を所望の向きに変えられないことがある。また、先端部を様々な向きに変えながら診断を進める場合、操作が煩雑であると共に診断時間が長期化する。これは、術者と患者の両者にとって負担であるため望ましくない。
 そこで、内視鏡用対物レンズを更に広視野角化して観察視野を広範にすることが望まれる。特許文献1において視野角を更に広げるには、屈折率の更に高いレンズを用いて内視鏡用対物レンズを設計する必要がある。しかし、屈折率の更に高いレンズを選択して広視野角化を試みた場合、倍率色収差が大きく発生して画質劣化が生じる虞がある。特に、観察視野の周辺ほど色ずれが顕著に現れて、管腔観察に適した光学性能が達成されないという問題が指摘される。
 本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、光学性能を良好に維持しつつ小型かつ広視野角に設計された内視鏡用対物レンズ、及び内視鏡を提供することである。
 上記の課題を解決する本発明の一形態に係る内視鏡用対物レンズは、物体側から順に、負のパワーを持つ第一のレンズ群、絞り、正のパワーを持つ第二のレンズ群を有する。このうちの第一のレンズ群は、物体側から順に、像側に凹面を向けた負の前群側レンズ、像側に凸面を向けた正の前群側レンズを少なくとも有する。また、第二のレンズ群は、物体側から順に、像側に凸面を向けた正の後群側レンズ、負のレンズと正のレンズとを接合した接合レンズを少なくとも有する。かかる内視鏡用対物レンズは、光学性能を良好に維持しつつ小型かつ広視野角を両立するため、第一のレンズ群の焦点距離をf(単位:mm)と定義し、該第一のレンズ群と第二のレンズ群との合成焦点距離をf(単位:mm)と定義し、負の前群側レンズの物体側の面の曲率半径をR(単位:mm)と定義し、該負の前群側レンズの像側の面の曲率半径をR(単位:mm)と定義した場合に、次の条件(1)、(2)
-3.5≦f/f≦-1.5・・・(1)
1.3≦SF≦1.6・・・(2)
但し、SF=(R+R)/(R-R
を満たすように構成されている。
 条件(1)の上限を超える場合、第一のレンズ群の負のパワーが過大であるため、広視野角設計を試みるとコマ収差や色収差等の諸収差を良好に補正するのが難しい。また、第二のレンズ群の倍率を高く設定せざるを得ないため、組立時の第一のレンズ群と第二のレンズ群との群間隔の誤差に伴う第二のレンズ群の倍率変化をおさえることが難しい。倍率変化に伴う視野角変化が大きいため、仕様を満足する視野角の保証が難しい。条件(1)の下限を下回る場合は、レンズ外径をおさえて設計することが難しく、小型化に不向きである。また、第一のレンズ群の倍率を高く設定せざるを得ないため、第一のレンズ群が光軸に対して偏心して組み付けられた際の像面倒れが大きく、観察視野周辺で画質劣化が生じやすい。なお、像面倒れは、理想的には光軸を基準に対称に残存する像面湾曲が、結像レンズの組立時の偏心量及び偏心方向に依存して光軸を基準に非対称に残存する現象をいう。
 条件(2)の上限を超える場合、電子スコープを管腔内に押し進める際の既存の挿入感(詳しくは後述する)が失われる。また、負の前群側レンズは、物体側の面の曲率半径が小さくなり当該面の突出量が増えるため、洗浄性が低下すると共に損傷しやすくなる。条件(2)の下限を下回る場合は、管壁等が表示される観察視野周辺の解像度が低下するため、管腔観察に適さない。また、負の前群側レンズは、物体側の面の曲率半径が大きいため、当該面への入射角が大きくなり光量損失が生じやすい。
 本発明に係る内視鏡用対物レンズは、視野角を広げた場合に懸念される観察視野周辺の光学性能の劣化がより一層おさえるべく、負の前群側レンズの焦点距離をfと定義した場合に、次の条件(3)
-1.8≦f/f≦-1.1・・・(3)
を満たす構成としてもよい。
 条件(3)の上限を超える場合、負の前群側レンズのパワーが強いため、非点収差と色収差を良好に補正することが難しく周辺解像度が低下する。条件(3)の下限を下回る場合は、負の前群側レンズのパワーが弱いため、有効光束半径をおさえつつ視野角を広げるといった設計に不向きである。
 本発明に係る内視鏡用対物レンズは、像面湾曲を管腔観察に適した状態に保ちつつ視野角を広げるため、正の後群側レンズの焦点距離をfと定義した場合に、次の条件(4)
2.0≦f/f≦4.0・・・(4)
を満たす構成としてもよい。
 条件(4)の上限を超える場合、内視鏡用対物レンズ全体として正のパワーが強いため、ペッツバール和が大きくなり、観察対象の管腔径が細いときに像面がアンダーに傾きやすい。条件(4)の下限を下回る場合は、内視鏡用対物レンズ全体として正のパワーが弱いため、ペッツバール和が小さくなり、観察対象の管腔径が太いときに像面がオーバーに傾きやすい。何れの場合も、管壁等が表示される観察視野周辺の解像度が低下して、管壁等を鮮明な映像で観察するのが難しい。
 本発明に係る内視鏡用対物レンズは、観察視野周辺での解像度を高めつつ観察視野中心付近の解像度の低下を有効に避けるため、結像面における最大像高をyと定義し、最大像高yよりも低い中間像高をyと定義し、最大像高yに対応する半画角をωと定義し、中間像高yに対応する半画角をωと定義した場合に、次の条件(5)
1.3×sin(ω/1.3)≦y/f≦3.0×sin(ω/3.0)・・・(5)
但し、60°≦ω≦ω
を満たす構成としてもよい。
 条件(5)の上限を超える場合、観察視野中心付近における解像度の低下が避けられない。条件(5)の下限を下回る場合は、観察視野周辺における解像度の低下が避けられない。
 正の前群側レンズは、像面倒れによる観察視野周辺の解像度の低下を有効におさえるべく、物体側の面を平面としてもよい。
 本発明に係る内視鏡用対物レンズは、表面反射による光量損失を有効におさえるべく、最大像高yに入射する光線の、負の前群側レンズの物体側の面への入射角をθと定義した場合に、次の条件(6)
θ≦75°・・・(6)
を満たす構成としてもよい。
 条件(6)を外れる場合に例えば負の前群側レンズを高屈折率硝材を用いて形成すると、表面反射による光量損失が大きい。
 本発明に係る内視鏡用対物レンズは、例えば電子スコープの絶縁性能を保証するため、結像面における最大像高をyと定義した場合に、次の条件(7)
2.0≦R/y≦5.5・・・(7)
を満たす構成としてもよい。
 条件(7)の上限を超える場合、負の前群側レンズのコバ厚を十分に確保することができないため、絶縁性能を保証するに足るコバ厚を確保するのが難しい。また、負の前群側レンズの物体側の面への入射角が大きいため、表面反射による光量損失量が増加する。条件(7)の下限を下回る場合、負の前群側レンズの物体側の面は突出量が増えるため、洗浄性が低下すると共に損傷しやすくなる。
 本発明に係る内視鏡用対物レンズは、負の前群側レンズにおいて物体側の面の突出量をおさえつつ表面反射による光量損失もおさえるべく、結像面における最大像高をyと定義し、最大像高yにおける負の前群側レンズの有効光束半径をDと定義した場合に、次の条件(8)
2.0≦D/y≦3.0・・・(8)
を満たす構成としてもよい。
 条件(8)の上限を超える場合、負の前群側レンズの物体側の面の突出量がおさえられる一方、当該面への入射角が大きいため、表面反射による光量損失量が増加する。また、内視鏡用対物レンズの全長(光軸方向の寸法)をおさえることが難しい。条件(8)の下限を下回る場合は、負の前群側レンズの物体側の面において表面反射による光量損失がおさえられる一方、当該面の突出量が増えるため、洗浄性が低下すると共に損傷しやすくなる。
 第二のレンズ群は、広視野角化に伴って増加する像面湾曲をより一層良好に補正するため、正の後群側レンズと接合レンズとの間に正レンズを更に有する構成としてもよい。
 上記の課題を解決する本発明の一形態に係る内視鏡は、上記内視鏡用対物レンズを先端に搭載したことを特徴とする。
 本発明によれば、光学性能を良好に維持しつつ小型かつ広視野角に設計された内視鏡用対物レンズ、及び内視鏡が提供される。
本発明の実施形態の電子スコープの外観を示す外観図である。 本発明の実施形態(実施例1)の内視鏡用対物レンズ及びその後段に配置された光学部品の配置を示す断面図である。 本発明の実施例1の内視鏡用対物レンズの各種収差図である。 本発明の実施例2の内視鏡用対物レンズ及びその後段に配置された光学部品の配置を示す断面図である。 本発明の実施例2の内視鏡用対物レンズの各種収差図である。 本発明の実施例3の内視鏡用対物レンズ及びその後段に配置された光学部品の配置を示す断面図である。 本発明の実施例3の内視鏡用対物レンズの各種収差図である。 本発明の実施例4の内視鏡用対物レンズ及びその後段に配置された光学部品の配置を示す断面図である。 本発明の実施例4の内視鏡用対物レンズの各種収差図である。 本発明の実施例5の内視鏡用対物レンズ及びその後段に配置された光学部品の配置を示す断面図である。 本発明の実施例5の内視鏡用対物レンズの各種収差図である。 本発明の実施例6の内視鏡用対物レンズ及びその後段に配置された光学部品の配置を示す断面図である。 本発明の実施例6の内視鏡用対物レンズの各種収差図である。 本発明の実施例1において条件(5)を規定する像高と画角との関係を示す図である。 本発明の実施例2において条件(5)を規定する像高と画角との関係を示す図である。 本発明の実施例3において条件(5)を規定する像高と画角との関係を示す図である。 本発明の実施例4において条件(5)を規定する像高と画角との関係を示す図である。 本発明の実施例5において条件(5)を規定する像高と画角との関係を示す図である。 本発明の実施例6において条件(5)を規定する像高と画角との関係を示す図である。 本発明の比較例1において条件(5)を規定する像高と画角との関係を示す図である。 本発明の実施形態において条件(5)を規定する像高と画角との関係を示す図である。
 以下、図面を参照して、本発明の実施形態の電子スコープ、及び該電子スコープに組み込まれた内視鏡用対物レンズについて説明する。
 図1は、本実施形態の電子スコープ1の外観を示す外観図である。図1に示されるように、電子スコープ1は、可撓性を有するシース(外皮)11aによって外装された可撓管11を有している。可撓管11の先端には、硬質性を有する樹脂製筐体によって外装された先端部12が連結されている。可撓管11と先端部12との連結箇所にある湾曲部14は、可撓管11の基端に連結された手元操作部13からの遠隔操作(具体的には、湾曲操作ノブ13aの回転操作)によって屈曲自在に構成されている。この屈曲機構は、一般的な電子スコープに組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を屈曲させるように構成されている。先端部12の方向が上記操作による屈曲動作に応じて変わることにより、電子スコープ1による撮影領域が移動する。
 先端部12の樹脂製筐体の内部には、内視鏡用対物レンズ100(図1中破線で囲んだブロック)が組み込まれている。内視鏡用対物レンズ100は、撮影領域中の被写体の画像データを採取するため、被写体からの光を固体撮像素子(図示省略)の受光面上に結像させる。
 本実施形態の電子スコープ1は、例えば消化器系を観察するための内視鏡を想定する。電子スコープ1には、大腸等の細い管腔を広範な視野で撮影するため、小型かつ広視野角が要求される。そこで、電子スコープ1では、寸法の大きい搭載部品である内視鏡用対物レンズ100を小型に設計することにより、先端部12の外形寸法がおさえられている。内視鏡用対物レンズ100はまた、観察視野を広範にして術者による病変部等の見落としを減らすため、小型でありつつも広視野角に設計されている。内視鏡用対物レンズ100の視野角は、例えば170°以上が望ましい。
 図2は、本発明の実施例1(詳しくは後述)の内視鏡用対物レンズ100及びその後段に配置された光学部品の配置を示す断面図である。次においては、図2を参照しつつ、本発明の実施形態の内視鏡用対物レンズ100について詳細に説明する。
 内視鏡用対物レンズ100は、図2に示されるように、物体(被写体)側から順に、第一のレンズ群G1、絞りS、第二のレンズ群G2を少なくとも有している。第一のレンズ群G1、第二のレンズ群G2を構成する各光学レンズは、内視鏡用対物レンズ100の光軸AXを中心として回転対称な形状を有している。第二のレンズ群G2の後段には、固体撮像素子用の色補正フィルタFが配置されている。色補正フィルタFは、固体撮像素子を保護するカバーガラスCGに接着されている。
 上記において「少なくとも有している」としたのは、本発明の技術的思想の範囲において、別の光学素子を追加する構成例もあり得るからである。例えば、本発明に係る内視鏡用対物レンズに対して光学性能に実質的に寄与しない平行平板を追加する構成例や、本発明に係る内視鏡用対物レンズの構成及び効果を維持しつつ別の光学素子を付加する構成例が想定される。第一のレンズ群G1、第二のレンズ群G2の説明においても、同様の理由で「少なくとも有している」と表現している。
 第一のレンズ群G1は、絞りSよりも物体側に配置されたレンズ群である。第一のレンズ群G1は、物体側から順に、像側に凹面を向けた負レンズL1、像側に凸面を向けた正レンズL2を少なくとも有している。第一のレンズ群G1は、内視鏡用対物レンズ100の広視野角化、つまり広範囲に亘る被写体を取り込むため、全体として負のパワーを有している。なお、広視野角化のために負レンズL1のパワーを強くすると、第一のレンズ群G1と第二のレンズ群G2との非対称性が大きくなるため歪曲収差の補正が難しくなると共に、負の屈折面の曲率が大きくなるためコマ収差や色収差等の諸収差が大きくなる。そこで、本実施形態では、絞りSの手前に正レンズL2を配置して負レンズL1による強い負のパワーを第一のレンズ群G1内で打ち消す構成を採用している。
 また、正レンズL2は、負レンズL1を広視野角化することで生じやすくなる像面倒れによる観察視野周辺の解像度の低下を有効におさえるべく、物体側の面が平面であることが望ましい。
 第二のレンズ群G2は、絞りSよりも像側に配置されたレンズ群である。第二のレンズ群G2は、物体側から順に、正レンズL3、負レンズL4と正レンズL5とを接合した接合レンズCLを少なくとも有している。第二のレンズ群G2は、第一のレンズ群G1によって取り込まれた広範囲に亘る被写体を固体撮像素子の受光面上で結像させるため、全体として正のパワーを有している。なお、正のパワーを持つ第二のレンズ群G2において、正レンズL3に、像側に凹面を向けたレンズを採用した場合、射出角度が大きくなってしまう。そのため、十分な射出瞳距離を確保することが難しい。かかる問題を避けるべく、本実施形態では、正レンズL3は、像側に凸面を向けて配置されている。また、第一のレンズ群G1の負のパワーを広視野角化のために強めるほど第一のレンズ群G1内で発生する倍率色収差が大きくなる。第一のレンズ群G1内で発生した倍率色収差を効率良く補正するため、本実施形態では、軸外光線が最も高い位置を通る第二のレンズ群G2内に接合レンズCLを配置する構成を採用している。
 以下において、説明の便宜上、各光学部品の物体側の面、像側の面をそれぞれ、第一面、第二面と記す。また、絞りSは、光軸AXを中心とした所定の円形開口を有する板状部材、又は第一のレンズ群G1の絞りSに最も近いレンズ面(図2の構成例においては、正レンズL2の第二面r4)であって光軸AXを中心とした所定の円形領域以外にコーティングされた遮光膜である。絞りSの厚みは、負レンズL1や正レンズL2等の各光学レンズの厚みと比べて非常に薄く、内視鏡用対物レンズ100の光学性能を計算する上で無視しても差し支えない。そのため、本明細書においては、絞りSの厚みを0とみなして説明を進める。
 内視鏡用対物レンズ100は、第一のレンズ群G1の焦点距離をf(単位:mm)と定義し、全系の(第一のレンズ群G1と第二のレンズ群G2の合成)焦点距離をf(単位:mm)と定義し、負レンズL1の第一面の曲率半径をR(単位:mm)と定義し、負レンズL1の第二面の曲率半径をR(単位:mm)と定義した場合に、次の条件(1)、(2)
-3.5≦f/f≦-1.5・・・(1)
1.3≦SF≦1.6・・・(2)
但し、SF=(R+R)/(R-R
を満たすように構成されている。
 条件(1)は、第一のレンズ群G1の焦点距離fと全系の焦点距離fとの比を規定している。条件(1)の上限を超える場合、内視鏡用対物レンズ100の小径化設計に適するものの、第一のレンズ群G1内の負のパワーが過大であるため、広視野角設計を試みるとコマ収差や色収差等の諸収差を良好に補正するのが難しい。また、第二のレンズ群G2の倍率を高く設定せざるを得ないため、組立時の第一のレンズ群G1と第二のレンズ群G2との群間隔の誤差に伴う第二のレンズ群G2の倍率変化をおさえることが難しい。倍率変化に伴う視野角変化が大きいため、仕様を満足する視野角の保証が難しい。
 条件(1)の下限を下回る場合、諸収差の補正には有利であるものの、内視鏡用対物レンズ100の外径をおさえて設計することが難しく、小型化に不向きである。また、第一のレンズ群G1の倍率を高く設定せざるを得ないため、第一のレンズ群G1が光軸AXに対して偏心して組み付けられた際の像面倒れが大きく、観察視野周辺で画質劣化が生じやすい。
 条件(2)は、負レンズL1の形状を規定している。条件(2)の上限を超える場合、周辺像高における画角変化が非常に緩やかで(すなわち、観察視野周辺で倍率が非常に高くなり)周辺解像度が高くなる。この場合、観察視野周辺に表示される管壁等を高解像度で観察できるため好適と思われる。しかし、その代償として、電子スコープを管腔内に押し進める際の既存の挿入感(例えば視野角140°の電子スコープを挿入中に得られていた挿入感)が失われる。ここでいう挿入感とは、術者が電子スコープを体腔内にどの程度挿入したかを画面に表示される映像を通じて把握する感覚をいう。条件(2)の上限を超える場合は、電子スコープ1を管腔内に押し進める際に観察視野周辺に表示される管壁等の流れが速すぎるため、既存の電子スコープの操作に慣れている術者にとっては電子スコープ1の挿入量を把握するのが難しい。また、負レンズL1は、第一面の曲率半径が小さくなり第一面の突出量が増えるため、洗浄性が低下すると共に電子スコープ1管理時に他の構造物等に衝突して破損するリスクが高くなる。なお、第一面の突出量は、第一面の光軸AX上での接平面と第一面の有効光束径の最周縁との、光軸AX方向の距離と定義される。
 条件(2)の下限を下回る場合、周辺像高における画角変化が急激で(すなわち、観察視野周辺での倍率が低く)、既存の電子スコープとの挿入感の差が少ないため、電子スコープ1が扱いやすくなる。しかし、その代償として、管壁等が表示される観察視野周辺の解像度が低下するため、管腔観察に適さない。また、負レンズL1は、第一面の曲率半径が大きくなり第一面の突出量が少なくなるため、洗浄性が改善すると共に破損リスクが軽減する一方、第一面への入射角が大きいため光量損失が生じやすい。
 条件(1)、(2)が同時に満たされる場合、内視鏡用対物レンズ100を小径におさえつつ広視野角に設計した場合も、コマ収差や色収差等の諸収差が良好に補正される。また、既存の電子スコープの挿入感を損なうことなく観察視野周辺で高解像度を維持することができる。また、組立誤差に起因する視野角変化や像面倒れが有効におさえられる。更に、電子スコープ1の洗浄性や取扱易さを改善しつつも光量損失が有効におさえられる。また、諸収差の補正に非球面レンズが必須ではないため、設計開発の負担が軽減すると共に加工が容易である。
 内視鏡用対物レンズ100は、負レンズL1の焦点距離をfと定義した場合に、次の条件(3)
-1.8≦f/f≦-1.1・・・(3)
を満たす構成としてもよい。
 条件(3)は、負レンズL1の焦点距離fと全系の焦点距離fとの比を規定している。条件(3)が満たされる場合、視野角を広げた場合に懸念される観察視野周辺の光学性能の劣化がより一層好適におさえられる。条件(3)の上限を超える場合、負レンズL1のパワーが強いため、非点収差と色収差を良好に補正することが難しく周辺解像度が低下する。条件(3)の下限を下回る場合は、負レンズL1のパワーが弱いため、有効光束半径をおさえつつ視野角を広げるといった設計に不向きである。
 内視鏡用対物レンズ100は、正レンズL3の焦点距離をfと定義した場合に、次の条件(4)
2.0≦f/f≦4.0・・・(4)
を満たす構成としてもよい。
 条件(4)は、正レンズL3の焦点距離fと全系の焦点距離fとの比を規定している。条件(4)が満たされる場合、像面湾曲を、予定する被写体(ここでは大腸の管壁等)の観察に適した状態に保ちつつ視野角を広げることができる。条件(4)の上限を超える場合、内視鏡用対物レンズ100全体として正のパワーが強いため、ペッツバール和が大きくなり、観察対象の管腔径が細いときに像面がアンダーに傾きやすい。そのため、管壁等が表示される観察視野周辺の解像度が低下して、管壁等を鮮明な映像で観察するのが難しい。また、正レンズL3の第一面の曲率が小さくなるため、コマ収差が増加してその補正が難しくなる。条件(4)の下限を下回る場合は、内視鏡用対物レンズ100全体として正のパワーが弱いため、ペッツバール和が小さくなり、観察対象の管腔径が太いときに像面がオーバーに傾きやすい。そのため、管壁等が表示される観察視野周辺の解像度が低下して、管壁等を鮮明な映像で観察するのが難しい。オーバーに傾いた像面を補正するには、例えば接合レンズCLを構成する負レンズL4のパワーを強くするために接合面の曲率半径を小さく設定せざるを得ない。この場合、加工性が悪くなるという欠点がある。なお、本実施形態で観察を予定する管腔の径の範囲は、管腔径をΦと定義し、結像面(固体撮像素子の受光面)における最大像高をyと定義すると、次に示す通りである。
10y≦Φ≦20y
 内視鏡用対物レンズ100は、最大像高yよりも低い中間像高をyと定義し、最大像高yに対応する半画角をωと定義し、中間像高yに対応する半画角をωと定義した場合に、次の条件(5)
1.3×sin(ω/1.3)≦y/f≦3.0×sin(ω/3.0)・・・(5)
但し、60°≦ω≦ω
を満たす構成としてもよい。条件(5)を規定する半画角は、内視鏡用対物レンズ100のうち最も物体側の面(負レンズL1の第一面)に入射する入射光線と光軸AXとがなす傾角と定義される。
 図21は、条件(5)を規定する像高と画角との関係を示す図である。図21中、内視鏡用対物レンズ100のうち最も物体側の面(負レンズL1の第一面)、最も像側の面(接合レンズCLを構成する正レンズL5の第二面)をそれぞれ、第1面、最終面と記す。半画角ωからωの視野範囲は、管腔観察において管壁等が写る注視領域である。以下、この視野範囲を「管壁視野範囲」と記す。また、管壁視野範囲に対応する結像面上の範囲(中間像高yから有効画素領域の最周縁まで)を「管壁撮像範囲」と記す。条件(5)の上限を超える場合、管壁撮像範囲が広いため、管壁視野範囲の被写体を高解像度で撮像することができる。しかし、その代償として、管壁視野範囲よりも内側の視野中心付近における解像度の低下が避けられない。例えば病変部を発見して視野中心に寄せた場合、当該病変部を高解像度で撮像することができない。条件(5)の下限を下回る場合は、管壁撮像範囲が狭いため、管壁視野範囲の被写体を高解像度で撮像することができず、管腔観察には不向きである。条件(5)が満たされる場合、管壁視野範囲の被写体を高解像度で撮像できると共に視野中心付近の解像度の低下が有効に避けられる。
 負レンズL1の第一面は先端部12の外観に露出するため、内視鏡検査終了後に洗浄液を用いて洗浄される。この種の洗浄液の中には、表面処理を劣化させる成分を含むものがある。そのため、負レンズL1の第一面には反射防止コートが施されていない。よって、表面反射による光量損失が懸念される。そこで、内視鏡用対物レンズ100は、次の条件(6)
θ≦75°・・・(6)
を満たすように構成されてもよい。条件(6)を規定する入射角θは、最大像高yに入射する光線の、負レンズL1の第一面への入射角と定義される。入射角は、入射光線と、該入射光線と入射面との交点における接平面の法線とがなす角度で表される。
 条件(6)が満たされる場合、表面反射による光量損失が有効におさえられる。条件(6)を外れる場合は、屈折率が例えば1.8を超える高屈折率硝材を負レンズL1に用いたときに30%を超える表面反射が生じて光量損失が著しい。すなわち、レンズ材料の選択の余地が狭くなるため望ましくない。
 内視鏡用対物レンズ100は、次の条件(7)
2.0≦R/y≦5.5・・・(7)
を満たす構成としてもよい。
 条件(7)が満たされる場合、負レンズL1においてコバ厚を十分に確保しつつ第一面における表面反射による光量損失を有効におさえることができる。負レンズL1のコバ厚を十分に確保することにより、先端部12の内部と外部とが誘電率の低い厚みのある材料を介して絶縁されることとなる。条件(7)の上限を超える場合、十分な絶縁性能を保証するに足るコバ厚を確保するのが難しい。また、負レンズL1の第一面への入射角が大きいため、表面反射による光量損失量が増加する。条件(7)の下限を下回る場合、負レンズL1の第一面は突出量が増えるため、洗浄性が低下すると共に電子スコープ1管理時に他の構造物等に衝突して破損するリスクが高くなる。また、負レンズL1の第二面の曲率半径を小さく設定せざるを得ず、加工性が悪くなる。
 内視鏡用対物レンズ100は、最大像高yにおける負レンズL1の有効光束半径をDと定義した場合に、次の条件(8)
2.0≦D/y≦3.0・・・(8)
を満たす構成としてもよい。
 条件(8)が満たされる場合、負レンズL1において第一面の突出量をおさえつつ表面反射による光量損失もおさえることができる。条件(8)の上限を超える場合、負レンズL1の第一面の突出量がおさえられる一方、該第一面への入射角が大きいため、表面反射による光量損失量が増加する。また、内視鏡用対物レンズ100の全長(光軸AX方向の寸法)をおさえることが難しく、先端部12の小型化に不向きである。条件(8)の下限を下回る場合は、負レンズL1の第一面において表面反射による光量損失がおさえられる一方、該第一面の突出量が大きくなり、洗浄性が低下すると共に電子スコープ1管理時に他の構造物等に衝突して破損するリスクが高くなる。
 次に、これまで説明した内視鏡用対物レンズ100の具体的数値実施例を6例説明する。各数値実施例1~6の内視鏡用対物レンズ100は、図1に示される電子スコープ1の先端部12に配置されている。
 上述したように、本発明の実施例1の内視鏡用対物レンズ100の構成は、図2に示される通りである。本実施例1の内視鏡用対物レンズ100(及びその後段に配置された光学部品)の具体的数値構成(設計値)は、表1に示される。表1に示される面番号nは、絞りSに対応する面番号5を除き、図2中の面符号rnに対応する。表1において、R(単位:mm)は光学部材の各面の曲率半径を、D(単位:mm)は光軸AX上の光学部材厚又は光学部材間隔を、N(d)はd線(波長588nm)の屈折率を、νdはd線のアッベ数を、それぞれ示す。表2は、内視鏡用対物レンズ100の仕様(Fナンバー、全系の焦点距離(単位:mm)、光学倍率、半画角(単位:deg)、像高(単位:mm))を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図3(a)~(d)は、本実施例1の内視鏡用対物レンズ100の各種収差図である。具体的には、図3(a)は、d線、g線(436nm)、C線(656nm)での球面収差及び軸上色収差を示す。図3(b)は、d線、g線、C線での倍率色収差を示す。図3(a)、(b)中、実線はd線での収差を、点線はg線での収差を、一点鎖線はC線での収差を、それぞれ示す。図3(c)は、非点収差を示す。図3(c)中、実線はサジタル成分を、点線はメリディオナル成分を、それぞれ示す。図3(d)は、歪曲収差を示す。図3(a)~(c)の各図の縦軸は像高を、横軸は収差量を、それぞれ示す。また、図3(d)の縦軸は像高を、横軸は歪曲率を、それぞれ示す。本実施例1の内視鏡用対物レンズ100は、表1、2、図3(a)~(d)に示されるように、小型かつ広視野角でありつつも各種収差が良好に補正されていることが分かる。なお、本実施例1の各表又は各図面についての説明は、以降の各数値実施例で提示される各表又は各図面においても適用する。
 図4は、本実施例2の内視鏡用対物レンズ100を含む各光学部品の配置を示す断面図である。本実施例2の内視鏡用対物レンズ100は、図4に示されるように、本実施例1の内視鏡用対物レンズ100と同じ枚数構成である。図5(a)~(d)は、本実施例2の内視鏡用対物レンズ100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表3は、本実施例2の内視鏡用対物レンズ100を含む各光学部品の具体的数値構成を、表4は、本実施例2の内視鏡用対物レンズ100の仕様を、それぞれ示す。本実施例2の内視鏡用対物レンズ100は、表3、4、図5(a)~(d)に示されるように、小型かつ広視野角でありつつも各種収差が良好に補正されていることが分かる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図6は、本実施例3の内視鏡用対物レンズ100を含む各光学部品の配置を示す断面図である。本実施例3の内視鏡用対物レンズ100は、次の表6に示されるように、半画角が95°を超えている。そのため、本実施例1又は2と同じレンズ配置では像面湾曲の良好な補正が難しい。そこで、本実施例3の内視鏡用対物レンズ100は、図6に示されるように、正レンズL3と接合レンズCLとの間に正レンズL6を配置することにより、像面湾曲を良好に補正している。すなわち、本実施例3において第二のレンズ群G2は、正レンズL3、正レンズL6、接合レンズCLの三枚構成である。なお、第一のレンズ群G1については、本実施例1と同じ枚数構成である。図7(a)~(d)は、本実施例3の内視鏡用対物レンズ100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表5は、本実施例3の内視鏡用対物レンズ100を含む各光学部品の具体的数値構成を、表6は、本実施例3の内視鏡用対物レンズ100の仕様を、それぞれ示す。本実施例3の内視鏡用対物レンズ100は、表5、6、図7(a)~(d)に示されるように、小型かつ広視野角でありつつも各種収差が良好に補正されていることが分かる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 図8は、本実施例4の内視鏡用対物レンズ100を含む各光学部品の配置を示す断面図である。本実施例4の内視鏡用対物レンズ100は、図8に示されるように、本実施例1の内視鏡用対物レンズ100と同じ枚数構成である。図9(a)~(d)は、本実施例4の内視鏡用対物レンズ100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表7は、本実施例4の内視鏡用対物レンズ100を含む各光学部品の具体的数値構成を、表8は、本実施例4の内視鏡用対物レンズ100の仕様を、それぞれ示す。本実施例4の内視鏡用対物レンズ100は、表7、8、図9(a)~(d)に示されるように、小型かつ広視野角でありつつも各種収差が良好に補正されていることが分かる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 図10は、本実施例5の内視鏡用対物レンズ100を含む各光学部品の配置を示す断面図である。本実施例5の内視鏡用対物レンズ100は、図10に示されるように、本実施例1の内視鏡用対物レンズ100と同じ枚数構成である。図11(a)~(d)は、本実施例5の内視鏡用対物レンズ100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表9は、本実施例5の内視鏡用対物レンズ100を含む各光学部品の具体的数値構成を、表10は、本実施例5の内視鏡用対物レンズ100の仕様を、それぞれ示す。本実施例5の内視鏡用対物レンズ100は、表9、10、図11(a)~(d)に示されるように、小型かつ広視野角でありつつも各種収差が良好に補正されていることが分かる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 図12は、本実施例6の内視鏡用対物レンズ100を含む各光学部品の配置を示す断面図である。本実施例6の内視鏡用対物レンズ100は、図12に示されるように、本実施例1の内視鏡用対物レンズ100と同じ枚数構成である。図13(a)~(d)は、本実施例6の内視鏡用対物レンズ100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表11は、本実施例6の内視鏡用対物レンズ100を含む各光学部品の具体的数値構成を、表12は、本実施例6の内視鏡用対物レンズ100の仕様を、それぞれ示す。本実施例6の内視鏡用対物レンズ100は、表11、12、図13(a)~(d)に示されるように、小型かつ広視野角でありつつも各種収差が良好に補正されていることが分かる。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(比較検証)
 表13は、本実施例1~6に比較例1を加えた7つの各例において条件(5)を除く各条件を適用したときに算出される値の一覧表である。条件(5)については、各例における像高と画角との関係を図14~20に示す。なお、比較例1は、特許文献1の実施例1である。
Figure JPOXMLDOC01-appb-T000013
 本実施例1~6の内視鏡用対物レンズ100は、表13に示されるように条件(1)、(2)を同時に満たすことにより、各本実施例の説明で提示した図又は表に示す通り、小型かつ広視野角でありつつも各種収差が良好に補正される。これに対して、比較例1の内視鏡用対物レンズは、表13に示されるように条件(2)を満たさない。そのため、比較例1において外形寸法をおさえつつ光学性能を維持するように設計した場合、視野角を広げるのは難しい。別の側面によれば、比較例1において視野角を広げる(例えば140°を超える視野角を得るため)には、光学性能と小型化の少なくとも一方を犠牲にしなければならない。例えば光学性能を犠牲にした場合、管壁等が表示される観察視野周辺において解像度の著しい低下が避けられない。
 本実施例1~6の内視鏡用対物レンズ100は、表13に示されるように、条件(3)、(4)、(6)~(8)も更に満たす。そのため、本実施例1~6では、各条件を満たすことによる更なる効果が奏される。これに対して比較例1の内視鏡用対物レンズは、表13に示されるように、条件(3)、(7)、(8)を満たさない。比較例1では、例えば条件(3)の上限を超えるため、非点収差と色収差を良好に補正することが難しく、観察視野周辺において解像度の更なる低下が起こり得る。
 図14~19はそれぞれ、本実施例1~6において条件(5)を規定する像高と画角との関係を示す図である。図20は、比較例1において条件(5)を規定する像高と画角との関係を示す図である。図14~20の各図の縦軸は、像高(単位:mm)を示し、横軸は、画角(単位:deg)を示す。各図中、実線(太線)は、各例における条件(5)の値を示し、上下二本の実線(細線)は、条件(5)の上下限を示す。
 本実施例1~5の内視鏡用対物レンズ100は、図14~18に示されるように、仕様を満たす画角内において条件(5)を満たす。そのため、管壁視野範囲の被写体を高解像度で撮像できると共に視野中心付近の解像度の低下が有効に避けられる。本実施例6の内視鏡用対物レンズ100は、図19に示されるように、仕様を満たす画角内において条件(5)の上限を僅かに超えるため、視野中心付近の解像度が低下する。比較例1の内視鏡用対物レンズ100は、図20に示されるように、仕様を満たす画角内において条件(5)の下限を下回るため、管壁視野範囲の被写体を高解像度で撮像することができず、管腔観察には不向きであることが分かる。
 以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。

Claims (10)

  1.  物体側から順に、負のパワーを持つ第一のレンズ群、絞り、正のパワーを持つ第二のレンズ群を有し、
     前記第一のレンズ群は、物体側から順に、像側に凹面を向けた負の前群側レンズ、像側に凸面を向けた正の前群側レンズを少なくとも有し、
     前記第二のレンズ群は、物体側から順に、像側に凸面を向けた正の後群側レンズ、負のレンズと正のレンズとを接合した接合レンズを少なくとも有し、
     前記第一のレンズ群の焦点距離をf(単位:mm)と定義し、該第一のレンズ群と前記第二のレンズ群との合成焦点距離をf(単位:mm)と定義し、前記負の前群側レンズの物体側の面の曲率半径をR(単位:mm)と定義し、該負の前群側レンズの像側の面の曲率半径をR(単位:mm)と定義した場合に、次の条件(1)、(2)
    -3.5≦f/f≦-1.5・・・(1)
    1.3≦SF≦1.6・・・(2)
    但し、SF=(R+R)/(R-R
    を満たすことを特徴とする内視鏡用対物レンズ。
  2.  前記負の前群側レンズの焦点距離をfと定義した場合に、次の条件(3)
    -1.8≦f/f≦-1.1・・・(3)
    を満たすことを特徴とする、請求項1に記載の内視鏡用対物レンズ。
  3.  前記正の後群側レンズの焦点距離をfと定義した場合に、次の条件(4)
    2.0≦f/f≦4.0・・・(4)
    を満たすことを特徴とする、請求項1又は請求項2に記載の内視鏡用対物レンズ。
  4.  結像面における最大像高をyと定義し、該最大像高yよりも低い中間像高をyと定義し、該最大像高yに対応する半画角をωと定義し、該中間像高yに対応する半画角をωと定義した場合に、次の条件(5)
    1.3×sin(ω/1.3)≦y/f≦3.0×sin(ω/3.0)・・・(5)
    但し、60°≦ω≦ω
    を満たすことを特徴とする、請求項1から請求項3の何れか一項に記載の内視鏡用対物レンズ。
  5.  前記正の前群側レンズは、物体側の面が平面であることを特徴とする、請求項1から請求項4の何れか一項に記載の内視鏡用対物レンズ。
  6.  前記最大像高yに入射する光線の、負の前群側レンズの物体側の面への入射角をθと定義した場合に、次の条件(6)
    θ≦75°・・・(6)
    を満たすことを特徴とする、請求項1から請求項5の何れか一項に記載の内視鏡用対物レンズ。
  7.  結像面における最大像高をyと定義した場合に、次の条件(7)
    2.0≦R/y≦5.5・・・(7)
    を満たすことを特徴とする、請求項1から請求項6の何れか一項に記載の内視鏡用対物レンズ。
  8.  結像面における最大像高をyと定義し、該最大像高yにおける前記負の前群側レンズの有効光束半径をDと定義した場合に、次の条件(8)
    2.0≦D/y≦3.0・・・(8)
    を満たすことを特徴とする、請求項1から請求項7の何れか一項に記載の内視鏡用対物レンズ。
  9.  前記第二のレンズ群は、前記正の後群側レンズと前記接合レンズとの間に、正レンズを更に有することを特徴とする、請求項1から請求項8の何れか一項に記載の内視鏡用対物レンズ。
  10.  請求項1から請求項9の何れか一項に記載の内視鏡用対物レンズを先端に搭載したことを特徴とする内視鏡。
PCT/JP2011/055597 2010-06-01 2011-03-10 内視鏡用対物レンズ、及び内視鏡 WO2011152099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/696,645 US9140888B2 (en) 2010-06-01 2011-03-10 Objective lens for endoscope, and endoscope
CN201180026600.XA CN102918441B (zh) 2010-06-01 2011-03-10 内窥镜用物镜及内窥镜
JP2012518278A JP5668059B2 (ja) 2010-06-01 2011-03-10 内視鏡用対物レンズ、及び内視鏡
EP11789510.2A EP2579083B1 (en) 2010-06-01 2011-03-10 Objective lens for endoscope, and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010125837 2010-06-01
JP2010-125837 2010-06-01

Publications (1)

Publication Number Publication Date
WO2011152099A1 true WO2011152099A1 (ja) 2011-12-08

Family

ID=45066488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055597 WO2011152099A1 (ja) 2010-06-01 2011-03-10 内視鏡用対物レンズ、及び内視鏡

Country Status (5)

Country Link
US (1) US9140888B2 (ja)
EP (1) EP2579083B1 (ja)
JP (1) JP5668059B2 (ja)
CN (1) CN102918441B (ja)
WO (1) WO2011152099A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065169A1 (ja) * 2015-10-16 2017-04-20 オリンパス株式会社 内視鏡用対物光学系
JP2018025591A (ja) * 2016-08-08 2018-02-15 Hoya株式会社 内視鏡用対物光学系及び内視鏡
US9952410B2 (en) 2016-04-22 2018-04-24 Largan Precision Co., Ltd. Imaging optical lens system, image capturing unit and electronic device
WO2019159778A1 (ja) * 2018-02-13 2019-08-22 Hoya株式会社 内視鏡用光学系及び内視鏡
US10942348B2 (en) 2016-09-28 2021-03-09 Olympus Corporation Endoscope objective optical system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215422B4 (de) * 2013-08-06 2022-02-24 Olympus Winter & Ibe Gmbh Optisches System eines Stereo-Videoendoskops mit seitlicher Blickrichtung und Stereo-Videoendoskop mit seitlicher Blickrichtung
EP3061253A1 (en) 2013-10-25 2016-08-31 Microsoft Technology Licensing, LLC Hash-based block matching in video and image coding
WO2015058397A1 (en) 2013-10-25 2015-04-30 Microsoft Technology Licensing, Llc Representing blocks with hash values in video and image coding and decoding
CN105793755B (zh) * 2013-10-30 2019-04-30 奥林巴斯株式会社 摄像装置
WO2015131325A1 (en) * 2014-03-04 2015-09-11 Microsoft Technology Licensing, Llc Hash table construction and availability checking for hash-based block matching
CN105556971B (zh) 2014-03-04 2019-07-30 微软技术许可有限责任公司 针对帧内块复制预测中的块翻动和跳跃模式的编码器侧判定
KR102287779B1 (ko) 2014-06-23 2021-08-06 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 해시 기반의 블록 매칭의 결과에 기초한 인코더 결정
EP3202142B1 (en) 2014-09-30 2020-11-11 Microsoft Technology Licensing, LLC Hash-based encoder decisions for video coding
US10359618B2 (en) 2016-01-11 2019-07-23 Nikon Corporation Multispectral stereoscopic endoscope system and use of same
US10386626B2 (en) 2016-02-12 2019-08-20 Nikon Corporation Non-telecentric multispectral stereoscopic endoscope objective
US10390039B2 (en) 2016-08-31 2019-08-20 Microsoft Technology Licensing, Llc Motion estimation for screen remoting scenarios
JP1576154S (ja) * 2016-10-13 2020-05-11
US11095877B2 (en) 2016-11-30 2021-08-17 Microsoft Technology Licensing, Llc Local hash-based motion estimation for screen remoting scenarios
TWI613482B (zh) 2017-01-25 2018-02-01 大立光電股份有限公司 光學影像鏡片系統組、取像裝置及電子裝置
US10502935B2 (en) * 2017-03-03 2019-12-10 Ideal Industries Lighting Llc Image sensor modules and luminaires incorporating the same
DE102017107106A1 (de) 2017-04-03 2018-10-04 Hoya Corporation Endoskop mit weitwinkeloptik und arbeitskanal
TWI627439B (zh) * 2017-08-02 2018-06-21 信泰光學(深圳)有限公司 鏡頭裝置
US11209578B2 (en) 2017-08-02 2021-12-28 Sintai Optical (Shenzhen) Co., Ltd. Camera device
JP6861131B2 (ja) * 2017-09-12 2021-04-21 Hoya株式会社 内視鏡用対物レンズユニット及び内視鏡
JP2019049680A (ja) 2017-09-12 2019-03-28 Hoya株式会社 内視鏡用対物レンズユニット及び内視鏡
US11202085B1 (en) 2020-06-12 2021-12-14 Microsoft Technology Licensing, Llc Low-cost hash table construction and hash-based block matching for variable-size blocks
CN112925092B (zh) * 2021-02-04 2022-05-10 南京信息工程大学 一种气体、液体膨宫两用的电子宫腔镜成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114902A (ja) * 1997-06-24 1999-01-22 Asahi Optical Co Ltd 内視鏡対物光学系
JP3359092B2 (ja) 1993-04-23 2002-12-24 オリンパス光学工業株式会社 内視鏡対物レンズ
JP2004117607A (ja) * 2002-09-25 2004-04-15 Pentax Corp 内視鏡対物レンズ系
JP2008107391A (ja) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp 内視鏡対物光学系
JP2009109576A (ja) * 2007-10-26 2009-05-21 Fujinon Corp 内視鏡用対物レンズおよび内視鏡
JP2009163256A (ja) * 2009-03-03 2009-07-23 Olympus Corp 光学系

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100511A (ja) * 1989-09-13 1991-04-25 Olympus Optical Co Ltd 内視鏡用対物レンズ
JP2920670B2 (ja) * 1989-10-13 1999-07-19 オリンパス光学工業株式会社 内視鏡対物レンズ
US5162947A (en) * 1989-10-19 1992-11-10 Asahi Kogaku Kogyo K.K. Zoom lens system for use with a compact camera having a wide coverage of angles
US6128145A (en) * 1998-11-25 2000-10-03 Fit Corporation Image pick-up device, image display device and information recording medium comprising a fisheye lens
JP2000267002A (ja) 1999-03-15 2000-09-29 Olympus Optical Co Ltd 光学系
TW578007B (en) * 2001-01-31 2004-03-01 Nikon Corp Variable focal length lens system
CN100464207C (zh) 2007-04-11 2009-02-25 王华林 上消化道电子内窥镜物镜
US7869140B2 (en) * 2007-04-13 2011-01-11 Karl Storz Imaging, Inc. Objective lens design for miniature endoscope
CN101630058B (zh) 2008-07-18 2011-03-23 上海澳华光电内窥镜有限公司 内窥镜物镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359092B2 (ja) 1993-04-23 2002-12-24 オリンパス光学工業株式会社 内視鏡対物レンズ
JPH1114902A (ja) * 1997-06-24 1999-01-22 Asahi Optical Co Ltd 内視鏡対物光学系
JP2004117607A (ja) * 2002-09-25 2004-04-15 Pentax Corp 内視鏡対物レンズ系
JP2008107391A (ja) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp 内視鏡対物光学系
JP2009109576A (ja) * 2007-10-26 2009-05-21 Fujinon Corp 内視鏡用対物レンズおよび内視鏡
JP2009163256A (ja) * 2009-03-03 2009-07-23 Olympus Corp 光学系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579083A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065169A1 (ja) * 2015-10-16 2017-04-20 オリンパス株式会社 内視鏡用対物光学系
JPWO2017065169A1 (ja) * 2015-10-16 2017-10-12 オリンパス株式会社 内視鏡用対物光学系
CN108139568A (zh) * 2015-10-16 2018-06-08 奥林巴斯株式会社 内窥镜用物镜光学系统
US10564406B2 (en) 2015-10-16 2020-02-18 Olympus Corporation Objective optical system for endoscope
CN108139568B (zh) * 2015-10-16 2020-07-24 奥林巴斯株式会社 内窥镜用物镜光学系统
US9952410B2 (en) 2016-04-22 2018-04-24 Largan Precision Co., Ltd. Imaging optical lens system, image capturing unit and electronic device
JP2018025591A (ja) * 2016-08-08 2018-02-15 Hoya株式会社 内視鏡用対物光学系及び内視鏡
US10942348B2 (en) 2016-09-28 2021-03-09 Olympus Corporation Endoscope objective optical system
WO2019159778A1 (ja) * 2018-02-13 2019-08-22 Hoya株式会社 内視鏡用光学系及び内視鏡
JPWO2019159778A1 (ja) * 2018-02-13 2021-01-07 Hoya株式会社 内視鏡用光学系及び内視鏡

Also Published As

Publication number Publication date
EP2579083A1 (en) 2013-04-10
US9140888B2 (en) 2015-09-22
JP5668059B2 (ja) 2015-02-12
CN102918441B (zh) 2016-05-25
US20130057666A1 (en) 2013-03-07
EP2579083B1 (en) 2021-05-26
CN102918441A (zh) 2013-02-06
JPWO2011152099A1 (ja) 2013-07-25
EP2579083A4 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5668059B2 (ja) 内視鏡用対物レンズ、及び内視鏡
JP5601924B2 (ja) 内視鏡用変倍光学系、及び内視鏡
JP5653243B2 (ja) 内視鏡用光学系、及び内視鏡
US8243129B2 (en) Objective lens and endoscope apparatus
JP5324321B2 (ja) 内視鏡用対物レンズおよび内視鏡
WO2017145265A1 (ja) 内視鏡用変倍光学系及び内視鏡
JP6674450B2 (ja) 内視鏡用変倍光学系、及び内視鏡
JP5455472B2 (ja) 内視鏡用対物レンズ、及び内視鏡
JP2008257108A (ja) 内視鏡用対物レンズおよび内視鏡
WO2017043351A1 (ja) 内視鏡用変倍光学系、及び内視鏡
JP6046322B1 (ja) 内視鏡用変倍光学系及び内視鏡
WO2014208373A1 (ja) 内視鏡対物光学系
JP2008257109A (ja) 内視鏡用対物レンズおよび内視鏡
JP2019109356A (ja) 内視鏡用対物光学系及び内視鏡
JP2004061763A (ja) 内視鏡用対物レンズ
JP5031880B2 (ja) 内視鏡用対物レンズ
CN107703606B (zh) 内窥镜用物镜光学系统以及内窥镜
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡
WO2019054309A1 (ja) 内視鏡用対物レンズユニット及び内視鏡
WO2019159778A1 (ja) 内視鏡用光学系及び内視鏡
JP2005148508A (ja) 内視鏡用対物レンズ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026600.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696645

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012518278

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011789510

Country of ref document: EP