WO2017043334A1 - ポリエステル系樹脂組成物及びその製造方法 - Google Patents

ポリエステル系樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2017043334A1
WO2017043334A1 PCT/JP2016/074932 JP2016074932W WO2017043334A1 WO 2017043334 A1 WO2017043334 A1 WO 2017043334A1 JP 2016074932 W JP2016074932 W JP 2016074932W WO 2017043334 A1 WO2017043334 A1 WO 2017043334A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
flame retardant
polyester resin
acid
Prior art date
Application number
PCT/JP2016/074932
Other languages
English (en)
French (fr)
Inventor
山中 康史
真矢 山下
広一 佐子川
修 滝瀬
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58239534&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017043334(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN201680052632.XA priority Critical patent/CN108026361B/zh
Priority to EP16844197.0A priority patent/EP3348616B1/en
Priority to US15/748,775 priority patent/US10626269B2/en
Publication of WO2017043334A1 publication Critical patent/WO2017043334A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a polyester-based resin composition and a method for producing the same, and more specifically, is excellent in flame retardancy and melt heat stability, and corrodes metal parts even when used in close proximity to metal parts for a long time.
  • the present invention relates to a polyester-based resin composition that is less likely to melt and has excellent melt heat stability and laser printability, and a method for producing the same.
  • Thermoplastic polyester resins represented by polybutylene terephthalate and polyethylene terephthalate are excellent in mechanical strength, chemical resistance, electrical insulation, etc., and have excellent heat resistance, moldability, and recyclability. Therefore, it is widely used for electrical and electronic equipment parts, automobile parts, other electrical parts, machine parts and the like.
  • Patent Document 1 contains a specific amount of a brominated flame retardant in a thermoplastic polyester resin, the amount of free bromine is not more than a certain amount, and the yellow index of the resin composition is not more than 23.
  • brominated flame retardants are preferably brominated benzyl poly (meth) acrylates such as pentabromobenzyl polyacrylate, brominated epoxy compounds, brominated polystyrenes, brominated imide compounds, and particularly brominated. It is disclosed that polystyrene is preferable (see Patent Document 1, [0022]).
  • thermoplastic polyester resin may be decomposed or poorly melted and stable. It was found that it was easy to become. It has also been found that since it is exposed to high temperatures during molding, corrosive gas is generated during molding, causing problems such as mold contamination and defective surface appearance of molded products. Furthermore, there are many cases in which electrical parts and the like are used in close proximity to metal parts such as terminals, and a problem has been found that corrodes adjacent metal parts when used for a long time.
  • the device parts are usually printed for clearly indicating the name of the manufacturer, the brand name, the product number, the production lot number, etc.
  • laser marking with a high printing speed is frequently used.
  • clearer printing characteristics are required due to the miniaturization of parts, and from the viewpoint of improving productivity by improving the printing speed, it is also required to be excellent in laser printability. Therefore, when a brominated polyacrylate flame retardant is applied to a thermoplastic polyester resin, not only flame retardancy but also melt heat stability is excellent, gas generation during molding is small, and laser printability is also excellent. Is required.
  • An object (problem) of the present invention is to provide a polyester-based resin composition that is excellent in flame retardancy and melt heat stability, and also excellent in laser printability, and a method for producing the same.
  • the present invention has been completed by finding that it is greatly related to the thermal stability of the polyester resin, affects the laser printability, and that the Na element concentration has an appropriate value.
  • the present invention is as follows.
  • the polyester resin composition is characterized in that the Na element concentration measured by the fluorescent X-ray analysis method is from 5 to 4000 ppm.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) of the brominated polyacrylate flame retardant (B) is 5.5 or less.
  • the polyester-type resin composition in any one.
  • a resin composition containing 3 to 60 parts by mass of a brominated polyacrylate flame retardant (B) with respect to 100 parts by mass of the thermoplastic polyester resin (A), and an atomic absorption analysis method for the resin composition A polyester resin composition characterized in that the Na element concentration measured by 1 is from 1 to 400 ppm.
  • the polyester-based resin composition of the present invention has excellent flame retardancy, little mold corrosion during molding, little corrosion of metal parts even when used in close proximity to metal parts, and melt heat stability And laser printability.
  • FIG. 1 is a GPC chart of pentabromobenzyl polyacrylate used in Examples and Comparative Examples.
  • the polyester resin composition according to the first aspect of the present invention is a resin composition containing 3 to 60 parts by mass of a brominated polyacrylate flame retardant (B) with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the Na element concentration of the brominated polyacrylate flame retardant (B) measured by fluorescent X-ray analysis is 5 to 4000 ppm.
  • the polyester resin composition according to the second aspect of the present invention is a resin composition containing 3 to 60 parts by mass of a brominated polyacrylate flame retardant (B) with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • a concentration of Na element measured by atomic absorption spectrometry of the resin composition is 1 to 400 ppm.
  • the method for producing a polyester resin composition of the present invention comprises a polyester resin composition containing 3 to 60 parts by mass of a brominated polyacrylate flame retardant (B) with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • a brominated polyacrylate flame retardant (B) is washed with warm water of 40 to 100 ° C., dried, and mixed with the thermoplastic polyester resin (A).
  • thermoplastic polyester resin (A) which is the main component of the resin composition of the present invention is a polyester obtained by polycondensation of a dicarboxylic acid compound and a dihydroxy compound, polycondensation of an oxycarboxylic acid compound or polycondensation of these compounds. It may be either a homopolyester or a copolyester.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2′-dicarboxylic acid, Biphenyl-3,3′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, diphenylmethane-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid Diphenylisopropylidene-4,4′-dicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid, 1,2-bis (phenoxy) ethane-4,
  • aromatic dicarboxylic acids may be used as a mixture of two or more. As is well known, these compounds can be used in polycondensation reactions with dimethyl esters or the like as ester-forming derivatives in addition to free acids. If the amount is small, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, dodecanedioic acid and sebacic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1 A mixture of one or more alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid can be used.
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, dodecanedioic acid and sebacic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1
  • dihydroxy compound constituting the thermoplastic polyester resin (A) examples include ethylene glycol, propylene glycol, butanediol, hexylene glycol, neopentyl glycol, 2-methylpropane-1,3-diol, diethylene glycol, and triethylene glycol.
  • diethylene glycol examples include aliphatic diols, alicyclic diols such as cyclohexane-1,4-dimethanol, and mixtures thereof. If the amount is small, one or more long-chain diols having a molecular weight of 400 to 6000, that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, and the like may be copolymerized.
  • aromatic diols such as hydroquinone, resorcin, naphthalenediol, dihydroxydiphenyl ether, and 2,2-bis (4-hydroxyphenyl) propane can also be used.
  • trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane are introduced to introduce a branched structure, and fatty acids are used for molecular weight control.
  • a small amount of a monofunctional compound can be used in combination.
  • thermoplastic polyester resin (A) usually, a resin mainly composed of polycondensation of a dicarboxylic acid and a diol, ie, 50% by mass of the entire resin, preferably 70% by mass or more of this polycondensate is used.
  • the dicarboxylic acid is preferably an aromatic carboxylic acid
  • the diol is preferably an aliphatic diol.
  • polyalkylene terephthalate in which 95 mol% or more of the acid component is terephthalic acid and 95 mass% or more of the alcohol component is an aliphatic diol is preferable.
  • Typical examples are polybutylene terephthalate and polyethylene terephthalate. These are preferably close to homopolyester, that is, 95% by mass or more of the total resin is composed of a terephthalic acid component and a 1,4-butanediol or ethylene glycol component.
  • the intrinsic viscosity of the thermoplastic polyester resin (A) is preferably from 0.3 to 2 dl / g.
  • the intrinsic viscosity is lower than 0.3 dl / g, the resulting resin composition tends to have a low mechanical strength.
  • the fluidity of the resin composition may deteriorate and the moldability may deteriorate.
  • Intrinsic viscosity is preferably 0.4 dl / g or more, more preferably 0.5 dl / g or more, and particularly preferably 0.6 dl / g or more from the viewpoint of moldability and mechanical properties.
  • thermoplastic polyester resin (A) is preferably 1.5 dl / g or less, more preferably 1.2 dl / g or less, and particularly preferably 0.8 dl / g or less.
  • the intrinsic viscosity of the thermoplastic polyester resin (A) is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the terminal carboxyl group amount of the thermoplastic polyester resin (A) may be appropriately selected and determined, but is usually 60 eq / ton or less, preferably 50 eq / ton or less, and preferably 30 eq / ton or less. Is more preferable. If it exceeds 50 eq / ton, gas tends to be generated during melt molding of the resin composition.
  • the lower limit value of the terminal carboxyl group amount is not particularly defined, but is usually 3 eq / ton, preferably 5 eq / ton, more preferably 10 eq / ton.
  • the amount of terminal carboxyl groups of the thermoplastic polyester resin (A) is a value measured by titration using a 0.01 mol / l benzyl alcohol solution of sodium hydroxide by dissolving 0.5 g of the resin in 25 ml of benzyl alcohol. is there.
  • a method for adjusting the amount of terminal carboxyl groups a conventionally known arbitrary method such as a method for adjusting polymerization conditions such as a raw material charge ratio during polymerization, a polymerization temperature, a pressure reduction method, a method for reacting a terminal blocking agent, etc. Just do it.
  • thermoplastic polyester resin (A) contains a polybutylene terephthalate resin, and it is preferable that 50 mass% or more in a thermoplastic polyester resin (A) is a polybutylene terephthalate resin.
  • Polybutylene terephthalate resin is produced by batch polymerization or continuous polymerization of dicarboxylic acid components mainly composed of terephthalic acid or their ester derivatives and diol components mainly composed of 1,4-butanediol. can do.
  • the degree of polymerization (or molecular weight) can be increased to a desired value by further solid-phase polymerization under a nitrogen stream or under reduced pressure.
  • the polybutylene terephthalate resin is preferably produced by a continuous melt polycondensation of a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of 1,4-butanediol.
  • the catalyst used when performing the esterification reaction may be a conventionally known catalyst, and examples thereof include a titanium compound, a tin compound, a magnesium compound, and a calcium compound. Of these, titanium compounds are particularly preferred.
  • Specific examples of the titanium compound as the esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
  • the polybutylene terephthalate resin may be a polybutylene terephthalate resin modified by copolymerization (hereinafter, also referred to as “modified polybutylene terephthalate resin”).
  • modified polybutylene terephthalate resin examples thereof include polyester ether resins copolymerized with alkylene glycols (particularly polytetramethylene glycol), dimer acid copolymerized polybutylene terephthalate resins, and isophthalic acid copolymerized polybutylene terephthalate resins.
  • the proportion of the tetramethylene glycol component in the copolymer is preferably 3 to 40% by mass, and 5 to 30% by mass. % Is more preferable, and 10 to 25% by mass is further preferable.
  • the proportion of the dimer acid component in the total carboxylic acid component is preferably 0.5 to 30 mol% as carboxylic acid groups. 1 to 20 mol% is more preferable, and 3 to 15 mol% is more preferable.
  • the ratio of the isophthalic acid component to the total carboxylic acid component is preferably 1 to 30 mol% as the carboxylic acid group. 20 mol% is more preferable, and 3 to 15 mol% is more preferable.
  • polyester ether resins copolymerized with polytetramethylene glycol and isophthalic acid copolymerized polybutylene terephthalate resins are preferable.
  • the intrinsic viscosity of the polybutylene terephthalate resin is preferably 0.5 to 2 dl / g. From the viewpoint of moldability and mechanical properties, those having an intrinsic viscosity in the range of 0.6 to 1.5 dl / g are more preferable. If the intrinsic viscosity is lower than 0.5 dl / g, the resulting resin composition tends to have a low mechanical strength. On the other hand, if it is higher than 2 dl / g, the fluidity of the resin composition may deteriorate and the moldability may deteriorate.
  • the terminal carboxyl group amount of the polybutylene terephthalate resin may be appropriately selected and determined, but is usually 60 eq / ton or less, preferably 50 eq / ton or less, and more preferably 40 eq / ton or less. More preferably, it is 30 eq / ton or less. If it exceeds 50 eq / ton, gas tends to be generated during melt molding of the resin composition. Although the lower limit of the amount of terminal carboxyl groups is not particularly defined, it is usually 10 eq / ton in consideration of the productivity of production of polybutylene terephthalate resin.
  • the amount of terminal carboxyl groups of the polybutylene terephthalate resin is a value measured by titration using a 0.01 mol / l benzyl alcohol solution of sodium hydroxide by dissolving 0.5 g of the polyalkylene terephthalate resin in 25 mL of benzyl alcohol. is there.
  • a method for adjusting the amount of terminal carboxyl groups a conventionally known arbitrary method such as a method for adjusting polymerization conditions such as a raw material charge ratio during polymerization, a polymerization temperature, a pressure reduction method, a method for reacting a terminal blocking agent, etc. Just do it.
  • thermoplastic polyester resin (A) those containing a polybutylene terephthalate homopolymer and the modified polybutylene terephthalate resin are also preferred. By containing a specific amount of the modified polybutylene terephthalate resin, the weld strength is easily improved, which is preferable.
  • the modified polybutylene terephthalate resin is preferably used with respect to 100% by mass in total of the polybutylene terephthalate homopolymer and the modified polybutylene terephthalate resin. It is 5 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 15 to 30% by mass.
  • thermoplastic polyester resin (A) preferably contains a polybutylene terephthalate resin and a polyethylene terephthalate resin.
  • the content of the polyethylene terephthalate resin is preferably 5 to 50% by mass with respect to 100% by mass in total of the polybutylene terephthalate resin and the polyethylene terephthalate resin. More preferably, it is 10 to 45% by mass, and further preferably 15 to 40% by mass.
  • Polyethylene terephthalate resin is a resin mainly composed of oxyethyleneoxyterephthaloyl units composed of terephthalic acid and ethylene glycol with respect to all structural repeating units, and includes structural repeating units other than oxyethyleneoxyterephthaloyl units. Also good.
  • the polyethylene terephthalate resin is produced using terephthalic acid or a lower alkyl ester thereof and ethylene glycol as main raw materials, but other acid components and / or other glycol components may be used together as raw materials.
  • Acid components other than terephthalic acid include phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3- Examples thereof include phenylenedioxydiacetic acid and structural isomers thereof, dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof, and oxyacids such as p-hydroxybenzoic acid and glycolic acid or derivatives thereof.
  • diol components other than ethylene glycol examples include 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, aliphatic glycols such as pentamethylene glycol, hexamethylene glycol, and neopentyl glycol, cyclohexane Examples include alicyclic glycols such as dimethanol, and aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S.
  • the polyethylene terephthalate resin is a branched component, for example, a trifunctional acid such as tricarballylic acid, trimellitic acid, trimellitic acid or the like, or an acid having tetrafunctional ester form performance such as pyromellitic acid, or glycerin, trimethylolpropane, Copolymerized alcohol having a trifunctional or tetrafunctional ester-forming ability such as pentaerythritol in an amount of 1.0 mol% or less, preferably 0.5 mol% or less, more preferably 0.3 mol% or less. It may be.
  • a trifunctional acid such as tricarballylic acid, trimellitic acid, trimellitic acid or the like
  • an acid having tetrafunctional ester form performance such as pyromellitic acid, or glycerin, trimethylolpropane
  • Copolymerized alcohol having a trifunctional or tetrafunctional ester-forming ability such as pentaerythri
  • the intrinsic viscosity of the polyethylene terephthalate resin is preferably 0.3 to 1.5 dl / g, more preferably 0.3 to 1.2 dl / g, and particularly preferably 0.4 to 0.8 dl / g.
  • the concentration of the terminal carboxyl group of the polyethylene terephthalate resin is preferably 3 to 50 eq / ton, more preferably 5 to 40 eq / ton, and even more preferably 10 to 30 eq / ton.
  • the terminal carboxyl group concentration of the polyethylene terephthalate resin is a value obtained by dissolving 0.5 g of polyethylene terephthalate resin in 25 mL of benzyl alcohol and titrating with 0.01 mol / l benzyl alcohol solution of sodium hydroxide. is there.
  • a conventionally known arbitrary method such as a method for adjusting polymerization conditions such as a raw material charge ratio during polymerization, a polymerization temperature, a pressure reduction method, a method for reacting a terminal blocking agent, etc. Just do it.
  • the polyester resin composition of the present invention contains a brominated polyacrylate flame retardant (B) as a flame retardant.
  • a brominated polyacrylate flame retardant (B) an acrylate monomer containing a bromine atom, particularly benzyl (meth) acrylate, is polymerized alone, or two or more are copolymerized, or copolymerized with other vinyl monomers.
  • the bromine atom is preferably added to the benzene ring, and the addition number is preferably 1 to 5, more preferably 4 to 5 per benzene ring. .
  • Examples of the benzyl acrylate containing a bromine atom include pentabromobenzyl acrylate, tetrabromobenzyl acrylate, tribromobenzyl acrylate, and mixtures thereof.
  • Examples of the benzyl methacrylate containing a bromine atom include methacrylates corresponding to the acrylates described above.
  • vinyl monomers used for copolymerization with benzyl (meth) acrylates containing bromine atoms include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and benzyl acrylate.
  • vinyl monomers used for copolymerization are usually preferably used in an equimolar amount or less, particularly 0.5 times the molar amount or less with respect to benzyl (meth) acrylate containing a bromine atom.
  • xylene diacrylate, xylene dimethacrylate, tetrabromoxylene diacrylate, tetrabromoxylene dimethacrylate, butadiene, isoprene, divinylbenzene and the like can be used. 0.5 times mole amount or less can be used with respect to benzyl acrylate or benzyl methacrylate containing.
  • brominated polyacrylate flame retardant (B) pentabromobenzyl polyacrylate is preferable in terms of high bromine content and electrical insulation characteristics (tracking resistance).
  • a brominated polyacrylate flame retardant (B) having a Na element concentration measured by fluorescent X-ray analysis in the range of 5 to 4000 ppm is used.
  • the lower limit of the Na element concentration is preferably 10 ppm, more preferably 30 ppm, still more preferably 50 ppm, of which 100 ppm, particularly 500 ppm is preferable.
  • the upper limit is preferably 3500 ppm, more preferably 3000 ppm, further 2500 ppm, more preferably 2000 ppm, particularly 1500 ppm, most preferably 1000 ppm.
  • the concentration of Na element in the brominated polyacrylate flame retardant (B) is measured by fluorescent X-ray analysis. If the concentration of Na element is low and it is not detected by fluorescent X-ray analysis, it is re-examined by ICP emission spectroscopy which is an emission spectroscopy using high frequency inductively coupled plasma (ICP) as a light source. Measure.
  • the brominated flame retardant having an Na element concentration of 5 to 4000 ppm can be preferably produced by washing the brominated polyacrylate flame retardant (B) with warm water at 40 to 100 ° C.
  • PBBPA pentabromobenzyl polyacrylate
  • Step 1 C 6 H 5 —CH 3 + Br 2 ⁇ C 6 Br 5 —CH 3
  • Step 2 C 6 H 5 —CH 3 + Br 2 ⁇ C 6 Br 5 —CH 2 Br
  • PBBPA with a high bromine concentration can be obtained in a high yield.
  • the obtained PBBPA is washed with water.
  • HBr, NaOH, anhydrous sodium carbonate, or the like is added, so that Na remains in the PBBPA obtained.
  • the water washing is preferably carried out with warm water having a temperature of 40 to 100 ° C. After the water washing, it can be dried to obtain PBBPA having a Na element concentration of 5 to 4000 ppm. In methanol washing instead of water washing, it is difficult to adjust the Na element concentration within the above range, which is not preferable.
  • the warm water at the time of washing with water is preferably 60 to 100 ° C, more preferably 85 to 100 ° C.
  • the brominated polyacrylate flame retardant (B) has a Mg ion concentration of 5 to 2000 ppm measured by ICP emission spectroscopic analysis which is an emission spectroscopic analysis method using high frequency inductively coupled plasma (ICP) as a light source.
  • the Al ion concentration is preferably 5 to 3000 ppm.
  • the ratio (Mw / Mn) of mass average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 5.5 or less. Some are preferred.
  • Mw / Mn is more preferably 5.0 or less, further preferably 4.5 or less, and more preferably 3.0 or more.
  • group flame retardant (B) is large, the corrosive gas which generate
  • the number average molecular weight (Mn) is also preferable because the larger one is considered to generate less corrosive gas, similar to the mass average molecular weight (Mw) described above. Specifically, it is preferably 3000 or more, more preferably 4500 or more, and even more preferably 6000 or more. There is no upper limit to the number average molecular weight (Mn), but if it is too large as with the mass average molecular weight (Mw), it is considered that the melt dispersion cannot be sufficiently performed. The following are preferable, more preferably 20000 or less, and even more preferably 10,000 or less.
  • the molecular weight distribution of the brominated polyacrylate flame retardant (B) is preferably a single peak.
  • FIG. 1 is a GPC chart of pentabromobenzyl polyacrylate used in Examples and Comparative Examples, and it is preferable that the molecular weight distribution curve is a single peak like PBBPA9 or PBBPA2 used in Examples described later. It is not preferable that PBBPA4 used as a comparative example shows a two-peak distribution (double peak). Further, it is more preferable that the molecular weight distribution of the brominated polyacrylate flame retardant (B) is a single peak, and the maximum peak position thereof is in the range of molecular weight 20000 to 50000.
  • the content of the brominated polyacrylate flame retardant (B) is 3 to 60 parts by mass, preferably 5 parts by mass or more, more preferably 8 parts by mass or more with respect to 100 parts by mass of the thermoplastic polyester resin (A). Furthermore, 10 mass parts or more are preferable, Preferably it is 50 mass parts or less, More preferably, it is 40 mass parts or less, Furthermore, 30 mass parts or less are preferable. When the content is less than 3 parts by mass, the flame retardancy tends to be lowered, and the laser printability is deteriorated.
  • the resin composition of the present invention preferably contains a stabilizer.
  • a stabilizer There are various stabilizers for polyester resins such as phosphorus stabilizers, phenol stabilizers, sulfur stabilizers, etc., but the same phosphorus stabilizers are not effective with phosphite stabilizers.
  • the polyester resin composition of the present invention preferably contains a phosphate stabilizer or a phenol stabilizer, and particularly preferably contains a phosphate stabilizer.
  • phosphate stabilizer (C) an organic phosphate compound represented by the following general formula (1) or a metal salt thereof is preferable.
  • O P (OH) n (OR 1 ) 3-n (1)
  • R 1 represents an alkyl group or an aryl group.
  • N represents an integer of 0 to 2.
  • n 0, three R 1 s may be the same or different.
  • n 1, two R 1 may be the same or different.
  • Zn salt, Al salt, Mg salt, Ca salt, etc. are preferable, Zn salt or Al salt is preferable, and Zn salt is preferable.
  • R 1 represents an alkyl group or an aryl group
  • R 1 is 1 or more carbon atoms, preferably 2 or more, usually 30 or less, preferably 25 or less alkyl group, or
  • the aryl group having 6 or more carbon atoms and usually 30 or less carbon atoms is more preferable, but R 1 is preferably an alkyl group rather than an aryl group.
  • R 1 may be the same or different from each other.
  • More preferable examples of the organic phosphate compound represented by the general formula (1) include long-chain alkyl acid phosphate compounds in which R 1 has 8 to 30 carbon atoms.
  • Specific examples of the alkyl group having 8 to 30 carbon atoms include octyl group, 2-ethylhexyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, A hexadecyl group, an octadecyl group, an eicosyl group, a triacontyl group, etc. are mentioned.
  • Examples of the long-chain alkyl acid phosphate include octyl acid phosphate, 2-ethylhexyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, octadecyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, phenyl acid cyclophosphate, nonyl phenyl cyclo acid phosphate Acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, dimethyl acid phosphate, diethyl acid phosphate, dipropyl acid phosphate, diisopropyl acid phosphate, dibutyl acid phosphate, geo Chill acid phosphate, di-2-ethylhexyl acid phosphate, dioctyl acid phosphate, dilauryl acid phosphate, distearyl acid phosphate, diphenyl acid
  • octadecyl acid phosphate is preferable, and this is commercially available under the trade name “ADEKA STAB AX-71” manufactured by ADEKA.
  • a zinc salt of octadecyl acid phosphate is also preferable, and is commercially available under the trade name “JP-518Zn” manufactured by Johoku Chemical Industry Co., Ltd.
  • 1 type may be contained for the phosphate stabilizer (C), and 2 or more types may be contained in arbitrary combinations and ratios.
  • the content of the phosphate stabilizer (C) is preferably 0.01 to 1.5 parts by weight, more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the thermoplastic polyester resin (A). More preferably, it is 0.05 to 0.8 part by mass.
  • phenol stabilizer As the phenol stabilizer, a hindered phenol stabilizer is preferable.
  • Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • Pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate) is preferred.
  • phenolic antioxidants include “Irganox 1010” and “Irganox 1076” manufactured by BASF (trade names, the same applies hereinafter), “Adekastab AO-50” manufactured by ADEKA, “ADK STAB AO-60”, “ADK STAB AO-412S” and the like can be mentioned.
  • 1 type may be contained for the hindered phenol type stabilizer, and 2 or more types may be contained in arbitrary combinations and ratios.
  • the content of the phenol-based stabilizer is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). If the content is less than 0.01 parts by mass, the thermal stability tends to decrease, and if it exceeds 1 part by mass, the amount of generated gas may increase. A more preferred content is 0.05 to 0.8 parts by mass, and even more preferred is 0.1 to 0.6 parts by mass.
  • the resin composition of the present invention preferably contains an antimony compound that is a flame retardant aid.
  • the antimony compound include antimony trioxide (Sb 2 O 3 ), antimony pentoxide (Sb 2 O 5 ), and sodium antimonate.
  • antimony trioxide is preferable.
  • the content of the antimony compound is preferably 0.5 to 20 parts by mass, more preferably 0.7 to 18 parts by mass, and further preferably 1 to 15 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). Part by mass, especially 2 to 13 parts by mass, most preferably 3 to 10 parts by mass.
  • the total mass concentration of bromine atoms derived from the brominated polyacrylate flame retardant (B) and antimony atoms derived from the antimony compound in the resin composition of the present invention is usually 3 to 25% by mass, It is preferably 22% by mass, more preferably 5 to 16% by mass, and further preferably 6 to 15% by mass. If it is less than 3% by mass, the flame retardancy tends to decrease, and if it exceeds 25% by mass, the mechanical strength and tracking resistance may decrease.
  • the mass ratio (Br / Sb) of bromine atoms to antimony atoms is preferably 0.3 to 5, and more preferably 0.3 to 4.
  • the resin composition of the present invention preferably contains a metal borate, and its content is preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the mass ratio (i / ii) of the contents of (i) antimony trioxide and (ii) metal borate is preferably in the range of 1-20.
  • the ratio (i) / (ii) is preferably 2 to 18, more preferably 4 to 16.
  • the boric acid forming the boric acid metal salt is preferably non-condensed boric acid such as orthoboric acid and metaboric acid; condensed boric acid such as pyroboric acid, tetraboric acid, pentaboric acid and octaboric acid; and basic boric acid.
  • the metal that forms a salt with these may be an alkali metal, but among them, polyvalent metals such as alkaline earth metals, transition metals, and Group 2B metals of the periodic table are preferred.
  • the boric acid metal salt is preferably a hydrate.
  • borate metal salts include non-condensed borate metal salts, condensed borate metal salts, and basic borate metal salts.
  • Non-condensed borate metal salts include alkaline earth metal borates such as calcium orthoborate and calcium metaborate. Transition metal borates such as manganese orthoborate and copper metaborate; borate salts of Group 2B metals of the periodic table such as zinc metaborate and cadmium metaborate. Of these, metaborate is preferred.
  • Condensed borate salts include alkaline earth metal borates such as trimagnesium tetraborate and calcium pyroborate; transition metal borates such as manganese tetraborate and nickel diborate; periodic tables such as zinc tetraborate and cadmium tetraborate Examples thereof include borate salts of Group 2B metals.
  • Examples of the basic borate metal salt include basic borate salts of Group 2B metals of the periodic table such as basic zinc borate and basic cadmium borate.
  • hydrogen borates corresponding to these borates (for example, manganese orthoborate) can also be used.
  • an alkaline earth metal or a salt of a group 2B metal of the periodic table such as zinc borate or calcium borate is preferably used.
  • the zinc borate compounds such as zinc borate (2ZnO ⁇ 3B 2 O 3) and zinc borate ⁇ 3.5 hydrate (2ZnO ⁇ 3B 2 O 3 ⁇ 3.5H 2 O) is contained, the calcium borate compound Calcium borate anhydrous (2CaO ⁇ 3B 2 O 3 ) and the like are included.
  • calcium borates colemanite (an inorganic compound mainly composed of calcium borate, which is usually a hydrate represented by the chemical formula 2CaO ⁇ 3B 2 O 3 ⁇ 5H 2 O) may be used.
  • hydrates are preferable. Of these, zinc borates are preferred.
  • the boric acid metal salt is preferably one in which the content of alkali metal and / or alkaline earth metal in the boric acid metal salt is 2,000 mass ppm or less from the standpoint of residence heat stability.
  • the alkali metal and alkaline earth metal include K, Na, Ca, Mg, etc. Among them, those having a K and / or Ca content of 2,000 ppm by mass or less are preferable. More preferably, it is 1,500 ppm by mass or less, more preferably 1,000 ppm by mass or less, and particularly preferably 800 ppm by mass or less.
  • the content of alkali metal and / or alkaline earth metal in the borate metal salt can be measured by fluorescent X-ray analysis.
  • the boric acid metal salt used in the production of the polyester resin composition preferably has an average particle diameter of 4 ⁇ m or more, more preferably 6 ⁇ m or more, and further preferably 8 ⁇ m or more.
  • the upper limit of the average particle diameter is preferably 30 ⁇ m, more preferably 20 ⁇ m, and still more preferably 15 ⁇ m. It is preferable that the average particle size of the boric acid metal salt is less than 4 ⁇ m because the feed property at the time of melt-kneading deteriorates, the dispersion state of the resulting resin composition tends to deteriorate, and the combustibility tends to deteriorate. Absent.
  • the average particle diameter of a boric-acid metal salt says the median diameter (D50) measured by a laser diffraction method.
  • the boric acid metal salt that has been surface-treated with a surface treatment agent such as a silane coupling agent
  • a surface treatment agent any conventionally known one can be used.
  • the silane coupling agent include surface treatment agents such as aminosilane, epoxysilane, allylsilane, and vinylsilane.
  • aminosilane-based surface treatment agents are preferred.
  • Specific examples of the aminosilane coupling agent include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane. .
  • the surface treating agent such as the above silane coupling agent, other components, specifically, for example, epoxy resin, urethane resin, An acrylic resin, an antistatic agent, a lubricant, a water repellent, and the like may be included.
  • surface treatment may be performed in advance with a surface treatment agent, or in preparing the resin composition of the present invention, a surface treatment may be performed separately from an untreated metal borate salt.
  • An agent may be added for surface treatment.
  • the content of the metal borate is preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin, more preferably 0.5 parts by mass or more. 7 mass parts or less are more preferable, and it is further more preferable that it is 5 mass parts or less.
  • the resin composition of the present invention preferably further contains a release agent.
  • a release agent known mold release agents usually used for thermoplastic polyester resins can be used. Among them, one or more mold release selected from polyolefin-based compounds, fatty acid ester-based compounds and silicone-based compounds can be used. Agents are preferred.
  • polyolefin compound examples include compounds selected from paraffin wax and polyethylene wax. Among them, those having a mass average molecular weight of 700 to 10,000, more preferably 900 to 8,000 are preferable.
  • modified polyolefin compounds in which a hydroxyl group, a carboxyl group, a hydroxyl group, an epoxy group, or the like is introduced into the side chain are also particularly preferable.
  • fatty acid ester compounds include fatty acid esters such as glycerin fatty acid esters, sorbitan fatty acid esters, pentaerythritol fatty acid esters, and partially saponified products thereof. Among them, carbon atoms are 11 to 28, preferably carbon atoms. Mono- or difatty acid esters composed of fatty acids of several 17 to 21 are preferred. Specific examples include glycerol monostearate, glycerol monobehenate, glycerol dibehenate, glycerol-12-hydroxy monostearate, sorbitan monobehenate, pentaerythritol distearate, pentaerythritol tetrastearate and the like.
  • fatty acid esters such as glycerin fatty acid esters, sorbitan fatty acid esters, pentaerythritol fatty acid esters, and partially saponified products thereof.
  • carbon atoms are 11 to 28, preferably carbon
  • the silicone compound is preferably a modified compound from the viewpoint of compatibility with the thermoplastic polyester resin (A).
  • the modified silicone oil include silicone oil in which an organic group is introduced into the side chain of polysiloxane, silicone oil in which an organic group is introduced into both ends and / or one end of polysiloxane, and the like.
  • the organic group to be introduced include an epoxy group, an amino group, a carboxyl group, a carbinol group, a methacryl group, a mercapto group, and a phenol group, and preferably an epoxy group.
  • a silicone oil in which an epoxy group is introduced into the side chain of polysiloxane is particularly preferable.
  • the content of the release agent is preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). If the amount is less than 0.05 parts by mass, the surface property tends to be lowered due to defective mold release at the time of melt molding.
  • the surface of the product may be cloudy.
  • the content of the release agent is preferably 0.1 to 1.5 parts by mass, more preferably 0.3 to 1.0 parts by mass.
  • the resin composition of the present invention preferably contains a lubricant.
  • Lubricants include paraffins such as paraffin oil and solid paraffin, higher fatty acids such as stearic acid, higher alcohols such as palmityl alcohol and stearyl alcohol, calcium stearate, zinc stearate, barium stearate, aluminum stearate, magnesium stearate, etc.
  • Fatty acid metal salts such as butyl stearate, glycerin monostearate, diethylene glycol monostearate, stearamide, methylenebisstearamide, ethylenebisstearamide, ethylenediamide of oxystearic acid, methylolamide, oleylamide And fatty acid amides such as stearic acid amide and erucic acid amide, and waxes such as carnauba wax and montan wax.
  • calcium stearate is particularly preferred.
  • the content of the lubricant is preferably 0.01 to 2 parts by mass, more preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the resin composition of the present invention may contain various additives other than those described above as long as the effects of the present invention are not significantly impaired.
  • additives include flame retardants other than brominated polyacrylate flame retardant (B), flame retardant aids other than antimony compounds, ultraviolet absorbers, fillers, antistatic agents, antifogging agents, dyes and pigments, Examples thereof include a fluorescent whitening agent, an antiblocking agent, a fluidity improver, a plasticizer, a dispersant, and an antibacterial agent. Two or more of these may be used in combination.
  • flame retardant other than the brominated polyacrylate flame retardant (B) include brominated polycarbonate, brominated epoxy compound, brominated polystyrene, and brominated polyphenylene ether.
  • the polyester resin composition of the present invention can contain a thermoplastic resin other than the thermoplastic polyester resin (A) within a range that does not significantly impair the effects of the present invention.
  • the other thermoplastic resins include polyamide resins, polycarbonate resins, polyphenylene oxide resins, polyacetal resins, styrene resins (including ABS resins), polyphenylene sulfide ethylene resins, polysulfone resins, and polyether sulfones.
  • Resins, polyetherimide resins, polyetherketone resins, polyolefin resins and the like can be mentioned. It is also preferable to contain various elastomers from the viewpoint of improving impact resistance.
  • the resin composition of the present invention is produced by mixing and melting and kneading each component. Specifically, the thermoplastic polyester resin (A), the brominated polyacrylate flame retardant (B), and the components to be blended as necessary are mixed in advance using various mixers such as a tumbler and a Henschel mixer, and then Banbury.
  • the resin composition can be produced by melt-kneading with a mixer, roll, brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader or the like. At this time, it is preferred that the brominated polyacrylate flame retardant (B) is washed with warm water of 40 to 100 ° C., dried and mixed with the thermoplastic polyester resin (A).
  • the resin composition of the present invention can also be produced.
  • a resin composition obtained by mixing some components in advance, supplying them to an extruder and melt-kneading is used as a master batch, and this master batch is mixed with the remaining components again and melt-kneaded.
  • the resin composition of the present invention can also be produced.
  • fibrous things, such as glass fiber, as a filler it is also preferable to supply from the side feeder in the middle of the cylinder of an extruder.
  • the polyester resin composition according to the second aspect of the present invention contains 3 to 60 parts by mass of a brominated polyacrylate flame retardant (B) with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the polyester resin composition is characterized in that the Na element concentration measured by atomic absorption spectrometry is 1 to 400 ppm.
  • the Na element concentration of the polyester-based resin composition is less than 1 ppm, the laser printability of the molded product obtained from the polyester resin composition is poor, and when the Na element concentration exceeds 400 ppm, the melt heat stability of the resin during the production of the polyester composition is poor. Becomes poor and the viscosity retention is reduced. This is presumably due to the phenomenon that the polyester resin is generally hydrolyzed in the presence of an alkali metal.
  • the upper limit of the Na element concentration is preferably 350 ppm, more preferably 300 ppm, further 250 ppm, more preferably 200 ppm, especially 150 ppm, and most preferably 100 ppm.
  • the concentration of Na element in the polyester resin composition is measured by atomic absorption analysis.
  • the method for producing a resin molded product from the resin composition of the present invention is not particularly limited, and a molding method generally employed for thermoplastic polyester resins, that is, a general injection molding method, an ultra-high speed injection molding method. , Injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, foam molding (including supercritical fluid), inserter It is possible to employ a molding method, an IMC (in-mold coating molding) molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, a press molding method and the like. A molding method using a hot runner method can also be selected. In particular, injection molding is preferable.
  • the polyester-based resin composition of the present invention is excellent in flame retardancy and melt heat stability, and is excellent in laser printability. Therefore, it can be widely used in various applications, such as electrical equipment, electronic equipment or parts thereof. Especially suitable as relays, switches, connectors, circuit breakers, electromagnetic switches, terminal switches, sensors, actuators, microswitches, microsensors and microactuators, etc. Can be preferably mentioned.
  • pentabromobenzyl polyacrylates PBBPA 1 to 3 and 5 to 7 in Table 1 are those obtained by washing the PBBPA produced by the above steps 1 to 4 as described in Table 1.
  • the concentration of Na element in PBBPA 1 to 7 was measured by fluorescent X-ray analysis, and those not detected were measured again by emission spectroscopic analysis (ICP).
  • the Mg ion concentration and Al ion concentration were measured by ICP emission spectroscopic analysis.
  • the water used for cleaning PBBPA was prepared using a commercially available ultrapure water production apparatus “Mimpicity UV” manufactured by Japan Millipore Corporation (the same applies to the water used for water cleaning in the following examples). is there.).
  • Examples 1 to 7, Comparative Examples 1 to 9 Each component described in Table 1 above was blended in the amounts (all parts by mass) described in Tables 2 to 3 below, and a twin-screw extruder (“TEX30 ⁇ ” manufactured by Nippon Steel Works) was used to set the barrel set temperature.
  • TEX30 ⁇ manufactured by Nippon Steel Works
  • calcium stearate which is a lubricant is dry blended in an amount ratio of 0.1 parts by mass with respect to 100 parts by mass of polybutylene terephthalate resin, and externally added to the obtained pellets to form resin composition pellets. Obtained.
  • the percentage of the pellet IV with respect to the preparation IV ([pellet IV / preparation IV] ⁇ 100) was determined and used as the intrinsic viscosity retention (unit:%). It can be said that the higher the intrinsic viscosity retention value, the less the resin is decomposed.
  • the obtained resin composition pellets were formed into a plate-shaped molded product having a thickness of 100 mm ⁇ 100 mm ⁇ 2 mm on an injection molding machine (“NEX80” manufactured by Nissei Plastic Industry Co., Ltd.) under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. Injection molded.
  • NEX80 manufactured by Nissei Plastic Industry Co., Ltd.
  • the laser oscillation method is a fiber method, laser power: 100, printing pulse cycle: 50 ⁇ s, line width: 0.07 mm, filling interval: 0.035 mm, number of overprinting
  • the laser marking was performed so that a square of 20 mm ⁇ 20 mm was painted on the flat plate-shaped molded article under the conditions of one time.
  • the scanning speed was 5000 mm / sec.
  • the determination of the laser printability was made by visually observing the test piece subjected to the laser printing process and dividing it into ranks of ⁇ , ⁇ , and ⁇ based on the following judgment criteria.
  • Clear prints are made and can be easily recognized.
  • The print can be recognized.
  • X Printing is not performed at all, or recognition of printing is difficult.
  • the PBBPA 8 is obtained by washing the PBBPA produced by the above-described steps 1 to 4 with hot water at 90 ° C. for 3 hours.
  • the Na element concentration of PBBPA8 was measured by fluorescent X-ray analysis, and the Mg ion concentration and Al ion concentration were measured by ICP emission spectroscopic analysis.
  • each component was blended in the amounts (all parts by mass) listed in Table 5 below, and using a twin screw extruder (“TEX30 ⁇ ” manufactured by Nippon Steel), the barrel set temperature was 260 ° C. and the screw rotation speed was 200 rpm. The mixture was kneaded under the above conditions, extruded into a strand, rapidly cooled in a water tank, and pelletized with a pelletizer to obtain pellets.
  • calcium stearate was dry blended in an amount ratio of 0.1 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin, and externally added to obtain pellets of the resin composition. Evaluation was performed in the same manner as described above, and the results are shown in Table 5 below.
  • the PBBPA 9 in Table 6 above is obtained by repeating the washing of the PBBPA produced in the above-described steps 1 to 4 with hot water at 90 ° C. for 2 hours twice.
  • the Na element concentration of PBBPA9 was measured by X-ray fluorescence analysis.
  • the polyester-based resin composition of the present invention is excellent in flame retardancy and melt heat stability, and also has excellent laser printability, so it can be widely used in various applications, and can be used for electrical equipment, electronic equipment or insulation thereof. It can be particularly suitably used as a functional part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

難燃性と溶融熱安定性に優れ、レーザー印字性にも優れるポリエステル系樹脂組成物及びその製造方法を提供する。 熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、臭素化ポリアクリレート系難燃剤(B)の蛍光X線分析法によって測定されるNa元素濃度が5~4000ppmであることを特徴とするポリエステル系樹脂組成物、及び、臭素化ポリアクリレート系難燃剤(B)を40~100℃の温水で洗浄後、乾燥し、熱可塑性ポリエステル樹脂(A)と混合することを特徴とする製造方法。

Description

ポリエステル系樹脂組成物及びその製造方法
 本発明は、ポリエステル系樹脂組成物及びその製造方法に関するものであり、詳しくは、難燃性と溶融熱安定性に優れ、また金属部品と近接して長時間使用しても金属部品を腐食させることが少なく、溶融熱安定性やレーザー印字性にも優れるポリエステル系樹脂組成物及びその製造方法に関する。
 ポリブチレンテレフタレートやポリエチレンテレフタレートに代表される熱可塑性ポリエステル樹脂は、機械的強度、耐薬品性及び電気絶縁性等に優れており、また優れた耐熱性、成形性、リサイクル性を有していることから、電気電子機器部品、自動車部品その他の電装部品、機械部品等に広く用いられている。
 電気電子機器部品等は、近年の著しい部品の小型化薄肉化の進展に伴い、薄肉での高度の難燃性が求められており、UL-94で規定する垂直燃焼ランクV-0を達成することが要望されている。熱可塑性樹脂を難燃化するには難燃剤が配合される。
 本出願人は、特許文献1にて、熱可塑性ポリエステル樹脂に、臭素系難燃剤を特定量含有し、遊離の臭素量が特定量以下であり、樹脂組成物のイエローインデックスが23以下であるポリエステル樹脂組成物の発明を提案した。この発明では、臭素系難燃剤として、具体的には、ペンタブロモベンジルポリアクリレート等の臭素化ベンジルポリ(メタ)アクリレート、臭素化エポキシ化合物、臭素化ポリスチレン、臭素化イミド化合物が好ましく、特には臭素化ポリスチレンが好ましいことが開示されている(特許文献1、[0022]参照)。
 しかしながら、ここで好ましい難燃剤とされる臭素化ポリアクリレート系難燃剤を熱可塑性ポリエステル樹脂に配合してコンパウンディングすると、熱可塑性ポリエステル樹脂が、分解してしまうことがあったり溶融熱安定性が悪くなりやすいことが見いだされた。
 また、成形時に高温に曝されるために、成形時に腐食性ガスが発生し、金型汚染や成形品の表面外観不良などの問題を引き起こすことも見い出された。さらに電装部品などは端子など金属部品を近接して使用する場合が多くあり、長時間の使用により近接する金属部品を腐食させてしまう問題も見出された。
 また、機器部品には、通常、製造会社名、銘柄名、品番または製造ロットナンバー等を明示するための印字が施されるが、最近は、印字速度の速いレーザーマーキングが多用されている。特に部品の小型化などから、より鮮明な印字特性が要求され、且つ印字速度の向上による生産性向上の観点から、レーザー印字性に優れることも求められている。
 したがって、熱可塑性ポリエステル樹脂に臭素化ポリアクリレート系難燃剤を適用する場合、難燃性は勿論、溶融熱安定性に優れ、成形時のガス発生量が少ないこと、さらにレーザー印字性にも優れることが必要となる。
特開2013-57009号公報
 本発明の目的(課題)は、難燃性、溶融熱安定性に優れ、さらにレーザー印字性にも優れるポリエステル系樹脂組成物及びその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、臭素化ポリアクリレート系難燃剤中には、その製造過程でNaが混入することがあり、そのNaの量が、熱可塑性ポリエステル樹脂の熱安定性に大きく関係し、且つレーザー印字性に影響すること、さらにそのNa元素濃度に適正値があることを見出し、本発明を完成させた。
 本発明は、以下の通りである。
[1]熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、臭素化ポリアクリレート系難燃剤(B)の蛍光X線分析法によって測定されるNa元素濃度が5~4000ppmであることを特徴とするポリエステル系樹脂組成物。
[2]臭素化ポリアクリレート系難燃剤(B)のNa元素濃度が100~1500ppmである上記[1]に記載のポリエステル系樹脂組成物。
[3]臭素化ポリアクリレート系難燃剤(B)のICP発光分析により測定されるMgイオン濃度が5~2000ppmであり、Alイオン濃度が5~3000ppmである上記[1]又は[2]に記載のポリエステル系樹脂組成物。
[4]臭素化ポリアクリレート系難燃剤(B)がペンタブロモベンジルポリアクリレートである上記[1]~[3]のいずれかに記載のポリエステル系樹脂組成物。
[5]臭素化ポリアクリレート系難燃剤(B)が臭化ナトリウムを含有する上記[1]~[4]のいずれかに記載のポリエステル系樹脂組成物。
[6]さらに、ホスフェート系安定剤(C)を含有する上記[1]~[5]のいずれかに記載のポリエステル系樹脂組成物。
[7]臭素化ポリアクリレート系難燃剤(B)の質量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が5.5以下である上記[1]~[6]のいずれかに記載のポリエステル系樹脂組成物。
[8]臭素化ポリアクリレート系難燃剤(B)のGPCで測定する質量平均分子量(Mw)が10000以上である上記[1]~[7]のいずれかに記載のポリエステル系樹脂組成物。
[9]熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、該樹脂組成物の原子吸光分析法によって測定されるNa元素濃度が1~400ppmであることを特徴とするポリエステル系樹脂組成物。
[10]熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有するポリエステル系樹脂組成物を製造する方法であって、臭素化ポリアクリレート系難燃剤(B)を40~100℃の温水で洗浄後、乾燥し、熱可塑性ポリエステル樹脂(A)と混合することを特徴とするポリエステル系樹脂組成物の製造方法。
 本発明のポリエステル系樹脂組成物は、難燃性に優れ、成形時の金型腐食が少なく、金属部品と近接して長時間使用しても金属部品を腐食させることが少なく、溶融熱安定性やレーザー印字性にも優れる。
図1は、実施例及び比較例で使用したペンタブロモベンジルポリアクリレートのGPCチャート図である。
 本発明の第1の態様のポリエステル系樹脂組成物は、熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、臭素化ポリアクリレート系難燃剤(B)の蛍光X線分析法によって測定されるNa元素濃度が5~4000ppmであることを特徴とする。
 また、本発明の第2の態様のポリエステル系樹脂組成物は、熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、該樹脂組成物の原子吸光分析法によって測定されるNa元素濃度が1~400ppmであることを特徴とする。
 さらに、本発明のポリエステル系樹脂組成物の製造方法は、熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有するポリエステル系樹脂組成物を製造する方法であって、臭素化ポリアクリレート系難燃剤(B)を40~100℃の温水で洗浄後、乾燥し、熱可塑性ポリエステル樹脂(A)と混合することを特徴とする。
 以下、本発明の内容について詳細に説明する。
 以下に記載する各構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。なお、本願明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用され、また、「ppm」とは質量ppmを意味する。
[熱可塑性ポリエステル樹脂(A)]
 本発明の樹脂組成物の主成分である熱可塑性ポリエステル樹脂(A)とは、ジカルボン酸化合物とジヒドロキシ化合物の重縮合、オキシカルボン酸化合物の重縮合あるいはこれらの化合物の重縮合等によって得られるポリエステルであり、ホモポリエステル、コポリエステルの何れであってもよい。
 熱可塑性ポリエステル樹脂(A)を構成するジカルボン酸化合物としては、芳香族ジカルボン酸又はそのエステル形成性誘導体が好ましく使用される。
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルフォン-4,4’-ジカルボン酸、ジフェニルイソプロピリデン-4,4’-ジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、アントラセン-2,5-ジカルボン酸、アントラセン-2,6-ジカルボン酸、p-ターフェニレン-4,4’-ジカルボン酸、ピリジン-2,5-ジカルボン酸等が挙げられ、テレフタル酸が好ましく使用できる。
 これらの芳香族ジカルボン酸は2種以上を混合して使用してもよい。これらは周知のように、遊離酸以外にジメチルエステル等をエステル形成性誘導体として重縮合反応に用いることができる。
 なお、少量であればこれらの芳香族ジカルボン酸と共にアジピン酸、アゼライン酸、ドデカンジオン酸、セバシン酸等の脂肪族ジカルボン酸や、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸及び1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸を1種以上混合して使用することができる。
 熱可塑性ポリエステル樹脂(A)を構成するジヒドロキシ化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、へキシレングリコール、ネオペンチルグリコール、2-メチルプロパン-1,3-ジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール、シクロヘキサン-1,4-ジメタノール等の脂環式ジオール等、及びそれらの混合物等が挙げられる。なお、少量であれば、分子量400~6000の長鎖ジオール、すなわち、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合せしめてもよい。
 また、ハイドロキノン、レゾルシン、ナフタレンジオール、ジヒドロキシジフェニルエーテル、2,2-ビス(4-ヒドロキシフェニル)プロパン等の芳香族ジオールも用いることができる。
 また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。
 熱可塑性ポリエステル樹脂(A)としては、通常は主としてジカルボン酸とジオールとの重縮合からなるもの、即ち樹脂全体の50質量%、好ましくは70質量%以上がこの重縮合物からなるものを用いる。ジカルボン酸としては芳香族カルボン酸が好ましく、ジオールとしては脂肪族ジオールが好ましい。
 中でも好ましいのは、酸成分の95モル%以上がテレフタル酸であり、アルコール成分の95質量%以上が脂肪族ジオールであるポリアルキレンテレフタレートである。その代表的なものはポリブチレンテレフタレート及びポリエチレンテレフタレートである。これらはホモポリエステルに近いもの、即ち樹脂全体の95質量%以上が、テレフタル酸成分及び1,4-ブタンジオール又はエチレングリコール成分からなるものであるのが好ましい。
 熱可塑性ポリエステル樹脂(A)の固有粘度は、0.3~2dl/gであるものが好ましい。固有粘度が0.3dl/gより低いものを用いると、得られる樹脂組成物が機械的強度の低いものとなりやすい。また2dl/gより高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化したりする場合がある。固有粘度は、成形性及び機械的特性の点からして、より好ましくは0.4dl/g以上、さらには0.5dl/g以上、特には0.6dl/g以上が好ましく、また、より好ましくは1.5dl/g以下、さらには1.2dl/g以下、特には0.8dl/g以下が好ましい。
 なお、熱可塑性ポリエステル樹脂(A)の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
 熱可塑性ポリエステル樹脂(A)の末端カルボキシル基量は、適宜選択して決定すればよいが、通常、60eq/ton以下であり、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。50eq/tonを超えると、樹脂組成物の溶融成形時にガスが発生しやすくなる。末端カルボキシル基量の下限値は特に定めるものではないが、通常3eq/ton、好ましくは5eq/ton、より好ましくは10eq/tonである。
 なお、熱可塑性ポリエステル樹脂(A)の末端カルボキシル基量は、ベンジルアルコール25mlに樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定により測定する値である。末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
 中でも、熱可塑性ポリエステル樹脂(A)は、ポリブチレンテレフタレート樹脂を含むものであることが好ましく、熱可塑性ポリエステル樹脂(A)中の50質量%以上がポリブチレンテレフタレート樹脂であることが好ましい。
 ポリブチレンテレフタレート樹脂は、テレフタル酸を主成分とするジカルボン酸成分又はこれらのエステル誘導体と、1,4-ブタンジオールを主成分とするジオール成分を、回分式又は通続式で溶融重合させて製造することができる。また、溶融重合で低分子量のポリブチレンテレクタレート樹脂を製造した後、さらに窒素気流下又は減圧下固相重合させることにより、重合度(又は分子量)を所望の値まで高めることができる。
 ポリブチレンテレフタレート樹脂は、テレフタル酸を主成分とするジカルボン酸成分と1,4-ブタンジオールを主成分とするジオール成分とを、連続式で溶融重縮合する製造法が好ましい。
 エステル化反応を遂行する際に使用される触媒は、従来から知られているものであってよく、例えば、チタン化合物、錫化合物、マグネシウム化合物、カルシウム化合物などを挙げることができる。これらの中で特に好適なものは、チタン化合物である。エステル化触媒としてのチタン化合物の具体例としては、例えば、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネートなどのチタンアルコラート、テトラフェニルチタネートなどのチタンフェノラートなどを挙げることができる。
 ポリブチレンテレフタレート樹脂は、共重合により変性したポリブチレンテレフタレート樹脂(以下、「変性ポリブチレンテレフタレート樹脂」ということもある。)であってもよいが、その具体的な好ましい共重合体としては、ポリアルキレングリコール類(特にはポリテトラメチレングリコール)を共重合したポリエステルエーテル樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が挙げられる。
 変性ポリブチレンテレフタレート樹脂として、ポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂を用いる場合は、共重合体中のテトラメチレングリコール成分の割合は3~40質量%であることが好ましく、5~30質量%がより好ましく、10~25質量%がさらに好ましい。
 変性ポリブチレンテレフタレート樹脂として、ダイマー酸共重合ポリブチレンテレフタレート樹脂を用いる場合は、全カルボン酸成分に占めるダイマー酸成分の割合は、カルボン酸基として0.5~30モル%であることが好ましく、1~20モル%がより好ましく、3~15モル%がさらに好ましい。
 変性ポリブチレンテレフタレート樹脂として、イソフタル酸共重合ポリブチレンテレフタレート樹脂を用いる場合は、全カルボン酸成分に占めるイソフタル酸成分の割合は、カルボン酸基として1~30モル%であることが好ましく、1~20モル%がより好ましく、3~15モル%がさらに好ましい。
 変性ポリブチレンテレフタレート樹脂の中でも、ポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が好ましい。
 ポリブチレンテレフタレート樹脂の固有粘度は、0.5~2dl/gであるものが好ましい。成形性及び機械的特性の点からして、0.6~1.5dl/gの範囲の固有粘度を有するものがより好ましい。固有粘度が0.5dl/gより低いものを用いると、得られる樹脂組成物が機械的強度の低いものとなりやすい。また2dl/gより高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化する場合がある。
 ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、適宜選択して決定すればよいが、通常、60eq/ton以下であり、50eq/ton以下であることが好ましく、40eq/ton以下であることがより好ましく、30eq/ton以下であることがさらに好ましい。50eq/tonを超えると、樹脂組成物の溶融成形時にガスが発生しやすくなる。末端カルボキシル基量の下限値は特に定めるものではないが、ポリブチレンテレフタレート樹脂の製造の生産性を考慮し、通常、10eq/tonである。
 なお、ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、ベンジルアルコール25mLにポリアルキレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定により測定する値である。末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
 熱可塑性ポリエステル樹脂(A)としては、ポリブチレンテレフタレートホモポリマーと前記変性ポリブチレンテレフタレート樹脂とを含むものも好ましい。変性ポリブチレンテレフタレート樹脂を特定量含有することにより、ウエルド強度が向上しやすくなり好ましい。
 ポリブチレンテレフタレートホモポリマーと変性ポリブチレンテレフタレート樹脂とを含有する場合の含有量は、ポリブチレンテレフタレートホモポリマーと変性ポリブチレンテレフタレート樹脂の合計100質量%に対して、変性ポリブチレンテレフタレート樹脂が、好ましくは5~50質量%であり、より好ましくは10~40質量%であり、さらに好ましくは15~30質量%である。
 さらに、熱可塑性ポリエステル樹脂(A)は、ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂とを含有することも好ましい。
 ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂とを含有する場合の含有量は、ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂の合計100質量%に対して、ポリエチレンテレフタレート樹脂が、好ましくは5~50質量%であり、より好ましくは10~45質量%であり、さらに好ましくは15~40質量%である。
 ポリエチレンテレフタレート樹脂は、全構成繰り返し単位に対するテレフタル酸及びエチレングリコールからなるオキシエチレンオキシテレフタロイル単位を主たる構成単位とする樹脂であり、オキシエチレンオキシテレフタロイル単位以外の構成繰り返し単位を含んでいてもよい。ポリエチレンテレフタレート樹脂は、テレフタル酸又はその低級アルキルエステルとエチレングリコールとを主たる原料として製造されるが、他の酸成分及び/又は他のグリコール成分を併せて原料として用いてもよい。
 テレフタル酸以外の酸成分としては、フタル酸、イソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、4,4’-ビフェニルジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-フェニレンジオキシジ酢酸及びこれらの構造異性体、マロン酸、コハク酸、アジピン酸等のジカルボン酸及びその誘導体、p-ヒドロキシ安息香酸、グリコール酸等のオキシ酸又はその誘導体が挙げられる。
 また、エチレングリコール以外のジオール成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環式グリコール、ビスフェノールA、ビスフェノールS等の芳香族ジヒドロキシ化合物誘導体等が挙げられる。
 更に、ポリエチレンテレフタレート樹脂は、分岐成分、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の如き三官能、もしくはピロメリット酸の如き四官能のエステル形性能を有する酸、又はグリセリン、トリメチロールプロパン、ペンタエリトリット等の如き三官能もしくは四官能のエステル形成能を有するアルコールを1.0モル%以下、好ましくは0.5モル%以下、更に好ましくは0.3モル%以下を共重合せしめたものであってもよい。
 ポリエチレンテレフタレート樹脂の固有粘度は、好ましくは0.3~1.5dl/g、さらに好ましくは0.3~1.2dl/g、特に好ましくは0.4~0.8dl/gである。
 また、ポリエチレンテレフタレート樹脂の末端カルボキシル基の濃度は、3~50eq/ton、中でも5~40eq/ton、更には10~30eq/tonであることが好ましい。
 なお、ポリエチレンテレフタレート樹脂の末端カルボキシル基濃度は、ベンジルアルコール25mLにポリエチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を使用して滴定することにより求める値である。
 末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
[臭素化ポリアクリレート系難燃剤(B)]
 本発明のポリエステル系樹脂組成物は、難燃剤として臭素化ポリアクリレート系難燃剤(B)を含有する。臭素化ポリアクリレート系難燃剤(B)としては、臭素原子を含有するアクリレートモノマー、特にベンジル(メタ)アクリレートを単独で重合、又は2種以上を共重合、もしくは他のビニル系モノマーと共重合させることによって得られる重合体であることが好ましく、臭素原子は、ベンゼン環に付加しており、付加数はベンゼン環1個あたり1~5個、中でも4~5個付加したものであることが好ましい。
 臭素原子を含有するベンジルアクリレートとしては、ペンタブロモベンジルアクリレート、テトラブロモベンジルアクリレート、トリブロモベンジルアクリレート、又はそれらの混合物等が挙げられる。また、臭素原子を含有するベンジルメタクリレートとしては、上記したアクリレートに対応するメタクリレートが挙げられる。
 臭素原子を含有するベンジル(メタ)アクリレートと共重合させるために使用される他のビニル系モノマーとしては、具体的には、例えばアクリル酸や、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレートのようなアクリル酸エステル類;メタクリル酸や、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ベンジルメタクリレートのようなメタクリル酸エステル類;スチレン、アクリロニトリル、フマル酸、マレイン酸のような不飽和カルボン酸又はその無水物;酢酸ビニル、塩化ビニル等が挙げられる。
 共重合させるために使用される他のビニル系モノマーは、通常、臭素原子を含有するベンジル(メタ)アクリレートに対して等モル量以下、中でも0.5倍モル量以下で用いることが好ましい。
 また、他のビニル系モノマーとしては、キシレンジアクリレート、キシレンジメタクリレート、テトラブロモキシレンジアクリレート、テトラブロモキシレンジメタクリレート、ブタジエン、イソプレン、ジビニルベンゼン等を使用することもでき、これらは通常、臭素原子を含有するベンジルアクリレート又はベンジルメタクリレートに対し、0.5倍モル量以下が使用できる。
 臭素化ポリアクリレート系難燃剤(B)としては、ペンタブロモベンジルポリアクリレートが、高臭素含有量であること、電気絶縁特性(耐トラッキング特性)の点で好ましい。
 本発明では、臭素化ポリアクリレート系難燃剤(B)として、蛍光X線分析法によって測定されるNa元素濃度が5~4000ppmの範囲にあるものを使用する。Na元素濃度が5ppmより少ないものでは、ポリエステル樹脂組成物より得られる成形体のレーザー印字性が悪く、Na元素濃度が4000ppmを超えるとポリエステル組成物製造時に樹脂の溶融熱安定が不良となり、粘度保持性が低下してしまう。
 Na元素濃度の下限は、好ましくは10ppmであり、より好ましくは30ppmであり、さらに好ましくは50ppmであり、中でも100ppm、特には500ppmが好ましい。上限は好ましくは3500ppmであり、より好ましくは3000ppmであり、さらには2500ppm、中でも2000ppm、特には1500ppmが好ましく、1000ppmが最も好ましい。
 臭素化ポリアクリレート系難燃剤(B)中のNa元素濃度は、蛍光X線分析法により測定される。なお、Na元素濃度が低濃度で、仮に蛍光X線分析法にて非検出となった場合は、高周波誘導結合プラズマ(ICP)を光源とする発光分光分析法であるICP発光分光分析法により改めて測定を行う。
 上記したNa元素濃度が5~4000ppmの臭素系難燃剤は、好ましくは、臭素化ポリアクリレート系難燃剤(B)を40~100℃の温水で洗浄することによって製造することができる。
 臭素系難燃剤として、ペンタブロモベンジルポリアクリレート(以下、PBBPAともいう。)を例に本発明で用いる臭素化ポリアクリレート系難燃剤(B)の好ましい製造方法を説明すると、本発明で使用されるPBBPAは、好ましくは以下の工程1~4からなる方法で製造される。
  工程1:C-CH+Br → CBr-CH
  工程2:C-CH+Br → CBr-CHBr
  工程3:CBr-CHBr + CH=CH-COOH
       →CH=CH-COOCH-CBr
  工程4:CH=CH-COOCH-CBr →重合→PBBPA
 この製造方法によれば、臭素濃度の高いPBBPAを、高収率で得ることができる。そして、得られたPBBPAを水洗浄する。上記工程3において、HBr、NaOH、無水炭酸Na等を添加することが行われ、そのため得られるPBBPAにはNaが残存する。
 水洗浄は温度が40~100℃の温水で洗浄することが好ましく、水洗浄後は、乾燥してNa元素濃度が5~4000ppmのPBBPAを得ることができる。水洗浄の代わりにメタノール洗浄では上記範囲のNa元素濃度に調整することは難しくなるので好ましくない。水洗浄の際の温水は60~100℃が好ましく、より好ましくは85~100℃である。
 また、臭素化ポリアクリレート系難燃剤(B)は、高周波誘導結合プラズマ(ICP)を光源とする発光分光分析法であるICP発光分光分析により測定されるMgイオン濃度が5~2000ppmであることが好ましい。また、Alイオン濃度が5~3000ppmであることが好ましい。Mgイオン濃度がこのような範囲にあることでPBT樹脂組成物の滞留熱安定性が良好となり。また、Alイオン濃度が上記範囲にあることで成形加工性の点から良好となる。
 臭素化ポリアクリレート系難燃剤(B)としては、ゲルパーミエーションクロマトグラフィー(GPC)で測定する質量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が5.5以下であるものが好ましい。Mw/Mnが5.5以下であるものを用いることで、難燃性に優れ、成形時のガス発生量が少なく金型汚染が低減されやすく、また溶融熱安定性やレーザー印字性にも優れた樹脂組成物となりやすい。その理由は、未だ十分には解明できてはいないが、Mw/Mnが5.5以下という狭い分子量分布であることで、ガス発生原因となりやすい低分子量成分が少ないことに起因しているものと考えられる。Mw/Mnは、より好ましくは5.0以下であり、さらに好ましくは4.5以下であり、また、より好ましくは3.0以上である。
 また、臭素化ポリアクリレート系難燃剤(B)の質量平均分子量(Mw)は、大きい方が発生する腐食性ガスは少なくなるため好ましい。具体的には、10000以上が好ましく、15000以上がより好ましく、20000以上がさらに好ましい。質量平均分子量(Mw)に上限はないが、大きすぎると溶融分散が十分にできないことが考えられるので、ある程度は小さい方が好ましく、具体的には200000以下が好ましく、100000以下であればより好ましく、50000以下であればさらに好ましい。
 数平均分子量(Mn)も考え方は上記した質量平均分子量(Mw)と同様に、大きい方が発生する腐食性ガスは少ないと考えられるので好ましい。具体的にはで3000以上が好ましく、4500以上であればより好ましく、6000以上であればさらに好ましい。数平均分子量(Mn)に上限はないが、これも質量平均分子量(Mw)と同様に大きすぎると溶融分散が十分にできないことが考えられるので、ある程度は小さい方が好ましく、具体的には30000以下が好ましく、20000以下であればより好ましく、10000以下であればさらに好ましい。
 また、臭素化ポリアクリレート系難燃剤(B)の分子量分布は、シングルピークであることが好ましい。図1は、実施例及び比較例で使用したペンタブロモベンジルポリアクリレートのGPCチャートであるが、後記する実施例に使用したPBBPA9やPBBPA2のようにその分子量分布曲線はシングルピークであるものが好ましく、比較例として用いたPBBPA4のように2山分布(ダブルピーク)を示すものは好ましくない。さらに、臭素化ポリアクリレート系難燃剤(B)の分子量分布がシングルピークであって、且つその最大ピーク位置は分子量20000~50000の範囲にあることがより好ましい。
 臭素化ポリアクリレート系難燃剤(B)の分子量分布Mw/Mnを5.5以下に、また、さらに好ましくはシングルピークに調整するには、各種の公知の方法で可能であるが、原料臭素化アクリレート単量体をジクミルパーオキサイド等の重合開始剤にて重合する際の攪拌速度を調整する方法とか、アルキルリチウム重合開始剤を用いてアニオン重合する方法、あるいはアルキルマグネシウムブロミド等のグリニヤール試薬を重合開始剤として重合する方法等が挙げられる。
 また、市販されているものの中から、本発明で規定する条件を満たすものを適宜選択して使用することでも可能である。
 臭素化ポリアクリレート系難燃剤(B)の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対し、3~60質量部であり、好ましくは5質量部以上、より好ましくは8質量部以上、さらには10質量部以上が好ましく、好ましくは50質量部以下、より好ましくは40質量部以下、さらには30質量部以下が好ましい。含有量が3質量部を下回ると難燃性が低下傾向となり、またレーザー印字性が悪くなる。逆に、60質量部を超えると発生ガスが多く、金型汚染ならびに成形品においても接点汚染等の原因となり、またポリエステル組成物製造時に樹脂の溶融熱安定が不要となり、粘度保持性が低下してしまう。
[ホスフェート系安定剤(C)]
 本発明の樹脂組成物は安定剤を含有することが好ましい。
 ポリエステル系樹脂用の安定剤としては、リン系安定剤、フェノール系安定剤、硫黄系安定剤等、種々の安定剤があるが、同じリン系安定剤でもホスファイト系安定剤等では効果は不十分となりやすく、本発明のポリエステル系樹脂組成物ではホスフェート系安定剤またはフェノール系安定剤を含有することが好ましく、特にホスフェート系安定剤を含有することが好ましい。
 ホスフェート系安定剤(C)としては、下記一般式(1)で表される有機ホスフェート化合物又はその金属塩が好ましい。
  O=P(OH)(OR3-n ・・・(1)
(一般式(1)中、Rはアルキル基又はアリール基を表す。nは0~2の整数を表す。なお、nが0のとき、3つのRは同一でも異なっていてもよく、nが1のとき、2つのRは同一でも異なっていてもよい。)
 金属塩としては、Zn塩、Al塩、Mg塩、Ca塩等が好ましく、Zn塩又はAl塩が好ましく、Zn塩が好ましい。
 上記一般式(1)において、Rはアルキル基又はアリール基を表すが、Rは、炭素数が1以上、好ましくは2以上であり、通常30以下、好ましくは25以下のアルキル基、又は、炭素数が6以上、通常30以下のアリール基であることがより好ましいが、Rは、アリール基よりもアルキル基が好ましい。なお、Rが2以上存在する場合、R同士はそれぞれ同一であっても異なっていてもよい。
 一般式(1)で示される有機ホスフェート化合物として、より好ましくは、Rが炭素原子数8~30の長鎖アルキルアシッドホスフェート化合物が挙げられる。炭素原子数8~30のアルキル基の具体例としては、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、トリアコンチル基等が挙げられる。
 長鎖アルキルアシッドホスフェートとしては、例えば、オクチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、オクタデシルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、ビスフェノールAアシッドホスフェート、ジメチルアシッドホスフェート、ジエチルアシッドホスフェート、ジプロピルアシッドホスフェート、ジイソプロピルアシッドホスフェート、ジブチルアシッドホスフェート、ジオクチルアシッドホスフェート、ジ-2-エチルヘキシルアシッドホスフェート、ジオクチルアシッドホスフェート、ジラウリルアシッドホスフェート、ジステアリルアシッドホスフェート、ジフェニルアシッドホスフェート、ビスノニルフェニルアシッドホスフェート等が挙げられる。
 また、これらの金属塩も同様に挙げられ、特にZn塩、Al塩が好ましい。
 これらの中でも、オクタデシルアシッドホスフェートが好ましく、このものはADEKA社製の商品名「アデカスタブAX-71」として市販されている。また、オクタデシルアシッドホスフェートの亜鉛塩も好ましく、城北化学工業社製の商品名「JP-518Zn」として市販されている。
 なお、ホスフェート系安定剤(C)は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 ホスフェート系安定剤(C)の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対し、0.01~1.5量部であることが好ましく、より好ましくは0.01~1質量部、さらに好ましくは0.05~0.8質量部である。
[フェノール系安定剤]
 フェノール系安定剤としては、ヒンダードフェノール系安定剤が好ましく、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォネート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
 なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)が好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASF社製(商品名、以下同じ)「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」、「アデカスタブAO-412S」等が挙げられる。
 なお、ヒンダードフェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 フェノール系安定剤の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対し、0.01~1質量部であることが好ましい。含有量が0.01質量部未満であると、熱安定性が低下する傾向にあり、1質量部を超えると、発生ガス量が増大する場合がある。より好ましい含有量は、0.05~0.8質量部であり、さらに好ましくは0.1~0.6質量部である。
 本発明においては、上記一般式(1)で表されるリン系安定剤とフェノール系安定剤を併用することが、滞留熱安定性と耐熱性の観点から好ましい。
[アンチモン化合物]
 本発明の樹脂組成物は、難燃助剤であるアンチモン化合物を含有することが好ましい。
 アンチモン化合物としては、三酸化アンチモン(Sb)、五酸化アンチモン(Sb)、アンチモン酸ナトリウム等が挙げられる。特に、三酸化アンチモンが好ましい。
 アンチモン化合物の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、好ましくは0.5~20質量部であり、より好ましくは0.7~18質量部、さらに好ましくは1~15質量部、特には2~13質量部、最も好ましくは3~10質量部である。
 本発明の樹脂組成物中の臭素化ポリアクリレート系難燃剤(B)由来の臭素原子と、アンチモン化合物由来のアンチモン原子の質量濃度は、両者の合計で通常3~25質量%であり、4~22質量%であることが好ましく、5~16質量%であることがより好ましく、6~15質量%であることがさらに好ましい。3質量%未満であると難燃性が低下する傾向があり、25質量%を超えると機械的強度や耐トラッキング特性が低下する場合がある。また、臭素原子とアンチモン原子の質量比(Br/Sb)は、0.3~5であることが好ましく、0.3~4であることがより好ましい。
[硼酸金属塩]
 本発明の樹脂組成物は硼酸金属塩を含有することも好ましく、その含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対し、0.3~10質量部であることが好ましい。また、(i)三酸化アンチモンと(ii)硼酸金属塩の含有量の質量比(i/ii)が1~20の範囲にあることが好ましい。硼酸金属塩をこのような量と質量比で含有することで、溶融混練時のフィード性、樹脂組成物の分散性、燃焼性を高めることが可能となり、また、レーザー印字性にも優れる。上記(i)/(ii)比は好ましくは2~18、より好ましくは4~16である。
 硼酸金属塩を形成する硼酸としては、オルト硼酸、メタ硼酸等の非縮合硼酸;ピロ硼酸、四硼酸、五硼酸及び八硼酸等の縮合硼酸;並びに塩基性硼酸等が好ましい。これらと塩を形成する金属はアルカリ金属でもよいが、中でもアルカリ土類金属、遷移金属、周期律表2B族金属等の多価金属が好ましい。また、硼酸金属塩は水和物であることが好ましい。
 硼酸金属塩としては、非縮合硼酸金属塩、縮合硼酸金属塩、及び、塩基性硼酸金属塩があり、非縮合硼酸金属塩としては、オルト硼酸カルシウム、メタ硼酸カルシウム等のアルカリ土類金属硼酸塩;オルト硼酸マンガン、メタ硼酸銅等の遷移金属硼酸塩;メタ硼酸亜鉛、メタ硼酸カドミウム等の周期律表2B族金属の硼酸塩などが挙げられる。これらのなかではメタ硼酸塩が好ましい。
 縮合硼酸金属塩としては、四硼酸三マグネシウム、ピロ硼酸カルシウム等のアルカリ土類金属硼酸塩;四硼酸マンガン、二硼酸ニッケル等の遷移金属硼酸塩;四硼酸亜鉛、四硼酸カドミウム等の周期律表2B族金属の硼酸塩等が挙げられる。
 塩基性硼酸金属塩としては塩基性硼酸亜鉛、塩基性硼酸カドミウム等の周期律表2B族金属の塩基性硼酸塩等が挙げられる。またこれらの硼酸塩に対応する硼酸水素塩(例えばオルト硼酸水素マンガン等)も使用できる。
 本発明に用いる硼酸金属塩としては、アルカリ土類金属または周期律表2B族金属の塩、例えば硼酸亜鉛類や硼酸カルシウム類を用いるのが好ましい。硼酸亜鉛類には、硼酸亜鉛(2ZnO・3B)や硼酸亜鉛・3.5水和物(2ZnO・3B・3.5HO)等が含まれ、硼酸カルシウム類には硼酸カルシウム無水物(2CaO・3B)等が含まれる。硼酸カルシウム類としては、コレマナイト(主に硼酸カルシウムからなる無機化合物であり、通常、化学式2CaO・3B・5HOで表される水和物)を用いてもよい。
 これら硼酸亜鉛類や硼酸カルシウム類の中でも水和物が好ましい。また、中でも、硼酸亜鉛類が好ましい。
 上記の中でも、硼酸金属塩は、硼酸金属塩中のアルカリ金属及び/又はアルカリ土類金属の含有量が2,000質量ppm以下であるものが、滞留熱安定性の点から好ましい。アルカリ金属及びアルカリ土類金属としては、K、Na、Ca、Mg等がその例として挙げられるが、これらの中でもK及び/又はCaの含有量が2,000質量ppm以下であるものが好ましく、より好ましくは1,500質量ppm以下、さらに好ましくは1,000質量ppm以下、中でも800質量ppm以下のものが好ましい。
 硼酸金属塩中のアルカリ金属及び/又はアルカリ土類金属の含有量は、蛍光X線分析法により測定することができる。
 また、ポリエステル系樹脂組成物の製造に用いる硼酸金属塩は、平均粒子径が4μm以上であることが好ましく、6μm以上であることがより好ましく、8μm以上であることがさらに好ましい。平均粒子径の上限は、好ましくは30μm、より好ましくは20μm、さらに好ましくは15μmである。硼酸金属塩の平均粒子径が4μm未満であると、溶融混練時のフィード性が悪化したり、得られる樹脂組成物の分散状態が悪化したりしやすく、燃焼性も悪化する傾向となる等好ましくない。一方、平均粒子径が30μmを超えると、機械的物性が低下したり、表面外観が著しく損なう場合があり好ましくない。なお、硼酸金属塩の平均粒子径は、レーザー回折法により測定されるメジアン径(D50)をいう。
 さらに、硼酸金属塩は、シランカップリング剤等の表面処理剤によって、表面処理されたものを用いてもよい。表面処理剤としては、従来公知の任意のものを使用でき、具体的には、例えばシランカップリング剤としては、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等の表面処理剤が挙げられる。
 これらの中では、アミノシラン系表面処理剤が好ましい。アミノシラン系カップリング剤としては、具体的には例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン及びγ-(2-アミノエチル)アミノプロピルトリメトキシシランが、好ましい例として挙げられる。
 硼酸金属塩の表面処理剤としては、本発明の効果を損ねない範囲であれば、上記シランカップリング剤等の表面処理剤に、他の成分、具体的には例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、帯電防止剤、潤滑剤及び撥水剤等を含んでいてもよい。
 この様な表面処理剤による表面処理方法としては、表面処理剤により予め表面処理してもよく、又は本発明の樹脂組成物を調製の際に、未処理の硼酸金属塩とは別に、表面処理剤を添加して表面処理することもできる。
 硼酸金属塩の含有量は、前記したように(A)ポリブチレンテレフタレート樹脂100質量部に対し、好ましくは0.3~10質量部であるが、0.5質量部以上がより好ましく、また、7質量部以下がより好ましく、5質量部以下であることがさらに好ましい。
[離型剤]
 本発明の樹脂組成物は、更に、離型剤を含有することも好ましい。離型剤としては、熱可塑性ポリエステル樹脂に通常使用される既知の離型剤が利用可能であるが、中でも、ポリオレフィン系化合物、脂肪酸エステル系化合物及びシリコーン系化合物から選ばれる1種以上の離型剤が好ましい。
 ポリオレフィン系化合物としては、パラフィンワックス及びポリエチレンワックスから選ばれる化合物が挙げられ、中でも、質量平均分子量が、700~10000、更には900~8000のものが好ましい。また、側鎖に水酸基、カルボキシル基、無水酸基、エポキシ基などを導入した変性ポリオレフィン系化合物も特に好ましい。
 脂肪酸エステル系化合物としては、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類、ペンタエリスリトール脂肪酸エステル類等の脂肪酸エステル類やその部分鹸化物等が挙げられ、中でも、炭素原子数11~28、好ましくは炭素原子数17~21の脂肪酸で構成されるモノ又はジ脂肪酸エステルが好ましい。具体的には、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンジベヘネート、グリセリン-12-ヒドロキシモノステアレート、ソルビタンモノベヘネート、ペンタエリスリトールジステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 また、シリコーン系化合物としては、熱可塑性ポリエステル樹脂(A)との相溶性等の点から、変性されている化合物が好ましい。変性シリコーンオイルとしては、ポリシロキサンの側鎖に有機基を導入したシリコーンオイル、ポリシロキサンの両末端及び/又は片末端に有機基を導入したシリコーンオイル等が挙げられる。導入される有機基としては、エポキシ基、アミノ基、カルボキシル基、カルビノール基、メタクリル基、メルカプト基、フェノール基等が挙げられ、好ましくはエポキシ基が挙げられる。変性シリコーンオイルとしては、ポリシロキサンの側鎖にエポキシ基を導入したシリコーンオイルが特に好ましい。
 離型剤の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対し、0.05~2質量部であることが好ましい。0.05質量部未満であると、溶融成形時の離型不良により表面性が低下する傾向があり、一方、2質量部を超えると、樹脂組成物の練り込み作業性が低下し、また成形品表面に曇りが見られる場合がある。離型剤の含有量は、好ましくは0.1~1.5質量部、更に好ましくは0.3~1.0質量部である。
[滑剤]
 本発明の樹脂組成物は、滑剤を含有することも好ましい。滑剤としては、パラフィン油、固形パラフィン等のパラフィン、ステアリン酸等の高級脂肪酸、パルミチルアルコール、ステアリルアルコール等の高級アルコール、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム等の脂肪酸の金属塩、ステアリン酸ブチル、グリセリンモノステアレート、ジエチレングリコールモノステアレート等の脂肪酸エステル、ステアロアミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オキシステアリン酸のエチレンジアミド、メチロールアミド、オレイルアミド、ステアリン酸アミド、エルカ酸アミド等の脂肪酸アミド等、カルナウバワックス、モンタンワックス等のワックス類などが挙げられる。この中でもステアリン酸カルシウムが特に好ましい。
 滑剤の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対し、好ましくは0.01~2質量部であり、より好ましくは0.05~0.5質量部である。
[その他含有成分]
 本発明の樹脂組成物は、本発明の効果を著しく損なわない範囲で、上記した以外の種々の添加剤を含有していても良い。このような添加剤としては、臭素化ポリアクリレート系難燃剤(B)以外の難燃剤、アンチモン化合物以外の難燃助剤、紫外線吸収剤、充填材、帯電防止剤、防曇剤、染顔料、蛍光造白剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤等が挙げられる。これらは2種以上を併用してもよい。
 臭素化ポリアクリレート系難燃剤(B)以外の難燃剤としては、臭素化ポリカーボネート、臭素化エポキシ化合物、臭素化ポリスチレン、臭素化ポリフェニレンエーテル等が挙げられる。
 また、本発明のポリエステル系樹脂組成物には、熱可塑性ポリエステル樹脂(A)以外の熱可塑性樹脂を、本発明の効果を著しく損わない範囲で含有することができる。その他の熱可塑性樹脂としては、具体的には、例えばポリアミド樹脂、ポリカーボネート樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、スチレン系樹脂(ABS樹脂等を含む)、ポリフェニレンサルファイドエチレン樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリオレフィン樹脂等が挙げられる。また、耐衝撃性改良の点から各種のエラストマーを含有することも好ましい。
[樹脂組成物の製造]
 本発明の樹脂組成物の製造は、各成分を混合し溶融混練して製造する。具体的には、熱可塑性ポリエステル樹脂(A)と臭素化ポリアクリレート系難燃剤(B)、さらに必要により配合する各成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって樹脂組成物を製造することができる。この際、臭素化ポリアクリレート系難燃剤(B)を40~100℃の温水で洗浄後、乾燥し、熱可塑性ポリエステル樹脂(A)と混合することが好ましい。
 また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明の樹脂組成物を製造することもできる。
 さらに、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明の樹脂組成物を製造することもできる。
 なお、充填材としてガラス繊維等の繊維状のものを用いる場合には、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
 本発明の第2の態様のポリエステル系樹脂組成物は、前述したように、熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、該ポリエステル系樹脂組成物の原子吸光分析法によって測定されるNa元素濃度が1~400ppmであることを特徴とする。
 ポリエステル系樹脂組成物のNa元素濃度が1ppmより少ないものでは、ポリエステル樹脂組成物より得られる成形体のレーザー印字性が悪く、Na元素濃度が400ppmを超えるとポリエステル組成物製造時に樹脂の溶融熱安定が不良となり、粘度保持性が低下してしまう。これは一般にポリエステル樹脂はアルカリ金属の存在下で加水分解が促進される現象に起因すると推測される。
 Na元素濃度の上限は、好ましくは350ppmであり、より好ましくは300ppmであり、さらには250ppm、中でも200ppm、特には150ppmが好ましく、100ppmが最も好ましい。
 ポリエステル系樹脂組成物中のNa元素濃度は、原子吸光分析法により測定される。
 本発明の樹脂組成物から樹脂成形品を製造する方法は、特に限定されるものではなく、熱可塑性ポリエステル樹脂について一般に採用されている成形法、すなわち一般的な射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシストなどの中空成形法、断熱金型を用いた成形法、急速加熱金型を用いた成形法、発泡成形(超臨界流体も含む)、インサ-ト成形、IMC(インモ-ルドコ-ティング成形)成形法、押出成形法、シ-ト成形法、熱成形法、回転成形法、積層成形法、プレス成形法等を採用することができる。また、ホットランナ-方式を用いた成形法を選択することもできる。特には射出成形が好ましい。
 本発明のポリエステル系樹脂組成物は、難燃性と溶融熱安定性に優れ、レーザー印字性にも優れるので、各種の用途に広く採用することができ、電気機器、電子機器あるいはそれ等の部品として特に好適であり、リレー、スイッチ、コネクター、遮断器、電磁開閉器、ターミナルスイッチ、センサー、アクチュエーター、マイクロスイッチ、マイクロセンサーおよびマイクロアクチュエーター等の有接点電気電子機器部品や電気電子機器の筐体等を好ましく挙げることができる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
 以下の実施例及び比較例において、使用した成分は、以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 なお、上記表1におけるペンタブロモベンジルポリアクリレートPBBPA1~3、5~7は、前記した工程1~4により製造されたPBBPAを、表1に記載した通りの洗浄を行ったものである。
 PBBPA1~7のNa元素濃度は蛍光X線分析法で測定し、非検出であったものについては、改めて発光分光分析法(ICP)にて測定を行った。
 また、Mgイオン濃度とAlイオン濃度はICP発光分光分析法により測定した。
 PBBPAの洗浄の際に使った水は、いずれも、市販の超純水製造装置日本ミリポア株式会社製「Simpsicity UV」を使って用意した(以下の実施例で水洗浄に使用した水も同様である。)。
(実施例1~7、比較例1~9)
 上記表1に記載した各成分を、以下の表2~3に記載した量(いずれも質量部)でブレンドし、2軸押出機(日本製鋼所社製「TEX30α」)を用い、バレル設定温度を260℃、スクリュー回転数200rpmの条件で混練してストランド状に押し出し、水槽で急冷しペレタイザーでペレット化してペレットを得た。なお、滑剤であるステアリン酸カルシウムは、得られたペレットに、ポリブチレンテレフタレート樹脂100質量部に対して0.1質量部の量比でドライブレンドして、外添加させて、樹脂組成物のペレットを得た。
[溶融熱安定性の評価]
(1)樹脂の固有粘度とペレットの固有粘度の測定
 仕込み前の原料ポリブチレンフタレート樹脂(表2に記載の質量比の混合物)の30℃における固有粘度IVを測定した(「仕込みIV」という)。固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値(単位:dl/g)である。
 次いで、上記で得られた樹脂組成物ペレットの固有粘度IVを測定した(「ペレットIV」という)。
 仕込みIVに対するペレットIVの百分率([ペレットIV/仕込みIV]×100)を求め、固有粘度保持率(単位:%)とした。固有粘度保持率の値が高いものほど、樹脂の分解が少ないといえる。
(2)ペレットのMVR
 得られた樹脂組成物ペレットを、120℃で6時間以上乾燥した後、ISO1133に準拠して、測定温度250℃、荷重2.16kgfの条件でMVR(メルトボリュームレイト、単位:cm/10min)を測定した。MVRの値が高いものほど、樹脂の分解が進んでいるといえる。
[レーザー印字性]
 得られた樹脂組成物ペレットを、射出成形機(日精樹脂工業社製「NEX80」)にて、シリンダー温度250℃、金型温度80℃の条件で100mm×100mm×2mm厚みの平板状成形品を射出成形した。
 SUNX社製「レーザーマーカー LP-Z130」を用い、レーザー発振方式はファイバー方式にて、レーザーパワー:100、印字パルス周期:50μs、線幅:0.07mm、塗り潰し間隔:0.035mm、重ね印字回数:1回の条件で、上記平板状成形品に20mm×20mmの正方形を塗りつぶすようにレーザーマーキングを施した。レーザーマーキングに際し、そのスキャンスピードは5000mm/secにて行った。
 レーザー印字性の判定は、レーザー印字処理を施した試験片を目視にて観察し、次の判断基準に基づき○、△、×のランクに分けた。
  ○:鮮明な印字が成されており、容易に認識が可能。
  △:印字の認識は可能。
  ×:全く印字が成されてない、若しくは印字の認識が困難である。
[難燃性]
 得られた樹脂組成物ペレットを、射出成形機(日精樹脂工業社製「NEX80」)にて、シリンダー温度250℃、金型温度80℃の条件で12.5mm×125mm×0.75mm又は0.38mm厚みの燃焼試験片を射出成形した。難燃性及の評価は、以下のようにして行った。
難燃性(UL94):
アンダーライターズ・ラボラトリーズのサブジェクト94(UL94)の方法に準じ、5本の試験片(厚み:0.75mm又は0.38mm)を用いて難燃性を試験し、V-0、V-1及びV-2、不適合に分類した。
 [銀板腐食]
 得られた樹脂組成物ペレット50gを内容積120mlの蓋付のガラス製広口瓶に入れ、樹脂組成物ペレットの上に銀板(10mm×0.2mmt)を載置し、160℃オーブンで250時間保管し、銀板表面の変色程度を目視観察し、変色の程度を以下の3段階で評価した。
  レベル1:変色ナシあるいは殆ど変色していない。
  レベル2:変色しているが、程度は小さい。
  レベル3:明らかに変色している。
 [組成物中のNa元素濃度]
 樹脂組成物を500mg秤量し、硫酸/硝酸で湿式分解し、続いて硫酸/過酸化水素水で湿式分解した後、カートリッジフィルターでろ過し、原子吸光分析法にて測定した。
 以上の評価結果を以下の表2~3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例21~22、比較例21~25)
 前記した各成分以外に新たに使用した成分は、以下の表4の通りである。
Figure JPOXMLDOC01-appb-T000004
 なお、上記PBBPA8は、前記した工程1~4により製造されたPBBPAを、90℃の温水で3時間洗浄したものである。
 PBBPA8のNa元素濃度は蛍光X線分析法で測定し、Mgイオン濃度とAlイオン濃度はICP発光分光分析法により測定した。
 各成分を、以下の表5に記載した量(いずれも質量部)でブレンドし、2軸押出機(日本製鋼所社製「TEX30α」)を用い、バレル設定温度を260℃、スクリュー回転数200rpmの条件で混練してストランド状に押し出し、水槽で急冷しペレタイザーでペレット化してペレットを得た。なお、ステアリン酸カルシウムは、得られたペレットに、ポリブチレンテレフタレート樹脂100質量部に対して0.1質量部の量比でドライブレンドして、外添加させて、樹脂組成物のペレットを得た。
 前記と同様にして評価を行い、結果を以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例31~32、比較例31~32)
 臭素化ポリアクリレート系難燃剤(B)として、以下の表6に記載のものを使用した。
Figure JPOXMLDOC01-appb-T000006
 なお、上記表6中のPBBPA9は、前記した工程1~4により製造されたPBBPAを、90℃の温水で2時間洗浄を2回繰り返したものである。
 PBBPA9のNa元素濃度は蛍光X線分析法で測定した。
 以下の表7に記載した量(いずれも質量部)の各成分をブレンドし、2軸押出機(日本製鋼所社製「TEX30α」)を用い、バレル設定温度を260℃、スクリュー回転数200rpmの条件で混練してストランド状に押し出し、水槽で急冷しペレタイザーでペレット化してペレットを得た。なお、ステアリン酸カルシウムは、得られたペレットに、ポリブチレンテレフタレート樹脂100質量部に対して0.1質量部の量比でドライブレンドして、外添加させて、樹脂組成物のペレットを得た。
 前記と同様にして評価を行い、結果を以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
 本発明のポリエステル系樹脂組成物は、難燃性と溶融熱安定性に優れ、レーザー印字性にも優れるので、各種の用途に広く採用することができ、電気機器、電子機器あるいはそれ等の絶縁性部品として特に好適に使用できる。

Claims (10)

  1.  熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、臭素化ポリアクリレート系難燃剤(B)の蛍光X線分析法によって測定されるNa元素濃度が5~4000ppmであることを特徴とするポリエステル系樹脂組成物。
  2.  臭素化ポリアクリレート系難燃剤(B)のNa元素濃度が100~1500ppmである請求項1に記載のポリエステル系樹脂組成物。
  3.  臭素化ポリアクリレート系難燃剤(B)のICP発光分析により測定されるMgイオン濃度が5~2000ppmであり、Alイオン濃度が5~3000ppmである請求項1又は2に記載のポリエステル系樹脂組成物。
  4.  臭素化ポリアクリレート系難燃剤(B)がペンタブロモベンジルポリアクリレートである請求項1~3のいずれかに記載のポリエステル系樹脂組成物。
  5.  臭素化ポリアクリレート系難燃剤(B)が臭化ナトリウムを含有する請求項1~4のいずれかに記載のポリエステル系樹脂組成物。
  6.  さらに、ホスフェート系安定剤(C)を含有する請求項1~5のいずれかに記載のポリエステル系樹脂組成物。
  7.  臭素化ポリアクリレート系難燃剤(B)の質量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が5.5以下である請求項1~6のいずれかに記載のポリエステル系樹脂組成物。
  8.  臭素化ポリアクリレート系難燃剤(B)のGPCで測定する質量平均分子量(Mw)が10000以上である請求項1~7のいずれかに記載のポリエステル系樹脂組成物。
  9.  熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有する樹脂組成物であって、該樹脂組成物の原子吸光分析法によって測定されるNa元素濃度が1~400ppmであることを特徴とするポリエステル系樹脂組成物。
  10.  熱可塑性ポリエステル樹脂(A)100質量部に対し、臭素化ポリアクリレート系難燃剤(B)を3~60質量部含有するポリエステル系樹脂組成物を製造する方法であって、臭素化ポリアクリレート系難燃剤(B)を40~100℃の温水で洗浄後、乾燥し、熱可塑性ポリエステル樹脂(A)と混合することを特徴とするポリエステル系樹脂組成物の製造方法。
PCT/JP2016/074932 2015-09-11 2016-08-26 ポリエステル系樹脂組成物及びその製造方法 WO2017043334A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680052632.XA CN108026361B (zh) 2015-09-11 2016-08-26 聚酯系树脂组合物和其制造方法
EP16844197.0A EP3348616B1 (en) 2015-09-11 2016-08-26 Polyester-based resin composition and production method for same
US15/748,775 US10626269B2 (en) 2015-09-11 2016-08-26 Polyester resin composition and method for producing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-179170 2015-09-11
JP2015179169 2015-09-11
JP2015-179169 2015-09-11
JP2015179170 2015-09-11
JP2016071865 2016-03-31
JP2016-071865 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017043334A1 true WO2017043334A1 (ja) 2017-03-16

Family

ID=58239534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074932 WO2017043334A1 (ja) 2015-09-11 2016-08-26 ポリエステル系樹脂組成物及びその製造方法

Country Status (4)

Country Link
US (1) US10626269B2 (ja)
EP (1) EP3348616B1 (ja)
CN (1) CN108026361B (ja)
WO (1) WO2017043334A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039464A1 (ja) * 2017-08-22 2019-02-28 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
WO2019039462A1 (ja) * 2017-08-22 2019-02-28 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
WO2020095976A1 (ja) * 2018-11-09 2020-05-14 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
CN111868172A (zh) * 2018-03-22 2020-10-30 宝理塑料株式会社 阻燃性聚对苯二甲酸丁二醇酯树脂组合物
TWI852909B (zh) 2017-08-22 2024-08-21 日商寶理塑料股份有限公司 阻燃性聚對苯二甲酸丁二酯樹脂組合物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128796A (zh) * 2019-05-07 2019-08-16 安徽美佳新材料股份有限公司 一种热塑性聚酯树脂组合物
CN114436886B (zh) * 2022-01-12 2023-07-21 烟台新特路新材料科技有限公司 一种长链酰胺类化合物及其应用和复合润滑剂及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138531A (en) * 1978-04-07 1979-10-27 Dynamit Nobel Ag Methylltetrahalogenbenzylester*polymer and copolymer based on said ester and fire retardant plastic using said polymer
JPH11106615A (ja) * 1997-09-30 1999-04-20 Teijin Ltd 低ガス性を備えた有接点電気電子部品用難燃性ポリエステル樹脂組成物及びそれよりなる有接点電子部品
JPH11279381A (ja) * 1998-03-31 1999-10-12 Polyplastics Co 難燃性ポリエステル樹脂組成物
JP2005154570A (ja) * 2003-11-26 2005-06-16 Wintech Polymer Ltd 難燃性ポリブチレンテレフタレート樹脂組成物
JP2005162887A (ja) * 2003-12-03 2005-06-23 Wintech Polymer Ltd 難燃性熱可塑性樹脂組成物
JP2010132930A (ja) * 2004-06-29 2010-06-17 Mitsubishi Chemicals Corp 難燃性ポリブチレンテレフタレート組成物および成形体
JP2013057009A (ja) * 2011-09-08 2013-03-28 Mitsubishi Engineering Plastics Corp ポリエステル樹脂組成物及び成形体
WO2014061010A1 (en) * 2012-10-17 2014-04-24 Bromine Compounds Ltd. Process for the polymerization of pentabromobenzyl (meth) acrylate, the polymer obtained and uses thereof
JP2016028120A (ja) * 2014-07-09 2016-02-25 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート系樹脂組成物及び成形体
JP2016141775A (ja) * 2015-02-04 2016-08-08 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート系樹脂組成物及び成形体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE421072B (sv) 1975-06-21 1981-11-23 Dynamit Nobel Ag Polymerer pa basis av pentabrombensylestrar och tetrabromxylylendiestrar samt anvendning derav som flamskyddsmedel
US4211730A (en) * 1975-06-21 1980-07-08 Dynamit Nobel Aktiengesellschaft Acrylate-based polymers and copolymers and their use as flameproofing agents
DE69034072T2 (de) 1989-09-28 2004-04-01 Bromine Compounds Ltd. Flammhemmende Zusammensetzungen
US6028156A (en) 1996-01-16 2000-02-22 Bromine Compounds, Ltd. Process for the preparation of poly-(halobenzyl acrylate)
EP0796743B1 (en) 1996-03-20 2002-06-19 General Electric Company Flame retardant composition for laser marking
DE19857965A1 (de) 1998-12-16 2000-06-21 Bayer Ag Flammgeschützte Extrudate und mittels Preßverfahren hergestellte flammgeschützte Formkörper
WO2001025332A1 (fr) * 1999-10-01 2001-04-12 Teijin Limited Composition de resine de polyester ignifuge, article moule a base de cette composition et procede de moulage de cet article
WO2005095488A1 (ja) * 2004-04-01 2005-10-13 Mitsubishi Chemical Corporation ポリブチレンテレフタレート製フィルム及びシート並びにそれらの製造方法
JP4937508B2 (ja) * 2004-11-26 2012-05-23 三井化学株式会社 ポリエチレンテレフタレート
EP2697272B1 (en) 2011-04-14 2015-02-18 Bromine Compounds Ltd. Process for the preparation of the monomer pentabromobenzyl acrylate and polymerization thereof
JP5832334B2 (ja) 2012-02-24 2015-12-16 三菱エンジニアリングプラスチックス株式会社 ポリエステル樹脂組成物成形体
JP6045909B2 (ja) 2012-12-26 2016-12-14 三菱エンジニアリングプラスチックス株式会社 回路遮断器用ポリエステル系樹脂組成物
WO2016080021A1 (ja) * 2014-11-19 2016-05-26 東レ株式会社 熱可塑性ポリエステル樹脂組成物および成形品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138531A (en) * 1978-04-07 1979-10-27 Dynamit Nobel Ag Methylltetrahalogenbenzylester*polymer and copolymer based on said ester and fire retardant plastic using said polymer
JPH11106615A (ja) * 1997-09-30 1999-04-20 Teijin Ltd 低ガス性を備えた有接点電気電子部品用難燃性ポリエステル樹脂組成物及びそれよりなる有接点電子部品
JPH11279381A (ja) * 1998-03-31 1999-10-12 Polyplastics Co 難燃性ポリエステル樹脂組成物
JP2005154570A (ja) * 2003-11-26 2005-06-16 Wintech Polymer Ltd 難燃性ポリブチレンテレフタレート樹脂組成物
JP2005162887A (ja) * 2003-12-03 2005-06-23 Wintech Polymer Ltd 難燃性熱可塑性樹脂組成物
JP2010132930A (ja) * 2004-06-29 2010-06-17 Mitsubishi Chemicals Corp 難燃性ポリブチレンテレフタレート組成物および成形体
JP2013057009A (ja) * 2011-09-08 2013-03-28 Mitsubishi Engineering Plastics Corp ポリエステル樹脂組成物及び成形体
WO2014061010A1 (en) * 2012-10-17 2014-04-24 Bromine Compounds Ltd. Process for the polymerization of pentabromobenzyl (meth) acrylate, the polymer obtained and uses thereof
JP2016028120A (ja) * 2014-07-09 2016-02-25 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート系樹脂組成物及び成形体
JP2016141775A (ja) * 2015-02-04 2016-08-08 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート系樹脂組成物及び成形体

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI852909B (zh) 2017-08-22 2024-08-21 日商寶理塑料股份有限公司 阻燃性聚對苯二甲酸丁二酯樹脂組合物
WO2019039462A1 (ja) * 2017-08-22 2019-02-28 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
JP2019038864A (ja) * 2017-08-22 2019-03-14 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
JP2019038865A (ja) * 2017-08-22 2019-03-14 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
CN110997805A (zh) * 2017-08-22 2020-04-10 宝理塑料株式会社 阻燃性聚对苯二甲酸丁二醇酯树脂组合物
CN111051431A (zh) * 2017-08-22 2020-04-21 宝理塑料株式会社 阻燃性聚对苯二甲酸丁二醇酯树脂组合物
JP7079578B2 (ja) 2017-08-22 2022-06-02 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
CN111051431B (zh) * 2017-08-22 2023-03-31 宝理塑料株式会社 阻燃性聚对苯二甲酸丁二醇酯树脂组合物
TWI780210B (zh) * 2017-08-22 2022-10-11 日商寶理塑料股份有限公司 阻燃性聚對苯二甲酸丁二酯樹脂組合物
EP3674366A4 (en) * 2017-08-22 2021-05-26 Polyplastics Co., Ltd. COMPOSITION OF FIRE-RETARDANT POLYBUTYLENE TEREPHTHALATE RESIN
JP7144924B2 (ja) 2017-08-22 2022-09-30 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
US11401414B2 (en) 2017-08-22 2022-08-02 Polyplastics Co., Ltd. Flame-retardant poly(butylene terephthalate) resin composition
WO2019039464A1 (ja) * 2017-08-22 2019-02-28 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
US11326053B2 (en) 2018-03-22 2022-05-10 Polyplastics Co., Ltd. Flame-retardant polybutylene terephthalate resin composition
CN111868172B (zh) * 2018-03-22 2022-04-15 宝理塑料株式会社 阻燃性聚对苯二甲酸丁二醇酯树脂组合物
EP3770217A4 (en) * 2018-03-22 2021-05-26 Polyplastics Co., Ltd. FLAME RETARDANT POLYBUTYLENE TEREPHTHALATE RESIN COMPOSITION
CN111868172A (zh) * 2018-03-22 2020-10-30 宝理塑料株式会社 阻燃性聚对苯二甲酸丁二醇酯树脂组合物
JPWO2020095976A1 (ja) * 2018-11-09 2021-02-15 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
WO2020095976A1 (ja) * 2018-11-09 2020-05-14 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物

Also Published As

Publication number Publication date
EP3348616A4 (en) 2019-04-17
EP3348616A1 (en) 2018-07-18
US10626269B2 (en) 2020-04-21
CN108026361A (zh) 2018-05-11
CN108026361B (zh) 2020-05-22
EP3348616B1 (en) 2022-01-19
US20190010325A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017043334A1 (ja) ポリエステル系樹脂組成物及びその製造方法
JP5848556B2 (ja) ポリエステル樹脂組成物及び成形体
JP5214099B2 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JP6454560B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
KR930002214B1 (ko) 열가소성 폴리에스테르 수지 조성물
JP6449038B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JP6974527B2 (ja) レーザー溶着用部材及び成形品
WO2019039462A1 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JP5508009B2 (ja) 射出形成用ポリエステル樹脂組成物、光反射体基体および光反射体
WO2016117493A1 (ja) レーザー溶着用部材及び成形品
JP5738345B2 (ja) ポリエステル組成物
JP6326102B2 (ja) ポリエステル系樹脂組成物及びその製造方法
JP6902841B2 (ja) 金属樹脂複合体及びその製造方法
EP2998359B1 (en) Method for improving the electrical-insulating property and the fogging resistance of a polyester resin composition
JP2006056997A (ja) ポリブチレンテレフタレート樹脂組成物及び成形品
JP6792376B2 (ja) ポリエステル系樹脂組成物及び成形品
JP2006219626A (ja) ポリブチレンテレフタレート樹脂組成物、およびこれを成形してなる成形品
JP5912573B2 (ja) レーザーマーキング用ポリエステル樹脂組成物及び成形体
JP2016023291A (ja) ポリエステル樹脂組成物及び成形体
JP2019006866A (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JP2008115209A (ja) 熱可塑性樹脂組成物
JP6890388B2 (ja) ポリエステル系樹脂組成物
JP6663292B2 (ja) ポリエステル系樹脂組成物及び成形品
JP6837336B2 (ja) ポリエステル樹脂組成物
JP5194357B2 (ja) 難燃性ポリエチレンテレフタレート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE