WO2017038737A1 - 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法 - Google Patents

難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2017038737A1
WO2017038737A1 PCT/JP2016/075134 JP2016075134W WO2017038737A1 WO 2017038737 A1 WO2017038737 A1 WO 2017038737A1 JP 2016075134 W JP2016075134 W JP 2016075134W WO 2017038737 A1 WO2017038737 A1 WO 2017038737A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
polycarbonate resin
resin composition
film
fluoropolymer
Prior art date
Application number
PCT/JP2016/075134
Other languages
English (en)
French (fr)
Inventor
黒川 晴彦
敦大 鴇田
淳也 浅野
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201680049713.4A priority Critical patent/CN107922726B/zh
Priority to US15/745,178 priority patent/US11214681B2/en
Priority to JP2017538007A priority patent/JP6695342B2/ja
Priority to KR1020187008891A priority patent/KR102590703B1/ko
Publication of WO2017038737A1 publication Critical patent/WO2017038737A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to a flame retardant polycarbonate resin composition. Specifically, the present invention relates to a polycarbonate resin composition having excellent sheet / film moldability and excellent flame retardancy, a sheet and film using the same, and a method for producing them.
  • Polycarbonate resins are widely used in a wide variety of fields because they have many excellent properties such as excellent heat resistance, mechanical properties, and electrical properties, and high dimensional accuracy.
  • a molded product by injection molding or extrusion molding of polycarbonate resin is used for automobile materials, electrical and electronic equipment materials, housing materials, and other parts manufacturing materials in industrial fields.
  • the flame-retardant polycarbonate resin composition is used as a member for information / mobile devices such as computers, notebook computers, tablet terminals, smartphones, mobile phones, and OA devices such as printers and copiers.
  • Patent Documents 1 and 2 describe a polycarbonate flame retardant resin composition using a phosphazene compound or a condensed phosphate ester compound as a flame retardant.
  • this composition is a composition optimized mainly for injection molding, in which a fluoroolefin resin having a low fibril forming ability and low viscosity of the resin component, large shrinkage during molding and poor dispersibility is blended. Therefore, it was unsuitable for the production of films and sheets. That is, when the composition was formed into a film / sheet by the melt extrusion method, the thickness unevenness of the film / sheet was large, and a UL-94 VTM combustion test was performed on a test piece having a thickness of 0.25 mm or less. In this case, the film tears exceeded the marked line during the flame contact, and there was a problem of nonconformity.
  • Patent Document 3 describes a resin sheet in which a phosphorus-based flame retardant and polyfluoroethylene are blended with polycarbonate.
  • the composition of the example of Patent Document 3 is not clear from the text, but the composition of the example is a phosphorus-based flame retardant and dispersibility that further enhance the fluidity in addition to the high fluidity product of polycarbonate.
  • An object of the present invention is to provide a polycarbonate resin composition excellent in thin flame retardancy and suppressed in thermal shrinkage, and a sheet / film using the same.
  • the present inventors have formed a resin composition comprising a mixture of polycarbonate, a flame retardant, and a fluoropolymer having a specific flow value into a sheet film, thereby achieving the above-mentioned problems. I found that it could be solved. That is, the present invention is as follows.
  • a polycarbonate resin composition comprising a polycarbonate resin (A), a flame retardant (B), and a fluoropolymer (C), wherein the flowability of the fluoropolymer (C) by a Koka flow tester (measurement temperature 400)
  • the polycarbonate resin composition is characterized in that the conditions (° C., measurement load 0.98 MPa, die hole diameter 2.1 mm) are 0.1 ⁇ 10 ⁇ 3 cm 3 / sec or more.
  • the flame retardant (B) is at least one selected from the group consisting of a halogen flame retardant, a phosphorus flame retardant, an organometallic salt flame retardant, and a silicone flame retardant.
  • the phosphorus flame retardant is a phosphazene compound or a condensed phosphate ester.
  • the fluoropolymer (C) is a polymer or copolymer containing a tetrafluoroethylene structure.
  • [6] 69 to 99.989% by mass of the polycarbonate resin (A),
  • [7] The polycarbonate resin composition according to any one of [1] to [6] for a sheet or film.
  • [8] A sheet or film using the polycarbonate resin composition according to any one of [1] to [7].
  • [9] The sheet or film according to [8], wherein the flame retardant (B) contains a phosphorus-based flame retardant and has a thickness of 30 to 200 ⁇ m.
  • the polycarbonate resin composition of the present invention a film / sheet excellent in flame retardancy is provided. Furthermore, the polycarbonate resin composition of the present invention can suppress thermal shrinkage during molding, thereby obtaining a film or sheet in which at least one of reduction in thickness unevenness and reduction in thermal shrinkage during aging is achieved. .
  • a film or sheet can be suitably used as an insulating film for electronic and electrical equipment, a film for a name plate, and a film for a casing such as a battery pack.
  • polycarbonate resin (A) Although there is no restriction
  • the polycarbonate resin is an optionally branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or a small amount of a branching agent with phosgene, triphosgene or a carbonic acid diester.
  • the method for producing the polycarbonate resin is not particularly limited, and those produced by a conventionally known phosgene method (interfacial polymerization method) or melting method (transesterification method) can be used. Further, when the melting method is used, a polycarbonate resin in which the amount of OH groups of terminal groups is adjusted can be used.
  • the ratio of the polycarbonate resin (A) in the polycarbonate resin composition (100% by mass) of the present invention is not particularly limited, but is usually 99.989 to 69% by mass.
  • a halogen-based flame retardant is blended, it is usually 70 to 90% by mass, preferably 75 to 80% by mass.
  • a phosphorus-based flame retardant is blended, it is usually 75 to 95% by mass, preferably 80 to 92% by mass. %.
  • an organic metal salt flame retardant is blended, it is usually 99 to 99.989% by mass, preferably 99.5 to 99.985% by mass, more preferably 99.7 to 99.98% by mass, and particularly preferably 99. .85 to 99.97% by mass.
  • a silicone flame retardant is blended, it is usually 80 to 99.989% by mass, preferably 90 to 99.5% by mass, more preferably 95 to 99% by mass.
  • the raw material dihydroxy compound examples include 2,2-bis (4-hydroxyphenyl) propane (ie, “bisphenol A”), tetramethylbisphenol A, bis (4-hydroxyphenyl) -p-diisopropylbenzene, hydroquinone, resorcinol, 4 , 4-dihydroxydiphenyl and the like. Two or more of these may be used in combination. It is preferable to use bisphenol A as a main component from the viewpoint of heat resistance and availability.
  • the polycarbonate resin containing bisphenol A as a main component is a resin using 60 to 100 mol%, preferably 90 to 100 mol% of bisphenol A in the bisphenol used.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • it may be a copolymer mainly composed of a polycarbonate resin such as a copolymer of the dihydroxy compound and a compound having a siloxane structure.
  • a part of the above-mentioned dihydroxy compound may be replaced with a branching agent.
  • the branching agent is not particularly limited.
  • phloroglucin 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene-2, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenylheptene-3,1,3,5-tri (4-hydroxyphenyl) benzene, 1,1,
  • Polyhydroxy compounds such as 1-tri (4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyaryl) oxindole (ie, “isatin bisphenol”), 5-chloruisatin, 5,7-dichlorouisatin, 5 -Bromoisatin, etc.
  • the amount of the compound to be substituted is usually 0.01 to 10 mol% with respect to the dihydroxy compound.
  • polycarbonate resin (A) among those described above, polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane (ie, “bisphenol A”), or 2,2-bis (4-hydroxyphenyl) Preference is given to polycarbonate copolymers derived from propane (ie "bisphenol A”) and other aromatic dihydroxy compounds.
  • polycarbonate resins may be used alone or in combination of two or more.
  • a monovalent hydroxy compound such as an aromatic hydroxy compound may be used as a terminal terminator.
  • the monovalent aromatic hydroxy compound include m- and p -Methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain alkyl-substituted phenol and the like.
  • the molecular weight of the polycarbonate resin (A) used in the present invention is arbitrary depending on the application, and may be appropriately selected and determined depending on the blending ratio with the flame retardant (B) and the fluoropolymer (C).
  • the molecular weight of the aromatic polycarbonate resin (A) is preferably a viscosity average molecular weight [Mv], preferably 12,000 to 50,000, more preferably 17,000 to 40,000. 000, more preferably 20,000 to 30,000. When the viscosity average molecular weight is 12,000 or more, the mechanical strength is improved and the film formability by the melt extrusion method is excellent.
  • the viscosity average molecular weight is 50,000 or less
  • the polycarbonate resin composition has a certain fluidity, so that extrudability and production speed are good, and further, deterioration of the additive due to an increase in the resin temperature is prevented.
  • a processing temperature can be lowered
  • the viscosity average molecular weight [Mv] of the polycarbonate resin can be measured by the method described below.
  • ⁇ Viscosity average molecular weight (Mv) measurement conditions The viscosity average molecular weight [Mv] is calculated from the following Schnell's viscosity equation using methylene chloride as a solvent and obtaining an intrinsic viscosity [ ⁇ ] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. Value (viscosity average molecular weight: Mv).
  • the intrinsic viscosity [ ⁇ ] is a value calculated from the following equation by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the polycarbonate resin composition of the present invention contains a flame retardant (B) for improving flame retardancy.
  • the flame retardant (B) used in the present invention is not particularly limited, and examples thereof include a halogen flame retardant, a phosphorus flame retardant, an organic metal salt flame retardant, and a silicone flame retardant.
  • Halogen flame retardant has the highest flame retardant effect among these.
  • Organometallic salt-based flame retardants and silicone-based flame retardants are desirable in terms of the environment, although the flame retardant effect is slightly lower than that of halogen-based flame retardants.
  • Phosphorus flame retardants have the highest flame retardant performance next to halogen flame retardants, but if the amount added is increased, the heat resistance may decrease.
  • these flame retardants can be used alone or in combination depending on the application and purpose.
  • the ratio of the flame retardant (B) in the polycarbonate resin composition (100% by mass) of the present invention is not particularly limited, but is usually 0.01 to 30% by mass.
  • halogen flame retardant include decabromodiphenyl ether, tetrabromobisphenol A, tetrabromobisphenol A carbonate oligomer, tetrabromobisphenol S, tetrabromobisphenol S carbonate oligomer, 1,2-bis (2 ′, 3 ', 4', 5 ', 6'-pentabromophenyl) ethane, 1,2-bis (2,4,6-tribromophenoxy) ethane, 2,4,6-tris (2,4,6-tri) Bromophenoxy) -1,3,5-triazine, 2,6- or 2,4-dibromophenol, brominated polystyrene, ethylenebistetrabromophthalimide, hexabromocyclododecane, hexabromobenzene, pentabromobenzyl acrylate, 2, 2-bis [4 ′ (2 ′′, 3
  • tetrabromobisphenol A carbonate oligomers are particularly preferably used from the viewpoint of thermal stability and balance of mechanical properties of the molded product.
  • bromine-containing aromatic polycarbonate oligomers such as polycarbonate oligomers of tetrabromobisphenol A are likely to bleed out from the molded product at the time of molding at a degree of polymerization of 1, and on the other hand, when the degree of polymerization increases, it becomes difficult to obtain satisfactory fluidity.
  • the degree of polymerization is preferably 2 to 15. Bromine-containing aromatic polycarbonate oligomers that satisfy these requirements are commercially available and can be easily obtained.
  • an oligomer (average degree of polymerization of 5) obtained by reacting 2,4,6-tribromophenol (sometimes abbreviated as “TBPH”) with TBA and phosgene as a molecular weight regulator is Mitsubishi Engineering. Commercially available from Plastics Co., Ltd. under the trade name Iupilon FR-53.
  • the content of the halogen-based flame retardant in the polycarbonate resin composition of the present invention is not particularly limited, but is usually 5 to 30% by mass, preferably 10 to 30% by mass, particularly preferably 20 to 25%. is there.
  • a phosphorus-based flame retardant As a preferable form of the flame retardant (B), a phosphorus-based flame retardant is exemplified. Phosphorus flame retardants can impart excellent flame retardancy. However, in the past, when the amount added is large, the resin component has excellent flame retardancy due to unevenness in thickness when formed into a film or sheet due to a decrease in heat resistance (glass transition temperature) of the resin component and a decrease in melt viscosity. However, it has been difficult to obtain a film or sheet with little thickness unevenness. In the present invention, by blending the fluoropolymer (C) having a specific flow value into the resin composition, a decrease in the heat resistance of the resin component is suppressed, and it has excellent flame retardancy and thickness unevenness. Can be obtained.
  • the fluoropolymer (C) having a specific flow value into the resin composition, a decrease in the heat resistance of the resin component is suppressed, and it has excellent flame retardancy and thickness unevenness. Can be obtained.
  • a phosphoric ester flame retardant As the phosphorous flame retardant, a phosphoric ester flame retardant, a phosphazene flame retardant, or the like can be used.
  • a phosphorus flame retardant may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • a phosphoric ester-based flame retardant As the phosphorus-based flame retardant, a phosphoric ester-based flame retardant is preferably used because of its high flame retarding effect and fluidity improving effect.
  • the phosphate ester flame retardant is not limited, but in particular, the phosphate ester flame retardant is preferably a phosphate ester compound represented by the following general formula (IIa).
  • R 1 , R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 8 carbon atoms which may be substituted with an alkoxy group having 1 to 8 carbon atoms, or carbon.
  • An alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 20 carbon atoms which may be substituted with phenyl which may be substituted with an alkyl group having 1 to 8 carbon atoms, p, q, r and s Are each independently 0 or 1, t is an integer of 0 to 5, and X represents an arylene group or a divalent group represented by the following formula (IIb).
  • B represents a single bond, —C (CH 3 ) 2 —, —SO 2 —, —S—, or —O—).
  • examples of the aryl group represented by R 1 to R 4 include a phenyl group and a naphthyl group.
  • examples of the arylene group for X include a phenylene group and a naphthylene group.
  • the compound represented by formula (IIa) is a phosphate ester, and when t is greater than 0, it is a condensed phosphate ester (including a mixture).
  • a condensed phosphate ester is particularly preferably used.
  • phosphate ester flame retardant represented by the general formula (IIa) include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate.
  • triphenyl phosphate bisphenol A tetraphenyl diphosphate, resorcinol tetraphenyl diphosphate, resorcinol bisdi 2,6-xylenyl phosphate and the like are preferable.
  • Examples of commercially available phosphoric acid ester flame retardants include FP-600 manufactured by ADEKA Corporation, and PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.
  • phosphate ester flame retardants may be used alone or in combination of two or more.
  • the phosphazene-based flame retardant can be used as an effective phosphorus-based flame retardant because it can suppress a decrease in the heat resistance of the resin composition due to the addition of the flame retardant compared to the phosphate ester-based flame retardant.
  • the phosphazene-based flame retardant is an organic compound having a —P ⁇ N— bond in the molecule.
  • the phosphazene-based flame retardant is preferably a cyclic phosphazene compound represented by the following general formula (IIIa) or a general formula (IIIb) And a crosslinked phosphazene compound in which at least one phosphazene compound selected from the group consisting of the following general formula (IIIa) and the following general formula (IIIb) is crosslinked by a crosslinking group.
  • a crosslinked phosphazene compound those crosslinked by a crosslinking group represented by the following general formula (IIIc) are preferable from the viewpoint of flame retardancy.
  • m is an integer of 3 to 25, and R 5 may be the same or different and represents an aryl group or an alkylaryl group.
  • n is an integer of 3 to 10,000
  • Z represents a —N ⁇ P (OR 5 ) 3 group or a —N ⁇ P (O) OR 5 group
  • Y represents a — 4 represents P (OR 5 ) 4 group or —P (O) (OR 5 ) 2 group
  • R 5 may be the same or different and represents an aryl group or an alkylaryl group.
  • A is —C (CH 3 ) 2 —, —SO 2 —, —S—, or —O—, and l is 0 or 1.
  • Examples of the cyclic and / or chain phosphazene compounds represented by the general formulas (IIIa) and (IIIb) include, for example, R 5 may be substituted with an alkyl group having 1 to 6 carbon atoms. What is an aryl group is mentioned preferably.
  • cyclic or chain phosphazene compounds wherein R 5 is an aryl group such as a phenyl group; R 5 is a tolyl group (o-, m-, p-tolyloxy group), xylyl (2,3, A cyclic or chain phenoxyphosphazene which is an aryl group having 6 to 20 carbon atoms and substituted with alkyl having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, such as 2,6-, 3,5-xylyl group; And cyclic or chain phenoxyphosphazene in which R 5 is combined.
  • R 5 is an aryl group such as a phenyl group
  • R 5 is a tolyl group (o-, m-, p-tolyloxy group), xylyl (2,3,
  • a cyclic or chain phenoxyphosphazene which is an aryl group having 6 to 20 carbon atoms and substituted with alkyl having 1 to 6 carbon
  • phenoxyphosphazene for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene, o, m-tolyloxyphosphazene, o, p-tolyloxyphosphazene
  • M p-tolyloxyphosphazene, o, m, p-tolyloxyphosphazene, etc.
  • (poly) xylyloxyphosphazene, etc. and cyclic and / or chain C 1-6 alkyl C 6-20 aryloxyphosphazenes
  • phenoxytolyloxyphosphazenes eg, phenoxy o-tolyloxyphosphazenes, phenoxy m-tolyloxyphosphazenes, phenoxy p-tolyloxyphospha
  • Examples thereof include chain C 6-20 aryl C 1-10 alkyl C 6-20 aryloxyphosphazene , and preferably cyclic and / or chain phenoxyphosphazene, cyclic and / or chain C 1-3 alkyl C 6-20 Aryloxyphosphazenes, C 6-20 aryloxy C 1-3 alkyl C 6-20 aryloxyphosphazenes (eg, cyclic and / or chained tolyloxyphosphazenes, cyclic and / or chained phenoxytolylphenoxyphosphazenes, etc.).
  • chain C 6-20 aryl C 1-10 alkyl C 6-20 aryloxyphosphazene and preferably cyclic and / or chain phenoxyphosphazene, cyclic and / or chain C 1-3 alkyl C 6-20 Aryloxyphosphazenes, C 6-20 aryloxy C 1-3 alkyl C 6-20 aryloxyphosphazen
  • C 1-6 means “having 1 to 6 carbon atoms”, and the same applies to “C 6-20 ”, “C 1-10 ”, and the like.
  • (poly) phenoxy Indicates one or both of “phenoxy...” And “polyphenoxy.
  • cyclic phosphazene compound represented by the general formula (IIIa) cyclic phenoxyphosphazene in which R 5 is a phenyl group is particularly preferable.
  • the cyclic phenoxyphosphazene compound is preferably a compound in which m in the general formula (IIIa) is an integer of 3 to 8, and may be a mixture of compounds having different m.
  • Such a cyclic phenoxyphosphazene compound is obtained by, for example, hexachlorocyclotriphosphazene, octachlorocyclohexane from a cyclic and linear chlorophosphazene mixture obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C.
  • a cyclic chlorophosphazene such as tetraphosphazene or decachlorocyclopentaphosphazene can be taken out and then substituted with a phenoxy group.
  • chain phosphazene compound represented by the general formula (IIIb) chain phenoxyphosphazene in which R 5 is a phenyl group is particularly preferable.
  • a chain phenoxyphosphazene compound for example, a cyclic phenoxyphosphazene compound chloride obtained by the above method (for example, hexachlorocyclotriphosphazene) is subjected to reduction polymerization at a temperature of 220 to 250 ° C., and the resulting polymerization is obtained. Examples thereof include compounds obtained by substituting a linear dichlorophosphazene having a degree of 3 to 10,000 with a phenoxy group.
  • N in the general formula (IIIb) of the linear phenoxyphosphazene compound is preferably 3 to 1,000, more preferably 3 to 100, and further preferably 3 to 25.
  • bridged phenoxyphosphazene compound examples include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (bisphenol S residue) and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group.
  • crosslinked phosphazene compound a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound in which R 5 is a phenyl group in the general formula (IIIa) with a crosslinking group represented by the above general formula (IIIc), or the above A crosslinked phenoxyphosphazene compound obtained by crosslinking a chain phenoxyphosphazene compound in which R 5 is a phenyl group in the general formula (IIIb) with a crosslinking group represented by the above general formula (IIIc) is preferable from the viewpoint of flame retardancy, and cyclic A crosslinked phenoxyphosphazene compound obtained by crosslinking a phenoxyphosphazene compound with a crosslinking group represented by the general formula (IIIc) is more preferable.
  • the content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (IIIa) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (IIIb) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%.
  • the crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
  • the phosphazene-based flame retardant is obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) and the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) with a crosslinking group.
  • at least one selected from the group consisting of crosslinked phenoxyphosphazene compounds is preferred.
  • Examples of commercially available phosphazene-based flame retardants include cyclic phenoxyphosphazenes “Ravitor FP-110” and “Ravitor FP-110T” manufactured by Fushimi Pharmaceutical Co., Ltd. and “SPS100” manufactured by Otsuka Chemical Co., Ltd.
  • the content of the phosphorus-based flame retardant in the polycarbonate resin composition of the present invention is not particularly limited, but is usually 5 to 25% by mass. From the viewpoint of heat resistance and flame retardancy, the content is preferably 8 to 20% by mass.
  • phosphazene flame retardants may be used alone or in combination of two or more.
  • the organic metal salt compound is preferably an alkali (earth) metal salt of an organic acid having 1 to 50, preferably 1 to 40 carbon atoms, preferably an alkali (earth) metal salt of an organic sulfonate.
  • the alkali (earth) metal salt of the organic sulfonate includes a metal salt of a fluorine-substituted alkyl sulfonic acid (perfluoroalkyl sulfonic acid) having 1 to 10, preferably 2 to 8 carbon atoms (perfluoroalkyl sulfonic acid).
  • alkali metal or alkaline earth metal salts are included.
  • the organic sulfonic acid alkali (earth) metal salt includes an aromatic sulfonic acid metal salt having 7 to 50 carbon atoms, preferably 7 to 40 carbon atoms (preferably an alkali metal or alkaline earth metal). Metal salts).
  • aromatic sulfonic acid metal salts can provide flame retardancy with a small amount of blending, there is no increase in specific gravity compared to the case of blending a halogen-based flame retardant, compared with the case of blending a phosphorus-based flame retardant. Therefore, it is preferable in that there is no decrease in heat resistance.
  • alkali metal constituting the metal salt examples include lithium, sodium, potassium, rubidium and cesium.
  • Alkaline earth metals include beryllium, magnesium, calcium, strontium and barium. More preferred are alkali metals, and potassium and sodium are particularly preferred from the viewpoint of thermal stability and flame retardancy of the resin composition.
  • alkali metal perfluoroalkyl sulfonates include potassium trifluoromethane sulfonate, potassium perfluorobutane sulfonate, potassium perfluorohexane sulfonate, potassium perfluorooctane sulfonate, sodium pentafluoroethane sulfonate, perfluoro Sodium butanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, perfluorooctanesulfonate Cesium, cesium perfluorohexanesulfonate, rubidium perfluorobutanesulfonate, and perfluorohexane Le Oro
  • aromatic (earth) metal salt of aromatic sulfonate include, for example, diphenyl sulfide-4,4′-disulfonate, dipotassium diphenylsulfide-4,4′-disulfonate, potassium 5-sulfoisophthalate, Sodium 5-sulfoisophthalate, polysodium poly (ethylene terephthalate), calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, poly (2,6-dimethylphenylene oxide) polysodium polysulfonate Poly (1,3-phenylene oxide) polysulfonic acid polysodium, poly (1,4-phenylene oxide) polysulfonic acid polysodium, poly (2,6-diphenylphenylene oxide) polysulfonic acid poly Potassium, lithium poly (2-fluoro-6-butylphenylene oxide) polysulf
  • Preferred examples of the organic metal salt compound other than the alkali (earth) sulfonate metal salt include an alkali (earth) metal salt of a sulfate ester and an alkali (earth) metal salt of an aromatic sulfonamide.
  • alkali (earth) metal salts of sulfates include alkali (earth) metal salts of sulfates of monovalent and / or polyhydric alcohols, and such monovalent and / or polyhydric alcohols.
  • sulfuric acid esters include methyl sulfate, ethyl sulfate, lauryl sulfate, hexadecyl sulfate, polyoxyethylene alkylphenyl ether sulfate, pentaerythritol mono-, di-, tri-, tetra-sulfate, and lauric acid monoglyceride sulfate.
  • Examples include esters, sulfates of palmitic acid monoglyceride, and sulfates of stearic acid monoglyceride.
  • the alkali (earth) metal salts of these sulfates are preferably alkali (earth) metal salts of lauryl sulfate.
  • Alkali (earth) metal salts of aromatic sulfonamides include, for example, saccharin, N- (p-tolylsulfonyl) -p-toluenesulfonimide, N- (N′-benzylaminocarbonyl) sulfanilimide, and N- ( And an alkali (earth) metal salt of phenylcarboxyl) sulfanilimide.
  • the content of the organometallic salt flame retardant in the polycarbonate resin composition of the present invention is not particularly limited, but is usually 0.001 to 1% by mass, preferably 0.005 to 0.5% by mass, more preferably 0. 0.01 to 0.3% by mass, particularly preferably 0.03 to 0.15% by mass.
  • a silicone compound used as a silicone-based flame retardant improves flame retardancy by a chemical reaction during combustion.
  • various compounds conventionally proposed as flame retardants for polycarbonate resins can be used.
  • the functional group preferably contains a predetermined amount of at least one group selected from an alkoxy group and a hydrogen (ie, Si—H group).
  • the structure of a silicone compound is constituted by arbitrarily combining the following four types of siloxane units.
  • the structure of the silicone compound used in the silicone-based flame retardant is represented by the following formulas: D n , T p , M m D n , M m T p , M m Q q , M m D n T p , M m D n Q q, M m T p Q q, D n T p, D n Q q, include D n T p Q q.
  • preferable structures of the silicone compound are M m D n , M m T p , M m D n T p , and M m D n Q q , and more preferable structures are M m D n or M m D n. T p .
  • the coefficients m, n, p, and q in the above formula are each independently an integer of 1 or more representing the degree of polymerization of each siloxane unit, and the sum of the coefficients in each formula is the average of the silicone compounds.
  • the degree of polymerization This average degree of polymerization is preferably in the range of 3 to 150, more preferably in the range of 3 to 80, still more preferably in the range of 3 to 60, and particularly preferably in the range of 4 to 40. The better the range, the better the flame retardancy.
  • the siloxane unit with the coefficient can be two or more types of siloxane units having different hydrogen atoms or organic residues to be bonded. .
  • the silicone compound may be linear or have a branched structure.
  • the organic residue bonded to the silicon atom is preferably an organic residue having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms.
  • Specific examples of such organic residues include alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, and decyl groups, cycloalkyl groups such as cyclohexyl groups, aryl groups such as phenyl groups, And aralkyl groups such as tolyl groups. More preferred is an alkyl group having 1 to 8 carbon atoms, an alkenyl group, or an aryl group.
  • the alkyl group is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group.
  • a methyl group is preferable from the viewpoint of market availability.
  • the silicone compound used as the silicone-based flame retardant contains an aryl group.
  • an aryl group is preferable in terms of improving compatibility with polycarbonate and improving flame retardancy.
  • silane compounds and siloxane compounds as organic surface treatment agents for titanium dioxide pigments are clearly distinguished from silicone-based flame retardants in their preferred embodiments in that it is preferable to contain no aryl group. .
  • the silicone compound used as the silicone-based flame retardant may contain a reactive group in addition to the Si—H group and the alkoxy group.
  • the reactive group include an amino group, a carboxyl group, an epoxy group, and a vinyl group. Examples thereof include a group, a mercapto group, and a methacryloxy group.
  • the content of the silicone flame retardant in the polycarbonate resin composition of the present invention is not particularly limited, but is usually 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. %.
  • the fluoropolymer (C) is added for preventing dripping of combustion products in the polycarbonate resin composition of the present invention.
  • the fluoropolymer (C) used in the present invention is characterized in that the flow value at 400 ° C. is 0.1 ⁇ 10 ⁇ 3 cm 3 / sec or more.
  • fluoropolymers examples include fluoroolefin resins.
  • the fluoroolefin resin is usually a polymer or copolymer containing a fluoroethylene structure.
  • a polymer or copolymer containing a fluoroethylene structure is a polymer having a fluoroethylene structure (constituent unit) as a main component.
  • the fluoroethylene structure (constituent unit of fluoroethylene) is a monomer constituting the fluoropolymer.
  • the total unit is preferably 40 to 100% by mass, more preferably 50 to 100% by mass, and still more preferably 60 to 100% by mass.
  • polydifluoroethylene resin examples include polydifluoroethylene resin, polytetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, and the like.
  • polytetrafluoroethylene resin and the like are preferable from the viewpoint of flame retardancy.
  • a flow value obtained by melt viscosity measurement using a flow tester (manufactured by Shimadzu Corporation) described in JIS K7210-1: 2014 appendix JA is used as an index of the low molecular weight fluoropolymer.
  • the measurement is performed by using a die having a diameter of 2.1 mm and a length of 8 mm, and keeping 2 g of a sample heated in advance at 400 ° C. for 5 minutes at the above temperature with a load of 0.98 MPa.
  • the flow value (fluidity by the Koka flow tester (measurement temperature 400 ° C., measurement load 0.98 MPa, die hole diameter 2.1 mm)) is 0.1 ⁇ 10 ⁇ 3 cm 3 / sec or more. It is characterized by using a fluoropolymer having a low ability to form fibrils.
  • the upper limit of the flow value of the fluoropolymer is not particularly limited, but is usually 500 ⁇ 10 ⁇ 3 cm 3 / sec or less.
  • Fluoropolymer flow value can be adjusted by controlling the molecular weight, type, etc. of the fluoropolymer. In general, the flow value tends to increase as the molecular weight of the fluoropolymer decreases.
  • the fluoropolymer (C) is a fluoropolymer having a low fibril-forming ability, which is generally composed of a low molecular weight substance having a number average molecular weight of 600,000 or less. In a preferred embodiment, the number average molecular weight of the fluoropolymer (C) is 10,000 or more.
  • “fibril forming ability” means that the resin tends to be bonded and become fibrous due to an external action such as shearing force.
  • fibrillated PTFE has been generally used as a fluoropolymer because of its excellent anti-dripping effect. Since the flow value of a general fluoropolymer having a high fibrillation ability is lower than 0.1 ⁇ 10 ⁇ 3 cm 3 / sec, it hardly flows in an actual flow tester measurement. Such a fluoropolymer having a high ability to form fibrils and inferior in fluidity is inferior in dispersibility in a resin composition and a film / sheet molded article. Furthermore, since fibrillated PTFE has a high molecular weight, it can be fiberized when sheared and the fiber can cause an effect of shrinking the resin composition.
  • the shrinkage problem has a significant influence on a thin-walled product, for example, uneven thickness in a thin-walled molded product or shrinkage during aging.
  • the shrinkage uniformity of the film and sheet discharged from the die is lost.
  • flame retardancy cannot be obtained because the test piece melts and breaks during flame contact during the flame test.
  • shrinkage during aging can be caused. That is, when a conventional resin composition is used, it is difficult to obtain a film / sheet having excellent flame retardancy.
  • the present inventors have surprisingly found that the fluoropolymer having the above specific flow value does not become fibrous due to shear (resin flow, force generated by kneading with a screw), and the resin composition and film / sheet molded article. It was found that the resin composition can be prevented from shrinking because of its excellent dispersibility in the resin. Specifically, by blending the above-mentioned specific fluoropolymer, heat shrinkage (shrinkage of the film / sheet discharged from the die) during molding of the resin composition is suppressed, and a film / sheet with reduced thickness unevenness is obtained. can get. Furthermore, since the obtained film / sheet does not have an extreme orientation of PTFE due to fibrillation, thermal shrinkage during aging can be suppressed.
  • the fluoropolymer (C) having the specific flow value and a phosphorus flame retardant are used in combination.
  • a phosphorus-based flame retardant when used, heat shrinkage tends to occur during molding of the resin composition.
  • the heat shrinkage at the time of molding is suppressed by the combined use of the fluoropolymer (C) having the above specific flow value and the phosphorus-based flame retardant, and both the improvement in flame retardancy and the reduction in thickness unevenness are achieved.
  • a sheet can be obtained.
  • a phosphorus-based flame retardant and a fluoropolymer (C) are used in combination, even if the thickness is in the range of 30 to 200 ⁇ m (more preferably 30 to 100 ⁇ m), the thickness unevenness Can be reduced, and excellent flame retardancy can be achieved.
  • the fluoropolymer (C) having the above specific flow value is used in combination with at least one of a halogen-based flame retardant, an organic metal salt-based flame retardant, and a silicone-based flame retardant.
  • a halogen-based flame retardant an organic metal salt-based flame retardant
  • a silicone-based flame retardant a halogen-based flame retardant, an organic metal salt-based flame retardant, and a silicone-based flame retardant.
  • the present invention by blending a fluoropolymer having a specific flow value, it becomes possible to obtain a film / sheet with reduced shrinkage during aging.
  • the halogen-based flame retardant and the fluoropolymer (C) are used in combination, the problem of heat shrinkage (shrinkage during aging) can be significantly reduced. Such an effect is particularly remarkable in a film or sheet having a thickness of 200 to 500 ⁇ m.
  • fluoroethylene resins having high fibril-forming ability examples include “Teflon (registered trademark) 6-J”, “Teflon (registered trademark) 640J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and Polyflon F series manufactured by Daikin Industries, Ltd. (for example, , “Polyflon FA-500 series”, “Polyflon F-201 series”, “Polyflon F103 series”), “Metabrene A-3800”, “Metabrene A-3750” manufactured by Mitsubishi Rayon Co., Ltd., and the like.
  • the fluoropolymer (C) according to one embodiment of the present invention is also characterized in that a 30% particle size is 4.0 ⁇ m or less.
  • the 30% particle size is the particle size at the 30% position (passing volume percentage 30%) from the finer particle size in the volume-based particle size distribution curve.
  • the particle size distribution is obtained by measuring by a dry method using a laser diffraction particle size distribution measuring device.
  • the 30% particle size is 4.0 ⁇ m or less, good appearance and thickness accuracy are exhibited. More preferably, it is 3.5 ⁇ m or less.
  • the flame retardancy can be further enhanced. In order to further improve the flame retardancy, it is more preferably 3.2 ⁇ m or less.
  • the 30% particle size is larger than 4.0 ⁇ m, the appearance of the film may be deteriorated and sufficient thickness accuracy may not be obtained.
  • the lower limit of the 30% particle size is not particularly limited and is preferably as small as possible from the viewpoint of improving dispersibility, but is usually 0.5 ⁇ m or more, for example, 0.7 ⁇ m or more and 1.0 ⁇ m or more.
  • fluoroethylene resins having a 30% particle size of 4.0 ⁇ m or less and low fibril-forming ability examples include “Teflon (registered trademark) TLP 10F-1” manufactured by Mitsui DuPont Fluorochemical Co., Ltd. and “Lublon manufactured by Daikin Industries, Ltd.” L-2 ",” Lublon L-5F “and the like.
  • 1 type may contain fluoropolymer (C) and 2 or more types may contain it by arbitrary combinations and ratios.
  • the content of the fluoropolymer in the polycarbonate resin composition of the present invention is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, and particularly preferably 0.00. It is 1 mass% or more, and is 1 mass% or less normally, Preferably it is 0.75 mass% or less, More preferably, it is 0.5 mass% or less.
  • the content of the fluoropolymer is less than or equal to the lower limit of the above range, the effect of improving the flame retardancy by the fluoropolymer may be insufficient, and when the content of the fluoropolymer exceeds the upper limit of the above range In addition, there is a possibility that a poor appearance of a molded product obtained by molding the polycarbonate resin composition or a decrease in mechanical strength may occur.
  • the aromatic polycarbonate resin composition of this invention may contain other resin components other than polycarbonate resin (A) and fluoropolymer (C) as a resin component.
  • resin components that can be blended, for example, polystyrene resin, high impact polystyrene resin, hydrogenated polystyrene resin, polyacryl styrene resin, ABS resin, AS resin, AES resin, ASA resin, SMA resin, polyalkyl methacrylate resin, Polymethacryl methacrylate resin, polyphenyl ether resin, polycarbonate resin other than component (A), amorphous polyalkylene terephthalate resin, polyester resin, amorphous polyamide resin, poly-4-methylpentene-1, cyclic polyolefin resin, non Crystalline polyarylate resin, polyether sulfone, etc. are mentioned. These may be used alone or in combination of two or more.
  • the polycarbonate resin composition of the present invention may further contain various additives as long as the effects of the present invention are not impaired.
  • additives include stabilizers, antioxidants, mold release agents, ultraviolet absorbers, dyes and pigments, antistatic agents, flame retardants, impact strength improvers, plasticizers, dispersants, antibacterial agents, and inorganic fillers.
  • Silicate compounds, glass fibers, carbon fibers, etc. One of these resin additives may be contained, or two or more thereof may be contained in any combination and ratio.
  • examples thereof include a method of pre-mixing using various mixers such as Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, and the like.
  • the polycarbonate resin composition of the present invention can be formed into various forms of molded articles.
  • the polycarbonate resin composition of the present invention it is possible to provide a molded product excellent in flame retardancy with a thin wall, which was difficult with a conventional polycarbonate resin composition.
  • Examples of application of the molded article of the present invention include parts such as electric and electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, building members, various containers, leisure goods / miscellaneous goods, and lighting equipment. Can be mentioned.
  • the molded article of the present invention is particularly suitable for use in parts and nameplates of electrical and electronic equipment, OA equipment, information terminal equipment, home appliances, lighting equipment and the like because of its excellent flame retardancy. It is particularly suitable for use in equipment, parts of lighting equipment, and sheet members.
  • the polycarbonate resin composition of the present invention is suitably used for molding into a sheet and a film, and a sheet and a film with small thickness unevenness and excellent thin-wall flame retardancy can be obtained.
  • the method for obtaining the sheet and film from the polycarbonate resin composition of the present invention is not particularly limited, and for example, a molding method such as a melt extrusion method, a solution casting method, a blow molding method, or an inflation molding method can be used. Among them, the extrusion method is preferable from the viewpoint of productivity.
  • the method for producing a sheet or film includes a step of extruding a polycarbonate resin composition.
  • an unreinforced thermoplastic resin layer may be laminated on one or both surfaces of the surface layer. That is, according to one aspect of the present invention, a laminated sheet or film having a thermoplastic resin layer on at least one surface of a polycarbonate resin layer is provided. By doing in this way, favorable surface smoothness, glossiness, and impact resistance can be obtained, and when the back surface of the non-reinforced layer is printed, a deep appearance can be obtained.
  • the laminated thermoplastic resin may contain various additives.
  • additives include stabilizers, antioxidants, mold release agents, ultraviolet absorbers, dyes and pigments, antistatic agents, flame retardants, impact strength improvers, plasticizers, dispersants, antibacterial agents, and the like.
  • One of these resin additives may be contained, or two or more thereof may be contained in any combination and ratio.
  • sheet is generally a thin product whose thickness is small and flat instead of length and width, and “film” is extremely small compared to the length and width, and has a maximum thickness.
  • sheet and film are not clearly distinguished, and both are used as the same meaning.
  • the thickness of the film or sheet (polycarbonate resin layer in the case of a laminate) obtained from the polycarbonate resin composition of the present invention is preferably in the range of 10 to 1000 ⁇ m, more preferably in the range of 30 to 500 ⁇ m.
  • the flame retardant (B) contains a phosphorus flame retardant, and the thickness of the film or sheet is in the range of 30 to 200 ⁇ m. In such a form, excellent thin film flame retardancy and reduced thickness unevenness can be achieved.
  • the flame retardant (B) contains a halogen-based flame retardant, and the thickness of the film or sheet is in the range of 200 to 500 ⁇ m. In such a form, the overheat shrinkage after molding can be significantly reduced.
  • the range of 30 to 200 ⁇ m is more preferable.
  • the film or sheet obtained from the polycarbonate resin composition of the present invention has small thickness unevenness.
  • the film or sheet obtained from the resin composition of the present invention has excellent flame retardancy. Specifically, it is VTM-2 or higher, preferably VTM-1 or higher, more preferably VTM-0, when evaluated by a method based on the UL94 / VTM combustion test.
  • the UL94 / VTM combustion test can be performed by the method described in the following examples.
  • Measurement was performed using a laser diffraction particle size distribution analyzer SALD-2300 equipped with a cyclone injection type dry measurement unit DS5 manufactured by Shimadzu Corporation. The measurement was performed by filling a sample cup, using a dispersion pressure of 0.5 MPa, a table rising speed of 10 mm / sec, and a refractive index of 1.65 to 0.05i. After preparing the particle size distribution curve, the particle size (30% particle size) at a passing volume percentage of 30% was calculated. In the table, “30% particle size” is indicated.
  • ⁇ Measurement of resin film thickness (film thickness distribution)> The film thickness distribution of the resin film was measured using a contact-type desktop offline thickness measuring device (TOF-5R) manufactured by Yamabun Electric Co., Ltd. The thickness of the central part of the film was measured at a total of 140 points along the flow direction (MD direction) at the time of extrusion molding at intervals of 10 mm, the average value and standard deviation of the film thickness were determined, and the variation in film thickness was evaluated. In the table, “average film thickness” and “film thickness standard deviation” are indicated. Regarding film thickness variation (thickness unevenness), a film thickness standard deviation of 0 ⁇ m or more and less than 4 ⁇ m can be determined as “good”, and 4 ⁇ m or more as “bad”.
  • Flame retardant evaluation of polycarbonate resin film is evaluated by a method based on UL94 / VTM combustion test defined by US Underwriters Laboratories (UL) using a film cut to a width of 50 mm, a length of 200 mm and a thickness of 50 ⁇ m. did. In this evaluation, those judged as VTM-0 to VTM-2 based on the criteria shown in the following Table 1 were accepted, and those where the deformation (melting tear) of the test piece at the time of flame contact exceeded the marked line were deemed unfit. In the table, “UL94 flame retardancy” is indicated.
  • the amount of shrinkage due to aging of the flame retardant polycarbonate resin film was measured as follows. Aging was performed by placing a film cut to 100 mm ⁇ 100 mm ⁇ thickness 0.25 mm on a 100-mesh wire mesh placed in a 160 ° C. hot air dryer. After aging for 2 weeks, the film was taken out and conditioned for 1 day in an environment of 23 ° C. and 50% RH, and then the dimension in the film flow direction (MD) was measured. The thermal shrinkage was calculated by dividing the in-plane dimensional difference (length) of the film before aging and after aging by the dimension before aging.
  • Table 2 shows the results of 30% particle size and PTFE flow value.
  • “no flow” of c-4 polyflon FA-500H indicates that the flow value is less than 0.1 ⁇ 10 ⁇ 3 .
  • D-1 Antioxidant: Pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Adeka Stub “AO-60” manufactured by ADEKA Corporation)
  • D-2) Antioxidant: Tris (2,4-di-tert-butylphenyl) phosphite (Adeka Corporation “Adeka Stub“ 2112 ”)
  • a single-screw extruder PSV-30 manufactured by Plaenegi Co., Ltd. was used for sheet molding of flame-retardant polycarbonate pellets.
  • the material containing the phosphorus-based flame retardant obtained a film having a width of 25 cm, a length of 10 m, and a thickness of 0.05 mm under the conditions of a cylinder temperature of 280 ° C., a die temperature of 300 ° C., a roll temperature of 110 ° C., and a screw rotation speed of 30 rpm.
  • a material blended with an organic metal salt flame retardant and a halogen flame retardant formed a film having a thickness of 0.25 mm under the conditions of a cylinder temperature of 300 ° C., a die temperature of 300 ° C., a roll temperature of 135 ° C., and a screw rotation speed of 40 rpm.
  • Examples 1 to 4 containing a polycarbonate resin (A), a flame retardant (B), and a fluoropolymer (C), and having a specific flow value as the fluoropolymer (C). Films manufactured from the polycarbonate resin composition of No. 4 are all excellent in flame retardancy.
  • a phosphorus-based flame retardant is used as the flame retardant (B).
  • a thickness of about 50 ⁇ m can be obtained. It shows that the unevenness is small and has excellent flame retardancy.
  • thermal shrinkage during extrusion molding was suppressed, and films with small thickness unevenness were obtained.
  • Comparative Example 1 using fibrillated polyfluoroethylene having a flow value of less than 0.1 ⁇ 10 ⁇ 3 cm 3 / sec as the fluoropolymer (C) has a large thickness unevenness and flame retardancy. It became inferior result.
  • Such fibrillated polyfluoroethylene has a large thermal shrinkage at the time of molding, and particularly when used in combination with a phosphorus-based flame retardant, the heat resistance (glass transition temperature) of the resin composition is lowered, resulting in a melt viscosity. Therefore, it is estimated that the thickness unevenness of the film has increased.
  • the comparative example 2 which does not contain a fluoropolymer (C) became easy to dripping, and was incompatible with UL94 combustion test specification.
  • Example 5 using a fluoropolymer (C) having a specific flow value has suppressed thermal shrinkage during aging.
  • Comparative Example 3 using fibrillated polyfluoroethylene having a flow value of less than 0.1 ⁇ 10 ⁇ 3 cm 3 / sec thermal shrinkage during aging was large.
  • Example 5 and Comparative Example 3 contain a halogen-based flame retardant as the flame retardant (B).
  • the halogen-based flame retardant is used in combination with a fluoropolymer (C) having a specific flow value. It is shown that the heat shrinkage rate can be significantly reduced.

Abstract

本発明によれば、ポリカーボネート樹脂(A)、難燃剤(B)、およびフルオロポリマー(C)を含むポリカーボネート樹脂組成物であって、前記フルオロポリマー(C)の高化式フローテスターによる流動性(測定温度400℃、測定荷重0.98MPa、ダイ穴径2.1mmの条件)が0.1×10-3cm/sec以上であることを特徴とするポリカーボネート樹脂組成物およびシート・フィルムが提供される。

Description

難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
 本発明は難燃ポリカーボネート樹脂組成物に関する。詳しくはシート・フィルム成形性に優れ、また難燃性にも優れるポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法に関する。
 ポリカーボネート樹脂は耐熱性、機械的特性、および電気的特性に優れ、しかも寸法精度が高いなど多くの優れた特性を有することから、多岐にわたる分野で広く用いられている。例えば、ポリカーボネート樹脂の射出成形や押出成形などによる成形品が自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料などに利用されている。
 なかでも難燃化されたポリカーボネート樹脂組成物はコンピューター、ノートブック型パソコン、タブレット端末、スマートフォン、携帯電話などの情報・モバイル機器やプリンター、複写機などのOA機器などの部材として用いられている。
 近年、上述のような情報・モバイル機器をはじめとする電子機器は小型化、薄肉化が進んでいる。使用される部材には、厚さが0.25mm以下の薄肉であってもUL94試験にてVTM-2以上となるような高い難燃性を有するシート・フィルムが求められている。
 例えば特許文献1および2には難燃剤としてホスファゼン化合物または縮合リン酸エステル系化合物を使用したポリカーボネート難燃樹脂組成物の記載がある。しかし本組成物は主に射出成形用に最適化された組成であり、樹脂成分の粘度が低く、また、成形時の収縮が大きくかつ分散性に劣るフィブリル形成能を有するフルオロオレフィン樹脂が配合されているため、フィルムやシートの製造には不適であった。すなわち、本組成物を溶融押出法によりフィルム・シートへと成形した場合、フィルム・シートの厚さのムラが大きく、また厚さ0.25mm以下の試験片のUL-94 VTM燃焼試験を行った場合、接炎中にフィルムの裂けが標線を超えるため、不適合となる問題があった。
 特許文献3にはポリカーボネートにリン系難燃剤およびポリフルオロエチレンを配合した樹脂シートの記載がある。しかしながら特許文献3の実施例の組成は、本文中からは、PTFE種が明確でないが、また実施例の組成は、ポリカーボネートの高流動品に加えてさらに流動性を高めるリン系難燃剤および分散性に劣るフィブリル化ポリフルオロエチレンが配合されているため、溶融押出法によって得られたフィルム・シートの厚さはムラが大きく、これもまた厚さ0.25mm以下の試験片のUL-94 VTM燃焼試験を行った場合、接炎中にフィルムの裂けが標線を超えるため、不適合となる問題があった。
特開2013-224349号公報 特開2011-057888号公報 特開2005-200588号公報
 本発明の課題は、薄肉難燃性に優れ、かつ、熱収縮が抑制されたポリカーボネート樹脂組成物、およびこれを用いたシート・フィルムを提供することにある。
 本発明者らは上記課題を解決するべく検討を重ねた結果、ポリカーボネート、難燃剤、及び特定の流れ値を有するフルオロポリマーの混合物からなる樹脂組成物をシート・フィルム化することで、上記課題を解決し得ることを見出した。
 すなわち本発明は、以下に示すものである。
[1] ポリカーボネート樹脂(A)、難燃剤(B)、およびフルオロポリマー(C)を含むポリカーボネート樹脂組成物であって、前記フルオロポリマー(C)の高化式フローテスターによる流動性(測定温度400℃、測定荷重0.98MPa、ダイ穴径2.1mmの条件)が0.1×10-3cm/sec以上であることを特徴とするポリカーボネート樹脂組成物。
[2] 前記フルオロポリマー(C)の30%粒径が4.0μm以下である[1]に記載のポリカーボネート樹脂組成物。
[3] 前記難燃剤(B)がハロゲン系難燃剤、リン系難燃剤、有機金属塩系難燃剤およびシリコーン系難燃剤からなる群から選ばれる少なくとも1種である[1]または[2]に記載のポリカーボネート樹脂組成物。
[4] 前記リン系難燃剤がホスファゼン化合物または縮合型リン酸エステルである[3]に記載のポリカーボネート樹脂組成物。
[5] 前記フルオロポリマー(C)がテトラフルオロエチレン構造を含む重合体または共重合体である[1]~[4]のいずれかに記載のポリカーボネート樹脂組成物。
[6] 前記ポリカーボネート樹脂(A)を69~99.989質量%、
 前記難燃剤(B)を 0.01~30質量%、及び
 前記フルオロポリマー(C)を0.001~1質量%含む、[1]~[5]のいずれかに記載のポリカーボネート樹脂組成物。
[7] シートまたはフィルム用の[1]~[6]のいずれかに記載のポリカーボネート樹脂組成物。
[8] [1]~[7]のいずれかに記載のポリカーボネート樹脂組成物を用いたシートまたはフィルム。
[9] 前記難燃剤(B)がリン系難燃剤を含み、厚みが30~200μmである、[8]に記載のシートまたはフィルム。
[10] 前記難燃剤(B)がハロゲン系難燃剤を含み、厚みが200~500μmである、[8]に記載のシートまたはフィルム。
[11] [1]~[7]のいずれかに記載のポリカーボネート樹脂組成物を押出成形する工程を含むシートまたはフィルムの製造方法。
 本発明のポリカーボネート樹脂組成物によれば、難燃性に優れる、フィルム・シートが提供される。さらに、本発明のポリカーボネート樹脂組成物は成形時の熱収縮を抑制することができ、これにより、厚みムラの低減およびエージング時の熱収縮の低減の少なくとも一つが達成されたフィルム・シートが得られる。このようなフィルム・シートは電子電気機器用の絶縁フィルム、銘板用フィルム及び電池パック等の筐体用フィルムとして好適に使用できる。
 以下、本発明を詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において任意に変更して実施することができる。なお、本明細書に記載した全ての文献及び刊行物は、その目的にかかわらず参照によりその全体を本明細書に組み込むものとする。また、2015年8月31日に出願し、本願優先権主張の基礎となる特願JP2015-171097号の特許請求の範囲、明細書、図面及び要約書の開示内容は、その全体が参照として本明細書に組み入れられる。
[ポリカーボネート樹脂(A)]
 本発明で使用されるポリカーボネート樹脂(A)(以下「(A)成分」と称す場合がある。)の種類には、特に制限はないものの、耐熱性、難燃性の点で芳香族ポリカーボネート樹脂の使用が特に好ましい。ポリカーボネート樹脂は、ジヒドロキシ化合物又はこれと少量の分岐剤とを、ホスゲンもしくはトリホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができる。また、溶融法を用いた場合には、末端基のOH基量を調整したポリカーボネート樹脂を使用することができる。
 本発明のポリカーボネート樹脂組成物(100質量%)中のポリカーボネート樹脂(A)の割合は、特に限定されないが、通常99.989~69質量%である。ハロゲン系難燃剤を配合した場合では、通常70~90質量%、好ましくは75~80質量%であり、リン系難燃剤を配合した場合は、通常75~95質量%、好ましくは80~92質量%である。有機金属塩系難燃剤を配合した場合は、通常99~99.989質量%、好ましくは99.5~99.985質量%、より好ましくは99.7~99.98質量%、特に好ましくは99.85~99.97質量%である。シリコーン系難燃剤を配合した場合は、通常80~99.989質量%、好ましくは90~99.5質量%、より好ましくは95~99質量%である。
 原料のジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(すなわち「ビスフェノールA」)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられる。これらは2種以上を併用してもよい。好ましくは耐熱性、入手性の点でビスフェノールAを主成分として用いることが好ましい。ビスフェノールAが主成分のポリカーボネート樹脂とは、使用するビスフェノールの内、ビスフェノールAを60~100モル%、好ましくは90~100モル%使用したものである。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
 また、上記ジヒドロキシ化合物とシロキサン構造を有する化合物との共重合体等のポリカーボネート樹脂を主体とする共重合体であってもよい。
 分岐したポリカーボネート樹脂を得るには、上述したジヒドロキシ化合物の一部を分岐剤で置換すればよい。分岐剤としては、特に限定されないが、例えば、フロログルシン、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプテン-2、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニルヘプテン-3、1,3,5-トリ(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリ(4-ヒドロキシフェニル)エタン等のポリヒドロキシ化合物や、3,3-ビス(4-ヒドロキシアリール)オキシインドール(すなわち「イサチンビスフェノール」)、5-クロルイサチン、5,7-ジクロルイサチン、5-ブロムイサチン等が挙げられる。これら置換する化合物の使用量は、ジヒドロキシ化合物に対して、通常0.01~10モル%であり、好ましくは0.1~2モル%である。
 ポリカーボネート樹脂(A)としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパン(すなわち「ビスフェノールA」)から誘導されるポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパン(すなわち「ビスフェノールA」)と他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体が好ましい。
 上述したポリカーボネート樹脂は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ポリカーボネート樹脂(A)の分子量を調節するには、末端停止剤として一価のヒドロキシ化合物、例えば芳香族ヒドロキシ化合物を用いればよく、この一価の芳香族ヒドロキシ化合物としては、例えば、m-及びp-メチルフェノール、m-及びp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。
 本発明で用いるポリカーボネート樹脂(A)の分子量は用途により任意であり、難燃剤(B)およびフルオロポリマー(C)との配合比により適宜選択して決定すればよい。成形性、成形品の強度等の点から、芳香族ポリカーボネート樹脂(A)の分子量は、粘度平均分子量[Mv]で、好ましくは12,000~50,000、より好ましくは17,000~40,000、さらに好ましくは20,000~30,000である。粘度平均分子量が12,000以上であれば機械的強度が向上し、溶融押出法でのフィルム成形性に優れる。一方、粘度平均分子量を50,000以下であればポリカーボネート樹脂組成物が一定の流動性を有するため、押出加工性および生産速度が良好であり、さらに樹脂温度の上昇による添加剤の劣化が防止される。さらに、17,000以上、さらには20,000以上とすることで、溶融押出法によるシート・フィルムの成形性が向上する。また、40,000以下、さらには30,000以下とすることで、加工温度を下げることができ、難燃剤(B)由来のガス発生によるロール汚れを低減できる。
 ここでポリカーボネート樹脂の粘度平均分子量〔Mv〕は以下に記載の方法により測定することができる。
<粘度平均分子量(Mv)測定条件>
 粘度平均分子量[Mv]は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、下記Schnellの粘度式から算出される値(粘度平均分子量:Mv)を意味する。
Figure JPOXMLDOC01-appb-M000001
ここで極限粘度[η]とは各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000002
[難燃剤(B)]
 本発明のポリカーボネート樹脂組成物は、難燃性の改善のために難燃剤(B)を含有する。本発明において用いられる難燃剤(B)は、特に限定されず、例えば、ハロゲン系難燃剤、リン系難燃剤、有機金属塩系難燃剤、シリコーン系難燃剤などが挙げられる。ハロゲン系難燃剤はこれらの中で難燃効果が最も高い。有機金属塩系難燃剤およびシリコーン系難燃剤は、ハロゲン系難燃剤に比べ難燃効果がやや低いものの、環境面で望ましい。リン系難燃剤は、ハロゲン系難燃剤に次いで難燃性能が高いものの、添加量が多くなると耐熱性が低下するおそれがある。本発明では、用途や目的に応じて、これらの難燃剤を単独でまたは組み合わせて使用することができる。
 本発明のポリカーボネート樹脂組成物(100質量%)中の難燃剤(B)の割合は特に限定されないが、通常0.01~30質量%である。
<ハロゲン系難燃剤>
 ハロゲン系難燃剤の代表的なものとしては、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモビスフェノールAカーボネートオリゴマー、テトラブロモビスフェノールS、テトラブロモビスフェノールSカーボネートオリゴマー、1,2-ビス(2’,3’,4’,5’,6’-ペンタブロモフェニル)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、2,6-または2,4-ジブロモフェノール、臭素化ポリスチレン、エチレンビステトラブロモフタルイミド、ヘキサブロモシクロドデカン、ヘキサブロモベンゼン、ペンタブロモベンジルアクリレート、2,2-ビス[4’(2’’,3’’-ジブロモプロポキシ)-,3’,5’-ジブロモフェニル]-プロパン、ビス(3,5-ジブロモ,4-ジブロモプロポキシフェニル)スルホン、トリス(2,3-ジブロモプロピル)イソシアヌレートなどの臭素含有化合物を含む臭素系難燃剤;塩素化パラフィン、塩素化ポリエチレン、塩素化ポリプロピレン、パークロロペンタシクロデカン、ドデカクロロドデカヒドロジメタノジベンゾシクロオクテン、ドデカクロロオクタヒドロジメタノジベンゾフランなどの塩素含有化合物を含む塩素系難燃剤が挙げられる。これらは単独で用いても、2種以上を併用してもよい。なかでも、熱安定性や、成形品の力学特性のバランスの観点から、テトラブロモビスフェノールAカーボネートオリゴマー類が特に好ましく用いられる。ここで、テトラブロモビスフェノールAのポリカーボネートオリゴマー類などの臭素含有芳香族ポリカーボネートオリゴマーは重合度1では成形時に成形品からブリードアウトし易く、他方重合度が大きくなると満足する流動性が得られ難くなる。好ましくは重合度2~15である。これらの要件を満たす臭素含有芳香族ポリカーボネートオリゴマーは、市販品があり、容易に入手することが可能である。例えば、2,4,6-トリブロモフェノール(「TBPH」と略称することがある。)を分子量調節剤としてのTBAおよびホスゲンを反応させて得られたオリゴマー(平均重合度5)は、三菱エンジニアリングプラスチックス(株)から、商品名:ユーピロンFR-53として市販されている。
 本発明のポリカーボネート樹脂組成物中のハロゲン系難燃剤の含有量は、特に制限されないが、通常5~30質量%であり、好ましくは10~30質量%であり、特に好ましくは20~25%である。
<リン系難燃剤>
 難燃剤(B)の好ましい形態として、リン系難燃剤が挙げられる。リン系難燃剤は優れた難燃性を付与し得る。しかし、従来は添加量が多くなると樹脂成分の耐熱性(ガラス転移温度)の低下および溶融粘度の低下により、フィルム・シートへと成形する際に厚みムラが生じるため、優れた難燃性を有しかつ厚みムラの少ないフィルム・シートを得ることは困難であった。本発明においては、特定の流れ値を有するフルオロポリマー(C)を樹脂組成物に配合することで、樹脂成分の耐熱性の低下が抑制され、優れた難燃性を有し、かつ、厚みムラの低減されたフィルム・シートを得ることができる。
 リン系難燃剤としては、リン酸エステル系難燃剤、ホスファゼン系難燃剤等を用いることができる。リン系難燃剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(リン酸エステル系難燃剤)
 リン系難燃剤としては、中でも難燃化効果が高く、流動性向上効果があることから、リン酸エステル系難燃剤が好ましく用いられる。リン酸エステル系難燃剤は限定されないが、特に、このリン酸エステル系難燃剤としては、下記の一般式(IIa)で表されるリン酸エステル系化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(IIa)中、R、R、R及びRは、各々独立に、炭素数1~8のアルコキシ基で置換されていてもよい炭素数1~8のアルキル基、又は炭素数1~8のアルキル基、もしくは炭素数1~8のアルキル基で置換されていてもよいフェニルで置換されていてもよい炭素数6~20のアリール基を示し、p、q、r及びsは、各々独立に0又は1であり、tは、0~5の整数であり、Xは、アリーレン基または下記式(IIb)で表される二価の基を示す。)
Figure JPOXMLDOC01-appb-C000004
(式(IIb)中、Bは、単結合、-C(CH-、-SO-、-S-、又は-O-である。)
 上記一般式(IIa)において、R~Rのアリール基としては、フェニル基、ナフチル基等が挙げられる。また、Xのアリーレン基としては、フェニレン基、ナフチレン基が挙げられる。tが0の場合、一般式(IIa)で表される化合物はリン酸エステルであり、tが0より大きい場合は縮合リン酸エステル(混合物を含む)である。本発明には、特に縮合リン酸エステルが好適に用いられる。
 上記一般式(IIa)で表されるリン酸エステル系難燃剤としては、具体的には、トリメチルフォスフェート、トリエチルフォスフェート、トリブチルフォスフェート、トリオクチルフォスフェート、トリブトキシエチルフォスフェート、トリフェニルフォスフェート、トリクレジルフォスフェート、トリクレジルフェニルフォスフェート、オクチルジフェニルフォスフェート、ジイソプロピルフェニルフォスフェート、ビスフェノールAテトラフェニルジフォスフェート、ビスフェノールAテトラクレジルジフォスフェート、ビスフェノールAテトラキシリルジフォスフェート、ヒドロキノンテトラフェニルジフォスフェート、ヒドロキノンテトラクレジルジフォスフェート、ヒドロキノンテトラキシリルジフォスフェート、レゾルシノールテトラフェニルジフォスフェート、レゾルシノールビスジキシレニルホスフェート等の種々のものが例示される。これらのうち好ましくは、トリフェニルフォスフェート、ビスフェノールAテトラフェニルジフォスフェート、レゾルシノールテトラフェニルジフォスフェート、レゾルシノールビスジ2,6-キシレニルホスフェート等が挙げられる。市販品のリン酸エステル系難燃剤の例として、(株)ADEKA社のFP-600、大八化学工業社製のPX-200等が挙げられる。
 上述したリン酸エステル系難燃剤は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<ホスファゼン系難燃剤>
 ホスファゼン系難燃剤は、リン酸エステル系難燃剤と比較して難燃剤の添加による樹脂組成物の耐熱性の低下を抑制できるため、効果的なリン系難燃剤として用いられる。ホスファゼン系難燃剤は、分子中に-P=N-結合を有する有機化合物であり、ホスファゼン系難燃剤としては、好ましくは下記一般式(IIIa)で表される環状ホスファゼン化合物、下記一般式(IIIb)で表される鎖状ホスファゼン化合物、下記一般式(IIIa)及び下記一般式(IIIb)からなる群より選択される少なくとも一種のホスファゼン化合物が架橋基によって架橋されてなる架橋ホスファゼン化合物が挙げられる。架橋ホスファゼン化合物としては、下記一般式(IIIc)で表される架橋基によって架橋されてなるものが難燃性の点から好ましい。
Figure JPOXMLDOC01-appb-C000005
(式(IIIa)中、mは3~25の整数であり、Rは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式(IIIb)中、nは3~10,000の整数であり、Zは、-N=P(OR基又は-N=P(O)OR基を示し、Yは、-P(OR基又は-P(O)(OR基を示す。Rは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。)
Figure JPOXMLDOC01-appb-C000007
(式(IIIc)中、Aは-C(CH-、-SO-、-S-、又は-O-であり、lは0又は1である。)
 一般式(IIIa)及び(IIIb)で表される環状及び/又は鎖状ホスファゼン化合物としては、例えば、Rが炭素数1~6のアルキル基で置換されていてもよい炭素数6~20のアリール基であるものが好ましく挙げられる。具体的には、Rがフェニル基などのアリール基である環状又は鎖状のホスファゼン化合物;Rがトリル基(o-,m-,p-トリルオキシ基)、キシリル基(2,3-、2,6-、3,5-キシリル基)などの、炭素数1~6、好ましくは1~3のアルキルで置換された炭素数6~20のアリール基である環状又は鎖状フェノキシホスファゼン;または当該Rを組み合わせた環状又は鎖状フェノキシホスファゼン;が挙げられる。より具体的にはフェノキシホスファゼン、(ポリ)トリルオキシホスファゼン(例えば、o-トリルオキシホスファゼン、m-トリルオキシホスファゼン、p-トリルオキシホスファゼン、o,m-トリルオキシホスファゼン、o,p-トリルオキシホスファゼン、m,p-トリルオキシホスファゼン、o,m,p-トリルオキシホスファゼン等)、(ポリ)キシリルオキシホスファゼン等の環状及び/又は鎖状C1-6アルキルC6-20アリールオキシホスファゼンや、(ポリ)フェノキシトリルオキシホスファゼン(例えば、フェノキシo-トリルオキシホスファゼン、フェノキシm-トリルオキシホスファゼン、フェノキシp-トリルオキシホスファゼン、フェノキシo,m-トリルオキシホスファゼン、フェノキシo,p-トリルオキシホスファゼン、フェノキシm,p-トリルオキシホスファゼン、フェノキシo,m,p-トリルオキシホスファゼン等)、(ポリ)フェノキシキシリルオキシホスファゼン、(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン等の環状及び/又は鎖状C6-20アリールC1-10アルキルC6-20アリールオキシホスファゼン等が例示でき、好ましくは環状及び/又は鎖状フェノキシホスファゼン、環状及び/又は鎖状C1-3アルキルC6-20アリールオキシホスファゼン、C6-20アリールオキシC1-3アルキルC6-20アリールオキシホスファゼン(例えば、環状及び/又は鎖状トリルオキシホスファゼン、環状及び/又は鎖状フェノキシトリルフェノキシホスファゼン等)である。なお、ここで、「C1-6」の記載は「炭素数1~6の」を意味し、「C6-20」「C1-10」等についても同様である。また、「(ポリ)フェノキシ・・・」の記載は「フェノキシ・・・」と「ポリフェノキシ・・・」の一方、又は両方をさす。
 一般式(IIIa)で表される環状ホスファゼン化合物としては、Rがフェニル基である環状フェノキシホスファゼンが特に好ましい。また、該環状フェノキシホスファゼン化合物は、一般式(IIIa)中のmが3~8の整数である化合物が好ましく、mの異なる化合物の混合物であってもよい。具体的には、シクロフェノキシシクロトリホスファゼン(m=3の化合物)、オクタフェノキシシクロテトラホスファゼン(m=4の化合物)、デカフェノキシシクロペンタホスファゼン(m=5の化合物)等の化合物、またはこれらの混合物が挙げられる。なかでも、m=3のものが50質量%以上、m=4のものが10~40質量%、m=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。
 このような環状フェノキシホスファゼン化合物は、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換することにより製造することができる。
 一般式(IIIb)で表される鎖状ホスファゼン化合物としては、Rがフェニル基である鎖状フェノキシホスファゼンが特に好ましい。このような鎖状フェノキシホスファゼン化合物としては、例えば、上記の方法で得られる環状フェノキシホスファゼン化合物の塩化物(例えばヘキサクロロシクロトリホスファゼン)を220~250℃の温度で開還重合し、得られた重合度3~10,000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。該直鎖状フェノキシホスファゼン化合物の、一般式(IIIb)中のnは、好ましくは3~1,000、より好ましくは3~100、さらに好ましくは3~25である。
 架橋フェノキシホスファゼン化合物としては、例えば、4,4’-スルホニルジフェニレン(ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4’-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’-オキシジフェニレン基の架橋構造を有する化合物、4,4’-チオジフェニレン基の架橋構造を有する化合物等の、4,4’-ジフェニレン基の架橋構造を有する化合物等が挙げられる。
 また、架橋ホスファゼン化合物としては、一般式(IIIa)においてRがフェニル基である環状フェノキシホスファゼン化合物が上記一般式(IIIc)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物又は、上記一般式(IIIb)においてRがフェニル基である鎖状フェノキシホスファゼン化合物が上記一般式(IIIc)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記一般式(IIIc)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。
 また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(IIIa)で表される環状ホスファゼン化合物及び/又は一般式(IIIb)で表される鎖状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50~99.9%、好ましくは70~90%である。また、該架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。
 本発明においては、ホスファゼン系難燃剤は、上記一般式(IIIa)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(IIIa)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、難燃性及び機械的特性の点から好ましい。市販品のホスファゼン系難燃剤としては、例えば、環状フェノキシホスファゼンである伏見製薬所社製の「ラビトルFP-110」、「ラビトルFP-110T」及び大塚化学社製の「SPS100」等が挙げられる。
 本発明のポリカーボネート樹脂組成物中のリン系難燃剤の含有量は、特に制限されないが、通常5~25質量%である。また耐熱性、難燃性の観点から8~20質量%であることが好ましい。
 上述したホスファゼン系難燃剤は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<有機金属塩系難燃剤>
 有機金属塩化合物は炭素原子数1~50、好ましくは1~40の有機酸のアルカリ(土類)金属塩、好ましくは有機スルホン酸アルカリ(土類)金属塩であることが好ましい。本発明のある態様では、この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1~10、好ましくは2~8のフッ素置換アルキルスルホン酸(パーフルオロアルキルスルホン酸)の金属塩(好ましくはアルカリ金属またはアルカリ土類金属の塩)が含まれる。このようなパーフルオロアルキルスルホン酸の金属塩は少量の配合で難燃性が得られるため、ハロゲン系難燃剤を配合した場合と比較して比重の増加がなく、リン系難燃剤を配合した場合と比較して耐熱性の低下がない点で好ましい。本発明の別の態様では、有機スルホン酸アルカリ(土類)金属塩には、炭素原子数7~50、好ましくは7~40の芳香族スルホン酸の金属塩(好ましくはアルカリ金属またはアルカリ土類金属の塩)が含まれる。このような芳香族スルホン酸の金属塩は少量の配合で難燃性が得られるため、ハロゲン系難燃剤を配合した場合と比較して比重の増加がなく、リン系難燃剤を配合した場合比較して耐熱性の低下がない点で好ましい。
 金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられる。アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属であり、樹脂組成物の熱安定性及び難燃性の点でカリウム、ナトリウムが特に好ましい。
 パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられる。これらは1種もしくは2種以上を併用して使用することができる。
 芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド-4,4’-ジスルホン酸ジナトリウム、ジフェニルサルファイド-4,4’-ジスルホン酸ジカリウム、5-スルホイソフタル酸カリウム、5-スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1-メトキシナフタレン-4-スルホン酸カルシウム、4-ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6-ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3-フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4-フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6-ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2-フルオロ-6-ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p-ベンゼンジスルホン酸ジカリウム、ナフタレン-2,6-ジスルホン酸ジカリウム、ビフェニル-3,3’-ジスルホン酸カルシウム、ジフェニルスルホン-3-スルホン酸ナトリウム、ジフェニルスルホン-3-スルホン酸カリウム、ジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3,4’-ジスルホン酸ジカリウム、α,α,α-トリフルオロアセトフェノン-4-スルホン酸ナトリウム、ベンゾフェノン-3,3’-ジスルホン酸ジカリウム、チオフェン-2,5-ジスルホン酸ジナトリウム、チオフェン-2,5-ジスルホン酸ジカリウム、チオフェン-2,5-ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド-4-スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。
 スルホン酸アルカリ(土類)金属塩以外の有機金属塩化合物としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。
 芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N-(p-トリルスルホニル)-p-トルエンスルホイミド、N-(N’-ベンジルアミノカルボニル)スルファニルイミド、およびN-(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
 本発明のポリカーボネート樹脂組成物中の有機金属塩系難燃剤の含有量は、特に制限されないが、通常0.001~1質量%、好ましくは0.005~0.5質量%、より好ましくは0.01~0.3質量%、特に好ましくは0.03~0.15質量%である。
<シリコーン系難燃剤>
 シリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては、従来、ポリカーボネート樹脂の難燃剤として提案された各種の化合物を使用することができる。官能基としては具体的にはアルコキシ基およびハイドロジェン(即ちSi-H基)から選択された少なくとも1種の基を所定量含有されていることが好ましい。一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、Q単位:SiOで示される4官能性シロキサン単位である。シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。
 ここで、前記示性式中の係数m、n、p、およびqはそれぞれ独立に各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3~150の範囲、より好ましくは3~80の範囲、更に好ましくは3~60の範囲、特に好ましくは4~40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
 シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1~30、より好ましくは1~20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基などのアリール基、並びにトリル基などのアラルキル基を挙げることがでる。さらに好ましくは炭素数1~8のアルキル基、アルケニル基、またはアリール基である。本発明の一態様において、アルキル基は、メチル基、エチル基、およびプロピル基等の炭素数1~4のアルキル基である。かかる場合には市場入手性の点でメチル基好ましい。さらに本発明の別の態様においてシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有する。かかる場合にはアリール基により、ポリカーボネートとの相溶性の向上および難燃性の向上の点で好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si-H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
 本発明のポリカーボネート樹脂組成物中のシリコーン系難燃剤の含有量は、特に制限されないが、通常0.01~20質量%、より好ましくは0.5~10質量%、さらに好ましくは1~5質量%である。
[フルオロポリマー(C)]
 フルオロポリマー(C)は本発明のポリカーボネート樹脂組成物における燃焼物の滴下防止のために添加される。
 本発明で用いるフルオロポリマー(C)とは、400℃での流れ値が0.1×10-3cm/sec以上であることを特徴とする。
 フルオロポリマーとしては、例えば、フルオロオレフィン樹脂が挙げられる。フルオロオレフィン樹脂は、通常、フルオロエチレン構造を含む重合体または共重合体である。フルオロエチレン構造を含む重合体または共重合体は、フルオロエチレン構造(構成単位)主成分とするポリマーであり、具体的には、フルオロエチレン構造(フルオロエチレンの構成単位)はフルオロポリマーを構成するモノマー単位全体の好ましくは40~100質量%であり、より好ましくは50~100質量%であり、さらに好ましくは60~100質量%である。
 具体例としてはポリジフルオロエチレン樹脂、ポリテトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂、テトラフルオロエチレン/パーフルアルキルビニルエーテル共重合樹脂等が挙げられる。なかでも難燃性の点で好ましくはポリテトラフルオロエチレン樹脂等が挙げられる。
 本発明では、低分子量体フルオロポリマーの指標として、JIS K7210-1:2014付属書JAに記載のフローテスター(島津製作所社製)での溶融粘度測定によって得られた流れ値を用いる。測定は2.1mm径-8mm長のダイを用い、予め400℃で5分間加熱しておいた2gの試料を0.98MPaの荷重にて上記温度に保って測定を行う。本発明では流れ値(高化式フローテスターによる流動性(測定温度400℃、測定荷重0.98MPa、ダイ穴径2.1mmの条件))が0.1×10-3cm/sec以上であるフィブリル形成能の低いフルオロポリマーを使用することを特徴とする。フルオロポリマーの流れ値の上限は特に制限されないが、通常500×10-3cm/sec以下である。
 フルオロポリマーの流れ値は、フルオロポリマーの分子量、種類等を制御することで調節することができる。一般に、フルオロポリマーの分子量が小さいほど流れ値は増大する傾向がある。すなわち、本発明の一態様において、フルオロポリマー(C)は、一般的には数平均分子量が60万以下の低分子量体からなるフィブリル形成能の低いフルオロポリマーである。好ましい態様において、フルオロポリマー(C)の数平均分子量は1万以上である。
 なお、「フィブリル形成能」とは、せん断力等の外的作用により、樹脂同士が結合して繊維状になる傾向を示すことをいう。
 従来、優れた滴下防止効果を有することからフルオロポリマーとしてフィブリル化PTFEが一般的に使用されてきた。一般的なフィブリル化形成能の高いフルオロポリマーの流れ値は0.1×10-3cm/secより低くなるため、実際のフローテスターの測定ではほぼ流動することがない。このようなフィブリル化形成能が高く流動性に劣るフルオロポリマーは樹脂組成物およびフィルム・シート成形品内での分散性に劣る。さらに、フィブリル化PTFEは分子量が高いため、剪断が掛かった場合に繊維化し、その繊維が樹脂組成物を収縮させる効果を引き起こしうる。特に、収縮の問題は薄肉品において重大な影響、例えば薄肉成形品における厚みムラやエージング時の収縮、を与える。具体的には、フィルム・シート成形時、特に薄肉とした場合に、ダイスから吐出されるフィルム・シートの収縮の均一性が失われるため、フィルム・シートの厚みムラが大きくなる問題および薄肉フィルムの燃焼試験時での接炎時に試験片が溶融し割けるため難燃性が得られないといった問題を生じ得る。さらに、成形後においても、エージング時の収縮を引き起こし得る。すなわち、従来の樹脂組成物を用いた場合には優れた難燃性を有するフィルム・シートを得ることは困難であった。
 本発明者らは、驚くべきことに、上記特定の流れ値を有するフルオロポリマーは剪断(樹脂の流れ、スクリューによる練りによって生じる力)によって繊維状とならず、樹脂組成物およびフィルム・シート成形品内での分散性に優れるため、樹脂組成物の収縮を抑制することができることを見出した。具体的には、上記特定のフルオロポリマーを配合することにより樹脂組成物の成形時の熱収縮(ダイスから吐出されるフィルム・シートの収縮)が抑制され、厚みムラが抑制されたフィルム・シートが得られる。さらに、得られたフィルム・シートは、フィブリル化によるPTFEの極端な配向が存在しないことによりエージンング時の熱収縮も抑制され得る。
 本発明の一つの態様のポリカーボネート樹脂組成物において、上記特定の流れ値を有するフルオロポリマー(C)とリン系難燃剤とが併用される。一般にリン系難燃剤を使用した場合には樹脂組成物の成形時の熱収縮が生じやすい。本態様では上記特定の流れ値を有するフルオロポリマー(C)とリン系難燃剤との併用により成形時の熱収縮が抑制され、難燃性の向上と厚みムラの低減とが両立されたフィルム・シートが得られうる。特に、リン系難燃剤とフルオロポリマー(C)とを併用する場合には、厚さが30~200μm(さらに好ましくは30~100μm)の範囲の薄膜(フィルム・シート)であっても、厚みムラが低減され、かつ、優れた難燃性が達成され得る。
 本発明の別の態様のポリカーボネート樹脂組成物において、上記特定の流れ値を有するフルオロポリマー(C)とハロゲン系難燃剤、有機金属塩系難燃剤、およびシリコーン系難燃剤の少なくとも一つとが併用される。ハロゲン系難燃剤、有機金属塩系難燃剤、またはシリコーン系難燃剤を配合する場合には、リン系難燃剤を配合した場合に比べて、難燃剤の配合による樹脂成分の耐熱性の低下が抑制されるため成形時の厚みムラの発生は低いが、成形後の熱収縮による不良の問題が生じうる。本発明では、特定の流れ値のフルオロポリマーを配合することによって、エージング時の収縮量が低減されたフィルム・シートを得ることが可能となる。
 特に、ハロゲン系難燃剤とフルオロポリマー(C)とを併用する場合には、熱収縮の問題(エージング時の収縮量)が顕著に低減されうる。かかる効果は、特に厚さ200~500μmのフィルム・シートにおいて顕著である。
 フィブリル形成能の高いフルオロエチレン樹脂の例としては、三井・デュポンフロロケミカル社製「テフロン(登録商標)6-J」、「テフロン(登録商標)640J」、ダイキン工業社製のポリフロンFシリーズ(例えば、「ポリフロンFA-500シリーズ」、「ポリフロンF-201シリーズ」、「ポリフロンF103シリーズ」)、三菱レイヨン社製の「メタブレンA-3800」、「メタブレンA-3750」等が挙げられる。これらは従来熱可塑性樹脂の難燃化を行う際、ドリップ防止剤としてされてきたものであり、本発明のフルオロポリマーとして該当しない。さらに、フィブリル形成能を有するフルオロエチレン樹脂の水性分散液の市販品として、例えば、三井デュポンフロロケミカル社製「テフロン(登録商標)30J」、「テフロン(登録商標)31-JR」、ダイキン化学工業社製「フルオンD-1」等が挙げられ、これらも本発明のフルオロポリマーに該当しない。また、ダイキン工業社製の「ポリフロンMシリーズ」は、後述する30%粒径が4.0μmを超えるため、発明のフルオロポリマーに該当しない。
 また本発明の一形態におけるフルオロポリマー(C)は、30%粒径が4.0μm以下であることも特徴とする。30%粒径とは、体積基準の粒度分布曲線において粒径の細かい方から30%位置(通過体積百分率30%)における粒径である。粒度分布は、レーザー回折式粒度分布測定装置によって乾式法で測定することにより得られる。30%粒径が4.0μm以下だと良好な外観、厚み精度を示す。より好ましくは3.5μm以下であり、この場合さらに厚み精度向上に加え、難燃性をさらに高めることができる。難燃性の一層の向上のためにさらに好ましくは3.2μm以下である。一方30%粒径が4.0μmより大きいとフィルムの外観の低下、充分な厚み精度が得られない場合がある。30%粒径の下限値は特に制限されず、分散性向上の観点からは小さいほどよいが、通常、0.5μm以上であり、例えば0.7μm以上、1.0μ以上でありうる。
 30%粒径が4.0μm以下であり、フィブリル形成能の低いフルオロエチレン樹脂の例としては、三井・デュポンフロロケミカル社製「テフロン(登録商標)TLP 10F-1」、ダイキン工業社製「ルブロンL-2」、「ルブロンL-5F」等が挙げられる。
 なお、フルオロポリマー(C)は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 本発明のポリカーボネート樹脂組成物中のフルオロポリマーの含有量は、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上、特に好ましくは0.1質量%以上であり、また、通常1質量%以下、好ましくは0.75質量%以下、より好ましくは0.5質量%以下である。フルオロポリマーの含有量が前記範囲の下限値以下の場合は、フルオロポリマーによる難燃性改良の効果が不十分となる可能性があり、フルオロポリマーの含有量が前記範囲の上限値を超える場合は、ポリカーボネート樹脂組成物を成形した成形品の外観不良や機械的強度の低下が生じるおそれがある。
 [その他の成分]
(その他の樹脂成分)
 本発明の芳香族ポリカーボネート樹脂組成物は、本発明の目的を損なわない限りにおいて、樹脂成分として、ポリカーボネート樹脂(A)やフルオロポリマー(C)以外の他の樹脂成分を含有していてもよい。配合し得る他の樹脂成分としては、例えば、ポリスチレン樹脂、ハイインパクトポリスチレン樹脂、水添ポリスチレン樹脂、ポリアクリルスチレン樹脂、ABS樹脂、AS樹脂、AES樹脂、ASA樹脂、SMA樹脂、ポリアルキルメタクリレート樹脂、ポリメタクリルメタクリレート樹脂、ポリフェニルエーテル樹脂、(A)成分以外のポリカーボネート樹脂、非晶性ポリアルキレンテレフタレート樹脂、ポリエステル樹脂、非晶性ポリアミド樹脂、ポリ-4-メチルペンテン-1、環状ポリオレフィン樹脂、非晶性ポリアリレート樹脂、ポリエーテルサルフォンなどが挙げられる。これらは1種または2種以上を組み合わせて使用されうる。
(その他添加剤)
 本発明のポリカーボネート樹脂組成物は、本発明の効果を損なわない範囲で、更に種々の添加剤を含有していても良い。このような添加剤としては、安定剤、酸化防止剤、離型剤、紫外線吸収剤、染顔料、帯電防止剤、難燃剤、衝撃強度改良剤、可塑剤、分散剤、抗菌剤、無機充填材(ケイ酸塩化合物、ガラス繊維、炭素繊維等)などが挙げられる。これらの樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
[ポリカーボネート樹脂組成物の製造方法]
 本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用することができる。
 その具体例を挙げると、本発明に係るポリカーボネート樹脂(A)と難燃剤(B)とフルオロポリマー(C)と必要に応じて配合されるその他の成分とを、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの各種混合機を用いて予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
[ポリカーボネート樹脂組成物の成形方法]
 本発明のポリカーボネート樹脂組成物は、様々な形態の成形体にすることができる。特に、本発明のポリカーボネート樹脂組成物を用いることで従来のポリカーボネート樹脂組成物では困難であった薄肉での難燃性に優れた成形品の提供が可能となる。本発明の成形品の適用例を挙げると、電気電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器等の部品が挙げられる。これらの中でも、本発明の成形品は、その優れた難燃性から、特に電気電子機器、OA機器、情報端末機器、家電製品、照明機器等の部品及び銘板へ用いて好適であり、電気電子機器、照明機器の部品、シート部材に用いて特に好適である。なかでも本発明のポリカーボネート樹脂組成物は、シート及びフィルムへの成形に好適に用いられ、厚みムラが小さく薄肉難燃性に優れたシート及びフィルムが得られる。
 本発明のポリカーボネート樹脂組成物からシート及びフィルムを得る方法に特に制限はなく、例えば溶融押出成形法、溶液流延法、ブロー成形法、インフレーション成形法等の成形方法を用いることができる。なかでも好ましくは生産性の点で押出成形法である。好ましい一実施形態において、シートまたはフィルムの製造方法は、ポリカーボネート樹脂組成物を押出成形する工程を含む。
 本発明におけるポリカーボネート樹脂製シートおよびフィルムは、表層の片面または両面に非強化の熱可塑性樹脂層を積層していても良い。すなわち、本発明の一形態によれば、ポリカーボネート樹脂層の少なくとも一面に熱可塑性樹脂層を有する積層シートまたはフィルムが提供される。このようにすることにより、良好な表面平滑性、光沢感、耐衝撃性が得られ、非強化層の裏面に印刷を施した場合には深みのある外観が得られる。
 また、積層する熱可塑性樹脂は種々の添加剤を含有していても良い。このような添加剤としては、安定剤、酸化防止剤、離型剤、紫外線吸収剤、染顔料、帯電防止剤、難燃剤、衝撃強度改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。これらの樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 なお、「シート」とは、一般に、薄く、その厚さが長さと幅のわりには小さく平らな製品をいい、「フィルム」とは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう。しかし、本明細書では「シート」と「フィルム」とは明確に区別されるものではなく、双方とも同じ意味として用いられる。
[フィルム・シートの厚み]
 本発明のポリカーボネート樹脂組成物から得られるフィルムまたはシート(積層体の場合にはポリカーボネート樹脂層)の厚みは、10~1000μmの範囲であることが好ましく、30~500μmの範囲がより好ましい。
 好ましい一形態は、難燃剤(B)がリン系難燃剤を含み、フィルムまたはシートの厚さが30~200μmの範囲である。かかる形態においては、優れた薄膜難燃性および低減されたは厚みムラが達成され得る。
 好ましい他の一形態は、難燃剤(B)がハロゲン系難燃剤を含み、フィルムまたはシートの厚さが200~500μmの範囲である。かかる形態においては、成型後の過熱収縮を顕著に低減することができる。
く、30~200μmの範囲がさらに好ましい。本発明のポリカーボネート樹脂組成物から得られるフィルムまたはシートは厚みムラが小さい。
<フィルム・シートの難燃性>
 本発明の樹脂組成物から得られるフィルムまたはシートは、優れた難燃性を有する。具体的には、UL94/VTM燃焼試験に準拠した方法で評価した場合に、VTM-2以上、好ましくはVTM-1以上、より好ましくはVTM-0である。なお、UL94/VTM燃焼試験は下記の実施例に記載の方法で行うことができる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施することができる。
<フルオロポリマーの流れ値測定>
 JIS K7210-1:2014付属書JAに記載の方法を参考にフルオロポリマー(C)の流れ値を評価した。測定は島津製作所社製フローテスターCFT-500EXを用いて、穴径2.1mm、長さ8mmのダイを用い、試験温度400℃、試験力0.98MPa、余熱時間500secの条件で排出された溶融樹脂量を流れ値として用いた。なお表中には「PTFE流れ値」と表記する。
<フルオロポリマーの粒径測定>
 島津製作所社製サイクロン噴射型乾式測定ユニットDS5を備えたレーザー回折式粒度分布測定装置SALD-2300を用い測定を行った。測定は、試料カップに充填し、分散圧力を0.5MPa、テーブル上昇速度10mm/sec、屈折率1.65-0.05iを用いて測定を行った。粒度分布曲線を作成の後、通過体積百分率30%における粒径(30%粒径)を算出した。なお表中には「30%粒径」と表記する。
<樹脂フィルムの厚み(膜厚分布)測定>
 樹脂フィルムの膜厚分布は、山文電気社製の接触式卓上型オフライン厚み計測装置(TOF-5R)を用いて測定した。フィルムの中央部分の厚みを押出成形時の流れ方向(MD方向)に沿って10mm間隔で計140点測定し、フィルム膜厚の平均値と標準偏差を求め、膜厚のばらつきを評価した。なお表中には「平均膜厚」、「膜厚標準偏差」と表記する。膜厚のばらつき(厚みムラ)について、膜厚標準偏差が0μm以上4μ未満のものを「良好」、4μm以上を「不良」と判断することができる。
<難燃性評価>
 ポリカーボネート樹脂フィルムの難燃性評価は、幅50mm×長さ200mm×厚み50μmに切削したフィルムを用い、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94/VTM燃焼試験に準拠した方法で評価した。本評価では下記表1に示す基準から、VTM-0~VTM-2と判定されたものを適合、接炎時における試験片の変形(溶融裂け)が標線を超えたものを不適合とした。なお、表中、「UL94難燃性」と表記する。
(評価方法)
(i)測定試料準備
 測定試料を上記サイズ(上記幅50mm×長さ200mm×厚み50μmに切削する。
 23℃、50%RH中で48時間放置した試料を試料A、温度70℃、168時間放置後、温度23℃、20%RH以下で4時間冷却した試料を試料Bとして、それぞれ試料5枚を1セットとして準備する。
(ii)測定方法
  各試料の短辺から125mmのところに短辺と平行方向に線を引き、直径12.7mmの棒に、短辺が上下方向となるように巻きつける。125mmマークより上の75mm部分内は感圧テープで留めたあと棒を引き抜く。試料の上端はテスト中に煙突効果がないように閉じておく。次に、各試料を垂直にセットし、その300mm下方に脱脂綿を置く。試料の下端から10mmのところにバーナーの筒が位置するように、径9.5mm、炎長20mmのブンゼンバーナーを加熱源とし、試料の下端の中央に青色炎を3秒間接炎し、1回目の離炎後の燃焼時間(t1)を測定する。次いで、炎が消えたらすぐに再び3秒間接炎し、2回目の離炎後の燃焼時間(t2)を測定する。また、脱脂綿を着火させるような燃焼落下物があったかの観察も行う。試料A、試料Bについて、各1セット(5枚)ずつ、上記の測定を行なう。
 各試料の1回目(t1)または2回目(t2)離炎後の燃焼時間の大きい方(t1またはt2)を「各試料の最大燃焼時間」として評価した。5試料の合計燃焼時間(5試料のt1+t2の合計)を「5試料の合計燃焼時間」として評価した。脱脂綿を着火させるような燃焼落下物の存在の有無を「ドリップによる綿着火」の有無として評価した。
Figure JPOXMLDOC01-appb-T000008
<熱収縮率測定>
 難燃ポリカーボネート樹脂フィルムのエージングによる収縮量の測定は以下のように行った。エージングは100mm×100mm×厚み0.25mmに切削したフィルムを160℃の熱風式乾燥機の中に設置した100メッシュの金網の上に平置きすることにより行った。2週間のエージングの後、フィルムを取り出し、23℃、50%RHの環境下で1日間状態調節を行った後、フィルム流れ方向(MD)の寸法を測定した。熱収縮率は、エージング前とエージング後のフィルムの面内寸法差(長さ)をエージング前の寸法で割ることで算出した。
[使用材料]
<ポリカーボネート樹脂(A)>
(a-1)三菱エンジニアリングプラスチックス(株)社製「ユーピロン(登録商標)S-3000F」、ビスフェノールA型、粘度平均分子量23,000
(a-2)三菱エンジニアリングプラスチックス(株)社製「ユーピロン(登録商標E-2000F」、ビスフェノールA型、粘度平均分子量28,000
<難燃剤(B)>
(b-1)フェノキシホスファゼン(伏見製薬所社製「ラビトルFP-110T」)(上記式(IIIa)においてm≧3(主構造:環状3量体)、R=フェニル基である化合物)
(b-2)レゾルシノールビス-2,6-キシレニルホスフェート(大八化学工業製「PX-200」)
(b-3)テトラブロモビスフェノールAを含有する臭素化ポリカーボネートオリゴマー(三菱エンジニアリングプラスチックス社製「ユーピロンFR-53」)(平均重合度:5量体)
(b-4)パーフルオロブタンスルホン酸カリウム(DIC社製「メガファックF-114」)
<フルオロポリマー(C)>
(c-1)三井・デュポンフロロケミカル社製「テフロン(登録商標)TLP 10F-1」
(c-2)ダイキン工業社製「ルブロンL-2」
(c-3)ダイキン工業社製「ルブロンL-5F」
(c-4)ダイキン工業社製「ポリフロンFA-500H」、フィブリル形性能を有するポリテトラフルオロエチレン
 表2に30%粒径、PTFE流れ値の結果を示す。なお、表中のc-4のポリフロンFA-500Hの「流動せず」は流れ値が0.1×10-3未満であることを示す。
Figure JPOXMLDOC01-appb-T000009
<その他添加剤(D)>
(d-1)酸化防止剤:ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、((株)ADEKA社製 アデカスタブ「AO-60」)
(d-2)酸化防止剤:トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、((株)ADEKA社製 アデカスタブ「2112」
[実施例1~5、比較例1~3]
<樹脂ペレットの製造>
 表3,4の配合表に従い、難燃ポリカーボネート樹脂組成物のコンパウンドは、1ベントを備えた日本製鋼所社製二軸押出機TEX30α(C18ブロック、L/D=55)を用い、スクリュー回転数200rpm、吐出量20kg/時間、リン系難燃剤を配合した材料はバレル温度280℃、有機金属塩系難燃剤およびハロゲン系難燃剤を配合した材料はバレル温度300℃の条件で混練し、ストランド状に押出した溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化した。
<樹脂フィルムの製造>
 難燃ポリカーボネートペレットのシート成形として、(株)プラエンジ社製単軸押出機PSV-30を用いた。リン系難燃剤を配合した材料はシリンダー温度280℃、ダイス温度300℃、ロール温度110℃、スクリュー回転数30rpmの条件で幅25cm×長さ10m×厚み0.05mmのフィルムを得た。有機金属塩系難燃剤およびハロゲン系難燃剤を配合した材料はシリンダー温度300℃、ダイス温度300℃、ロール温度135℃、スクリュー回転数40rpmの条件で厚み0.25mmのフィルムを成形した。
 評価結果を表3、4に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表3に示されるように、ポリカーボネート樹脂(A)、難燃剤(B)、およびフルオロポリマー(C)を含み、かつ、フルオロポリマー(C)として特定の流れ値のものを用いた実施例1~4のポリカーボネート樹脂組成物から製造されたフィルムはいずれも難燃性に優れる。特に、実施例1~4は、難燃剤(B)としてリン系難燃剤を用いており、これを特定の流れ値のフルオロポリマー(C)と併用することで、約50μmの薄膜においても、厚みムラが小さく、かつ、優れた難燃性を有することが示される。また、実施例1~4では、押出し成形時の熱収縮が抑制され、厚みムラの小さいフィルムが得られた。
 これに対し、フルオロポリマー(C)として流れ値が0.1×10-3cm/sec未満であるフィブリル化ポリフルオロエチレンを用いた比較例1では、厚さのムラが大きく、難燃性に劣る結果となった。このようなフィブリル化ポリフルオロエチレンは成形時の熱収縮が大きく、特に、リン系難燃剤と組み合わせて用いた場合には、樹脂組成物の耐熱性(ガラス転移温度)の低下が生じ、溶融粘度が低下するため、フィルムの厚みムラが大きくなったと推定される。また、フルオロポリマー(C)を含まない比較例2は滴下しやすくなり、UL94燃焼試験規格に不適合であった。
 表4に示されるように、フルオロポリマー(C)として特定の流れ値を有するものを用いた実施例5はエージング時の熱収縮が抑制されている。一方、流れ値が0.1×10-3cm/sec未満であるフィブリル化ポリフルオロエチレンを用いた比較例3では、エージング時の熱収縮が大きかった。特に、実施例5及び比較例3は、難燃剤(B)としてハロゲン系難燃剤を含んでおり、実施例5ではハロゲン系難燃剤を特定の流れ値のフルオロポリマー(C)と併用することで、加熱収縮率が有意に低減できることが示される。
 以上より、ポリカーボネート樹脂(A)、難燃剤(B)および特定の流れ値を有するフルオロポリマー(C)を含むポリカーボネート樹脂組成物によれば、優れた難燃性の付与および熱収縮の低減が達成されることが確認された。
 

Claims (11)

  1.  ポリカーボネート樹脂(A)、難燃剤(B)、およびフルオロポリマー(C)を含むポリカーボネート樹脂組成物であって、前記フルオロポリマー(C)の高化式フローテスターによる流動性(測定温度400℃、測定荷重0.98MPa、ダイ穴径2.1mmの条件)が0.1×10-3cm/sec以上であることを特徴とするポリカーボネート樹脂組成物。
  2.  前記フルオロポリマー(C)の30%粒径が4.0μm以下である請求項1に記載のポリカーボネート樹脂組成物。
  3.  前記難燃剤(B)がハロゲン系難燃剤、リン系難燃剤、有機金属塩系難燃剤およびシリコーン系難燃剤からなる群から選ばれる少なくとも1種である請求項1または2に記載のポリカーボネート樹脂組成物。
  4.  前記リン系難燃剤がホスファゼン化合物または縮合型リン酸エステルである請求項3に記載のポリカーボネート樹脂組成物。
  5.  前記フルオロポリマー(C)がテトラフルオロエチレン構造を含む重合体または共重合体である請求項1~4のいずれか一項に記載のポリカーボネート樹脂組成物。
  6.  前記ポリカーボネート樹脂(A)を69~99.989質量%、
     前記難燃剤(B)を 0.01~30質量%、及び
     前記フルオロポリマー(C)を0.001~1質量%含む、請求項1~5のいずれか一項に記載のポリカーボネート樹脂組成物。
  7. シートまたはフィルム用の請求項1~6のいずれか一項に記載のポリカーボネート樹脂組成物。
  8.  請求項1~7のいずれか一項に記載のポリカーボネート樹脂組成物を用いたシートまたはフィルム。
  9.  前記難燃剤(B)がリン系難燃剤を含み、厚みが30~200μmである、請求項8に記載のシートまたはフィルム。
  10.  前記難燃剤(B)がハロゲン系難燃剤を含み、厚みが200~500μmである、請求項8に記載のシートまたはフィルム。
  11.  請求項1~7のいずれか一項に記載のポリカーボネート樹脂組成物を押出成形する工程を含むシートまたはフィルムの製造方法。
     
PCT/JP2016/075134 2015-08-31 2016-08-29 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法 WO2017038737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680049713.4A CN107922726B (zh) 2015-08-31 2016-08-29 阻燃聚碳酸酯树脂组合物、使用其的片材和膜以及它们的制造方法
US15/745,178 US11214681B2 (en) 2015-08-31 2016-08-29 Flame-retardant polycarbonate resin composition, sheet and film using same, and manufacturing method for each
JP2017538007A JP6695342B2 (ja) 2015-08-31 2016-08-29 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
KR1020187008891A KR102590703B1 (ko) 2015-08-31 2016-08-29 난연 폴리카보네이트 수지 조성물, 그것을 이용한 시트 및 필름, 및 그들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171097 2015-08-31
JP2015171097 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038737A1 true WO2017038737A1 (ja) 2017-03-09

Family

ID=58188856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075134 WO2017038737A1 (ja) 2015-08-31 2016-08-29 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法

Country Status (6)

Country Link
US (1) US11214681B2 (ja)
JP (1) JP6695342B2 (ja)
KR (1) KR102590703B1 (ja)
CN (1) CN107922726B (ja)
TW (1) TW201723081A (ja)
WO (1) WO2017038737A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044066A (ja) * 2017-09-01 2019-03-22 三菱鉛筆株式会社 熱可塑性樹脂組成物及びそれを用いた繊維材料、フィルム材料
WO2022168454A1 (ja) * 2021-02-02 2022-08-11 帝人株式会社 ポリカーボネート樹脂組成物および成形品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
WO2023180226A1 (de) * 2022-03-25 2023-09-28 Covestro Deutschland Ag Ee-bauteil mit polycarbonat-zusammensetzungs-element mit hohem cti

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316152A (ja) * 2005-05-11 2006-11-24 Sumitomo Dow Ltd 難燃性ポリカーボネート樹脂フィルム
JP2008222813A (ja) * 2007-03-12 2008-09-25 Sumitomo Dow Ltd 押出成形用難燃性ポリカーボネート樹脂組成物およびそれからなる成形品
JP2011168682A (ja) * 2010-02-18 2011-09-01 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物の製造方法およびそれからなる成形品
JP2013064047A (ja) * 2011-09-16 2013-04-11 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物
WO2013115151A1 (ja) * 2012-01-31 2013-08-08 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192412A (ja) * 1984-10-11 1986-05-10 Hitachi Ltd 薄膜磁気ヘツド製造装置
US5451632A (en) * 1992-10-26 1995-09-19 Idemitsu Petrochemical Co., Ltd. Polycarbonate-polyorganosiloxane copolymer and a resin composition
JP2002371177A (ja) 2001-06-13 2002-12-26 Ge Plastics Japan Ltd ポリカーボネート系樹脂組成物
US20030139504A1 (en) * 2001-11-12 2003-07-24 General Electric Company Flame retardant resinous compositions and method
US6613824B2 (en) * 2001-11-12 2003-09-02 General Electric Company Flame retardant resinous compositions and method
JP2004115577A (ja) * 2002-09-24 2004-04-15 Daido Metal Co Ltd 摺動組成物及び摺動部材
JP2005200588A (ja) 2004-01-19 2005-07-28 Tsutsunaka Plast Ind Co Ltd 難燃性ポリカーボネート樹脂シート
JP5073203B2 (ja) * 2005-12-21 2012-11-14 出光興産株式会社 ポリカーボネート樹脂組成物、その成形品並びにフィルム及びシート
CN101381510A (zh) * 2007-09-07 2009-03-11 帝人化成株式会社 热塑性树脂组合物
CN102341456B (zh) 2009-03-04 2014-01-08 三菱工程塑料株式会社 芳族聚碳酸酯树脂组合物、所述树脂组合物的生产方法及其成型品
JP2010275346A (ja) * 2009-05-26 2010-12-09 Teijin Chem Ltd ガラス繊維強化樹脂組成物
JP5383398B2 (ja) 2009-09-11 2014-01-08 三菱エンジニアリングプラスチックス株式会社 電池パック用ポリカーボネート樹脂組成物及び電池パック
EP2557105B1 (en) * 2010-03-31 2014-12-10 Mitsubishi Chemical Corporation Polycarbonate resin, composition of said resin, and molded body of said resin
EP2840117B1 (en) 2012-04-20 2019-11-13 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition
JP5449443B2 (ja) 2012-04-20 2014-03-19 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
JP2014142406A (ja) * 2013-01-22 2014-08-07 Ricoh Co Ltd 押圧部材、定着装置及び画像形成装置
WO2014208423A1 (ja) * 2013-06-26 2014-12-31 三菱瓦斯化学株式会社 難燃性シートまたはフィルム、及びそれを用いた製品及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316152A (ja) * 2005-05-11 2006-11-24 Sumitomo Dow Ltd 難燃性ポリカーボネート樹脂フィルム
JP2008222813A (ja) * 2007-03-12 2008-09-25 Sumitomo Dow Ltd 押出成形用難燃性ポリカーボネート樹脂組成物およびそれからなる成形品
JP2011168682A (ja) * 2010-02-18 2011-09-01 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物の製造方法およびそれからなる成形品
JP2013064047A (ja) * 2011-09-16 2013-04-11 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物
WO2013115151A1 (ja) * 2012-01-31 2013-08-08 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044066A (ja) * 2017-09-01 2019-03-22 三菱鉛筆株式会社 熱可塑性樹脂組成物及びそれを用いた繊維材料、フィルム材料
JP7027072B2 (ja) 2017-09-01 2022-03-01 三菱鉛筆株式会社 熱可塑性樹脂組成物及びそれを用いた繊維材料、フィルム材料の各製造方法
WO2022168454A1 (ja) * 2021-02-02 2022-08-11 帝人株式会社 ポリカーボネート樹脂組成物および成形品

Also Published As

Publication number Publication date
KR20180048857A (ko) 2018-05-10
CN107922726B (zh) 2020-08-25
TW201723081A (zh) 2017-07-01
US20180208763A1 (en) 2018-07-26
US11214681B2 (en) 2022-01-04
CN107922726A (zh) 2018-04-17
JP6695342B2 (ja) 2020-05-20
KR102590703B1 (ko) 2023-10-17
JPWO2017038737A1 (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
JP2010070590A (ja) ガラス繊維強化芳香族ポリカーボネート樹脂組成物
JP6695342B2 (ja) 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
JP6749331B2 (ja) 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
JP6761806B2 (ja) 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
JP5142358B2 (ja) 押出成形用難燃性ポリカーボネート樹脂組成物およびそれからなる成形品
JP2009120790A (ja) ウェルド部の外観に優れた難燃性ポリカーボネート樹脂組成物及びそれからなる成形品。
JP2001279081A (ja) 難燃性ポリカーボネート系樹脂組成物
JP6646396B2 (ja) 難燃性ポリカーボネート樹脂組成物
KR102007099B1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
JP5170959B2 (ja) 難燃性ガラス繊維強化樹脂組成物
JP2007002075A (ja) 光反射性に優れた難燃性ポリカーボネート樹脂フィルム
JP5804906B2 (ja) 電気絶縁性フィルム
JP5614926B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2005048072A (ja) 芳香族ポリカーボネート樹脂組成物
JP2002080710A (ja) 流動性に優れた難燃性ポリカーボネート系樹脂組成物
JP5791471B2 (ja) 難燃性ポリカーボネート樹脂組成物
WO2024053274A1 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2024035935A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2009280826A (ja) 難燃性ポリカーボネート樹脂組成物
JP2005068379A (ja) 難燃性ポリカーボネート樹脂組成物
JP2009256429A (ja) 難燃性樹脂組成物
JP2011190347A (ja) 難燃性を有するシート
JP2015028122A (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538007

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15745178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008891

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16841769

Country of ref document: EP

Kind code of ref document: A1