WO2017034001A1 - 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 - Google Patents
非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 Download PDFInfo
- Publication number
- WO2017034001A1 WO2017034001A1 PCT/JP2016/074843 JP2016074843W WO2017034001A1 WO 2017034001 A1 WO2017034001 A1 WO 2017034001A1 JP 2016074843 W JP2016074843 W JP 2016074843W WO 2017034001 A1 WO2017034001 A1 WO 2017034001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium
- active material
- electrode active
- powder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/049—Manufacturing of an active layer by chemical means
- H01M4/0497—Chemical precipitation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery.
- a lithium ion secondary battery as a non-aqueous electrolyte secondary battery that satisfies such requirements.
- a lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material for the negative electrode and the positive electrode.
- lithium metal composite oxides that have been mainly proposed so far include lithium cobalt composite oxides that are relatively easy to synthesize (for example, LiCoO 2 ) and lithium nickel composite oxides that use nickel that is cheaper than cobalt ( Examples thereof include LiNiO 2 ), lithium nickel cobalt manganese composite oxide (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide (eg, LiMn 2 O 4 ), and the like.
- Batteries using lithium cobalt composite oxide as the positive electrode active material have been developed so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
- an expensive cobalt compound is used as a raw material for the lithium cobalt composite oxide.
- the lithium cobalt composite oxide has a significantly higher unit price per capacity of a battery using the lithium cobalt composite oxide than that of a nickel metal hydride battery, and the applications applicable as the positive electrode active material are considerably limited. Therefore, not only for small secondary batteries for portable devices, but also for large-sized secondary batteries for power storage and electric vehicles, the cost of the cathode active material can be reduced and cheaper lithium ion secondary batteries can be manufactured. There is great expectation to make it possible, and its realization has great industrial significance.
- Lithium nickel composite oxide using nickel cheaper than cobalt shows a lower electrochemical potential than lithium cobalt composite oxide, so decomposition due to oxidation of the electrolyte is less likely to be a problem, and higher capacity can be expected. Since the battery voltage is high as in the case of cobalt-based, development has been actively conducted. However, the lithium-nickel composite oxide synthesized purely with nickel is inferior in cycle characteristics to the lithium-ion secondary battery using this as a positive electrode material, compared with cobalt, and can be used in a high-temperature environment. It has a drawback that battery performance is relatively easily lost by storage. Therefore, for example, as disclosed in Patent Document 1, a lithium nickel composite oxide in which a part of nickel is substituted with cobalt or aluminum is generally known.
- a nickel composite hydroxide that is a precursor is prepared by neutralization crystallization, and this precursor is combined with a lithium compound such as lithium hydroxide.
- a method of mixing and firing to obtain a lithium nickel composite oxide is known.
- unreacted lithium hydroxide remains in the lithium nickel composite oxide synthesized by this method.
- Unreacted lithium hydroxide causes gelation of the positive electrode mixture paste when the positive electrode active material is kneaded into the positive electrode mixture paste.
- unreacted lithium hydroxide is oxidized and decomposed, causing gas generation.
- Patent Document 2 a method is proposed in which natural water is added to the synthesized lithium nickel composite oxide and stirred to remove lithium hydroxide.
- Patent Document 3 proposes a method for removing unreacted alkali contained in the fired lithium nickel composite oxide by washing with water.
- Patent Document 4 natural water is added to the synthesized lithium nickel composite oxide and stirred to remove lithium hydroxide, and then the oxygen concentration is 120 ° C. or higher and 550 ° C. in an oxygen atmosphere of 80% by volume or higher.
- a method of heat treatment at the following temperature has been proposed.
- lithium on the surface deficient during washing with water is compensated from the inside of the particle, so that there is no lithium deficiency on the surface, and the positive electrode resistance of the battery can be reduced.
- the washing method by washing in Patent Document 2 and Patent Document 3 not only removes lithium hydroxide contained in the lithium-nickel composite oxide during washing, but also from within the crystal lattice of the lithium-nickel composite oxide.
- the lithium compound is eluted, defects of lithium ions occur in the crystal on the surface, resulting in a problem that the battery capacity is lowered and the battery resistance is increased.
- the method described in Patent Document 4 lithium is replenished from the inside of the positive electrode active material particles to the surface of the particles although there is a very small amount, and there is room for improvement in solving the lithium deficiency as seen from the whole positive electrode active material. was there.
- the object of the present invention is to suppress the gelation of the positive electrode mixture paste, and when used in a secondary battery, a high capacity is obtained and the positive electrode resistance is reduced. It aims at providing the positive electrode active material for electrolyte secondary batteries, and its manufacturing method.
- the present inventor has conducted extensive research on a lithium metal composite oxide used as a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, and as a result, By washing the resulting powder with an aqueous solution containing a lithium salt, it is possible to remove unreacted lithium hydroxide and impurities derived from the raw materials, and to prevent lithium extraction from the lattice of the lithium nickel composite oxide.
- the present invention was completed with the knowledge that there was.
- the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.10,0.95 ⁇ z ⁇ 1.10, M is a powder composed of a lithium nickel composite oxide represented by Mn, V, Mg, Mo, Nb, Ti, and Al).
- a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising washing with an aqueous solution containing at least one lithium salt selected from lithium salts and drying the powder after washing. .
- the aqueous solution preferably has a lithium concentration of 0.1 g / L or more and 5.0 g / L or less. Moreover, it is preferable to wash
- the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.10,0.95 ⁇ z ⁇ 1.10, M is a positive electrode for a non-aqueous electrolyte secondary battery comprising a powder of a lithium nickel composite oxide represented by M), at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al)
- a positive electrode active material for a non-aqueous electrolyte secondary battery having a composition ratio (Li / (Ni + Co + M)) of 0.80 or more and 1.5 or less is provided.
- the powder pH in a 5 mass% suspension in which the above powder is dispersed in water is 11.5 or less.
- a non-aqueous electrolyte secondary battery including the positive electrode active material for a non-aqueous electrolyte secondary battery in a positive electrode is provided.
- the non-aqueous electrolyte secondary material that suppresses the gelation of the positive electrode mixture paste and, when used in a secondary battery, has a high capacity and has a reduced positive electrode resistance.
- a positive electrode active material for a battery is obtained. Furthermore, since the production method of the present invention can easily produce this positive electrode active material and is particularly suitable for mass production on an industrial scale, its industrial value is extremely large.
- FIG. 1 is a flowchart showing an example of a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to this embodiment.
- FIG. 2 is a schematic cross-sectional view of a coin-type battery used for battery evaluation.
- FIG. 3 is a diagram showing a Nyquist plot (upper stage) and an equivalent circuit (lower stage) obtained by the impedance measurement method.
- FIG. 1 is a flowchart showing a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter also referred to as “positive electrode active material”) according to the present embodiment.
- positive electrode active material a positive electrode active material for a non-aqueous electrolyte secondary battery
- the following description is an example of a manufacturing method, Comprising: The manufacturing method of this invention is not limited.
- the powder which consists of lithium nickel complex oxide is wash
- a powder (hereinafter, also simply referred to as “powder”) made of a lithium nickel composite oxide is prepared as a base material.
- Powders general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.10,0.95 ⁇ z ⁇ 1.10, M is , Mn, V, Mg, Mo, Nb, Ti, and Al.
- the method for producing the powder is not particularly limited, and can be produced by a known method.
- the method for producing the powder includes, for example, a method in which a compound containing lithium and a compound containing a metal other than lithium (such as a transition metal such as nickel or cobalt or aluminum) are mixed and fired, or a metal other than lithium and lithium is used. Mixing a lithium compound with a hydroxide containing a metal other than lithium obtained by spray pyrolysis of an aqueous solution containing the solution, or an oxide obtained by heat-treating the hydroxide. And a method of firing.
- the method using a hydroxide containing a metal other than lithium obtained by the neutralization crystallization method can easily control the specific surface area and the like of the obtained powder within a desired range.
- the manufacturing method of the present embodiment can be suitably used.
- the powder is washed with an aqueous solution containing at least one lithium salt selected from water-soluble lithium salts other than lithium hydroxide (hereinafter also referred to as “lithium salt aqueous solution”). Washing is performed, for example, by dispersing the powder in an aqueous lithium salt solution and stirring. By washing with the aqueous solution containing the lithium salt, impurities such as lithium hydroxide existing on the powder surface are removed, and at the same time, lithium extraction from the crystal lattice on the powder surface is suppressed. Thereby, while suppressing gelation of the positive electrode mixture paste, the positive electrode active material having a high capacity and excellent output characteristics can be obtained by further reducing the positive electrode resistance of the battery.
- lithium salt aqueous solution an aqueous solution containing at least one lithium salt selected from water-soluble lithium salts other than lithium hydroxide
- the aqueous solution used for washing contains one or more lithium salts selected from water-soluble lithium salts other than lithium hydroxide as a solute.
- the water-soluble lithium salt other than lithium hydroxide is not particularly limited, and a known lithium salt can be used, for example, lithium carbonate, lithium hydrogen carbonate, lithium citrate, lithium acetate, lithium oxalate, lithium tartrate, Lithium sulfate, lithium nitrate, lithium chloride, lithium bromide, lithium iodide, or the like can be used.
- the positive electrode resistance hereinafter also referred to as “reaction resistance” can be further reduced.
- water-soluble lithium salt other than a sulfate from a viewpoint of reducing the residual amount of a sulfate radical.
- lithium salt may be used individually by 1 type, and 2 or more types may be used together. Note that solutes other than the water-soluble lithium salt may be included as long as the effects of the invention are not impaired.
- the lithium hydroxide which remained in the positive electrode active material will be one of the causes which cause the positive electrode compound paste to gelatinize. Further, when this positive electrode active material is charged in a high temperature environment, the remaining lithium hydroxide is one of the factors that cause oxidative decomposition and cause gas generation.
- the lithium concentration of the lithium salt aqueous solution is not particularly limited and can be in a range soluble in water.
- the lithium concentration is, for example, from 0.1 g / L to 5.0 g / L.
- the lithium concentration is less than 0.1 g / L, the effect of preventing lithium extraction from the crystal lattice on the powder surface is not sufficient, and the expected effect may be difficult to obtain.
- it exceeds 5.0 g / L an excessive lithium compound may remain in the positive electrode active material, and the battery performance may be deteriorated.
- the lithium concentration of the lithium salt aqueous solution is preferably 0.3 g / L or more and 5.0 g / L or less, more preferably 0.5 g / L or more and 3.0 g / L or less, and further preferably 1.0 g / L or more. It is 2.5 g / L or less.
- the lithium concentration is in the above range, the lithium content in the positive electrode active material can be easily adjusted to a desired range more efficiently.
- the slurry concentration of the lithium salt aqueous solution containing the powder is not particularly limited as long as the powder is uniformly dispersed in the lithium salt aqueous solution.
- the slurry concentration is, for example, 100 g / L or more and 3000 g / L or less.
- g / L which is a unit of slurry concentration means the amount of powder (g) with respect to the amount of lithium carbonate aqueous solution (L) in the slurry.
- the slurry concentration is less than 100 g / L, the effect of preventing the extraction of thyllium from the crystal lattice on the powder surface may not be sufficient, and the expected effect may not be obtained.
- the slurry concentration exceeds 3000 g / L, the slurry viscosity becomes very high and stirring may be difficult, or lithium hydroxide may not be sufficiently removed.
- the slurry concentration of the lithium salt aqueous solution containing the powder is preferably 100 g / L or more and 2500 g / L or less, more preferably 200 g / L or more and 2000 g / L or less, and further preferably 400 g / L or more and 2000 g / L or less.
- the viscosity of the slurry is in an appropriate range, and lithium hydroxide and the like can be removed more efficiently.
- the cleaning conditions other than those described above are not particularly limited, and can be appropriately adjusted so that lithium hydroxide and sulfate radical remaining in the powder are sufficiently removed and the lithium carbonate content falls within a desired range.
- the stirring time can be about 5 minutes to 1 hour.
- the washing temperature can be, for example, about 10 ° C. to 30 ° C.
- lithium in the powder may elute into the slurry, and the atomic ratio of Li in the powder may be different before and after the cleaning.
- the atomic ratio that changes by cleaning is mainly Li, and the atomic ratio of metals other than Li before cleaning is maintained even after cleaning.
- the atomic ratio of Li that decreases by the above cleaning is, for example, about 0.03 to 0.08.
- the value of the atomic ratio of Li that decreases by the cleaning is smaller than that in the cleaning using normal water, and the decrease in Li tends to be alleviated.
- the atomic ratio of Li after cleaning is a lithium metal composite oxide powder in which the decrease amount of the atomic ratio of Li before and after cleaning is confirmed by a preliminary test with the same cleaning conditions in advance, and the atomic ratio of Li is adjusted as a base material Can be controlled by using.
- the slurry containing the powder is filtered (step S2).
- the method of filtration is not particularly limited, and can be performed by a known method. Filtration can be performed using, for example, a commonly used filtration apparatus such as a suction filter, a filter press, or a centrifuge. By performing the filtration, it is possible to reduce the amount of attached water remaining on the powder surface during the solid-liquid separation of the slurry. When the amount of adhering water is large, the lithium salt dissolved in the liquid may reprecipitate, and the amount of lithium existing on the surface of the lithium nickel composite oxide particles after drying may deviate from the expected range. Whether or not step S2 is performed is arbitrary. When step 2S is not performed, the adhering water may be removed, for example, by allowing the slurry to stand or centrifuging and removing the supernatant.
- the drying temperature is not particularly limited as long as the moisture contained in the powder is sufficiently removed.
- the drying temperature is preferably 80 ° C. or higher and 350 ° C. or lower, for example.
- the drying temperature is less than 80 ° C., drying of the powder after washing becomes slow, so that a gradient of lithium concentration occurs between the powder surface and the inside of the powder, and the battery characteristics of the obtained positive electrode active material may be deteriorated.
- the drying temperature exceeds 350 ° C., the crystal structure in the vicinity of the powder surface may be destroyed, and the battery characteristics of the obtained positive electrode active material may deteriorate. This is because the crystal structure near the surface of the powder after washing is very close to the stoichiometric ratio, or is slightly desorbed from lithium and close to the charged state, and is easily collapsed. Conceivable.
- the drying time is not particularly limited, and the drying time is such that the moisture content of the powder after drying is 0.2% by mass or less, more preferably 0.1% by mass or less, and further preferably 0.05% by mass or less. Is preferred.
- the drying time is, for example, 1 hour or more and 24 hours or less.
- the moisture content of the powder can be measured with a Karl Fischer moisture meter at a vaporization temperature of 300 ° C.
- the drying atmosphere is preferably dried in a gas atmosphere not containing a compound component containing carbon and sulfur, or in a vacuum atmosphere.
- the amount of carbon and sulfur in the powder can be easily controlled by washing (step S1).
- drying (step S3) if the drying is performed in an atmosphere further containing carbon and sulfur compound components or in a vacuum atmosphere, the amount of carbon and sulfur in the powder may change, and the expected effect may not be obtained.
- Positive electrode active material for non-aqueous electrolyte secondary battery has a general formula Li z Ni 1-xy Co x M y O 2 (where 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.10, 0.95 ⁇ z ⁇ 1.10, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al).
- Ni, Co And M Li / (Ni + Co + M)
- the positive electrode active material for a non-aqueous electrolyte secondary battery is represented by the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.10,0.95 ⁇ z ⁇ 1.10, M is made of a lithium nickel composite oxide represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al).
- z represents the atomic ratio of Li when the atomic ratio of metals (Ni, Co and M) other than Li in the lithium nickel composite oxide is 1.
- the range of z is 0.95 ⁇ z ⁇ 1.10.
- the charge / discharge capacity increases as the value of z increases.
- the reaction resistance of the positive electrode may increase and the battery output may decrease.
- the range of z is preferably 0.97 ⁇ z ⁇ 1.05, more preferably 0.97 ⁇ z ⁇ 1.00.
- Li when a powder made of lithium nickel composite oxide is washed as a base material, Li may be eluted from this powder. Therefore, when cleaning, the amount of Li decrease before and after cleaning is confirmed by a preliminary experiment, and by preparing the powder before cleaning so that the element ratio of Li after cleaning is in the above range, the atomic ratio of Li Can be within the above range.
- x represents the elemental ratio of Co when the atomic ratio of metals other than Li (Ni, Co and M) is 1.
- the range of x is 0 ⁇ x ⁇ 0.35, and preferably 0 ⁇ x ⁇ 0.35.
- the range of x is preferably 0.03 ⁇ x ⁇ 0.35, more preferably 0.05 ⁇ x ⁇ 0.35, from the viewpoint of improving the cycle characteristics of the secondary battery.
- the range of x is preferably 0.03 ⁇ x ⁇ 0.15, more preferably 0.05 ⁇ x ⁇ 0.15, from the viewpoint of the battery capacity of the secondary battery.
- the range of x is preferably 0.07 ⁇ x ⁇ 0.25, more preferably 0.10 ⁇ x ⁇ 0.20, from the viewpoint of thermal stability.
- y represents the element ratio of M (additive element) when the atomic ratio of metals other than Li (Ni, Co and M) is 1.
- M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al.
- the range of y is 0 ⁇ y ⁇ 0.10, preferably 0 ⁇ y ⁇ 0.10 including M, and more preferably 0 ⁇ y ⁇ 0.05.
- the elemental ratio of nickel is 0.55 or more and 1 or less when the atomic ratio of metals other than Li (Ni, Co and M) is 1.
- the atomic ratio of each metal element in the lithium nickel composite oxide can be adjusted to the above range by adjusting the mixing ratio of the raw materials containing Li, Ni, Co and M.
- the positive electrode active material of this embodiment has a lithium hydroxide content of 0.5% by mass or less, preferably 0.2% by mass or less. If the lithium hydroxide content in the positive electrode active material exceeds 0.5 mass%, it becomes one of the causes of gelation when the positive electrode active material is kneaded into the paste. Further, when the positive electrode active material is charged in a high-temperature environment, lithium hydroxide is one of the causes that cause oxidative decomposition and gas generation. Moreover, the minimum of lithium hydroxide content in a positive electrode active material is although it does not specifically limit, For example, it is 0.01 mass% or more.
- the lithium hydroxide contained in the positive electrode active material includes the lithium hydroxide derived from the raw material used when producing the positive electrode active material.
- a nickel composite hydroxide or nickel composite oxide and a lithium compound such as lithium hydroxide are mixed and baked to include an unreacted material when a lithium nickel composite oxide is obtained.
- the lithium hydroxide content was determined by adding pure water to the obtained positive electrode active material and stirring, and then measuring the amount of lithium (Li) eluted in the pure water by neutralization titration with 1 mol / liter hydrochloric acid.
- the value obtained by subtracting the amount of lithium (Li) derived from the lithium salt used for washing from the amount of eluted lithium (Li) is defined as the amount of lithium (Li) derived from lithium hydroxide, and this is converted to LiOH. It is the value calculated
- the amount of lithium (Li) derived from the lithium salt was determined by obtaining one or more amounts other than Li contained in the lithium salt by chemical analysis and converting the amount to the amount of lithium salt.
- the composition ratio (Li / (Ni + Co + M)) of Li and the metal other than Li (Ni, Co, and M) measured by X-ray photoelectron spectroscopy is 0.80. 1.5 or more, preferably 0.80 or more and 1.45 or less, more preferably 0.93 or more and 1.45 or less, still more preferably 0.95 or more and 1.45 or less, and particularly preferably 1.00 or more. 1.45 or less.
- Li / (Ni + Co + M) on the powder surface is less than 0.80, lithium ion deficiency occurs on the particle surface.
- the lithium ion conduction path is obstructed and the discharge capacity is reduced. Or increase the reaction resistance.
- the reaction resistance By reducing the reaction resistance, the voltage lost in the battery is reduced, and the voltage actually applied to the load side becomes relatively high, so that a high output can be obtained.
- Li / (Ni + Co + M) on the powder surface exceeds 1.5, excessive lithium compounds such as lithium hydroxide are present on the powder surface, which is one of the factors that cause gelation of the positive electrode mixture paste.
- the lithium compound is decomposed to cause gas generation, which may deteriorate battery characteristics.
- composition ratio (Li / (Ni + Co + M)) between Li on the powder surface and a metal other than Li can be measured by X-ray photoelectron spectroscopy as described in detail in Examples below.
- the powder surface is a depth of about several nm to 10 nm from the surface of the positive electrode active material to the center direction measured by an X-ray photoelectron spectroscopy (XPS) apparatus (Versa Probe II, manufactured by ULVAC-PHI Co., Ltd.). Means the area.
- XPS X-ray photoelectron spectroscopy
- the positive electrode active material of the present embodiment has a powder pH of 11.5 or less in a 5 mass% suspension solution in which the powder is dispersed in water. When the pH exceeds 11.5, the positive electrode mixture paste may gel when kneading the positive electrode active material into the paste.
- the minimum of powder pH is not specifically limited, For example, Preferably it is 10.5 or more, More preferably, it is 11.0 or more.
- the average particle diameter of the positive electrode active material of the present embodiment is not particularly limited.
- the battery capacity per volume of the positive electrode active material can be increased by being 3 ⁇ m or more and 25 ⁇ m or less, and the safety is high. A secondary battery with good cycle characteristics can be obtained.
- the average particle size is a value of the volume average particle size MV determined from the volume integrated value measured by a laser diffraction particle size distribution meter.
- the specific surface area of the positive electrode active material of the present embodiment is not particularly limited, for example, when it is 1.0 m 2 / g or more 7.0 m 2 / g or less, contact can the particle surface with the electrolyte is sufficient.
- the specific surface area is less than 1.0 m 2 / g, the particle surface that can come into contact with the electrolytic solution decreases, and a sufficient charge / discharge capacity may not be obtained.
- the specific surface area exceeds 7.0 m 2 / g, the surface of the particles that come into contact with the electrolytic solution may increase so that the safety may decrease.
- the specific surface area is a value measured by a specific surface area measuring apparatus using a BET method based on a nitrogen gas adsorption method.
- the positive electrode active material of the present embodiment can be easily produced in large quantities on an industrial scale by using the method for producing a positive electrode active material described above.
- Non-aqueous electrolyte secondary battery includes the positive electrode active material in the positive electrode.
- the non-aqueous electrolyte secondary battery of this embodiment can be comprised from a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte similarly to a general non-aqueous electrolyte secondary battery.
- embodiments of the nonaqueous electrolyte secondary battery will be described in detail with respect to each component and the shape and configuration of the battery.
- the positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
- the powdered positive electrode active material of the present invention, a conductive material, and a binder are mixed, and if necessary, a target solvent such as activated carbon and viscosity adjustment is added, and this is kneaded to obtain a positive electrode mixture paste. Make it.
- the mixing ratio of the respective materials in the positive electrode mixture is also an important factor that determines the performance of the lithium secondary battery.
- the mixing ratio of each material in the positive electrode mixture is not particularly limited, but as with the positive electrode of a general lithium secondary battery, the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, respectively.
- the positive electrode active material is desirably contained in an amount of 60% by mass to 95% by mass, the conductive material in an amount of 1% by mass to 20% by mass, and a binder (binder) in an amount of 1% by mass to 20% by mass.
- the obtained positive electrode mixture paste is applied to, for example, the surface of a current collector made of aluminum foil, and dried to scatter (evaporate) the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
- the sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production.
- the manufacturing method of the positive electrode is not limited to the above-described examples, and may depend on other methods.
- the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
- the binder plays a role of holding the active material particles, and includes, for example, fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, and fluorine rubber, styrene butadiene, and cellulose Resins, thermoplastic resins such as polyacrylic acid, polypropylene, and polyethylene can be used.
- fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, and fluorine rubber, styrene butadiene, and cellulose Resins
- thermoplastic resins such as polyacrylic acid, polypropylene, and polyethylene can be used.
- a positive electrode active material, a conductive material, and activated carbon may be dispersed and a solvent for dissolving the binder may be added to the positive electrode mixture.
- a solvent for dissolving the binder may be added to the positive electrode mixture.
- an organic solvent such as N-methyl-2-pyrrolidone can be used.
- Activated carbon may be added to the positive electrode mixture in order to increase the electric double layer capacity.
- the negative electrode metallic lithium, lithium alloy, or the like, or a negative electrode active material capable of occluding and desorbing lithium ions, mixed with a binder, and added with a suitable solvent into a paste, the negative electrode mixture is made of copper, etc.
- the metal foil current collector is coated, dried, and compressed as necessary to increase the electrode density.
- the negative electrode active material for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, and a powdery carbon material such as coke can be used.
- a fluorine-containing resin such as polyvinylidene fluoride can be used as the negative electrode binder, as in the case of the positive electrode, and N-methyl-2-pyrrolidone or the like can be used as a solvent for dispersing these active materials and the binder.
- Organic solvents can be used.
- a separator is interposed between the positive electrode and the negative electrode.
- the separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
- Non-aqueous electrolyte The nonaqueous electrolytic solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
- organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2-
- ether compounds such as methyltetrahydrofuran and dimethoxyethane
- sulfur compounds such as ethylmethylsulfone and butanesultone
- phosphorus compounds such as triethyl phosphate and trioctyl phosphate are used alone or in admixture of two or more. be able to.
- the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
- the shape of the lithium secondary battery according to the present embodiment can be various shapes such as a cylindrical shape and a stacked shape.
- the positive electrode and the negative electrode are laminated through a separator to form an electrode body, and this electrode body is impregnated with the non-aqueous electrolyte.
- a current collecting lead or the like is used for connection between the positive electrode current collector and the positive electrode terminal communicating with the outside, and between the negative electrode current collector and the negative electrode terminal communicating with the outside.
- the battery having the above structure can be sealed in a battery case to complete the battery.
- Example and a comparative example were evaluated by the measurement result using the following apparatuses and methods.
- the obtained positive electrode active material was measured using an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI Co., Ltd., Versa Probe II). At this time, a monochromatic Al—K ⁇ ray (1486.7 eV) was used as the X-ray source, the tilt angle was 45 °, the path energy was 187.85 eV, and the degree of vacuum was 10 ⁇ 7 Pa. .
- Lithium hydroxide content After adding 100 ml of ultrapure water to 10 g of the obtained positive electrode active material powder and stirring for 5 minutes and filtering, the filtrate was titrated with 1 mol / liter hydrochloric acid and measured to the second neutralization point.
- the amount of alkali content neutralized with hydrochloric acid was defined as the total amount of lithium hydroxide (LiOH) and lithium (Li) derived from the lithium salt used for washing.
- the amount obtained by subtracting the amount of Li derived from the lithium salt used for washing from the amount of alkali neutralized by neutralization titration is the amount of Li derived from lithium hydroxide (LiOH). did.
- the amount of lithium (Li) derived from the lithium salt used for washing was calculated from the lithium salt content obtained by the following method.
- LiOH lithium hydroxide
- lithium carbonate, lithium citrate and / or lithium acetate For these lithium salt contents, the total carbon element (C) content is measured with a carbon-sulfur analyzer (LE-CO CS-600), and the measured total carbon element amount is converted into each lithium salt.
- the lithium sulfate content was determined by measuring the sulfur element (S) content by ICP emission analysis and converting the measured sulfur element (S) content to lithium sulfate.
- the lithium nitrate content was measured by stirring the positive electrode active material powder in ultrapure water to elute lithium nitrate and then filtering the filtrate to measure the nitrate radical content by ion chromatography. It calculated
- the 2032 type coin cell battery for evaluation BA includes a lithium metal negative electrode 1, a separator 2 impregnated with an electrolyte, a positive electrode 3, a gasket 4, a negative electrode can 5, a positive electrode can 6, and a current collector. 7.
- Example 1 Lithium nickel represented by Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 obtained by a known technique of mixing and baking oxide powder containing nickel as a main component and lithium hydroxide A sintered powder of composite oxide was obtained. This powder was used as a base material. This powder had an average particle size of 12.0 ⁇ m and a specific surface area of 1.2 m 2 / g.
- the average particle diameter was measured using a laser diffraction particle size distribution meter (manufactured by Nikkiso Co., Ltd., Microtrac), and the specific surface area was measured using a specific surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Kantasorb QS-10)
- the BET method by nitrogen gas adsorption was used for evaluation.
- a lithium carbonate aqueous solution prepared so that the amount of lithium was 1.5 g / L was added to the lithium nickel composite oxide powder (base material) to make the slurry concentration 750 g / L.
- the slurry was stirred and washed for 30 minutes, and then the powder taken out by filtration was dried in a vacuum atmosphere while being held at a temperature of 210 ° C. for 14 hours to obtain a positive electrode active material composed of a lithium nickel composite oxide. It was.
- the obtained positive electrode active material was measured with an ICP emission spectroscopic analyzer, the atomic ratio z of Li was 0.992.
- Example 2 In Example 2, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 0.3 g / L.
- Example 3 In Example 3, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 0.7 g / L.
- Example 4 In Example 4, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 1.0 g / L.
- Example 5 In Example 5, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 2.5 g / L.
- Example 6 In Example 6, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 3.0 g / L.
- Example 7 In Example 7, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the slurry concentration was 100 g / L.
- Example 8 In Example 8, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the slurry concentration was 375 g / L.
- Example 9 In Example 9, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the slurry concentration was 1500 g / L. (Example 10) In Example 10, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the slurry concentration was 3000 g / L.
- Example 11 In Example 11, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the lithium carbonate aqueous solution was changed to a lithium citrate aqueous solution.
- Example 12 In Example 12, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the aqueous lithium carbonate solution was changed to an aqueous lithium acetate solution.
- Example 13 In Example 13, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the aqueous lithium carbonate solution was changed to an aqueous lithium nitrate solution.
- Example 14 In Example 14, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the lithium carbonate aqueous solution was changed to a lithium sulfate aqueous solution.
- Comparative Example 1 In Comparative Example 1, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the step of washing with an aqueous lithium carbonate solution was not performed.
- Comparative Example 2 In Comparative Example 2, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that pure water was used instead of the lithium carbonate aqueous solution.
- Comparative Example 3 In Comparative Example 3, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that pure water was used instead of the lithium carbonate aqueous solution and the slurry concentration was 375 g / L.
- Comparative Example 4 In Comparative Example 4, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that pure water was used in place of the lithium carbonate aqueous solution and the slurry concentration was 3000 g / L.
- Comparative Example 5 In Comparative Example 5, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that a lithium hydroxide aqueous solution was used instead of the lithium carbonate aqueous solution.
- Table 1 shows production conditions and evaluation results of the positive electrode active materials obtained in Examples and Comparative Examples.
- the positive electrode active materials obtained in Examples 1 to 14 had a lithium hydroxide content of 0.5% by mass or less and Li / (Ni + Co + M on the surface of the obtained positive electrode active material powder. ) Is 0.80 or more and 1.5 or less.
- the obtained positive electrode active material is useful as a positive electrode active material because gelation during paste kneading is suppressed, discharge capacity is high, and positive electrode resistance is low.
- Comparative Example 1 since the step of washing with an aqueous lithium salt solution was not performed, the lithium hydroxide content was as high as 1.06, and the Li / (Ni + Co + M) on the powder surface was as high as 6.28. In addition, the obtained positive electrode active material was observed to be gelled during paste kneading, further had a low discharge capacity, and was inferior in battery performance as compared with Examples.
- Li / (Ni + Co + M) representing the composition ratio of the powder surface was as low as 0.80 or less.
- the obtained positive electrode active material has a low discharge capacity, further increases the positive electrode resistance, and is inferior in battery performance as compared with Examples.
- Comparative Example 5 since the lithium hydroxide aqueous solution was used for cleaning, the lithium hydroxide content was as high as 0.78, and Li / (Ni + Co + M) representing the composition ratio of the powder surface was as high as 4.69.
- the obtained positive electrode active material was observed to be gelled during paste kneading, further having a low discharge capacity, and inferior in battery performance as compared with the Examples.
- the positive electrode active material obtained using the manufacturing method of the present embodiment can suppress the gelation of the positive electrode mixture paste when used for the positive electrode material of the battery, and further reduce the positive electrode resistance of the battery. Reduced, high capacity and excellent output characteristics. Moreover, it turns out that the positive electrode active material of this embodiment is useful as a positive electrode active material of a non-aqueous electrolyte secondary battery.
- the non-aqueous electrolyte secondary battery including the positive electrode active material obtained by the present invention in the positive electrode can be suitably used as a power source for small portable electronic devices (such as notebook computers and mobile phone terminals) that always require high capacity. It can also be suitably used for batteries for electric vehicles that require high output.
- the nonaqueous electrolyte secondary battery according to the present invention has excellent safety, and can be reduced in size and increased in output. Therefore, the nonaqueous electrolyte secondary battery can be suitably used as a power source for an electric vehicle subject to restrictions on mounting space. be able to.
- the non-aqueous electrolyte secondary battery according to the present invention is not only a power source for an electric vehicle driven purely by electric energy, but also a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine. Can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
以下、図を参照して、本発明の実施形態の一例を説明する。図1は、本実施形態に係る非水系電解質二次電池用正極活物質(以下、「正極活物質」ともいう。)の製造方法を示すフローチャートである。なお、以下の説明は、製造方法の一例であって、本発明の製造方法を限定するものではない。
本実施形態に係る正極活物質は、一般式LizNi1-x-yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物の粉末からなる正極活物質であって、水酸化リチウム含有量が0.5質量%以下であり、かつ、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下である。以下、正極活物質の実施形態の一例について説明する。
非水系電解質二次電池用正極活物質は、一般式LizNi1-x-yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物からなる。
本実施形態の正極活物質は、水酸化リチウム含有量が0.5質量%以下、好ましくは0.2質量%以下である。正極活物質中の水酸化リチウム含有量が、0.5質量%を超えると、正極活物質をペーストに混練する際にゲル化を引き起こす原因の一つになる。さらに正極活物質が高温環境下で充電される場合、水酸化リチウムが酸化分解しガス発生を引き起こす原因の一つになる。また、正極活物質中の水酸化リチウム含有量の下限は、特に限定されないが、例えば、0.01質量%以上である。
本実施形態の正極活物質は、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下であり、好ましくは0.80以上1.45以下、より好ましくは0.93以上1.45以下、さらに好ましくは0.95以上1.45以下、特に好ましくは1.00以上1.45以下である。粉末表面のLi/(Ni+Co+M)が0.80未満である場合、粒子表面でリチウムイオン欠損が生じるため、二次電池の正極に用いた場合、リチウムイオンの伝導パスが阻害されて放電容量が低下したり、反応抵抗が増加したりする要因の一つとなる。反応抵抗が低減されることで、電池内で損失される電圧が減少し、実際に負荷側に印加される電圧が相対的に高くなるため、高出力が得られる。一方、粉末表面のLi/(Ni+Co+M)が1.5を超えると、粉末表面に過剰な水酸化リチウムなどのリチウム化合物が存在し、正極合材ペーストのゲル化を引き起こす要因の一つとなる。さらに、過剰なリチウム化合物がその表面に存在する正極活物質を高温環境下で充電した場合、リチウム化合物が分解しガス発生を引き起こし、電池特性が低下することがある。また、充放電に寄与しないリチウム化合物が存在する場合、電池を構成する際、正極活物質の不可逆容量に相当する分の負極材料を余計に使用することになる。その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなることもある上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となることもある。
本実施形態の正極活物質は、粉末を水に分散させた5質量%の懸濁溶液における粉体pHが、11.5以下である。pHが11.5を超えると、正極活物質をペーストに混練する際に正極合材ペーストがゲル化することがある。粉体pHの下限は、特に限定されないが、例えば、好ましくは10.5以上、より好ましくは11.0以上である。
本実施形態の正極活物質の平均粒径は、特に限定されないが、例えば、3μm以上25μm以下であることにより、正極活物質の容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好な二次電池を得ることができる。なお、平均粒径は、レーザ回折式粒度分布計により測定される体積積算値から求めた体積平均粒径MVの値である。
本実施形態の正極活物質の比表面積は、特に限定されないが、例えば、1.0m2/g以上7.0m2/g以下である場合、電解液との接触できる粒子表面が十分となる。比表面積が1.0m2/g未満になると、電解液と接触できる粒子表面が少なくなり、十分な充放電容量が得られないことがある。一方、比表面積が7.0m2/gを超えると、電解液と接触する粒子表面が多くなり過ぎて安全性が低下することがある。なお、比表面積は、窒素ガス吸着法によるBET法を用いて比表面積測定装置により測定される値である。
本実施形態に係る非水系電解質二次電池は、上記正極活物質を正極に含む。本実施形態の非水系電解質二次電池は、一般の非水系電解質二次電池と同様に、正極、負極、セパレータ、および非水電解液から構成することができる。以下、非水系電解質二次電池の実施形態について、各構成要素、および電池の形状と構成について詳しく説明する。
正極を形成する正極合材及びそれを構成する各材料について説明する。本発明の粉末状の正極活物質と、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの材料の混合比も、リチウム二次電池の性能を決定する重要な要素となる。
負極には、金属リチウム、リチウム合金など、又は、リチウムイオンを吸蔵・脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い膜で、微少な穴を多数有する膜を用いることができる。
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、リン酸トリエチル、リン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
本実施形態に係るリチウム二次電池の形状は、円筒型、積層型など、種々の形状とすることができる。いずれの形状を採る場合であっても、セパレータを介して正極及び負極を積層させ、電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間に集電用リードなどを用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
母材として用いたリチウムニッケル複合酸化物の粉末を硝酸で溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)により、各成分の組成比を測定した。また、得られた正極活物質を上記と同様の方法で測定した。
得られた正極活物質をX線光電子分光装置(アルバック・ファイ株式会社製、Versa ProbeII)を用いて測定した。この際、X線源として、単色化したAl-Kα線(1486.7eV)を使用し、傾斜角(tilt angle)を45°、パスエナジーを187.85eV、真空度を10-7Paとした。
得られた正極活物質粉末10gに超純水を100ml添加して5分間攪拌し、ろ過した後、ろ液を1mol/リットルの塩酸で滴定し第二中和点まで測定した。塩酸で中和されたアルカリ分の量を、水酸化リチウム(LiOH)および洗浄に用いたリチウム塩に由来するリチウム量(Li)の合計量とした。そして、下記式に示すように、中和滴定で中和されたアルカリ分の量から、洗浄に用いたリチウム塩由来のLi量を引いた量を、水酸化リチウム(LiOH)由来のLi量とした。なお、洗浄に用いたリチウム塩に由来するリチウム(Li)量は、下記の方法でそれぞれ求めたリチウム塩含有量から算出した。
これらのリチウム塩含有量は、炭素硫黄分析装置(LECO社製CS-600)で全炭素元素(C)含有量を測定し、この測定された全炭素元素の量をそれぞれのリチウム塩に換算することにより求めた。
(硫酸リチウム)
硫酸リチウム含有量は、ICP発光分析により硫黄元素(S)含有量を測定し、この測定された硫黄元素(S)含有量を硫酸リチウムに換算することにより求めた。
(硝酸リチウム)
硝酸リチウム含有量は、正極活物質粉末を超純水中で撹拌して硝酸リチウムを溶出させた後、ろ過し、ろ液をイオンクロマトグラフィー法により硝酸根含有量を測定し、この測定された硝酸根含有量を硝酸根リチウムに換算することにより求めた。
得られた正極活物質粉末5.0gを100mlの蒸留水に分散させた5質量%の懸濁液を作製し、25℃室温で30分間攪拌した懸濁液のpH値を測定した。
得られた正極活物質20gに対して、PVDF(呉羽化学工業製、型番KFポリマー#1100)2.2gと、NMP(関東化学製)9.6mlと容器に入れ、ニーダ(日本精機製作所、製品名ノンバブリングニーダ、型番NBK-1)で2000rpmの回転速度で10分間十分に混合しペーストを作製した。得られたペーストをガラス瓶に移し、密栓した後、温度25℃、露点-40℃のドライボックス中に保管し、24時間放置後のペーストの流動性を観察した。24時間放置後、ペーストの流動性に変化のないものを◎、ペーストの流動性はあるが、流動性が変化したものを○、ゲル化したものを×と評価した。
(1)評価用コイン電池の作製
得られた正極活物質70質量%に、アセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し、正極とした。負極としてリチウム金属を用い、電解液として、1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用い、露点が-80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型のコイン型電池を作製した。2032型の評価用コイン型電池BAは、負極にリチウム金属負極1と、電解液を含浸させたセパレータ2と、正極3と、ガスケット4と、負極缶5と、正極缶6と、集電体7とを備える。
作製したコイン型電池BAを24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.3Vまで充電して充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を放電容量として評価した。
作製したコイン型電池BAを充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法により測定した。図3上段は、得られたナイキストプロットを示す。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき図3下段に示す等価回路を用いてフィッティング計算を行い、正極抵抗の値を算出した。正極抵抗は実施例1を100とした相対値を評価値とした。
ニッケルを主成分とする酸化物粉末と水酸化リチウムを混合して焼成する公知技術で得られた、Li1.03Ni0.88Co0.09Al0.03O2で表されるリチウムニッケル複合酸化物の焼成粉末を得た。この粉末を母材として用いた。この粉末の平均粒径は12.0μmであり、比表面積は1.2m2/gであった。なお、平均粒径はレーザ回折式粒度分布計(日機装株式会社製、マイクロトラック)用いて測定し、比表面積は比表面積測定装置(ユアサアイオニクス株式会社製、カンタソーブQS-10)を用いて、窒素ガス吸着によるBET法を用いて評価した。
実施例2では、炭酸リチウム水溶液の濃度をリチウム量が0.3g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例3)
実施例3では、炭酸リチウム水溶液の濃度をリチウム量が0.7g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例4)
実施例4では、炭酸リチウム水溶液の濃度をリチウム量が1.0g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例5)
実施例5では、炭酸リチウム水溶液の濃度をリチウム量が2.5g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例6)
実施例6では、炭酸リチウム水溶液の濃度をリチウム量が3.0g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
実施例7では、スラリーの濃度を100g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例8)
実施例8では、スラリーの濃度を375g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例9)
実施例9では、スラリーの濃度を1500g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例10)
実施例10では、スラリーの濃度を3000g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
実施例11では、炭酸リチウム水溶液をクエン酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例12)
実施例12では、炭酸リチウム水溶液を酢酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例13)
実施例13では、炭酸リチウム水溶液を硝酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例14)
実施例14では、炭酸リチウム水溶液を硫酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
比較例1では、炭酸リチウム水溶液で洗浄する工程を行わなかったこと以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例2)
比較例2では、炭酸リチウム水溶液の代わりに純水を用いた以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例3)
比較例3では、炭酸リチウム水溶液の代わりに純水を用い、スラリー濃度を375g/Lとした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例4)
比較例4では、炭酸リチウム水溶液の代わりに純水を用い、スラリー濃度を3000g/Lとした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例5)
比較例5では、炭酸リチウム水溶液の代わりに水酸化リチウム水溶液を用いた以外は、実施例1と同様にして正極活物質を得るとともに評価した。
実施例および、比較例で得られた正極活物質の製造条件及び評価結果を表1に示す。
表1から明らかなように、実施例1~14により得られた正極活物質は、水酸化リチウム含有量が0.5質量%以下かつ、得られた正極活物質の粉末表面のLi/(Ni+Co+M)が0.80以上1.5以下である。また、得られた正極活物質は、ペースト混練時のゲル化が抑制されるとともに、放電容量が高く、正極抵抗が低いものであり、正極活物質として有用であることが分かる。
1・・・リチウム金属負極
2・・・セパレータ(電解液含浸)
3・・・正極(評価用電極)
4・・・ガスケット
5・・・負極缶
6・・・正極缶
7・・・集電体
Claims (6)
- 一般式LizNi1-x-yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物からなる粉末を、水酸化リチウム以外の水溶性リチウム塩から選ばれる1種類以上のリチウム塩を含む水溶液により洗浄すること、および、洗浄後の前記粉末を乾燥すること、を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。
- 前記水溶液は、リチウム濃度が0.1g/L以上5.0g/L以下であることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。
- 前記洗浄は、前記粉末を含む前記リチウム塩水溶液のスラリー濃度が100g/L以上3000g/L以下の状態で洗浄することを特徴とする請求項1又は2に記載の非水系電解質二次電池用正極活物質の製造方法。
- 一般式LizNi1-x-yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物の粉末からなる非水系電解質二次電池用正極活物質であって、水酸化リチウム含有量が0.5質量%以下であり、かつ、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下であることを特徴とする非水系電解質二次電池用正極活物質。
- 前記粉末を水に分散させた5質量%の懸濁溶液における粉体pHが11.5以下である請求項4に記載の非水系電解質二次電池用正極活物質。
- 請求項4または5に記載の非水系電解質二次電池用正極活物質を正極に含むことを特徴とする非水系電解質二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/754,726 US10586983B2 (en) | 2015-08-27 | 2016-08-25 | Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery |
CN201680048965.5A CN107925079B (zh) | 2015-08-27 | 2016-08-25 | 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池 |
KR1020187005207A KR102632822B1 (ko) | 2015-08-27 | 2016-08-25 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수계 전해질 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-167530 | 2015-08-27 | ||
JP2015167530A JP6733140B2 (ja) | 2015-08-27 | 2015-08-27 | 非水系電解質二次電池用正極活物質の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017034001A1 true WO2017034001A1 (ja) | 2017-03-02 |
Family
ID=58100423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074843 WO2017034001A1 (ja) | 2015-08-27 | 2016-08-25 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10586983B2 (ja) |
JP (1) | JP6733140B2 (ja) |
KR (1) | KR102632822B1 (ja) |
CN (1) | CN107925079B (ja) |
WO (1) | WO2017034001A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023282248A1 (ja) | 2021-07-06 | 2023-01-12 | 日産化学株式会社 | 電極形成用組成物 |
WO2023282246A1 (ja) | 2021-07-06 | 2023-01-12 | 日産化学株式会社 | 電極形成用組成物 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018163467A1 (ja) | 2017-03-10 | 2018-09-13 | 日本碍子株式会社 | 微粒子検出素子及び微粒子検出器 |
CN113711394A (zh) | 2019-05-20 | 2021-11-26 | 株式会社吴羽 | 锂离子二次电池用正极合剂及其制造方法、以及锂离子二次电池的制造方法 |
JP7403346B2 (ja) * | 2020-02-21 | 2023-12-22 | チタン工業株式会社 | 帯電した電荷を維持する能力に優れた帯電調整用粉体及びその製造方法 |
US20230406723A1 (en) * | 2020-10-01 | 2023-12-21 | Basf Se | Process for the manufacture of a cathode active material |
CN114062188B (zh) * | 2021-11-16 | 2022-08-12 | 中南大学 | 一种三元正极材料晶格锂溶出量的测定方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323143A (ja) * | 1999-04-30 | 2000-11-24 | Dowa Mining Co Ltd | 正極活物質と該正極活物質を用いたリチウム二次電池 |
JP2010064944A (ja) * | 2008-09-12 | 2010-03-25 | Sumitomo Metal Mining Co Ltd | リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3244314B2 (ja) | 1991-11-13 | 2002-01-07 | 三洋電機株式会社 | 非水系電池 |
JPH08138669A (ja) | 1994-11-02 | 1996-05-31 | Toray Ind Inc | 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池 |
JPH09259879A (ja) * | 1996-03-19 | 1997-10-03 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池用正極活物質の製造方法 |
JP4794866B2 (ja) * | 2004-04-08 | 2011-10-19 | パナソニック株式会社 | 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池 |
JP5008328B2 (ja) | 2006-03-30 | 2012-08-22 | 住友金属鉱山株式会社 | 非水電解質二次電池用の正極活物質、その製造方法及びそれを用いた非水電解質二次電池 |
JP4794619B2 (ja) | 2008-12-26 | 2011-10-19 | Tdk株式会社 | リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池の製造方法、並びに、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
WO2010113403A1 (ja) * | 2009-03-31 | 2010-10-07 | パナソニック株式会社 | リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池 |
JP5332828B2 (ja) * | 2009-04-01 | 2013-11-06 | トヨタ自動車株式会社 | リチウムイオン二次電池の正極の製造方法 |
JP5490457B2 (ja) * | 2009-07-13 | 2014-05-14 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
JP2011119096A (ja) * | 2009-12-02 | 2011-06-16 | Sony Corp | 正極活物質、正極および非水電解質電池、並びに正極活物質の製造方法、正極の製造方法および非水電解質電池の製造方法 |
JP5584456B2 (ja) * | 2009-12-10 | 2014-09-03 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
WO2011089958A1 (ja) * | 2010-01-21 | 2011-07-28 | 住友金属鉱山株式会社 | 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池 |
JP2012113823A (ja) * | 2010-11-19 | 2012-06-14 | Nippon Chem Ind Co Ltd | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
JP2012174569A (ja) * | 2011-02-23 | 2012-09-10 | Hitachi Maxell Energy Ltd | 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法 |
EP2698351B1 (en) * | 2011-04-14 | 2017-12-27 | Toda Kogyo Corp. | Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY |
CN103503207B (zh) * | 2011-04-28 | 2016-01-20 | 昭和电工株式会社 | 锂二次电池用正极活性物质的制造方法 |
JP5894388B2 (ja) * | 2011-07-26 | 2016-03-30 | 住友金属鉱山株式会社 | 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池 |
JP5966387B2 (ja) * | 2012-01-27 | 2016-08-10 | トヨタ自動車株式会社 | リチウム二次電池,その製造方法,およびその正極の製造方法 |
JP5607189B2 (ja) * | 2013-01-28 | 2014-10-15 | 三洋電機株式会社 | ニッケル複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JP6347776B2 (ja) | 2013-03-14 | 2018-06-27 | 日本化学産業株式会社 | リチウムイオン二次電池用正極活物質の処理方法 |
KR102325781B1 (ko) | 2013-05-22 | 2021-11-15 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 |
JP6136765B2 (ja) * | 2013-08-28 | 2017-05-31 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池 |
-
2015
- 2015-08-27 JP JP2015167530A patent/JP6733140B2/ja active Active
-
2016
- 2016-08-25 KR KR1020187005207A patent/KR102632822B1/ko active IP Right Grant
- 2016-08-25 CN CN201680048965.5A patent/CN107925079B/zh active Active
- 2016-08-25 US US15/754,726 patent/US10586983B2/en active Active
- 2016-08-25 WO PCT/JP2016/074843 patent/WO2017034001A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323143A (ja) * | 1999-04-30 | 2000-11-24 | Dowa Mining Co Ltd | 正極活物質と該正極活物質を用いたリチウム二次電池 |
JP2010064944A (ja) * | 2008-09-12 | 2010-03-25 | Sumitomo Metal Mining Co Ltd | リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023282248A1 (ja) | 2021-07-06 | 2023-01-12 | 日産化学株式会社 | 電極形成用組成物 |
WO2023282246A1 (ja) | 2021-07-06 | 2023-01-12 | 日産化学株式会社 | 電極形成用組成物 |
KR20240027798A (ko) | 2021-07-06 | 2024-03-04 | 닛산 가가쿠 가부시키가이샤 | 전극형성용 조성물 |
KR20240027797A (ko) | 2021-07-06 | 2024-03-04 | 닛산 가가쿠 가부시키가이샤 | 전극형성용 조성물 |
Also Published As
Publication number | Publication date |
---|---|
KR102632822B1 (ko) | 2024-02-02 |
CN107925079A (zh) | 2018-04-17 |
US20180248186A1 (en) | 2018-08-30 |
JP2017045633A (ja) | 2017-03-02 |
CN107925079B (zh) | 2021-05-28 |
JP6733140B2 (ja) | 2020-07-29 |
US10586983B2 (en) | 2020-03-10 |
KR20180044285A (ko) | 2018-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11108043B2 (en) | Method for producing positive electrode active material for nonaqueous electrolyte secondary battery | |
JP5651937B2 (ja) | 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池 | |
WO2017034001A1 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP6201277B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法 | |
JP7024715B2 (ja) | 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法 | |
CN112219298B (zh) | 非水系电解质二次电池用正极活性物质和非水系电解质二次电池 | |
US11289688B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery | |
JP7262419B2 (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
JP2017117766A (ja) | 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池 | |
JP2022095988A (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
WO2020171093A1 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
JP2018195419A (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6819859B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6511761B2 (ja) | 非水系電解質二次電池用正極活物質用の被覆複合酸化物粒子の製造方法及び当該製造方法によって製造される被覆複合酸化物粒子を用いた非水系電解質二次電池 | |
JP6819860B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP2018073563A (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6819861B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6600991B2 (ja) | 非水系電解質二次電池用電解液、および該電解液を用いた非水系電解質二次電池 | |
JP2017135047A (ja) | 非水電解質二次電池用セパレータ、および非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839348 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187005207 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15754726 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16839348 Country of ref document: EP Kind code of ref document: A1 |