WO2017032228A1 - 用于换热器的换热管、换热器及其装配方法 - Google Patents

用于换热器的换热管、换热器及其装配方法 Download PDF

Info

Publication number
WO2017032228A1
WO2017032228A1 PCT/CN2016/094852 CN2016094852W WO2017032228A1 WO 2017032228 A1 WO2017032228 A1 WO 2017032228A1 CN 2016094852 W CN2016094852 W CN 2016094852W WO 2017032228 A1 WO2017032228 A1 WO 2017032228A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
tube
tubes
heat
heat exchanger
Prior art date
Application number
PCT/CN2016/094852
Other languages
English (en)
French (fr)
Inventor
张志锋
魏文建
Original Assignee
丹佛斯微通道换热器(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯微通道换热器(嘉兴)有限公司 filed Critical 丹佛斯微通道换热器(嘉兴)有限公司
Priority to KR1020187007576A priority Critical patent/KR102482753B1/ko
Priority to JP2018509907A priority patent/JP6997703B2/ja
Priority to US15/754,750 priority patent/US10690420B2/en
Priority to EP16838488.1A priority patent/EP3355020B1/en
Publication of WO2017032228A1 publication Critical patent/WO2017032228A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • B21D39/046Connecting tubes to tube-like fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0132Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding

Definitions

  • the invention relates to the fields of HVAC, automobile, refrigeration and transportation, in particular to a heat exchanger for an evaporator, a condenser, a heat pump heat exchanger and a water tank, an assembly method thereof and a heat exchange tube used in the heat exchanger.
  • the tube-fin heat exchanger 10 includes a plurality of fins 1 , each of the plurality of fins 1 is provided with a fin hole 2; a plurality of heat exchange tubes 3, the plurality of heat exchange tubes 3 Each of the heat exchange tubes passes through the corresponding fin space such that a plurality of fins are laminated to each other; at least one elbow 4, each of the at least one elbow 4 is configured to communicate a plurality of heat exchanges Corresponding two heat exchange tubes in the tube 3; and at least one header tube 5 configured to introduce fluid into the corresponding heat exchange tubes 3 and ultimately to direct the fluid to the tube fin heat exchanger 10 outside. Specifically, a medium such as air is passed between the fins through the refrigerant in the heat exchange tubes.
  • the heat exchange tubes 3 are rounded and the fin holes 2 are also circular.
  • the diameter of the fin hole 2 is slightly larger than the diameter of the heat exchange tube 3, the fin 1 penetrates into the heat exchange tube 3, and after all the fins are installed, the expansion head 6 of the expander is used to extend into the heat exchange tube 3. Carry out the expansion tube.
  • the expansion head 6 of the tube expander has a diameter slightly larger than the diameter of the fin hole 2. After the tube is expanded, it can be ensured that the heat exchange tube 3 and the fin 1 are closely attached.
  • a microchannel/parallel flow heat exchanger 20 is shown.
  • the heat exchanger 20 includes two headers 21, a plurality of heat exchange tubes 22 extending between the two headers 21, and a plurality of fins 23 disposed between the adjacent heat exchange tubes 22.
  • an end cover 24 mounted at one end of the header 21, a baffle 25 disposed in the cavity of the header 21, a side plate 26 mounted on the side of the heat exchanger 20, and a current collector are also illustrated.
  • All parts of the heat exchanger 20 are made of aluminum.
  • the heat exchange flat tube 22 and the fins 23 are bundled as shown in the figure and sent to a brazing furnace for welding. After the tapping, the fins 23 and the heat exchange flat tubes 22 are welded together, and the brazing process includes flux. Spraying, drying, heating, welding, cooling, etc.
  • the general wall thickness is designed to be very thin in consideration of factors such as cost and heat exchange efficiency, and when the mechanical expansion tube technique is employed, it is easy to swell the tube wall, resulting in product scrapping.
  • brazing technology For another brazing technology, it can be used for heat exchangers with small hydraulic diameter heat exchange tubes. Microchannel heat exchangers typically use this technology and have good heat transfer properties.
  • the brazing process is complicated, the equipment investment is high, and the product quality is unstable, which greatly limits the market competitiveness of the microchannel heat exchanger; on the other hand, since the product needs to be welded at a high temperature, the fin material is It is impossible to make anti-corrosion layer and hydrophilic layer, and the corrosion resistance and drainage capacity are poor.
  • a heat exchange tube, a heat exchanger and an assembly method for a heat exchanger are provided.
  • a heat exchange tube for a heat exchanger is provided, the heat exchange tube being a combined heat exchange tube having a space at a center, the space for accommodating an insert to The combined heat exchange tubes are expanded in corresponding fin holes in the heat exchanger.
  • the outer surface of the combined heat exchange tube is generally circular, and the fin holes have the same shape as the combined heat exchange tube.
  • the combined heat exchange tube includes at least two heat exchange sub-tubes that are separated from one another.
  • the outer surfaces of the at least two heat exchange sub-tubes are connected to each other by a tab.
  • the tab is stretched or broken when the at least two heat exchange tubes are expanded in the fin holes with the insert.
  • the at least two heat exchange sub-tubes are N heat transfer sub-tubes, N is a natural number greater than or equal to 2, and each of the N heat transfer sub-tubes has an N-minute arc a heat exchange sub-tube, each of the N heat exchange tubes having a recess at a center corresponding to a respective arc, the recess being oriented along the extending direction of the heat transfer sub-tube toward the heat transfer sub-tube
  • the channel is concave inward.
  • the N recesses are formed into one A generally circular space.
  • the number of channels in each of the heat exchange tubes is at least one.
  • the insert is an inner tube and has a shape corresponding to the space.
  • the inner tube is hollow, solid or porous.
  • the outer surface of the inner tube is provided with an outwardly projecting protrusion that is inserted into the adjacent one when the heat transfer tube is expanded in the fin hole In the gap between the two heat exchange tubes.
  • the inner tube has the same number of protrusions as the number of heat exchange tubes in each of the fin holes.
  • the protrusion extends in a direction in which the inner tube extends.
  • a heat exchanger comprising:
  • each of the plurality of fins being provided with a fin hole
  • each of the plurality of heat exchange tubes passing through the fin holes such that a plurality of fins are laminated to each other;
  • At least one of the plurality of heat exchange tubes is a heat exchange tube according to the above.
  • the insert is inserted into the space at the center of each heat transfer tube such that each heat transfer tube and the inner wall of the fin hole are swollen together.
  • the embodiment of the present invention solves the problem of expansion or assembly for a fine or small inner diameter heat exchange tube and fin;
  • the embodiment of the present invention also does not require a brazing process, which can greatly reduce the manufacturing cost
  • the embodiment of the present invention reduces the risk of heat exchanger tube rupture caused by the expansion of a conventional heat exchange tube
  • Embodiments of the invention divide the heat exchange tubes into at least two sub-tubes to achieve the same heat transfer tubes passing through different fluids.
  • Figure 1 is a structural view of a tube-fin heat exchanger in the prior art
  • 2a and 2b are a side view and a front view, respectively, of the fin of Fig. 1;
  • Figure 3 is a view of the fin of Figure 1 using a tube expander
  • Figure 4 is a structural view of a microchannel/parallel flow heat exchanger in the prior art
  • 5a and 5b are respectively a structural view and a front view of a fin and a heat exchange tube assembled together according to an embodiment of the present invention
  • Figure 5c is a detailed view of circle A in Figure 5b;
  • Figure 5d is a front view of the fin
  • 6a-6b are a front view and a structural view, respectively, showing an example of the heat exchange sub-tube of Fig. 5a;
  • 6c-6d are a front view and a structural view, respectively, showing another example of the heat exchange sub-tube of Fig. 5a;
  • 6e-6f are respectively a front view and a structural view showing a combined heat exchange tube including the heat exchange sub-tubes of Figs. 6a and 6b;
  • Figures 6g-6h are a front view and a structural view, respectively, showing a combined heat exchange tube comprising the heat exchange sub-tubes of Figures 6c and 6d;
  • 7a and 7b are respectively a structural view and a front view of a fin and a heat exchange tube assembled together according to another embodiment of the present invention.
  • Figure 7c is a detailed view of circle B in Figure 7b;
  • Figures 7d-7f are views of various examples of plugins
  • Figures 8a and 8b are a structural view and a front view of the structure of the fin and heat exchange tube shown in Figures 5a and 5b after insertion of the insert;
  • Figure 8c is a detailed view of the circle C in Figure 8b;
  • Figure 8d shows a detailed view of the circle C in Figure 8b when another form of combined heat exchange tube is used
  • 9a and 9b are a structural view and a front view of a structure of a fin and a heat exchange tube after inserting an insert according to another embodiment of the present invention.
  • Figure 9c is a detailed view of the circle D in Figure 9b;
  • Figure 10 is a view showing a combined heat exchange tube according to another embodiment of the present invention.
  • Figures 11a and 11b are a structural view and a front view of the heat exchanger using the combined heat exchange tube shown in Figure 10 after inserting the insert;
  • Figure 11c is a detailed view of circle E in Figure 11b.
  • FIG. 5a and 5b a view of a structure 50 of heat exchange tubes 51 and fins 52 assembled together in accordance with one embodiment of the present invention is shown.
  • the combined structure of the heat exchange tubes 51 and the fins 52 of the embodiments of the present invention can be used in a tube-fin heat exchanger, and can also be used in Microchannel/parallel flow heat exchanger.
  • the tube-fin heat exchanger and the microchannel/parallel flow heat transfer will not be described in detail herein.
  • the heat exchange tubes of the present invention can be used in various heat exchangers as needed, and are not limited to the specific types of heat exchangers described above.
  • the fins 52 are first stacked one on another, and then connected in series through the heat exchange tubes 51, thereby forming a structure as shown in Fig. 5a.
  • the outer surface of the heat exchange tubes 51 is generally circular, and correspondingly, the fin holes 53 also have a generally circular shape. That is, the shape of the fin hole 53 and the heat exchange tube 51 need to remain the same or match.
  • the outer diameter of the heat exchange tubes 51 is generally set to be slightly smaller than the inner diameter of the fin holes 53.
  • those skilled in the art can specifically set the dimensional relationship between them as needed.
  • the heat exchange tubes 51 are combined heat exchange tubes having a space 55 at the center.
  • the space 55 is for receiving an insert 57 (described in detail below) to expand the combined heat exchange tubes in corresponding fin holes 53 in the heat exchanger.
  • the combined heat exchange tube 51 includes at least two heat exchange sub-tubes 58 that are separated from each other. As shown in Figure 5c, the combined heat exchange tube 51 comprises two heat exchange sub-tubes 58. Portions of the outer surface of the at least two heat exchange sub-tubes 58 enclose the space 55 at the center of the heat exchange tubes 51.
  • the at least two heat exchange sub-tubes 58 are N heat transfer sub-tubes, and N is greater than or equal to 2. a natural number, each of the N heat exchange sub-tubes 58 is a heat transfer sub-tube having an N-th circular arc, and each of the N heat exchange tubes 58 is at a center corresponding to a respective arc There is a recess 59 which is recessed inwardly along the direction of extension of the heat exchange sub-tube 58 towards the passage 56 in the heat transfer sub-tube 58. When the N heat exchange sub-tubes 58 are combined, the N recesses 59 are formed as a substantially circular space 55.
  • the combined heat exchange tube 58 is shown to include two generally semi-circular heat exchange sub-tubes 58.
  • Each heat transfer sub-tube 58 has a substantially semi-circular recess 59 at a center corresponding to its respective arc, which recess 59 is recessed toward the passage 56 in the heat transfer sub-tube along the extending direction of the heat transfer sub-tube 58.
  • Each heat transfer sub-tube 58 has a passage 56.
  • those skilled in the art can specifically design the shape of the recess 59 according to the shape of the insert 57, without being limited to the illustrated case.
  • the heat exchange sub-tube 58 is semi-circular or approximately semi-circular, but since the heat transfer sub-tube 58 itself does not participate in the expansion, the cross-section of the heat transfer sub-tube 58 can be any shape. It can also be porous or capillary.
  • a semi-circular heat exchange sub-tube 58 is shown in Figure 5c and has a semi-circular recess 59.
  • a heat exchange sub-tube 58 is shown which is substantially identical to that of Figures 6a and 6b, except that each heat transfer sub-tube 58 does not have a passage 56 but has a capillary form, specifically The figure shows three channels 56. As shown, the three passages 56 are equally uniform in each heat exchange tube 58. Of course, it is also possible to set the three channels 56 to be unequal or any other suitable form.
  • the outer diameter of the combined heat exchange tube 51 is slightly smaller than the inner diameter of the fin hole 53, so that it can be ensured that the two heat exchange sub-tubes 58 can be inserted side by side into the fin package composed of the plurality of fins 52. .
  • the heat exchange tubes 51 may be single-hole, porous, capillary, etc., that is, the number of the channels 56 in the heat exchange tubes 51 may be selected as needed.
  • the space 55 can be circular, square, dovetail or other non-circular shape or the like. It should be noted that here The number of the passages of the heat exchange tubes 51, the cross-sectional shape, and the number and shape of the spaces may be arbitrarily combined, and are not limited to the illustrated case. When the heat exchange tubes 51 have a plurality of heat exchange passages, different fluids can flow through the different heat exchange passages.
  • FIG. 7a-7c there is shown a view of a structure 50 of heat exchange tubes 51 and fins 52 assembled together in accordance with another embodiment of the present invention, which is generally identical to the example illustrated in Figures 5a and 5b.
  • the only difference is that each heat exchange sub-tube 58 has three heat exchange passages 56. Therefore, the same contents as those shown in Figs. 5a and 5b will not be described.
  • FIG. 8a and 8b there is shown a structural view and a front view of the structure shown in Figures 5a and 5b after inserting the insert.
  • the insert 57 is inserted into the space 55 formed between the two heat transfer sub-tubes 58.
  • the two heat exchange tubes 58 are pushed open, they are completely in contact with the inner wall of the fin hole 53 (see Fig. 7c) for the same purpose as the mechanical expansion.
  • the insert 57 is inserted, it is left between the two heat exchange sub-tubes 58 and is not removed, so that it completely forms a firm support for the heat transfer sub-tube 58.
  • the insert 57 tightly supports the two heat transfer sub-tubes 58 to separate the two heat transfer sub-tubes 58, thereby eliminating the outer surface of the heat transfer sub-tube 58 and the fin holes 53.
  • the gap between them is to achieve the purpose of expansion.
  • the insert 57 is, in one example, an inner tube, which may be hollow, solid, porous, circular, non-circular, square, dovetail, and the like.
  • the specific shape of the insert 57 needs to correspond to the shape of the space 55 at the center of the corresponding heat exchange tube 51. It should be noted that the insert can be used as a liquid reservoir or a superheated and supercooled tube.
  • the outer surface of the inner tube 57 is provided with an outwardly projecting protrusion 571 which is inserted into the heat transfer sub-tube 58 when it is expanded in the fin hole 53. In the gap 591 between the adjacent two heat exchange sub-tubes 58.
  • the protrusion 571 extends in the extending direction of the inner tube.
  • the inner tube 57 has the same number of protrusions 571 as the number of heat transfer sub-tubes 58 in each of the fin holes 53. That is, as shown in FIG. 8c, when the combined heat exchange tube 51 includes two heat exchange sub-tubes 58, it is inevitable to form two gaps 591 between the two heat exchange sub-tubes 58.
  • the protrusion 571 is configured to equally expand the two heat exchange sub-tubes 58 in the fin holes 53.
  • those skilled in the art can specifically select the number of protrusions as needed.
  • FIG. 8d there is shown a case where two heat exchange sub-tubes 58 having three passages 56 are expanded in the fin holes 53, and since they are substantially the same as those shown in Fig. 8c, they will not be described in detail herein. .
  • FIGs 9a-9c a situation in which another form of combined heat exchange tube 51 is expanded into the fin bore 53 is illustrated. Specifically, it is substantially the same as the case shown in Figs. 8a-8c, except that the combined heat exchange tube 51 is Includes three or more heat exchanger tubes instead of two heat exchanger tubes. Specifically, it should be noted that the heat exchange sub-tubes 58 in the combined heat exchange tubes 51 may not have the same size. For the sake of convenience of illustration, it is shown that the combined heat exchange tube 51 comprises four heat exchange sub-tubes 58 of the same size, each heat exchange sub-tube 58 having a heat exchange passage 56. Of course, each heat transfer sub-tube 58 can be porous or capillary.
  • the insert 57 has four projections 571 to better expand the combined heat exchange tubes 51 in the fin holes. 53 in. As shown in Fig. 9c, after the expansion, there is no gap between the combined heat exchange tube 51 and the inner wall of the fin hole 53.
  • the connecting sheets 60 may be passed according to actual needs.
  • the outer surfaces of the adjacent two heat exchange sub-tubes 58 are connected to each other.
  • the tabs 60 can be placed to be very thin, and after the inner tube 57 is inserted into the space 59, the tabs 60 between the heat exchange tubes 58 can be broken or can be stretched.
  • the heat transfer sub-tube 58 is attached to the inner wall of the fin hole 53 as long as it is inserted into the inner tube 57, and the specific form is not limited.
  • FIG. 11c the assembly of the combined heat exchange tubes 51 of Figure 10 in a heat exchanger is illustrated.
  • the tabs 60 are stretched, and the heat transfer sub-tubes 58 and fin holes are shown.
  • the inner wall of 53 is fitted.
  • the inner expansion tube 57 is provided with four protrusions 571.
  • the diameter required for the heat exchange tubes 51 is less than 5 mm, preferably less than 4 mm or 3 mm, or more preferably less than 2 mm or 1 mm, it can be achieved using the insert 57 described in the present invention.
  • the heat exchange tubes 51 are firmly connected to the fins 52, which is the same or substantially the same as the technical effect of the mechanical expansion technique or the brazing technique.
  • the heat exchange tubes of the present invention may also be applied to the case where the insert has a diameter of less than 5 mm, preferably less than 4 mm or 3 mm, or more preferably less than 2 mm or 1 mm.
  • a heat exchanger comprising:
  • each of the plurality of fins being provided with a fin hole
  • each of the plurality of heat exchange tubes passing through corresponding fin holes such that a plurality of fins are laminated to each other;
  • At least one of the heat exchange tubes is the heat exchange tube described above.
  • the insert is inserted into the space at the center of each heat transfer tube such that each heat transfer tube and the inner wall of the fin hole are swollen together.
  • the heat exchange tubes, heat exchangers, and corresponding assembly methods provided may have the following advantages:
  • Embodiments of the present invention allow the heat exchange tubes to be formed into capillaries to facilitate tube heat and strength improvement;
  • the intermediate insert of the present invention can be used as a liquid storage device or a superheated supercooling tube to improve heat exchange between the heat exchange tubes;
  • the embodiment of the present invention can diversify the heat exchange tubes and perform necessary adjustments according to actual needs.
  • the embodiment of the present invention mainly solves the difficulty of expanding the tube between the small-diameter heat exchange tube and the fin.
  • the split type porous tube can effectively reduce the filling amount of the working medium and increase the surface area of the heat exchange tube, thereby improving the heat exchange efficiency.
  • this type of fin assembly does not require a welding process, which helps to reduce costs.
  • the assembly of the heat exchange tube and the fin contributes to the discharge of defrosting and condensed water, and is of great significance for promoting the application of the microchannel heat exchange tube in the refrigeration air conditioning heat pump working condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

一种用于换热器的换热管(51)、换热器及其装配方法,所述换热管(51)为中心处具有一空间(55)的组合式换热管,所述空间(55)用于容纳插件(57)以将所述组合式换热管胀接在所述换热器中对应的翅片孔(53)中。该方案解决了对于微细或小内径换热管与翅片的胀接或装配问题,也无需采用钎焊工艺,可降低制造成本。

Description

用于换热器的换热管、换热器及其装配方法
本申请要求于2015年8月25日递交的、申请号为201510528384.9、发明名称为“用于换热器的换热管、换热器及其装配方法”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及暖通空调、汽车、制冷及运输领域,尤其涉及用于蒸发器、冷凝器、热泵换热器和水箱等换热器及其装配方法以及该换热器所使用的换热管。
背景技术
目前,制造换热器的技术一般有两种,一种是机械胀管技术,另一种是钎焊技术。
如图1-3所示,示出了一种常见的管翅式换热器10。该管翅式换热器10包括多个翅片1,所述多个翅片1中的每个翅片设置有翅片孔2;多个换热管3,所述多个换热管3中的每个换热管穿过对应的翅片空使得多个翅片彼此层叠在一起;至少一个弯头4,所述至少一个弯头4中的每个弯头配置成连通多个换热管3中的相应的两个换热管;和至少一个集流管5,配置成将流体导入到对应的换热管3中,并且将所述流体最终导出到所述管翅式换热器10的外面。具体地,换热管中通过制冷剂而翅片之间通过诸如空气的介质。
如图所示,通常,换热管3成圆形,并且翅片孔2也成圆形。翅片孔2的直径稍大于换热管3的直径,翅片1穿入换热管3,并且等全部翅片安装完成后,然后用胀管机的胀头6伸入换热管3内进行胀管。胀管机的胀头6直径略大于翅片孔2的直径。胀管后,可以保证换热管3和翅片1紧密贴合。
如图4所示,示出了一种微通道/平行流换热器20。该换热器20包括两根集流管21、在两根集流管21之间延伸的多个换热扁管22、相邻的换热管22之间设置有多个翅片23。另外,还图示出安装在集流管21一端的端盖24、设置在集流管21的腔内的挡板25、安装在换热器20一侧上的侧板26以及设置在集流管21上的入口/出口配件27。
该换热器20的所有部件都由铝制成。换热扁管22与翅片23如图所示捆扎紧后送入钎焊炉进行焊接,出炉后翅片23和换热扁管22焊接在一起,钎焊过程包括钎剂 喷涂、干燥、加热、焊接、冷却等。
然而,众所周知,相同的换热器尺寸,换热管的水力直径越小,换热性能会越高,材料的成本越低。但是机械胀管技术受换热管直径的影响较大,目前只能应用于直径大于5mm的换热管。
此外,对于常规的换热管,考虑到成本以及换热效率等因素,一般壁厚都设计成非常薄,而采用机械胀管技术时,很容易将管壁胀破,导致产品报废。
对于另一种钎焊技术来说,可以用于小水力直径换热管的换热器。微通道换热器通常采用这一技术,并且具有较好的换热性能。但是,一方面,钎焊工艺复杂,设备投资高,产品质量不稳定等问题大大地限制了微通道换热器的市场竞争力;另一方面,由于产品需要经过高温焊接,所以翅片材料上无法做防腐层和亲水层,防腐蚀性能和排水能力壁管翅式换热器要差。
发明内容
本发明的目的是解决或至少缓解上述的两种焊接技术的不足或缺点。
根据本发明的一个方面,提供了一种用于换热器的换热管、换热器以及装配方法。
根据本发明的一个方面,提供了一种用于换热器的换热管,所述换热管为中心处具有一空间的组合式换热管,所述空间用于容纳插件以将所述组合式换热管胀接在所述换热器中对应的翅片孔中。
在一个示例中,所述组合式换热管的外表面为大体圆形,所述翅片孔具有与所述组合式换热管相同的形状。
在一个示例中,所述组合式换热管包括彼此分离的至少两个换热子管。
在一个示例中,所述至少两个换热子管的外表面通过连接片彼此相连接。
在一个示例中,在用所述插件将所述至少两个换热子管胀接在所述翅片孔中时,所述连接片被拉伸或断裂开。
在一个示例中,所述至少两个换热子管为N个换热子管,N为大于等于2的自然数,所述N个换热子管中的每一个为具有N分之一圆弧的换热子管,所述N个换热管中的每一个在各自的圆弧所对应的圆心处具有凹部,所述凹部沿着所述换热子管的延伸方向朝向换热子管内的通道向内凹。
在一个示例中,在所述N个换热子管组合在一起时,所述N个凹部形成为一个 大体圆形的空间。
在一个示例中,每个所述换热子管中的通道的数量为至少一个。
在一个示例中,所述插件为内胀管,且具有与所述空间相对应的形状。
在一个示例中,所述内胀管是空心的、实心的或多孔的。
在一个示例中,所述内胀管的外表面上设置有向外突出的突出部,所述突出部在将所述换热子管胀接在所述翅片孔中时插入到相邻的两个换热子管之间的空隙中。
在一个示例中,所述内胀管具有与所述每个翅片孔中的换热子管的数量相同数量的突出部。
在一个示例中,所述突出部沿所述内胀管的延伸方向延伸。
根据本发明的另一方面,提供了一种换热器,所述换热器包括:
多个翅片,所述多个翅片中的每个翅片设置有翅片孔;
多个换热管,所述多个换热管中的每个换热管穿过所述翅片孔使得多个翅片彼此层叠在一起;
所述多个换热管中的至少一个换热管为根据上述的换热管。
根据本发明的还一方面,提供了一种根据上述的换热器的装配方法,包括:
将多个换热管中的每个换热管穿入多个翅片中对应的翅片孔,从而使得多个翅片彼此层叠在一起;
将插件插入到每个换热管的中心处的空间中,使得每个换热管和所述翅片孔的内壁胀接在一起。
在本发明的实施例中,本发明的技术方案具备以下有益技术效果:
1、本发明的实施例解决了对于微细或小内径换热管与翅片的胀接或装配问题;
2、本发明的实施例也无需采用钎焊工艺,可大大降低制造成本;
3、本发明的实施例降低了常规换热管内胀带来的换热管破裂风险;和
4、本发明的实施例将换热管分成至少两个子管,以实现同一处换热管通过不同的流体。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1是在现有技术中的管翅式换热器的结构视图;
图2a和2b是分别是图1中翅片的侧视图和主视图;
图3是图1中的翅片使用胀管机胀管的视图;
图4是在现有技术中的微通道/平行流换热器的结构视图;
图5a和5b分别是根据本发明的一个实施例的装配在一起的翅片和换热管的结构视图和主视图;
图5c是图5b中的圆圈A的细节视图;
图5d是翅片的主视图;
图6a-6b分别是示出图5a中的换热子管的一个示例的主视图和结构视图;
图6c-6d分别是示出图5a中的换热子管的另一个示例的主视图和结构视图;
图6e-6f分别是示出包括图6a和6b中的换热子管的组合式换热管的主视图和结构视图;
图6g-6h分别是示出包括图6c和6d中的换热子管的组合式换热管的主视图和结构视图;
图7a和7b分别是根据本发明的另一个实施例的装配在一起的翅片和换热管的结构视图和主视图;
图7c是图7b中的圆圈B的细节视图;
图7d-7f是插件的各个示例的视图;
图8a和8b是图5a和5b所示的翅片和换热管的结构在插入插件之后的结构视图和主视图;
图8c是图8b中的圆圈C的细节视图;
图8d示出了采用另一种形式的组合式换热管时的图8b中的圆圈C的细节视图;
图9a和9b是根据本发明的另一实施例的翅片和换热管的结构在插入插件之后的结构视图和主视图;
图9c是图9b中的圆圈D的细节视图;
图10是示出了根据本发明的另一实施例的组合式换热管的视图;
图11a和11b是使用图10所示的组合式换热管的换热器在插入插件之后的结构视图和主视图;
图11c是图11b中的圆圈E的细节视图。
具体实施方式
下面通过实施例,并结合附图1-11c,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
如图5a和5b所示,示出了根据本发明的一个实施例的装配在一起的换热管51和翅片52的结构50的视图。如在背景技术部分所论述的,本领域技术人员可以明白,本发明的实施例所述的换热管51和翅片52的组合结构可以用在管翅式换热器中,也可以用在微通道/平行流换热器中。鉴于在背景技术中已经对管翅式换热器和微通道/平行流换热器的结构进行详细说,故,在此不再详细说明管翅式换热器和微通道/平行流换热器的具体结构,本领域技术人员可以直接用本发明实施例所提供的装配在一起的翅片和换热管的结构部分替代上述的对应换热器中的相应部分。或者说,本发明所述的换热管可以根据需要用于各种换热器,而不限于上述的换热器的具体类型。
在实际的装配过程中,首先将翅片52一层一层叠加在一起,然后通过换热管51串联起来,从而形成了如图5a所示的结构。
在一个示例中,换热管51的外表面为大体圆形,对应地,翅片孔53也具有大体圆形的形状。也就是,翅片孔53和换热管51形状需要保持相同或相匹配。为了使得换热管51能够穿过翅片52上的翅片孔53,通常将换热管51的外径设置成略小于翅片孔53的内径。当然,本领域技术人员可以根据需要具体设置它们之间的尺寸关系。
参见图5c和5d,可以看到换热管51和翅片孔53之间具有一些空间或间隙54。这个间隙54是翅片孔53相对换热管51的余量,以使得换热管51便于穿过翅片的堆叠层或翅片包。
如图5a-5c所示,换热管51为在中心处具有一空间55的组合式换热管。所述空间55用于容纳插件57(将在下文详细说明)以将所述组合式换热管胀接在换热器中对应的翅片孔53中。
具体地,组合式换热管51包括彼此分离的至少两个换热子管58。在图5c中示出,组合式换热管51包括两个换热子管58。所述至少两个换热子管58的部分外表面围成在所述换热管51的中心处的所述空间55。
在一个示例中,所述至少两个换热子管58为N个换热子管,N为大于等于2的 自然数,所述N个换热子管58中的每一个为具有N分之一圆弧的换热子管,所述N个换热管58中的每一个在各自的圆弧所对应的圆心处具有凹部59,所述凹部59沿着所述换热子管58的延伸方向朝向换热子管58内的通道56向内凹。在所述N个换热子管58组合在一起时,所述N个凹部59形成为一个大体圆形的空间55。
参见图5c,示出了组合式换热管58包括两个大体半圆形的换热子管58。每个换热子管58在各自的圆弧所对应的圆心处具有大体半圆形的凹部59,该凹部59沿着换热子管58的延伸方向朝向换热子管内的通道56向内凹。每个换热子管58具有一个通道56。当然,本领域技术人员可以根据插件57的形状具体地设计所述凹部59的形状,而不限于图示的情形。
可以理解,在图5c中,换热子管58是半圆形或近似半圆形,但是因为换热子管58本身不参与胀接,所以换热子管58的横截面可以是任意形状,而且还可以是多孔的或毛细孔的。
参见图6a和6b,示出了图5c中显示的半圆形的换热子管58,并且具有半圆形的凹部59。
参见图6c和6d,示出了与图6a和6b大体相同的换热子管58,其不同之处在于每个换热子管58不是具有一个通道56,而是具有毛细管形式,具体地如图所示,示出了具有三个通道56。如图所示,三个通道56在每个换热管58中是均等的。当然,还可以将三个通道56设置成不均等的或任何其他合适的形式。
参见图6e和6f,示出了将图6a和6b中显示的两个换热子管58装配在一起时组成所述组合式换热管51的情形。此时,该组合式换热管51的外径略小于翅片孔53的内径,从而可以保证两个换热子管58可以并列地一起插入到由多个翅片52构成的翅片包中。
参见图6g和6h,示出了将图6c和6d中的多通道的两个换热子管58组装在一起形成所述的组合式换热管51的示例。
在上述图示中,示出了将两个完全相同的换热子管58组合成一个组合式换热管51,当然,本领域技术人员可以根据需要设置组合在一起的换热子管58的形式,而不必是完全相同的。例如将图6a中所示的单通道的换热子管58与图6c中所示的多通道的换热子管58组合在一起。
通过上述的图示可知,本发明实施例所述的换热管51可以是单孔的、多孔的、毛细孔的等等,即换热管51内的通道56的数量可以根据需要进行选择。所述空间55可以圆形的、方形的、燕尾形的或其它非圆形的形状等等。需要说明的是,此处 所述的换热管51的通道的数量、截面形状和所述空间的数量和形状可以任意进行组合,而不限于图示的情形。在换热管51具有多个换热通道时,可以在不同的换热通道中流过不同的流体。
参见图7a-7c,示出了根据本发明的另一实施例的装配在一起的换热管51和翅片52的结构50的视图,其与图5a和5b所示的示例大体相同,其不同之处仅在于每个换热子管58具有三个换热通道56。因此,不再累述与图5a和5b所示的相同的内容。
参见图8a和8b,示出了图5a和5b所示的结构中插入插件之后的结构视图和主视图。在将两根换热子管58同时穿过同一翅片孔53之后,在两根换热子管58之间所形成的空间55中插入插件57。两根换热子管58被推开之后,与翅片孔53的内壁完全接触(参见图7c),以达到与机械胀接相同的目的。插件57完成插入之后就留在两根换热子管58之间不再取出,使之完全形成对换热子管58的牢固支承。
从图8c可见,插件57紧紧地支撑着两根换热子管58,以使得两根换热子管58之间分离,从而消除了换热子管58的外表面与翅片孔53之间的间隙以达到胀接的目的。
参见图7d-7f,示出了插件57的各个实施例的结构视图。如图所示,所述插件57在一个示例中是内胀管,可以是空心的、实心的、多孔的、圆形的、非圆形的、方形的、燕尾形的,等等。插件57的具体形状需要与相应的换热管51中心处的空间55的形状相对应。需要说明的是,插件可以作为储液器或者过热过冷管。
具体地,所述内胀管57的外表面上设置有向外突出的突出部571,所述突出部571在将所述换热子管58胀接在所述翅片孔53中时插入到相邻的两个换热子管58之间的空隙591中。所述突出部571沿所述内胀管的延伸方向延伸。
优选地,在一个示例中,所述内胀管57具有与所述每个翅片孔53中的换热子管58的数量相同数量的突出部571。也就是说,如图8c所示,当组合式换热管51包括两个换热子管58时,必然会在两个换热子管58之间形成两个间隙591,这样期望设置两个突出部571,以能够均衡地将两个换热子管58胀接在翅片孔53内。当然,本领域技术人员可以根据需要具体选择突出部的数量。
参见图8d,示出了将具有三个通道56的两个换热子管58胀接在翅片孔53中的情形,鉴于其与图8c所示的大体相同,故在此不再详述。
参见图9a-9c,示出了将另一种形式的组合式换热管51胀接在翅片孔53中的情形。具体地,其大体与图8a-8c所示的情形相同,不同之处在于所述组合式换热管51 包括三根或更多根换热子管,而不是两根换热子管。具体地,需要说明的是,组合式换热管51内的换热子管58可以不具有相同的尺寸。在图中为了图示方便的目的,示出了组合式换热管51包括四个相同尺寸的换热子管58,每个换热子管58具有一个换热通道56。当然,每个换热子管58可以是多孔的或毛细管式的。如上所述的,由于组合式换热管51包括四个换热子管58,相应地,插件57具有四个突出部571,以更好地将组合式换热管51胀接在翅片孔53中。如图9c所示,在胀接之后,组合式换热管51和翅片孔53的内壁之间没有任何间隙。
参见图10,当组合式换热管51包括多个诸如如图所示的四个换热子管58时,为了便于一起装配在翅片孔53中的目的,可以根据实际需要通过连接片60将相邻的两个换热子管58的外表面彼此连接在一起。在实际中,可以将连接片60设置成很薄,在内胀管57插入到所述空间59中之后,各个换热子管58之间的连接片60可以断裂开或可以被拉伸。总之,只要塞入内胀管57之后,换热子管58跟翅片孔53的内壁贴合即可,具体形式不限。
参见图11a-11c,示出了将图10所示的组合式换热管51装配在换热器中的情形。如图所见,具体参见图11c,示出了组合式换热管51的换热子管58之间插入了插件57之后,连接片60被拉伸,并且换热子管58和翅片孔53的内壁贴合。具体地,由于组合式换热管51包括四个换热子管58,故内胀管57设置有四个突出部571。
如上所述,在一个示例中,在需要用于换热管51的直径小于5mm,优选地小于4mm或3mm,或更优选地小于2mm或1mm时,可以使用本发明所述的插件57实现将换热管51与翅片52牢固连接,这与机械胀管技术或钎焊技术的技术效果相同或大致相同。在一个示例中,本发明的换热管还可以应用于插件直径小于5mm的情形,优选地小于4mm或3mm,或更优选地小于2mm或1mm。
在本发明的另一实施例中,提供了一种换热器,其特征在于,所述换热器包括:
多个翅片,所述多个翅片中的每个翅片设置有翅片孔;
多个换热管,所述多个换热管中的每个换热管穿过对应的翅片孔使得多个翅片彼此层叠在一起;
其中所述换热管中的至少一个是上述的换热管。
鉴于所述换热器中使用的换热管与上述的换热管相同,故具体细节不再累述。
在本发明的还一实施例中,提供了一种上述的换热器的装配方法,包括:
将多个换热管中的每个换热管穿入多个翅片中对应的翅片孔,从而使得多个翅片彼此层叠在一起;
将插件插入到每个换热管的中心处的空间中,使得每个换热管和所述翅片孔的内壁胀接在一起。
鉴于所述换热器的装配方法中使用的换热管与上述的换热管相同,故具体细节不再累述。
在本发明的各示例中,所提供的换热管、换热器以及相应的装配方法可以具有以下优点:
1)本发明的实施例使得换热管可以做成毛细管,利于管热和强度改善;
2)本发明的中间插件可以作为储液器或者过热过冷管,改善换热管换热;
3)本发明的实施例解决了常规机械胀接无法胀接小规格换热管的问题;
4)本发明的实施例解决了液压胀接带来的局部破裂问题和胀接过程中的密封问题;
5)本发明的实施例可以将换热管做成多样化,根据实际需要进行必要的调整。
6)本发明的实施例主要解决了小管径换热管与翅片间胀管的困难。
7)在本发明中,相对于常规圆形单孔换热管,采用分片式多孔管,可以有效降低工质充注量,增大换热管表面积,从而提高换热效率。
8)相对于常规微通道多孔换热扁管,该种翅片装配方式不需要焊接工艺,有助于降低成本。
9)与常规微通道扁管相比,该换热管与翅片的装配有助于除霜和凝结水的排放,对于推广微通道换热管在制冷空调热泵工况下的应用意义重大。
以上仅为本发明的一些实施例,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (16)

  1. 一种用于换热器的换热管,其特征在于,所述换热管为中心处具有一空间的组合式换热管,所述空间用于容纳插件以将所述组合式换热管胀接在所述换热器中对应的翅片孔中。
  2. 根据权利要求1所述的用于换热器的换热管,其特征在于,
    所述组合式换热管的外表面为大体圆形,所述翅片孔具有与所述组合式换热管相同的形状。
  3. 根据权利要求1或2所述的用于换热器的换热管,其特征在于,
    所述组合式换热管包括彼此分离的至少两个换热子管。
  4. 根据权利要求3所述的用于换热器的换热管,其特征在于,
    所述至少两个换热子管的部分外表面围成在所述换热管的中心处的所述空间。
  5. 根据权利要求3或4所述的用于换热器的换热管,其特征在于,
    所述至少两个换热子管的外表面通过连接片彼此相连接。
  6. 根据权利要求5所述的用于换热器的换热管,其特征在于,
    在用所述插件将所述至少两个换热子管胀接在所述翅片孔中时,所述连接片被拉伸或断裂开。
  7. 根据权利要求3-6中任一项所述的用于换热器的换热管,其特征在于,
    所述至少两个换热子管为N个换热子管,N为大于等于2的自然数,所述N个换热子管中的每一个为具有N分之一圆弧的换热子管,所述N个换热管中的每一个在各自的圆弧所对应的圆心处具有凹部,所述凹部沿着所述换热子管的延伸方向朝向换热子管内的通道向内凹。
  8. 根据权利要求7所述的用于换热器的换热管,其特征在于,
    在所述N个换热子管组合在一起时,所述N个凹部形成为一个大体圆形的空间。
  9. 根据权利要求3-8中任一项所述的用于换热器的换热管,其特征在于,
    每个换热子管中的通道的数量为至少一个。
  10. 根据权利要求1-9中任一项所述的用于换热器的换热管,其特征在于,
    所述插件为内胀管,且具有与所述空间相对应的形状。
  11. 根据权利要求10所述的用于换热器的换热管,其特征在于,
    所述内胀管是空心的、实心的或多孔的。
  12. 根据权利要求10或11所述的用于换热器的换热管,其特征在于,
    所述内胀管的外表面上设置有向外突出的突出部,所述突出部在将所述换热子管胀接在所述翅片孔中时插入到相邻的两个换热子管之间的空隙中。
  13. 根据权利要求12所述的用于换热器的换热管,其特征在于,
    所述内胀管具有与所述每个翅片孔中的换热子管的数量相同数量的突出部。
  14. 根据权利要求12或13所述的用于换热器的换热管,其特征在于,
    所述突出部沿所述内胀管的延伸方向延伸。
  15. 一种换热器,所述换热器包括:
    多个翅片,所述多个翅片中的每个翅片设置有翅片孔;
    多个换热管,所述多个换热管中的每个换热管穿过所述翅片孔使得多个翅片彼此层叠在一起;
    其中所述多个换热管中的至少一个换热管为根据权利要求1-14中任一项所述的换热管。
  16. 一种根据权利要求15所述的换热器的装配方法,包括:
    将多个换热管中的每个换热管穿入多个翅片中对应的翅片孔,从而使得多个翅片彼此层叠在一起;
    将插件插入到每个换热管的中心处的空间中,使得每个换热管和所述翅片孔的内壁胀接在一起。
PCT/CN2016/094852 2015-08-25 2016-08-12 用于换热器的换热管、换热器及其装配方法 WO2017032228A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187007576A KR102482753B1 (ko) 2015-08-25 2016-08-12 열 교환기용 열 교환 관, 열 교환기 및 그 조립 방법
JP2018509907A JP6997703B2 (ja) 2015-08-25 2016-08-12 熱交換器のための熱交換管、熱交換器、およびその組立方法
US15/754,750 US10690420B2 (en) 2015-08-25 2016-08-12 Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof
EP16838488.1A EP3355020B1 (en) 2015-08-25 2016-08-12 Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510528384.9 2015-08-25
CN201510528384.9A CN106482568B (zh) 2015-08-25 2015-08-25 用于换热器的换热管、换热器及其装配方法

Publications (1)

Publication Number Publication Date
WO2017032228A1 true WO2017032228A1 (zh) 2017-03-02

Family

ID=58099601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094852 WO2017032228A1 (zh) 2015-08-25 2016-08-12 用于换热器的换热管、换热器及其装配方法

Country Status (6)

Country Link
US (1) US10690420B2 (zh)
EP (1) EP3355020B1 (zh)
JP (1) JP6997703B2 (zh)
KR (1) KR102482753B1 (zh)
CN (1) CN106482568B (zh)
WO (1) WO2017032228A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561426B1 (en) * 2016-12-20 2021-06-09 Tokyo Roki Co., Ltd. Heat exchange device
CN107120872A (zh) * 2017-05-24 2017-09-01 上海理工大学 胀接型微通道换热器及其制备方法
CN107520364A (zh) * 2017-08-19 2017-12-29 常州爱迪尔制冷科技有限公司 插胀翅片式换热器d型胀紧工艺及其插胀翅片式换热器
US11391523B2 (en) * 2018-03-23 2022-07-19 Raytheon Technologies Corporation Asymmetric application of cooling features for a cast plate heat exchanger
CN108344322B (zh) * 2018-03-28 2023-12-15 长沙格力暖通制冷设备有限公司 翅片换热器及空调器
CN108458621B (zh) * 2018-04-03 2019-09-20 珠海格力电器股份有限公司 翅片、换热器及空调器
CN114440688A (zh) * 2022-01-28 2022-05-06 广东美的暖通设备有限公司 扁管及换热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208539A (en) * 1987-08-04 1989-04-05 Toshiba Kk Heat exchanger
JP2001091180A (ja) * 1999-09-20 2001-04-06 Mitsubishi Electric Corp プレートフィンチューブ型熱交換器およびその製造方法とそれを用いた冷蔵庫
JP2008261518A (ja) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を備えた空気調和機
CN102066866A (zh) * 2008-06-19 2011-05-18 三菱电机株式会社 热交换器以及具备该热交换器的空气调节机
CN103837014A (zh) * 2014-03-21 2014-06-04 丹佛斯微通道换热器(嘉兴)有限公司 换热器及其连接方法
CN103940284A (zh) * 2014-03-21 2014-07-23 丹佛斯微通道换热器(嘉兴)有限公司 换热器及其连接方法
CN205049038U (zh) * 2015-08-25 2016-02-24 丹佛斯微通道换热器(嘉兴)有限公司 用于换热器的换热管和换热器

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US520222A (en) * 1894-05-22 Half to adrian merle and andrew rudgear
US417992A (en) * 1889-12-24 Underground electric conduit
US360782A (en) * 1887-04-05 Covering for steam pipes
US1150407A (en) * 1913-08-12 1915-08-17 Babcock & Wilcox Co Steam-superheater.
US1242473A (en) * 1915-07-21 1917-10-09 Babcock & Wilcox Co Steam-superheater.
US1787904A (en) * 1927-05-02 1931-01-06 Francis J Heyward Car heater
US1961907A (en) * 1931-11-25 1934-06-05 George T Mott Apparatus for heat exchanging
US2151540A (en) * 1935-06-19 1939-03-21 Varga Alexander Heat exchanger and method of making same
US2171253A (en) * 1938-10-22 1939-08-29 Gen Motors Corp Tubular radiator
US2197243A (en) * 1939-08-08 1940-04-16 Kimble Glass Co Condenser tube
US2386159A (en) * 1944-02-17 1945-10-02 American Locomotive Co Heat exchanger fin tube
US2467668A (en) * 1947-10-30 1949-04-19 Chase Brass & Copper Co Mandrel for expanding internallyfinned tubes
US2703921A (en) * 1949-04-14 1955-03-15 Brown Fintube Co Method of making internally finned tubes
US2756032A (en) * 1952-11-17 1956-07-24 Heater
US2929408A (en) * 1955-04-27 1960-03-22 Acme Ind Inc Fin construction
US2895508A (en) * 1955-11-23 1959-07-21 Patterson Kelley Company Inc Heat exchange conduit
FR1169790A (fr) * 1957-03-18 1959-01-06 Tubes d'échangeur de chaleur
US2960114A (en) * 1957-04-26 1960-11-15 Bell & Gossett Co Innerfinned heat transfer tubes
US3000495A (en) * 1958-04-11 1961-09-19 Downing Alan Henry Packaging method and means
US2998472A (en) * 1958-04-23 1961-08-29 Lewis A Bondon Insulated electrical conductor and method of manufacture
US3110754A (en) * 1960-05-11 1963-11-12 William W Witort Conduit system and components therefor
US3163710A (en) * 1962-01-17 1964-12-29 William W Witort Connection means for divided electrical raceways
US3336056A (en) * 1965-03-25 1967-08-15 Gen Motors Corp Conduit system
US3358749A (en) * 1966-07-22 1967-12-19 Dow Chemical Co Interfacial surface generator and method of preparation thereof
US3433300A (en) * 1966-09-01 1969-03-18 Peerless Of America Heat exchangers and the method of making same
US3603384A (en) * 1969-04-08 1971-09-07 Modine Mfg Co Expandable tube, and heat exchanger
US3585910A (en) * 1969-05-21 1971-06-22 Brown Co D S Expansion joint and bridge joint seals
US3636607A (en) * 1969-12-30 1972-01-25 United Aircraft Prod Method of making a heat exchange tube
US3636982A (en) * 1970-02-16 1972-01-25 Patterson Kelley Co Internal finned tube and method of forming same
US3625258A (en) * 1970-03-16 1971-12-07 Warren Petroleum Corp Multipassage pipe
FR2113249A5 (zh) * 1970-11-03 1972-06-23 Getters Spa
US3865184A (en) * 1971-02-08 1975-02-11 Q Dot Corp Heat pipe and method and apparatus for fabricating same
US3730229A (en) * 1971-03-11 1973-05-01 Turbotec Inc Tubing unit with helically corrugated tube and method for making same
US3777502A (en) * 1971-03-12 1973-12-11 Newport News Shipbuilding Dry Method of transporting liquid and gas
SE364099B (zh) * 1972-01-10 1974-02-11 L Lilja
BE795314A (fr) * 1972-02-10 1973-05-29 Raufoss Ammunisjonsfabrikker Conduit echangeur de chaleur
US3976129A (en) * 1972-08-17 1976-08-24 Silver Marcus M Spiral concentric-tube heat exchanger
US4090559A (en) * 1974-08-14 1978-05-23 The United States Of America As Represented By The Secretary Of The Navy Heat transfer device
US4023557A (en) * 1975-11-05 1977-05-17 Uop Inc. Solar collector utilizing copper lined aluminum tubing and method of making such tubing
CA1063097A (en) * 1976-01-26 1979-09-25 David F. Fijas Inner finned heat exchanger tube
US4163474A (en) * 1976-03-10 1979-08-07 E. I. Du Pont De Nemours And Company Internally finned tube
US4194560A (en) * 1976-03-19 1980-03-25 Nihon Radiator Co., Ltd. Oil cooler and method for forming it
US4031602A (en) * 1976-04-28 1977-06-28 Uop Inc. Method of making heat transfer tube
US4021676A (en) * 1976-05-07 1977-05-03 The United States Of America As Represented By The United States Energy Research And Development Administration Waste canister for storage of nuclear wastes
HU173583B (hu) * 1976-06-30 1979-06-28 Energiagazdalkodasi Intezet Ustrojstvo dlja uluchshenija teploperedachi v teploobmennykh trubakh
US4190105A (en) * 1976-08-11 1980-02-26 Gerhard Dankowski Heat exchange tube
FR2390274A1 (fr) * 1977-05-13 1978-12-08 Michelin & Cie Procede de fabrication de tringles pour pneumatiques
JPS54101539A (en) * 1978-01-27 1979-08-10 Kobe Steel Ltd Heat exchange pipe for use with water-sprinkling type, panel-shaped, liquefied natural gas evaporator and combination of such pipes and their manufacturing method
US4176787A (en) * 1978-03-29 1979-12-04 Gary Fred J Heat recovery device for use in return air duct of forced air furnace
US4343350A (en) * 1978-08-04 1982-08-10 Uop Inc. Double wall tubing assembly and method of making same
FR2456914A1 (fr) * 1978-12-28 1980-12-12 Lampes Sa Element absorbant l'energie solaire, capteur solaire equipe d'un tel element, et panneau solaire comportant de tels capteurs
IT1166842B (it) * 1979-05-21 1987-05-06 Trojani Benito Luigi Tubo con alettatura per scambiatori di calore
US4250958A (en) * 1979-07-16 1981-02-17 Wasserman Kurt J Double tubular thermal energy storage element
US4256170A (en) * 1979-07-20 1981-03-17 Crump Robert F Heat exchanger
US4326582A (en) * 1979-09-24 1982-04-27 Rockwell International Corporation Single element tube row heat exchanger
US4340114A (en) * 1979-11-30 1982-07-20 Lambda Energy Products, Inc. Controlled performance heat exchanger for evaporative and condensing processes
US4412558A (en) * 1979-12-28 1983-11-01 Western Fuel Reducers, Inc. Turbulator
US4372374A (en) * 1980-01-15 1983-02-08 Ateliers Des Charmilles S.A. Vented heat transfer tube assembly
US4419802A (en) * 1980-09-11 1983-12-13 Riese W A Method of forming a heat exchanger tube
US4729409A (en) * 1980-10-07 1988-03-08 Borg-Warner Corporation Hexagonal underground electrical conduit
US4345644A (en) * 1980-11-03 1982-08-24 Dankowski Detlef B Oil cooler
US4378640A (en) * 1981-03-02 1983-04-05 Adolf Buchholz Fluid flow deflector apparatus and sheet dryer employing same
US4373578A (en) * 1981-04-23 1983-02-15 Modine Manufacturing Company Radiator with heat exchanger
SE8102618L (sv) * 1981-04-24 1982-10-25 Foerenade Fabriksverken Forfarande och anordning vid vermeupptagning fran en sjobotten eller liknande
FR2514270A1 (fr) * 1981-10-09 1983-04-15 Peugeot Cycles Procede de deformation locale d'un tube rond en un tube comportant des faces planes, et poincon de formage pour sa mise en oeuvre
US4641705A (en) * 1983-08-09 1987-02-10 Gorman Jeremy W Modification for heat exchangers incorporating a helically shaped blade and pin shaped support member
JPS622087A (ja) * 1985-02-22 1987-01-08 住友電気工業株式会社 複合パイプ及びその製造方法
JPS61144390U (zh) * 1985-02-27 1986-09-05
BR8604382A (pt) * 1985-09-14 1987-05-12 Norsk Hydro As Refrigerador de fluido
US4705914A (en) * 1985-10-18 1987-11-10 Bondon Lewis A High voltage flexible cable for pressurized gas insulated transmission line
EP0222100B1 (de) * 1985-10-31 1989-08-09 Wieland-Werke Ag Rippenrohr mit eingekerbtem Nutengrund und Verfahren zu dessen Herstellung
JPS6398413A (ja) * 1986-10-15 1988-04-28 Smc Corp 二重管およびその連続製造法
US4836968A (en) * 1987-04-15 1989-06-06 Sterling Engineered Products Inc. Method of making fiber optic duct insert
US4806705A (en) * 1987-08-21 1989-02-21 Jack Moon Co., Ltd. Holder for use in cable conduits
DE3730117C1 (de) * 1987-09-08 1988-06-01 Norsk Hydro As Verfahren zum Herstellen eines Waermetauschers,insbesondere eines Kraftfahrzeugkuehlers und Rohrprofil zur Verwendung bei einem derartigen Verfahren
US4937064A (en) * 1987-11-09 1990-06-26 E. I. Du Pont De Nemours And Company Process of using an improved flue in a titanium dioxide process
US5000426A (en) * 1989-08-15 1991-03-19 Edna Corporation Exothermic cutting torch
US5167275A (en) * 1989-12-06 1992-12-01 Stokes Bennie J Heat exchanger tube with turbulator
US5004046A (en) * 1990-06-11 1991-04-02 Thermodynetics, Inc. Heat exchange method and apparatus
USD345197S (en) * 1991-05-20 1994-03-15 Potter Thomas L Pipe
DE9315296U1 (de) * 1992-10-30 1994-03-03 Autokuehler Gmbh & Co Kg Wärmeaustauscher, insbesondere Luft/Luft-Wärmeaustauscher
US5409057A (en) * 1993-01-22 1995-04-25 Packless Metal Hose, Inc. Heat exchange element
FR2708327B1 (fr) * 1993-07-01 1995-10-13 Hutchinson Profilé tubulaire, à usage de joint d'étanchéité, de silencieux ou de conduit flexible pour véhicule automobile.
US5375654A (en) * 1993-11-16 1994-12-27 Fr Mfg. Corporation Turbulating heat exchange tube and system
DE9405062U1 (de) * 1994-03-24 1994-05-26 Hoval Interliz Ag Wärmetauscherrohr für Heizkessel
JPH08128793A (ja) * 1994-10-28 1996-05-21 Toshiba Corp 内部フィン付伝熱管とその製造方法
US5722485A (en) * 1994-11-17 1998-03-03 Lennox Industries Inc. Louvered fin heat exchanger
US5604982A (en) * 1995-06-05 1997-02-25 General Motors Corporation Method for mechanically expanding elliptical tubes
ES2142518T3 (es) * 1995-06-21 2000-04-16 Raymond A & Cie Funda tubular para el recubrimiento de mazos de cables.
US5924457A (en) * 1995-06-28 1999-07-20 Calsonic Corporation Pipe and method for producing the same
US5660230A (en) * 1995-09-27 1997-08-26 Inter-City Products Corporation (Usa) Heat exchanger fin with efficient material utilization
US5738168A (en) * 1995-12-08 1998-04-14 Ford Motor Company Fin tube heat exchanger
JP3546981B2 (ja) * 1996-04-30 2004-07-28 カルソニックカンセイ株式会社 管体の接続構造
DE19651625A1 (de) * 1996-12-12 1998-06-18 Behr Industrietech Gmbh & Co Wärmeübertrager
US5956846A (en) * 1997-03-21 1999-09-28 Livernois Research & Development Co. Method and apparatus for controlled atmosphere brazing of unwelded tubes
JPH1191352A (ja) * 1997-09-24 1999-04-06 Sanyo Mach Works Ltd インパクトバーおよびその製造方法
JP3038179B2 (ja) * 1998-04-08 2000-05-08 日高精機株式会社 熱交換器用フィン及びその製造方法
AU5688499A (en) * 1998-08-31 2000-03-21 James D. Mitchem Non-knotting line
JP2000140933A (ja) * 1998-09-01 2000-05-23 Bestex Kyoei:Kk 二重管構造
JP2000146482A (ja) * 1998-09-16 2000-05-26 China Petrochem Corp 熱交換器チュ―ブ、その製造方法、及びその熱交換器チュ―ブを用いるクラッキング炉又は他の管状加熱炉
US6122911A (en) * 1998-09-28 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Exhaust manifold pipe weld assembly
CA2289428C (en) * 1998-12-04 2008-12-09 Beckett Gas, Inc. Heat exchanger tube with integral restricting and turbulating structure
JP2000218332A (ja) 1999-01-28 2000-08-08 Hitachi Cable Ltd クロスフィン型熱交換器の組立法
US6116290A (en) * 1999-03-16 2000-09-12 J. Ray Mcdermott, S.A. Internally insulated, corrosion resistant pipeline
ATE308709T1 (de) * 1999-03-23 2005-11-15 Gaimont Universal Ltd B V I Extrudrierte, mehrfachrohrförmige vorrichtung
EP1091101B1 (en) * 1999-10-08 2004-12-29 Kabushiki Kaisha Yutaka Giken Exhaust pipe assembly of two-passage construction
CA2328804C (en) * 1999-12-24 2009-07-07 Kabushiki Kaisha Yutaka Giken Method of connecting two elongated portions of metallic plate, method of manufacturing exhaust pipe of two-passage construction, and exhaust pipe of two-passage construction
US6450205B1 (en) * 2000-09-23 2002-09-17 Vital Signs, Inc. Hose or tubing provided with at least one colored inner partition
EP1326706B1 (en) 2000-09-26 2004-07-21 Shell Internationale Researchmaatschappij B.V. Rod-shaped inserts in reactor tubes
US6431218B1 (en) * 2000-09-28 2002-08-13 Vital Signs, Inc. Multi-lumen hose with at least one substantially planar inner partition and methods of manufacturing the same
KR100419065B1 (ko) * 2001-03-07 2004-02-19 주식회사 엘지화학 열분해 반응관 및 이를 이용한 열분해 방법
USD455819S1 (en) * 2001-04-11 2002-04-16 Vital Signs, Inc. Fluid connector
JP2002340441A (ja) 2001-05-21 2002-11-27 Matsushita Refrig Co Ltd 熱交換器および冷却システム
BE1014254A3 (fr) * 2001-06-20 2003-07-01 Sonaca Sa Structure tubulaire mince cloisonnee et son procede de fabrication.
US6918839B2 (en) * 2002-01-28 2005-07-19 The Boeing Company Damage tolerant shaft
JP2004003444A (ja) * 2002-03-27 2004-01-08 Yumex Corp 排気マニホールド集合部構造
US7264394B1 (en) * 2002-06-10 2007-09-04 Inflowsion L.L.C. Static device and method of making
US6732788B2 (en) * 2002-08-08 2004-05-11 The United States Of America As Represented By The Secretary Of The Navy Vorticity generator for improving heat exchanger efficiency
JP3811123B2 (ja) * 2002-12-10 2006-08-16 松下電器産業株式会社 二重管式熱交換器
JP2006513382A (ja) * 2003-01-27 2006-04-20 エルエスエス ライフ サポート システムズ アクチエンゲセルシヤフト 薄壁流体ダクト用座屈防止装置
JP2004270916A (ja) * 2003-02-17 2004-09-30 Calsonic Kansei Corp 二重管及びその製造方法
US7108139B2 (en) * 2003-03-06 2006-09-19 Purolator Filters Na Llc Plastic extruded center tube profile and method of manufacture
US8162034B2 (en) * 2003-07-28 2012-04-24 Bonner Michael R Thermal inner tube
JP2005163623A (ja) * 2003-12-02 2005-06-23 Calsonic Kansei Corp エキゾーストマニホールド
JP4494049B2 (ja) * 2004-03-17 2010-06-30 株式会社ティラド 二重管型熱交換器の製造方法および、該方法による二重管型熱交換器
WO2005104690A2 (en) * 2004-04-16 2005-11-10 Patrick James Mcnaughton Windshield heat and clean
US7409963B2 (en) * 2004-11-05 2008-08-12 Go Papa, Lllp Corner molding and stop assembly for collapsible shelter
US7293603B2 (en) * 2004-11-06 2007-11-13 Cox Richard D Plastic oil cooler
DE102005052972A1 (de) * 2004-11-09 2006-06-14 Denso Corp., Kariya Doppelwandiges Rohr und dieses verwendende Kühlkreisvorrichtung
USD574932S1 (en) * 2004-11-29 2008-08-12 Zhi-Lang Zhuang Plastics water pipe
JP4622962B2 (ja) * 2005-11-30 2011-02-02 株式会社デンソー インタークーラの出入口配管構造
US20070151716A1 (en) * 2005-12-30 2007-07-05 Lg Electronics Inc. Heat exchanger and fin of the same
US8162040B2 (en) * 2006-03-10 2012-04-24 Spinworks, LLC Heat exchanging insert and method for fabricating same
JP4429279B2 (ja) * 2006-03-13 2010-03-10 スミテック鋼管株式会社 内面分割管およびその製造方法
EP2313728A1 (en) * 2008-06-13 2011-04-27 Goodman Global, Inc. Method for manufacturing tube and fin heat exchanger with reduced tube diameter and optimized fin produced thereby
JP5460474B2 (ja) 2010-06-15 2014-04-02 三菱電機株式会社 熱交換器、並びに、この熱交換器を備えた空気調和機及び冷蔵庫
KR101600296B1 (ko) * 2010-08-18 2016-03-07 한온시스템 주식회사 이중관식 열교환기 및 그 제조방법
KR101810607B1 (ko) * 2010-09-23 2017-12-20 쉐이프 코프. 단일 중심 레그를 구비한 관 모양의 빔
CN202008311U (zh) * 2010-12-22 2011-10-12 珠海格力电器股份有限公司 翅片管式换热器的翅片、翅片管式换热器及空调室外机
WO2012116448A1 (en) * 2011-03-01 2012-09-07 Dana Canada Corporation Coaxial gas-liquid heat exchanger with thermal expansion connector
US8809682B2 (en) * 2011-04-18 2014-08-19 Milliken & Company Divided conduit
FR2982663B1 (fr) 2011-11-10 2015-01-23 Valeo Systemes Thermiques Procede de fabrication d'un echangeur de chaleur et echangeur de chaleur obtenu par ledit procede, olive et dispositif d'expansion de tubes pour la mise en œuvre dudit procede
DE102013100886B4 (de) * 2013-01-29 2015-01-08 Benteler Automobiltechnik Gmbh Wärmetauscher für ein Kraftfahrzeug mit einem doppelwandigen Wärmetauscherrohr
US9175644B2 (en) * 2013-02-08 2015-11-03 GM Global Technology Operations LLC Engine with exhaust gas recirculation system and variable geometry turbocharger
JP6200280B2 (ja) 2013-11-05 2017-09-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 熱交換器の拡管方法及び空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208539A (en) * 1987-08-04 1989-04-05 Toshiba Kk Heat exchanger
JP2001091180A (ja) * 1999-09-20 2001-04-06 Mitsubishi Electric Corp プレートフィンチューブ型熱交換器およびその製造方法とそれを用いた冷蔵庫
JP2008261518A (ja) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を備えた空気調和機
CN102066866A (zh) * 2008-06-19 2011-05-18 三菱电机株式会社 热交换器以及具备该热交换器的空气调节机
CN103837014A (zh) * 2014-03-21 2014-06-04 丹佛斯微通道换热器(嘉兴)有限公司 换热器及其连接方法
CN103940284A (zh) * 2014-03-21 2014-07-23 丹佛斯微通道换热器(嘉兴)有限公司 换热器及其连接方法
CN205049038U (zh) * 2015-08-25 2016-02-24 丹佛斯微通道换热器(嘉兴)有限公司 用于换热器的换热管和换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355020A4 *

Also Published As

Publication number Publication date
CN106482568B (zh) 2019-03-12
CN106482568A (zh) 2017-03-08
JP6997703B2 (ja) 2022-01-18
EP3355020A4 (en) 2019-02-20
US20180252475A1 (en) 2018-09-06
KR102482753B1 (ko) 2022-12-28
US10690420B2 (en) 2020-06-23
JP2018529922A (ja) 2018-10-11
EP3355020B1 (en) 2020-02-19
KR20180043304A (ko) 2018-04-27
EP3355020A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017032228A1 (zh) 用于换热器的换热管、换热器及其装配方法
WO2014091558A9 (ja) 二重管式熱交換器および冷凍サイクル装置
JP6035089B2 (ja) 熱交換器
US11493283B2 (en) B-tube reform for improved thermal cycle performance
CN205049038U (zh) 用于换热器的换热管和换热器
JP2014169851A (ja) 熱交換器
JP2007078292A (ja) 熱交換器および複式熱交換器
WO2020095797A1 (ja) 熱交換器および熱交換器の製造方法
US10830542B2 (en) Method for manufacturing a multiple manifold assembly having internal communication ports
CN106482566B (zh) 用于换热器的换热管、换热器及其装配方法
JP2018536835A (ja) 熱交換器のためのヘッダーパイプおよび熱交換器
JP2017129302A (ja) 熱交換器及びその製造方法
JP5187047B2 (ja) 熱交換器用チューブ
JP2009250600A (ja) 銅製扁平伝熱管
JP2016080236A (ja) 熱交換器
JP5460212B2 (ja) 熱交換器
CN211503327U (zh) 一种微通道管道换热器
KR20100067164A (ko) 자동차용 열교환기 및 그의 제조방법
JPH11230686A (ja) 熱交換器
JP3770684B2 (ja) アルミニウム合金製熱交換器
JP2018096568A (ja) 熱交換器
KR200359804Y1 (ko) 열교환기의 배플 고정구조
JP6037512B2 (ja) コネクタ付き熱交換器
JP2008151468A (ja) 受液器付き熱交換器
JP2020159598A (ja) レシーバタンク付き熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018509907

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187007576

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016838488

Country of ref document: EP