WO2017016374A1 - 一种芳纶涂覆的锂离子电池隔膜及其制备方法 - Google Patents

一种芳纶涂覆的锂离子电池隔膜及其制备方法 Download PDF

Info

Publication number
WO2017016374A1
WO2017016374A1 PCT/CN2016/088410 CN2016088410W WO2017016374A1 WO 2017016374 A1 WO2017016374 A1 WO 2017016374A1 CN 2016088410 W CN2016088410 W CN 2016088410W WO 2017016374 A1 WO2017016374 A1 WO 2017016374A1
Authority
WO
WIPO (PCT)
Prior art keywords
aramid
ion battery
lithium ion
battery separator
film
Prior art date
Application number
PCT/CN2016/088410
Other languages
English (en)
French (fr)
Inventor
孙卫佳
赵中雷
武跃
于中彬
王庆通
庄浩然
邵培苓
Original Assignee
沧州明珠隔膜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沧州明珠隔膜科技有限公司 filed Critical 沧州明珠隔膜科技有限公司
Publication of WO2017016374A1 publication Critical patent/WO2017016374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery separator, in particular to an aramid coated lithium ion battery separator.
  • Aramid's full name "poly-p-/isophthaloyl-p-phenylenediamine” is a new type of high-tech synthetic fiber with ultra-high strength, high modulus and high temperature resistance, acid and alkali resistance, light weight, insulation and anti-aging. Excellent performance such as long life cycle.
  • the aramid coated separator has the advantages of high temperature resistance, high energy density, excellent wettability and long service life, and has received extensive attention.
  • the coating formed by the aramid slurry has poor adhesion to the base film and is easy to fall off under the coagulation bath.
  • the enterprise uses pure water as the coagulation bath, The time of the immersion coagulation bath is more than 10 minutes, which cannot meet the demand for continuous large-scale production.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art and provide an aramid-coated lithium ion battery separator, which has good coating adhesion, uniform pore formation, environmental friendliness, and large-scale continuity. The characteristics of production.
  • the present invention also provides a method of preparing the aramid-coated lithium ion battery separator.
  • An aramid-coated lithium ion battery separator consisting of a lithium ion battery base film and a coating on one side or both sides of the base film, the coating being coated, immersed, and dried by the aramid slurry obtain;
  • composition of the aramid pulp and its mass parts are:
  • the first solvent is one of NMP, DMSO, DMF or DMAC;
  • the second solvent is one or more of ethyl acetate, isopropanol, dichloromethane or triethyl phosphate;
  • the emulsifier is one of polyvinyl alcohol, sodium polyacrylate or polyacrylamide. Or several; the adhesive is a copolymer of vinylpyrrolidone and vinyl acetate.
  • the above-mentioned aramid-coated lithium ion battery separator has a coating thickness of 0.5 to 4 ⁇ m.
  • the cosolvent is one or more of CaCl 2 , KOH, LiCl or pyridine.
  • the aramid fiber has a molecular weight of 5,000 to 100,000.
  • the dispersant is a polyethylene oxide ultrafine powder having a molecular weight of 10 to 1,000,000.
  • the base film of the lithium ion battery is a polyethylene film, a polypropylene film or a polypropylene/polyethylene/polypropylene composite film having a thickness of 5-40 ⁇ m and a porosity of 30-80%.
  • a polyimide film, a polyvinylidene fluoride film, a polyethylene nonwoven film, a polypropylene nonwoven film, or a polyimide nonwoven film is a polyimide film, a polyvinylidene fluoride film, a polyethylene nonwoven film, a polypropylene nonwoven film, or a polyimide nonwoven film.
  • aramid fiber is one or more of a meta-aramid fiber, a para-aramid fiber, a meta-aramid pulp or a para-aramid pulp.
  • a method for preparing an aramid-coated lithium ion battery separator is prepared by the following steps:
  • the aramid-coated lithium ion battery separator prepared by the invention introduces a hydrophilic emulsifier instead of the inorganic particle pore former, firstly avoiding the problem that the inorganic particles are difficult to disperse in the organic solvent, and improving the uniformity of the coating.
  • the uniformity of the properties and pore formation, and secondly, the hydrophilicity of the interface between the aramid pulp and water is improved, and the time of the immersion coagulation bath required after coating is reduced to 3-15 s, which is favorable for continuous stable large-scale produce.
  • the preparation method of the lithium ion battery separator provided by the invention adopts pure water as a coagulation bath and is environmentally friendly; and the cooperation of vinylpyrrolidone and vinyl acetate (PVP-VA) copolymer adhesive and pure water coagulation bath
  • PVP-VA vinylpyrrolidone and vinyl acetate copolymer adhesive and pure water coagulation bath
  • Figure 1 is a SEM photograph of Example 1 of the present invention.
  • Figure 2 is a diagram showing the number of cycles in the embodiment 1-3 of the present invention.
  • the aramid-coated lithium ion battery separator of the invention comprises a base film of a lithium ion battery and a coating on one side or both sides of the base film, and the coating is coated, immersed and dried by the aramid pulp. Obtained, the composition and mass parts of the aramid pulp are:
  • the first solvent is one of NMP, DMSO, DMF or DMAC;
  • the second solvent is one or more of ethyl acetate, isopropanol, dichloromethane, and triethyl phosphate;
  • the emulsifier is one of polyvinyl alcohol, sodium polyacrylate, and polyacrylamide.
  • the adhesive is a copolymer of vinylpyrrolidone and vinyl acetate.
  • the emulsifier in the invention is a hydrophilic emulsifier, and is used as a pore-forming agent for aramid coating, instead of inorganic particles, the hydrophilic emulsifier is easily dispersed in an organic solvent, thereby increasing the thickness of the aramid coating. Uniformity and pore uniformity, and improve the interfacial hydrophilicity between the aramid pulp and water, reducing the time required for the immersion coagulation bath after coating to 3-15 s, which is conducive to continuous stable large scale produce.
  • the dispersing agent in the present invention is a polyethylene oxide ultrafine powder having a molecular weight of 10 to 1,000,000.
  • the dispersing agent can effectively reduce the flocculation and entanglement of the aramid chopped fibers in the dissolution process of the aramid fiber, and the molecular weight is too low to be used, and the molecular weight is too high to be dissolved in the first solvent.
  • the adhesive is copolymerized with vinylpyrrolidone and vinyl acetate (PVP-VA), which can react with pure water in the coagulation bath to reduce the water immersion time of the membrane and reduce the water immersion time from 10 minutes to 3-15 seconds.
  • PVP-VA vinylpyrrolidone and vinyl acetate
  • a corona polypropylene film with a thickness of 16 ⁇ m was selected, and the porosity was 42%.
  • the aramid slurry was applied to one side of the base film by gravure coating, the coating rate was 15 m/min, the water was immersed for 10 s, and a three-stage oven was used. Drying, the oven temperature of each stage is 50 ° C, 60 ° C, 55 ° C, after drying to obtain aramid coated lithium ion battery separator.
  • the aramid-coated lithium ion battery separator has a thickness of 20 ⁇ m and a coating thickness of 4 ⁇ m.
  • the permeability, heat shrinkage, and tensile strength properties of the three separators obtained by the three examples of the present invention were superior to those of the comparative examples.
  • Good gas permeability indicates that the aramid-coated lithium ion battery separator prepared by the invention has good pore-forming property, and good tensile strength and heat shrinkage prove that the coating has high bonding strength with the base film.
  • the urethane-coated lithium ion battery separator obtained in Example 1 was subjected to SEM, and it was found that the pores of the separator were uniform, and there was no large-area non-porous region in the skeleton, and the lithium ion channel was not blocked.
  • the composite lithium ion battery separator obtained in Examples 1, 2, and 3 and the prepared nickel-cobalt-manganese ternary material (type 523) positive electrode tab and graphite (FSN-1) anode were wound up to form a flexible package lithium ion battery. chip.
  • the cycle test was carried out by using 0.5C constant current constant voltage charging/1.0C constant current discharge, and the capacity ratio of the cycle was maintained at 90% or more.
  • the separator prepared in the comparative example failed to complete the assembly due to poor adhesion of the coating to the base film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

一种芳纶涂覆的锂离子电池隔膜及其制备方法,所述隔膜由锂离子电池基膜以及在基膜一侧或两侧的涂层组成,所述涂层由芳纶浆料经涂布、浸水、烘干后获得,所述芳纶浆料由芳纶纤维溶解液、乳化剂溶液和聚合物胶黏剂组成。引入了亲水性的乳化剂替代无机颗粒造孔剂,提高了涂层均匀性和成孔均匀性,改善了芳纶浆料与水之间的界面亲水性,降低涂覆后所需的浸水时间,便于连续化大规模生产。

Description

一种芳纶涂覆的锂离子电池隔膜及其制备方法 技术领域
本发明涉及一种锂离子电池隔膜,特别是一种芳纶涂覆的锂离子电池隔膜。
背景技术
目前,商业化的隔膜大多采用聚乙烯或聚丙烯隔膜,其具有较高孔隙率、较低的电阻、较高的抗撕裂强度、较好的抗酸碱能力、良好的弹性及对非质子溶剂的保持性能。但是,烯烃多孔膜熔点低于170℃,它的热收缩性能较差,致使锂离子电池的安全性能存在一定的局限性。
从锂电池安全性的角度考虑,越来越多的电池企业开始把目光投向隔膜涂覆改性领域,生产出复合的锂离子电池隔膜。在电池充放电过程中,即使聚烯烃膜发生收缩甚至融化,涂层仍能够保持隔膜的完整性,能够有效防止正负极大面积短路,同时,还能够有效改善隔膜的表面张力,降低隔膜与极片的界面阻抗,提高隔膜的吸液性能。
芳纶全称“聚对/间苯二甲酰对苯二胺”,是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻、绝缘、抗老化、生命周期长等优良性能。芳纶涂覆隔膜具有耐高温性能好、能量密度高、浸润性优异、使用寿命长等优势,获得了广泛的关注。
目前在制备芳纶涂覆锂离子电池隔膜时,多直接使用DMAC、DMF、NMP、 DMSO等有机溶剂配合助溶剂溶解芳纶纤维,然后向芳纶纤维溶解液中添加无机颗粒造孔剂,制备出芳纶浆料,经涂覆制得芳纶涂布锂离子电池隔膜。该方法由于缺少满足锂离子电池隔膜特殊要求方面的考虑,直接导致了以下问题的产生:第一、无机颗粒造孔剂在有机溶剂中分散困难,影响涂层及成孔均匀性;第二、使用有机溶剂做凝固浴,环境污染严重;第三、芳纶浆料形成的涂层与基膜粘接性差,在凝固浴下容易脱落;第四,虽然有企业使用纯水做凝固浴,但是浸凝固浴的时间在10min以上,无法满足连续化大规模生产的需求。
发明内容
本发明所要解决的技术问题是克服已有技术的缺陷、提供一种芳纶涂覆的锂离子电池隔膜,它具有涂层粘结性、成孔均匀性良好,环境友好,便于大规模连续性生产的特点。
此外,本发明还要提供所述芳纶涂覆锂离子电池隔膜的制备方法。
为解决上述问题,本发明采取的技术方案为:
一种芳纶涂覆的锂离子电池隔膜,由锂离子电池基膜以及在基膜一侧或两侧的涂层组成,所述涂层由芳纶浆料经涂布、浸水、烘干后获得;
所述芳纶浆料的组成及其质量份数为:
Figure PCTCN2016088410-appb-000001
Figure PCTCN2016088410-appb-000002
所述第一溶剂为NMP、DMSO、DMF或DMAC中的一种;
所述第二溶剂为乙酸乙酯、异丙醇、二氯甲烷或磷酸三乙酯中的一种或几种;所述乳化剂为聚乙烯醇、聚丙烯酸钠或聚丙烯酰胺中的一种或几种;所述胶黏剂为乙烯基吡咯烷酮和乙酸乙烯酯共聚物。
上述芳纶涂覆的锂离子电池隔膜,所述涂层厚度为0.5-4μm。
上述芳纶涂覆的锂离子电池隔膜,所述助溶剂为CaCl2、KOH、LiCl或吡啶中的一种或几种。
上述芳纶涂覆的锂离子电池隔膜,所述芳纶纤维分子量为5000-100000。
上述芳纶涂覆的锂离子电池隔膜,所述分散剂为分子量10-100万的聚氧化乙烯超细粉末。
上述芳纶涂覆的锂离子电池隔膜,所述锂离子电池基膜为厚度5-40μm、孔隙率为30-80%的聚乙烯膜、聚丙烯膜或聚丙烯/聚乙烯/聚丙烯复合膜、聚酰亚胺膜、聚偏氟乙烯膜、聚乙烯无纺布膜、聚丙烯无纺布膜或聚酰亚胺无纺布膜中的一种。
上述芳纶涂覆的锂离子电池隔膜,所述芳纶纤维为间位芳纶纤维、对位芳纶纤维、间位芳纶浆粕或对位芳纶浆粕中的一种或多种。
一种芳纶涂覆的锂离子电池隔膜的制备方法,制备按以下步骤进行:
a.将第一溶剂和助溶剂搅拌溶解后,缓慢均匀地加入分散剂,边加入边搅拌,待分散剂完全溶解后加入芳纶纤维,在60-110℃加热、搅拌至完全溶解,制得芳纶纤维溶解液;
b.按比例将第二溶剂、乳化剂混合,分散均匀,同配方量的聚合物胶黏剂一起加入芳纶纤维溶解液中,分散均匀制得芳纶浆料;
c.将芳纶浆料涂覆在经电晕处理的锂电池基膜的单侧或双侧,浸入纯水凝固浴3-15s,烘干即得成品。
有益效果
本发明与已有技术相比,其优点和有益效果是:
a.本发明制备的芳纶涂覆的锂离子电池隔膜,引入了亲水性的乳化剂替代无机颗粒造孔剂,首先避免了无机颗粒在有机溶剂中分散困难的问题,提高了涂层均匀性和成孔的均匀性,其次,改善了芳纶浆料与水之间的界面亲水性,将涂覆后所需的浸凝固浴的时间降低至3-15s,有利于连续稳定大规模生产。
b.本发明给出的锂离子电池隔膜的制备方法,采用纯水作为凝固浴,对环境友好;同时乙烯基吡咯烷酮和乙酸乙烯酯(PVP-VA)共聚胶黏剂和纯水凝固浴的配合使用,改善了在凝固浴中芳纶浆料形成的涂层与基膜的粘接性能,同时减少了有机溶剂的使用量。
附图说明
图1为本发明实施例1的SEM照片;
图2为本发明实施例1-3循环次数图。
具体实施方式
本发明芳纶涂覆的锂离子电池隔膜,由锂离子电池基膜以及基膜一侧或两侧的涂层组成,所述的涂层由芳纶浆料经涂布、浸水、烘干后获得,所述的芳纶浆料的组成及质量份数为:
Figure PCTCN2016088410-appb-000003
所述第一溶剂为NMP、DMSO、DMF或DMAC中的一种;
所述第二溶剂为乙酸乙酯、异丙醇、二氯甲烷、磷酸三乙酯中的一种或几种;所述乳化剂为聚乙烯醇、聚丙烯酸钠、聚丙烯酰胺中的一种或几种;所述胶黏剂为乙烯基吡咯烷酮和乙酸乙烯酯共聚物。
本发明中的乳化剂为亲水性的乳化剂,用于芳纶涂层的造孔剂,替代无机颗粒,亲水性乳化剂在有机溶剂中容易分散,从而提高了芳纶涂层的厚度均匀性和成孔均匀性,并且,改善了芳纶浆料与水之间的界面亲水性,将涂覆后所需的浸凝固浴的时间降低至3-15s,有利于连续稳定大规模生产。
本发明中的分散剂为分子量10-100万的聚氧化乙烯超细粉末。该分散剂在芳纶溶解过程中可以有效减少芳纶短切纤维的絮聚缠绕,分子量过低作用不大,分子量过高在第一溶剂中溶解困难。
胶黏剂选用乙烯基吡咯烷酮和乙酸乙烯酯(PVP-VA)共聚,能够与凝固浴中的纯水反应,降低隔膜的浸水时间,将浸水时间由10分钟降低到3-15秒。
以下提供几个具体的实施例对本发明作进一步说明。
实施例1:
a.称取0.5kg的助溶剂LiCl加入到8kg第一溶剂DMAC中搅拌至完全溶解,边搅拌边缓慢而均匀的加入分子量10-100万的分散剂聚氧化乙烯粉末0.1kg,低速搅拌至分散剂完全溶解,加入分子量10万左右的间位芳纶短切纤维0.3kg,沸水浴加热并搅拌至完全溶解,得到间位芳纶纤维溶解液I;
b.取第二溶剂二氯甲烷0.8kg,加入聚乙烯醇粉末0.2kg分散40min后,同0.1kg的胶黏剂乙烯基吡咯烷酮和乙酸乙烯酯加入到上述芳纶溶解液中,分散均匀制得芳纶浆料;
c.选取16μm厚度的电晕聚丙烯膜,孔隙率为42%,采用凹版涂布方式将芳纶浆料涂布于基膜的单侧,涂布速率为15m/min,浸水10s,使用三级烘箱进行烘干,各级烘箱温度分别为50℃、60℃、55℃,干燥后得芳纶涂覆的锂离子电池隔膜。所述芳纶涂覆的锂离子电池隔膜厚度为20μm,涂层厚度为4μm。
实施例2
a.称取0.3kg的助溶剂吡啶加入到5.9kg第一溶剂NMP中搅拌混合均匀,边搅拌边缓慢而均匀的加入分子量10-100万的分散剂聚氧化乙烯粉末0.05kg,低速搅拌至分散剂完全溶解,加入分子量2万以下的间位芳纶短切纤维0.8kg,沸水浴加热并搅拌至完全溶解,得到间位芳纶纤维溶解液I;
b.取第二溶剂异丙醇2.55kg,加入聚丙烯酸钠粉末0.2kg分散30min后,同0.2kg的胶黏剂乙烯基吡咯烷酮和乙酸乙烯酯加入到上述芳纶溶解液中,分散均匀制得芳纶浆料;
c.选取22μm厚度的电晕聚酰亚胺膜,孔隙率为44%,采用浸涂的方式将 芳纶浆料涂布于基膜的两侧,涂布速率为5m/min,浸水15s,使用三级烘箱进行烘干,各级烘箱温度分别为55℃、60℃、65℃,干燥后得芳纶涂覆的锂离子电池隔膜。所述芳纶涂覆的锂离子电池隔膜厚度为26μm,涂层厚度为每一侧2μm。
实施例3:
a.称取0.4kg的助溶剂氯化钙粉末加入到6.75kg第一溶剂DMSO中搅拌至完全溶解,然后边搅拌边缓慢而均匀的加入分子量10-100万的分散剂聚氧化乙烯粉末0.07kg,低速搅拌至分散剂完全溶解,加入分子量10万左右的对位芳纶短切纤维0.55kg,沸水浴加热并搅拌至完全溶解,得到对位芳纶纤维溶解液I;
b.取第二溶剂乙酸乙酯2.03kg,加入聚丙烯酰胺粉末0.05kg分散30min后,同0.15kg的胶黏剂乙烯基吡咯烷酮和乙酸乙烯酯加入到上述芳纶溶解液中,分散均匀制得芳纶浆料;
c.选取32μm厚度的电晕聚丙烯膜,孔隙率为60%,采用凹版涂布的方式将芳纶浆料涂布于基膜的单侧,涂布速率为15m/min,浸水10s,使用三级烘箱进行烘干,各级烘箱温度分别为50℃、60℃、65℃,干燥后得芳纶涂覆的锂离子电池隔膜。所述芳纶涂覆的锂离子电池隔膜厚度为35μm,涂层厚度为3μm。
实施例4:
a.称取0.3kg的助溶剂氢氧化钾加入到7.5kg第一溶剂DMF中搅拌至完全溶解,然后边搅拌边缓慢而均匀的加入分子量10-100万的分散剂聚氧化乙烯粉末0.08kg,低速搅拌至分散剂完全溶解,加入分子量5-8万左右的间位 芳纶短切纤维0.4kg,沸水浴加热并搅拌至完全溶解,得到间位芳纶纤维溶解液I;
b.取第二溶剂二氯甲烷1.32kg,加入聚乙烯醇粉末0.25kg分散30min后,同0.15kg的胶黏剂乙烯基吡咯烷酮和乙酸乙烯酯加入到上述芳纶溶解液中,分散均匀制得芳纶浆料;
c.选取5μm厚度的电晕聚乙烯膜,孔隙率为30%,采用狭缝式涂布方式将芳纶浆料涂布于基膜的两侧,涂布速率为15m/min,浸水10s,使用三级烘箱进行烘干,各级烘箱温度分别为50℃、65℃、65℃,干燥后得芳纶涂覆的锂离子电池隔膜。所述芳纶涂覆的锂离子电池隔膜厚度为6μm,涂层厚度为各侧0.5μm。
实施例5:
a.称取0.35kg的助溶剂氯化锂加入到6.925kg第一溶剂DMAC中搅拌至完全溶解,然后边搅拌边缓慢而均匀的加入分子量10-100万的分散剂聚氧化乙烯粉末0.075kg,低速搅拌至分散剂完全溶解,加入分子量3-5万的对位芳纶短切纤维0.35kg,沸水浴加热并搅拌至完全溶解,得到对位芳纶纤维溶解液I;
b.取第二溶剂磷酸三乙酯2.05kg,加入聚乙烯醇粉末0.15kg分散30min后,同0.1kg的胶黏剂乙烯基吡咯烷酮和乙酸乙烯酯加入到上述芳纶溶解液中,分散均匀制得芳纶浆料;
c.选取40μm厚度的聚丙烯无纺布基膜,孔隙率为80%,采用喷涂的方式将芳纶浆料涂布于基膜的两侧,涂布速率为15m/min,浸水10s,使用三级烘箱进行烘干,各级烘箱温度分别为50℃、50℃、55℃,干燥后得芳纶涂覆的 锂离子电池隔膜。所述芳纶涂覆的锂离子电池隔膜厚度为48μm,涂层厚度为各侧4μm。
对比例:
称取0.5kg的助分散剂LiCl加入到9.2kg溶剂DMAC中搅拌至完全溶解,加入分子量10万左右的间位芳纶短切纤维0.3kg沸水浴加热并搅拌至完全溶解,制得芳纶浆料;
选取16μm厚度的电晕聚丙烯膜,孔隙率为42%,采用凹版涂布方式将芳纶浆料涂布于基膜的单侧,涂布速率为15m/min,浸水10s,使用三级烘箱进行烘干,各级烘箱温度分别为50℃、60℃、55℃,干燥后得芳纶涂覆的锂离子电池隔膜。所述芳纶涂覆的锂离子电池隔膜厚度为20μm,涂层厚度4μm。
对以上本发明的实施例和对比例所得芳纶涂覆的锂离子电池隔膜的性能进行测试,数据见下表一:
Figure PCTCN2016088410-appb-000004
由表一数据可知,本发明的三个实施例所获得的三款隔膜的透气性、热收缩、拉伸强度性能均优于对比例。透气性好说明本发明制备的芳纶涂覆的锂离子电池隔膜成孔性好,拉伸强度和热收缩好证明涂层与基膜粘接强度高。
取实施例1所得的芳纶涂覆的锂离子电池隔膜做SEM,发现该隔膜成孔均匀,且骨架中没有大面积无孔区,不会阻塞锂离子通道。
取实施例1、2、3所得复合锂离子电池隔膜与制备好的镍钴锰三元材料(523型)正极极片和石墨(FSN-1)负极采用卷绕工艺,制成软包装锂离子电池芯片。采用0.5C恒流恒压充电/1.0C恒流放电进行循环测试,循环700次容量比率仍保持在90%以上。
对比例所制备的隔膜由于涂层与基膜粘接性能差,未能完成装配。

Claims (8)

  1. 一种芳纶涂覆的锂离子电池隔膜,由锂离子电池基膜以及在基膜一侧或两侧的涂层组成,所述涂层由芳纶浆料经涂布、浸水、烘干后获得,其特征在于,所述芳纶浆料的组成及质量份数为:
    Figure PCTCN2016088410-appb-100001
    所述第一溶剂为NMP、DMSO、DMF或DMAC中的一种;
    所述第二溶剂为乙酸乙酯、异丙醇、二氯甲烷或磷酸三乙酯中的一种或几种;所述乳化剂为聚乙烯醇、聚丙烯酸钠或聚丙烯酰胺中的一种或几种;所述胶黏剂为乙烯基吡咯烷酮和乙酸乙烯酯共聚物。
  2. 根据权利要求1所述的芳纶涂覆的锂离子电池隔膜,其特征在于,所述涂层厚度为0.5-4μm。
  3. 根据权利要求2所述的芳纶涂覆的锂离子电池隔膜,其特征在于,所述助溶剂为CaCl2、KOH、LiCl或吡啶中的一种或几种。
  4. 根据权利要求3所述的芳纶涂覆的锂离子电池隔膜,其特征在于,所述芳纶纤维分子量为5000-100000。
  5. 根据权利要求4所述的芳纶涂覆的锂离子电池隔膜,其特征在于:所述分散剂为分子量10-100万的聚氧化乙烯超细粉末。
  6. 根据权利要求5所述的芳纶涂覆的锂离子电池隔膜,其特征在于,所述锂离子电池基膜为厚度5-40μm、孔隙率为30-80%的聚乙烯膜、聚丙烯膜或聚丙烯/聚乙烯/聚丙烯复合膜、聚酰亚胺膜、聚偏氟乙烯膜、聚乙烯无纺布膜、聚丙烯无纺布膜或聚酰亚胺无纺布膜中的一种。
  7. 根据权利要求6所述的复合锂离子电池隔膜,其特征在于,所述芳纶纤维为间位芳纶纤维、对位芳纶纤维、间位芳纶浆粕或对位芳纶浆粕中的一种或多种。
  8. 一种制备如权利要求1-7所述的芳纶涂覆锂离子电池隔膜的方法,其特征在于,制备按以下步骤进行:
    a.将第一溶剂和助溶剂搅拌溶解后,缓慢均匀地加入分散剂,边加入边搅拌,待分散剂完全溶解后加入芳纶纤维,在60-110℃加热、搅拌至完全溶解,制得芳纶纤维溶解液;
    b.按比例将第二溶剂、乳化剂混合,分散均匀,同配方量的聚合物胶黏剂一起加入芳纶纤维溶解液中,分散均匀制得芳纶浆料;
    c.将芳纶浆料涂覆在经电晕处理的锂电池基膜的单侧或双侧,浸入纯水凝固浴3-15s,烘干即得成品。
PCT/CN2016/088410 2015-07-29 2016-07-04 一种芳纶涂覆的锂离子电池隔膜及其制备方法 WO2017016374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510453815.XA CN104993089B (zh) 2015-07-29 2015-07-29 一种芳纶涂覆的锂离子电池隔膜及其制备方法
CN201510453815.X 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017016374A1 true WO2017016374A1 (zh) 2017-02-02

Family

ID=54304869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088410 WO2017016374A1 (zh) 2015-07-29 2016-07-04 一种芳纶涂覆的锂离子电池隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN104993089B (zh)
WO (1) WO2017016374A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904368A (zh) * 2019-01-24 2019-06-18 深圳市新非泽科技有限公司 芳纶涂覆耐热锂离子电池隔膜及其制备方法
CN112625235A (zh) * 2019-09-20 2021-04-09 青岛蓝科途膜材料有限公司 对位芳纶聚合体、锂电池隔膜及制备方法和锂电池
CN114639922A (zh) * 2022-04-07 2022-06-17 湖北允升科技工业园有限公司 锂离子电池隔膜和锂离子电池
CN116960574A (zh) * 2023-09-21 2023-10-27 中材锂膜(南京)有限公司 复合涂布隔膜及其制备方法、包含其的锂离子电池

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993089B (zh) * 2015-07-29 2018-03-16 沧州明珠隔膜科技有限公司 一种芳纶涂覆的锂离子电池隔膜及其制备方法
CN104979515B (zh) * 2015-07-29 2017-05-10 沧州明珠隔膜科技有限公司 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
CN105552284B (zh) * 2015-12-22 2018-11-06 沧州明珠隔膜科技有限公司 一种复合涂层锂离子电池隔膜及其制备方法
CN105932197A (zh) * 2016-05-23 2016-09-07 北京理工大学 一种聚苯二甲酰对苯二胺多孔膜的制备方法
CN106252565B (zh) * 2016-09-23 2019-03-29 佛山市金辉高科光电材料有限公司 一种复合涂覆处理的锂离子电池隔膜及其制备方法
CN107170942B (zh) * 2017-06-01 2020-06-05 青岛中科华联新材料股份有限公司 一种耐高温芳纶锂离子电池复合隔膜及其制备方法
CN107359300B (zh) * 2017-06-30 2020-10-30 刘桥 一种芳纶复合涂覆的锂离子电池隔膜及其制备方法
CN107958977B (zh) * 2017-11-06 2020-06-12 上海恩捷新材料科技股份有限公司 电池隔膜、锂离子电池及其制备方法
CN108023050B (zh) * 2017-12-01 2021-03-30 上海化工研究院有限公司 一种聚间苯二甲酰间苯二胺涂覆锂离子电池隔膜
CN109509855A (zh) * 2018-04-04 2019-03-22 京工新能(北京)科技有限责任公司 一种芳纶陶瓷隔膜及其制备方法和用途
CN108864930A (zh) * 2018-06-13 2018-11-23 河北金力新能源科技股份有限公司 芳纶溶解液及其制备方法和芳纶隔膜涂覆液及其制作方法以及隔膜
CN108963163B (zh) * 2018-08-01 2021-08-10 河北金力新能源科技股份有限公司 一种油性pvdf浆料、其制备工艺及其涂布方法
CN109321127A (zh) * 2018-08-08 2019-02-12 泰州衡川新能源材料科技有限公司 锂电池隔膜涂覆用芳纶组合物
CN109244322B (zh) * 2018-09-18 2021-10-22 武汉惠强新能源材料科技有限公司 一种锂离子电池隔膜用水性涂层及其制备方法、应用
CN109841900A (zh) * 2018-12-11 2019-06-04 天津工业大学 一种具备核-壳结构的锂硫电池电解质及其制备方法
CN109830632B (zh) * 2019-01-22 2022-07-15 上海化工研究院有限公司 一种芳纶涂覆锂离子电池隔膜
CN110620205B (zh) * 2019-10-08 2022-08-12 山东精恒科技有限公司 一种对位芳纶/pp无纺布锂离子电池隔膜的制备方法
CN110828757A (zh) * 2019-11-20 2020-02-21 江苏塔菲尔新能源科技股份有限公司 一种锂离子电池隔膜及其制备方法和用途
CN111293260A (zh) * 2020-02-27 2020-06-16 江苏厚生新能源科技有限公司 具有一体化结构的芳纶涂覆锂电池隔膜
CN111554860A (zh) * 2020-05-15 2020-08-18 江苏厚生新能源科技有限公司 多层涂覆隔膜及其制备方法、锂电池
CN111668426B (zh) * 2020-06-22 2023-07-18 欣旺达电动汽车电池有限公司 隔膜及其制备方法、锂离子电池和电动汽车
CN111697185B (zh) * 2020-06-22 2023-07-18 欣旺达电动汽车电池有限公司 多孔基膜的改性方法及改性多孔基膜和应用
CN112194978A (zh) * 2020-08-25 2021-01-08 河北金力新能源科技股份有限公司 高耐热涂层浆料、锂电池用耐高温隔膜及其制备方法
CN112546875B (zh) * 2020-11-30 2022-05-17 江苏厚生新能源科技有限公司 一种具有陶瓷涂层的水处理多层复合膜及其制备工艺
CN114497882A (zh) * 2021-11-17 2022-05-13 河北金力新能源科技股份有限公司 高强度对位芳纶隔膜及其制备方法
CN114883750A (zh) * 2022-03-31 2022-08-09 惠州亿纬锂能股份有限公司 一种复合隔膜及其制备方法和锂离子电池
CN114865219A (zh) * 2022-05-26 2022-08-05 广东奥德迈新能源有限责任公司 一种芳纶隔膜及其制备方法和芳纶隔膜电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515564A (zh) * 2013-10-15 2014-01-15 深圳市星源材质科技有限公司 一种复合隔膜及其制备方法
CN103531736A (zh) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 一种高耐热锂离子电池隔膜及其制备方法
CN103618059A (zh) * 2013-12-10 2014-03-05 深圳市星源材质科技有限公司 一种高分子无机涂层锂离子电池隔膜及其制备方法
CN103746085A (zh) * 2013-11-07 2014-04-23 深圳市星源材质科技股份有限公司 一种涂层复合隔膜及其制备方法
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104979515A (zh) * 2015-07-29 2015-10-14 沧州明珠隔膜科技有限公司 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
CN104993089A (zh) * 2015-07-29 2015-10-21 沧州明珠隔膜科技有限公司 一种芳纶涂覆的锂离子电池隔膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450223B2 (en) * 2012-02-06 2016-09-20 Samsung Sdi Co., Ltd. Lithium secondary battery
CN103242556B (zh) * 2013-04-17 2015-07-08 广东精进能源有限公司 一种芳香族聚酰胺复合隔膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515564A (zh) * 2013-10-15 2014-01-15 深圳市星源材质科技有限公司 一种复合隔膜及其制备方法
CN103531736A (zh) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 一种高耐热锂离子电池隔膜及其制备方法
CN103746085A (zh) * 2013-11-07 2014-04-23 深圳市星源材质科技股份有限公司 一种涂层复合隔膜及其制备方法
CN103618059A (zh) * 2013-12-10 2014-03-05 深圳市星源材质科技有限公司 一种高分子无机涂层锂离子电池隔膜及其制备方法
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104979515A (zh) * 2015-07-29 2015-10-14 沧州明珠隔膜科技有限公司 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
CN104993089A (zh) * 2015-07-29 2015-10-21 沧州明珠隔膜科技有限公司 一种芳纶涂覆的锂离子电池隔膜及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904368A (zh) * 2019-01-24 2019-06-18 深圳市新非泽科技有限公司 芳纶涂覆耐热锂离子电池隔膜及其制备方法
CN109904368B (zh) * 2019-01-24 2021-11-23 深圳市新非泽科技有限公司 芳纶涂覆耐热锂离子电池隔膜及其制备方法
CN112625235A (zh) * 2019-09-20 2021-04-09 青岛蓝科途膜材料有限公司 对位芳纶聚合体、锂电池隔膜及制备方法和锂电池
CN112625235B (zh) * 2019-09-20 2024-03-15 青岛蓝科途膜材料有限公司 对位芳纶聚合体、锂电池隔膜及制备方法和锂电池
CN114639922A (zh) * 2022-04-07 2022-06-17 湖北允升科技工业园有限公司 锂离子电池隔膜和锂离子电池
CN116960574A (zh) * 2023-09-21 2023-10-27 中材锂膜(南京)有限公司 复合涂布隔膜及其制备方法、包含其的锂离子电池
CN116960574B (zh) * 2023-09-21 2024-01-23 中材锂膜(南京)有限公司 复合涂布隔膜及其制备方法、包含其的锂离子电池

Also Published As

Publication number Publication date
CN104993089B (zh) 2018-03-16
CN104993089A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2017016374A1 (zh) 一种芳纶涂覆的锂离子电池隔膜及其制备方法
KR102543254B1 (ko) 복합 리튬 전지 분리막 및 이의 제조방법
WO2017016373A1 (zh) 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
WO2018218984A1 (zh) 一种耐高温芳纶锂离子电池复合隔膜及其制备方法
WO2018040903A1 (zh) 锂离子电池隔膜及其制备方法和锂离子电池
CN106784542B (zh) 一种耐高温多种涂层的锂离子电池隔膜及其制备方法
CN104269505B (zh) 一种复合锂离子电池隔膜及其制备方法
WO2017107436A1 (zh) 一种复合涂层锂离子电池隔膜及其制备方法
CN109411676B (zh) 对位芳纶涂层浆料及其制备方法、对位芳纶隔膜及其制备方法和二次电池
WO2016034019A1 (zh) 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN109509857A (zh) 一种具有互穿网络结构的多孔性锂离子电池隔膜及其应用
CN104766937B (zh) 一种环保型锂离子电池隔膜及其制备方法
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
CN103531736A (zh) 一种高耐热锂离子电池隔膜及其制备方法
CN106450118B (zh) 一种锂离子电池纳米纤维石墨烯复合隔膜及其制备方法
CN103545472A (zh) 一种锂电池用复合隔膜及其制备方法和包括该复合隔膜的锂电池
CN107732106B (zh) 电池隔膜浆料、电池隔膜以及锂离子电池及其制备方法
CN111370625A (zh) 一种芳纶相转涂覆锂离子电池隔膜及其制备方法
CN109841785A (zh) 一种电池隔膜及其制备方法及包含该隔膜的锂离子电池
CN108023050A (zh) 一种聚间苯二甲酰间苯二胺涂覆锂离子电池隔膜
CN112216928A (zh) 一种改性复合耐热锂离子电池隔膜及其制备方法
CN106898720B (zh) 一种锂离子电池隔膜及其制备方法
CN108598342A (zh) 一种电池隔膜、锂离子电池及其制备方法
CN110635090A (zh) 高耐热性偏氟乙烯聚合物混涂隔膜的制备方法
CN108807818B (zh) 一种芳香族聚酰胺复合隔膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829740

Country of ref document: EP

Kind code of ref document: A1