WO2017010562A1 - 部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物 - Google Patents

部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物 Download PDF

Info

Publication number
WO2017010562A1
WO2017010562A1 PCT/JP2016/070952 JP2016070952W WO2017010562A1 WO 2017010562 A1 WO2017010562 A1 WO 2017010562A1 JP 2016070952 W JP2016070952 W JP 2016070952W WO 2017010562 A1 WO2017010562 A1 WO 2017010562A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
partially hydrogenated
hydrogenated block
mass
composition
Prior art date
Application number
PCT/JP2016/070952
Other languages
English (en)
French (fr)
Inventor
一平 亀田
荒木 祥文
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US15/744,357 priority Critical patent/US10414849B2/en
Priority to SG11201800053VA priority patent/SG11201800053VA/en
Priority to ES16824542T priority patent/ES2733470T3/es
Priority to JP2017528732A priority patent/JP6687617B2/ja
Priority to EP16824542.1A priority patent/EP3323838B1/en
Priority to PL16824542T priority patent/PL3323838T3/pl
Priority to CN201680039659.5A priority patent/CN107735413B/zh
Priority to EA201890067A priority patent/EA035569B1/ru
Priority to KR1020187000419A priority patent/KR102069031B1/ko
Priority to MX2018000607A priority patent/MX2018000607A/es
Priority to MYPI2018700156A priority patent/MY183443A/en
Priority to BR112018000249-6A priority patent/BR112018000249B1/pt
Publication of WO2017010562A1 publication Critical patent/WO2017010562A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/044Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • C09J125/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J147/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J195/00Adhesives based on bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/334Applications of adhesives in processes or use of adhesives in the form of films or foils as a label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2409/00Presence of diene rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2425/00Presence of styrenic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2453/00Presence of block copolymer

Definitions

  • the present invention relates to a partially hydrogenated block copolymer, an adhesive composition, an adhesive tape, a label, a modified asphalt composition, a modified asphalt mixture, and a paving binder composition.
  • Block copolymers are widely used in adhesive compositions, asphalt compositions, paving binder compositions, and the like.
  • a hot-melt adhesive composition contains a block copolymer.
  • a block copolymer include a block copolymer having a vinyl aromatic monomer unit and a conjugated diene monomer unit.
  • Patent Documents 1 and 2 describe an adhesive composition using a triblock copolymer and a diblock copolymer of styrene and butadiene as a block copolymer.
  • Patent Document 3 describes an adhesive composition using a hydrogenated block copolymer of styrene and butadiene.
  • adhesive compositions having various blending ratios including a hydrogenated block copolymer of styrene and butadiene, a tackifier, and oil are described.
  • Patent Document 4 discloses an adhesive composition containing a block copolymer of styrene and butadiene and a tackifying resin, and a partially hydrogenated block copolymer as a block copolymer of styrene and butadiene.
  • An adhesive composition using a non-hydrogenated block copolymer in combination and an adhesive composition using a partially hydrogenated block copolymer and a fully hydrogenated block copolymer are described.
  • Patent Documents 5 to 7 describe modified asphalt compositions containing a hydrogenated block polymer obtained by copolymerizing a conjugated diene monomer and a vinyl aromatic monomer.
  • a pavement binder composition may be applied on pavements such as sidewalks, roadways, and parks for the purpose of design, clarification of sections, road indication, slip prevention, and the like.
  • the pavement binder composition is generally colored by containing a block copolymer, a tackifying resin, and an oil, and further containing a colorant such as a pigment.
  • Patent Document 8 discloses a binder composition for color pavement obtained by heating and mixing a non-aromatic heavy mineral oil, petroleum resin, thermoplastic elastomer, ethylene copolymer, and a bipolar polymer compound peeling inhibitor. Is described.
  • the adhesive composition is required to have high tack, high adhesive strength, high adhesive retention, and high heat discoloration during production of the adhesive composition.
  • the modified asphalt composition has a high softening point, a high low temperature elongation, a low melt viscosity, a high rutting resistance, an excellent low temperature bending property, a high heat stability during storage of the modified asphalt composition, etc. Is required.
  • the pavement binder composition has a high softening point, a high low temperature elongation, a low melt conductivity, a high rutting resistance, a high heat stability during storage of the pavement binder composition, and a pavement binder composition production. High heat discoloration and the like are required.
  • the techniques described in Patent Documents 1 to 8 cannot sufficiently meet the above-described requirements.
  • the present invention has been made in view of the above-described problems of the prior art, and can give good physical properties when used as an adhesive composition, a modified asphalt composition, a paving binder composition, and the like.
  • An object is to provide a partially hydrogenated block copolymer. Furthermore, it aims at providing the adhesive composition, the adhesive tape, the label, the modified asphalt composition, the modified asphalt mixture, and the binder composition for paving containing the partially hydrogenated block copolymer. .
  • a partially hydrogenated block copolymer having a polymer block (A) mainly comprising a vinyl aromatic monomer unit and a polymer block (B) containing a conjugated diene monomer unit In the differential molecular weight distribution (B) of the decomposition product of the partially hydrogenated block copolymer obtained by the ozonolysis method, when the maximum peak height in the region of molecular weight 800 or more and molecular weight 3000 or less is defined as the hydrogenation rate distribution H, A partially hydrogenated block copolymer having H of 0.01 to 0.5.
  • the molecular weight is 200 or more.
  • the partially hydrogenated block copolymer according to [1], wherein the maximum peak height with respect to the total area in a region of 1000000 or less is a hydrogenation rate distribution H2, wherein H2 is 0.001 to 0.007.
  • the partially hydrogenated block copolymer according to any one of [1] to [5], wherein the content of the vinyl aromatic monomer unit in the partially hydrogenated block copolymer is 10% by mass to 60% by mass.
  • the partially hydrogenated block copolymer includes one polymer block (A1) mainly composed of vinyl aromatic monomer units, and one polymer block (B1) mainly composed of conjugated diene monomer units.
  • the partially hydrogenated block copolymer comprises a polymer block (A) mainly comprising a vinyl aromatic monomer unit, and a copolymer block comprising a conjugated diene monomer unit and a vinyl aromatic monomer unit ( The partially hydrogenated block copolymer according to any one of [1] to [6], comprising a partially hydrogenated block copolymer (d2) having B2).
  • a modified asphalt composition comprising 1 part by weight or more and 20 parts by weight or less of the partially hydrogenated block copolymer according to any one of [1] to [6] and [13] to [16].
  • a modified asphalt mixture comprising the modified asphalt composition according to [17] and an aggregate. [19] 20-70% by mass of tackifying resin, 20-70% by mass of oil, [2] to 15% by mass of the partially hydrogenated block copolymer according to any one of [1] to [6] and [13] to [16],
  • a binder composition for paving comprising
  • good physical properties can be imparted when an adhesive composition, a modified asphalt composition, a paving binder composition, and the like are used. That is, it is possible to provide an adhesive composition, a modified asphalt composition, and a paving binder composition each having good physical properties.
  • FIG. 1 is a graph showing the results of measuring the molecular weight distribution of the partially hydrogenated block copolymer Q-1 obtained in the examples.
  • FIG. 2 is an enlarged graph showing a part of FIG. 1 for the purpose of illustrating L2.
  • FIG. 3 is a graph showing the results of measuring the molecular weight distribution of the partially hydrogenated block copolymer Q-2 obtained in the examples.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention.
  • the partially hydrogenated block copolymer of this embodiment has a polymer block (A) mainly composed of a vinyl aromatic monomer unit and a polymer block (B) containing a conjugated diene monomer unit.
  • the H is 0.01 to 0.5.
  • the partially hydrogenated block copolymer of this embodiment is constituted in this way, when it is used as an adhesive composition, a modified asphalt composition, a paving binder composition, etc., each has good physical properties. Can be granted. That is, when it is set as an adhesive composition, it is excellent in the heat discoloration property at the time of manufacture of the said adhesive composition, and can provide further high tack property, high adhesive force, and high adhesive holding power.
  • the modified asphalt composition is excellent in heat stability during storage, and further has a high softening point, high low temperature elongation, low melt viscosity, high rutting resistance, and excellent High temperature bending property can be imparted.
  • the pavement binder composition when it is used as a pavement binder composition, it is excellent in heat discoloration at the time of production of the pavement binder composition and in heat stability during storage, and further has a high softening point, high low temperature elongation, and low melting. Viscosity and high rutting resistance can be imparted.
  • the “hydrogenation rate distribution H” is an index representing the hydrogenation rate distribution of the partially hydrogenated block copolymer, and can be obtained as follows. Let H be the maximum peak height in the region of molecular weight 800 or more and molecular weight 3000 or less in the differential molecular weight distribution (B) of the decomposition product obtained by ozonolysis of the partially hydrogenated block copolymer.
  • the value of H is an index of the hydrogenation rate distribution at a molecular weight of 800 or more and a molecular weight of 3000 or less. A smaller value of H indicates a wider hydrogenation rate distribution.
  • the hydrogenation rate distribution at a molecular weight of 800 or more and a molecular weight of 3000 or less affects the physical properties of the adhesive composition, the modified asphalt composition, and the paving binder composition.
  • Measurement of the differential molecular weight distribution by the ozonolysis method can be performed by the method described in the examples described later.
  • the hydrogenation rate distribution H of the partially hydrogenated block copolymer may be from 0.01 to 0.5, preferably from 0.05 to 0.45, preferably from 0.1 to 0.4. It is more preferable that The hydrogenation rate distribution H is a continuous hydrogenation method in which a plurality of polymer supply ports are provided to the reactor in the multi-stage addition of a polar compound and a randomizing agent in the polymerization step, which will be described later, and in the hydrogenation step. The residence time and stirring conditions, and the partially hydrogenated block copolymer blend can be adjusted.
  • the hydrogenation rate distribution H of the partially hydrogenated block copolymer is 0.01 or more and 0.5 or less, so that the adhesive strength, tackiness, Can improve adhesive holding power and heat discoloration during production, softening point, low temperature elongation, melt viscosity, rutting resistance, low temperature bendability of modified asphalt composition, and heat stability during storage Improve the softening point, low temperature elongation, melting conductivity, rutting resistance, heat stability during storage, and heat discoloration during production. I found out that I can. Although the reason is not limited to the following, it is considered that the solubility parameter of the intermediate block can be widened because the hydrogenation rate distribution is wide, and the compatibility with various compounding agents is improved.
  • ⁇ monomer unit a structural unit constituting a block copolymer
  • unit when describing as a polymer material, “unit” is omitted, and “ ⁇ monomer” is simply described. It describes.
  • “mainly” means that the content of a predetermined monomer unit in the block is 70% by mass or more.
  • the polymer block mainly composed of vinyl aromatic monomer units may have a predetermined monomer unit content of 70% by mass or more, preferably 80% by mass, more preferably 90% by mass or more.
  • the “conjugated diene monomer” also includes a hydrogenated conjugated diene monomer.
  • the structure before hydrogenation (hereinafter, also referred to as “hydrogenation”) of the partially hydrogenated block copolymer is not limited to the following.
  • hydrogenation also referred to as “hydrogenation”
  • A represents a polymer block mainly composed of vinyl aromatic monomer units
  • B represents a polymer block containing conjugated diene monomer units
  • X represents Represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium
  • m, n and k represent an integer of 1 or more, preferably an integer of 1 to 5.
  • the partially hydrogenated block copolymer may be a mixture of a coupling body in which X is a residue of a coupling agent and a non-coupling body that does not have X or X is a residue of a polymerization initiator. Good.
  • the boundary and the end of each block need not necessarily be clearly distinguished.
  • a copolymer block of a vinyl aromatic monomer unit and a conjugated diene monomer unit may be present.
  • the distribution of vinyl aromatic monomer units in the polymer block (A) mainly composed of vinyl aromatic monomer units and in the polymer block (B) containing conjugated diene monomer units is particularly limited. Instead, they may be distributed uniformly, or may be distributed in a tapered shape, a stepped shape, a convex shape, or a concave shape. A crystal part may be present in the polymer block.
  • a plurality of segments having different contents of vinyl aromatic monomer units may coexist.
  • the conjugated diene monomer unit is not particularly limited.
  • conjugated diene monomer units derived from 1,3-butadiene and isoprene are preferable.
  • More preferred are conjugated diene monomer units derived from 1,3-butadiene.
  • a conjugated diene monomer unit may be used individually by 1 type, and may use 2 or more types together.
  • the vinyl aromatic monomer unit is not particularly limited.
  • vinyl aromatic monomer units derived from N, N-diethyl-p-aminoethylstyrene are preferred from the viewpoint of economy.
  • a vinyl aromatic monomer unit may be used individually by 1 type, and may use 2 or more types together.
  • partially hydrogenated means that the hydrogenation rate of the conjugated diene is larger than 0 mol% and not larger than 97 mol% based on the total number of moles of the conjugated diene monomer unit.
  • the hydrogenation rate of the partially hydrogenated block copolymer is not particularly limited as long as it is within this range.
  • the upper limit value of the hydrogenation rate of the partially hydrogenated block copolymer is conjugated diene monomer. It is preferably 95 mol% or less, more preferably 93 mol% or less, and still more preferably 90 mol% or less, based on the total number of moles of units.
  • the lower limit value of the hydrogenation rate of the partially hydrogenated block copolymer is determined based on the conjugated diene unit. It is preferably 10 mol% or more, more preferably 15 mol% or more, and further preferably 20 mol% or less, based on the total number of moles of the monomer unit.
  • the hydrogenation rate of the partially hydrogenated block copolymer can be adjusted by controlling the amount of hydrogenation and the hydrogenation reaction time in the hydrogenation step described later. Moreover, a hydrogenation rate can be calculated
  • the molecular weight When the maximum peak height with respect to the total area in the region of 200 or more and 1000000 or less is the hydrogenation rate distribution H2, the H2 is preferably 0.001 to 0.007.
  • the value of H2 is an index of the hydrogenation rate distribution in a region having a molecular weight of 200 to 1,000,000. The smaller the value of H2, the wider the hydrogenation rate distribution in this molecular weight region.
  • H2 is an index of hydrogenation rate and distribution of intermediate random styrene, and stable in the long term performance of adhesive composition, modified asphalt composition and coating binder composition by being in the range of 0.001 to 0.007. Tend to be improved. From the same viewpoint, H2 is more preferably 0.001 or more and 0.0055 or less, and further preferably 0.001 or more and 0.004 or less.
  • the hydrogenation rate distribution H2 can be adjusted by continuous hydrogenation in the hydrogenation step described later, residence time and stirring conditions during continuous hydrogenation, partially hydrogenated block copolymer blend, and the like.
  • L2 / L1 is It is preferably less than 0.02, more preferably less than 0.018, and even more preferably less than 0.015.
  • L2 / L1 of less than 0.02 indicates that there are few components with a hydrogenation rate of 100%, the hydrogenation rate distribution becomes wider, and the high-viscosity component decreases, and various physical properties and viscosities. It means that the balance is excellent.
  • the differential molecular weight distribution (A) and the differential molecular weight distribution (B) can be measured by the method described in Examples described later.
  • the content of the vinyl aromatic monomer unit in the partially hydrogenated block copolymer is: It is preferably 10% by mass to 60% by mass, more preferably 13% by mass to 58% by mass, and further preferably 15% by mass to 55% by mass.
  • the method for producing the partially hydrogenated block copolymer is not limited to the following.
  • a hydrocarbon solvent at least a conjugated diene monomer and a vinyl aromatic monomer are polymerized using a lithium compound as a polymerization initiator.
  • a hydrogenation step of adding hydrogen to a part of the double bond in the conjugated diene monomer unit of the obtained block copolymer is performed, and the obtained partially hydrogenated block copolymer is obtained. It can manufacture by performing the solvent removal process which removes the solvent of the solution containing.
  • continuous hydrogenation Perform the hydrogenation process in the polymerization process in a continuous manner (hereinafter also referred to as “continuous hydrogenation”), provide multiple polymer supply ports to the reactor in continuous hydrogenation, and adjust the residence time and stirring conditions
  • the hydrogenation rate distribution H is 0.01 to 0.5 and the hydrogenation rate distribution H2 is 0.001 to 0.007 by blending a partially hydrogenated block copolymer. And it is easier to make L2 / L1 less than 0.02.
  • the residence time and stirring conditions in the continuous hydrogenation are not particularly limited.
  • the average residence time is set at a hydrogen pressure of preferably 0.1 MPa to 5.0 MPa, more preferably 0.3 MPa to 4.0 MPa.
  • the hydrogenation rate distribution H is set to 0.01 or more and 0.5 or less by setting it to 5 minutes to 3 hours, more preferably 10 minutes to 2 hours, and the hydrogenation rate distribution H2 is set to 0.001 or more and 0 or less. It becomes easier to set the value to 0.007 or less and to make L2 / L1 less than 0.02. Further, depending on the number of stirring and the shape of the stirring blade, the hydrogenation rate distribution H is adjusted to 0.01 or more and 0.5 or less, the hydrogenation rate distribution H2 is adjusted to 0.001 or more and 0.007 or less, / L1 can also be adjusted to less than 0.02.
  • the mode of blending the partially hydrogenated block copolymer is not particularly limited. For example, by changing the conditions for the continuous hydrogenation or by performing batch hydrogenation, two or more hydrogenation rate distributions are used. It is possible to obtain a partially hydrogenated block copolymer having a water content by mixing under wet or dry conditions.
  • a block copolymer is obtained by polymerizing a monomer containing at least a conjugated diene monomer and a vinyl aromatic monomer in a hydrocarbon solvent using a lithium compound as a polymerization initiator. Can do.
  • the hydrocarbon solvent used in the polymerization step is not particularly limited.
  • aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, and octane; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc.
  • aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene. These may be used alone or in combination of two or more.
  • polymerization process for example, the compound which combined one or more lithium atoms in molecules, such as an organic monolithium compound, an organic dilithium compound, and an organic polylithium compound, is mentioned. .
  • organic lithium compound is not particularly limited.
  • ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, hexamethylenedilithium, butadienyl Examples include dilithium and isoprenyl dilithium. These may be used alone or in combination of two or more.
  • the conjugated diene monomer is not particularly limited.
  • 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3- Examples thereof include diolefins having a pair of conjugated double bonds such as pentadiene, 2-methyl-1,3-pentadiene, and 1,3-hexadiene.
  • 1,3-butadiene and isoprene are preferable. From the viewpoint of mechanical strength, 1,3-butadiene is more preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the vinyl aromatic monomer is not particularly limited.
  • styrene ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N, N-dimethyl-p-aminoethylstyrene, And vinyl aromatic compounds such as N, N-diethyl-p-aminoethylstyrene.
  • styrene is preferred from the viewpoint of economy. These may be used alone or in combination of two or more.
  • conjugated diene monomer and the vinyl aromatic monomer In addition to the conjugated diene monomer and the vinyl aromatic monomer, other monomers copolymerizable with the conjugated diene monomer and the vinyl aromatic monomer can also be used.
  • a polar compound or a randomizing agent may be used.
  • a polar compound or a randomizing agent it is preferable to add a polar compound or a randomizing agent in multiple stages.
  • the polar compound and the randomizing agent are not particularly limited.
  • ethers such as tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether; triethylamine, N, N, N ′, N′-tetramethylethylenediamine (hereinafter, “TMEDA”)
  • Amines such as thioethers, phosphines, phosphoramides, alkylbenzene sulfonates, and alkoxides of potassium and sodium.
  • the polymerization method carried out in the block copolymer polymerization step is not particularly limited, and known methods can be applied.
  • Known methods include, for example, Japanese Patent Publication No. 36-19286, Japanese Patent Publication No. 43-171979, Japanese Patent Publication No. 46-32415, Japanese Patent Publication No. 49-36957, Japanese Patent Publication No. 48-2423, and Japanese Patent Publication No. Sho. Examples thereof include the methods described in JP-A-48-4106, JP-B-56-28925, JP-A-59-166518, JP-A-60-186777, and the like.
  • the block copolymer may be coupled using a coupling agent.
  • Bifunctional or more arbitrary coupling agents can be used.
  • Bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane, dimethyldichlorosilane; Diphenyldimethoxysilane, diphenyldiethoxysilane, dimethyldimethoxysilane, dimethyldi Bifunctional alkoxysilanes such as ethoxysilane; Bifunctional halogenated alkanes such as dichloroethane, dibromoethane, methylene chloride, dibromomethane; dichlorotin, monomethyldichlorotin, dimethyldichlorotin, monoethyldichlorotin, diethyldichlorotin, monobutyl Bifunctional tin halides such as dichlorosilane, monomethyldichlorosilane, dimethyldichlorotin,
  • the trifunctional coupling agent is not particularly limited, and examples thereof include trifunctional halogenated alkanes such as trichloroethane and trichloropropane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; methyltrimethoxysilane; And trifunctional alkoxysilanes such as phenyltrimethoxysilane and phenyltriethoxysilane.
  • trifunctional halogenated alkanes such as trichloroethane and trichloropropane
  • trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane
  • methyltrimethoxysilane methyltrimethoxysilane
  • trifunctional alkoxysilanes such as phenyltrimethoxysilane and phenyltriethoxysilane.
  • the tetrafunctional coupling agent is not particularly limited, and examples thereof include tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide, and tetrachloroethane; tetrafunctional halogenated silanes such as tetrachlorosilane and tetrabromosilane. Tetrafunctional silanes such as tetramethoxysilane and tetraethoxysilane; tetrafunctional tin halides such as tetrachlorotin and tetrabromotin;
  • the pentafunctional or higher functional coupling agent is not particularly limited.
  • polyhalogen such as 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether, decabromodiphenyl ether, and the like.
  • hydrocarbon compounds such as 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether, decabromodiphenyl ether, and the like.
  • hydrocarbon compounds such as 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether, decabromodiphenyl ether, and the like.
  • hydrocarbon compounds such as 1,1,1,2,2-p
  • the active terminal of the polymer can be deactivated by reacting the active hydrogen-containing compound with the active terminal.
  • the active hydrogen-containing compound can be mentioned.
  • the hydrogenation step hydrogen is added to a part of the double bond in the conjugated diene monomer unit of the block copolymer obtained in the polymerization step.
  • the hydrogenation catalyst used in the hydrogenation step is not particularly limited.
  • a supported type in which a metal such as Ni, Pt, Pd, or Ru is supported on a carrier such as carbon, silica, alumina, or diatomaceous earth.
  • Heterogeneous catalysts so-called Ziegler-type catalysts using organic salts such as Ni, Co, Fe, Cr or the like and acetylacetone salts and reducing agents such as organic Al; so-called organic complex catalysts such as organometallic compounds such as Ru and Rh; And a homogeneous catalyst using organic Li, organic Al, organic Mg or the like as a reducing agent for the titanocene compound.
  • a homogeneous catalyst system using organic Li, organic Al, organic Mg, or the like as a reducing agent for the titanocene compound is preferable from the viewpoint of economy, colorability of the polymer, or adhesive strength.
  • the method for the hydrogenation step is not particularly limited.
  • a hydrogenation step can be performed in an inert solvent in the presence of a hydrogenation catalyst to obtain a partially hydrogenated block copolymer solution.
  • the hydrogenation step is preferably performed after the deactivation step from the viewpoint of high hydrogenation activity.
  • the hydrogenation step can be performed either batchwise, continuously, or a combination thereof.
  • the hydrogenation rate distribution H of the partially hydrogenated block copolymer is set to a range of 0.01 to 0.5, the hydrogenation rate distribution H2 is set to 0.001 to 0.007, and L2.
  • the hydrogenation step is preferably a continuous type in that it becomes easy to make / L1 less than 0.02. Further, from the viewpoint of making L2 / L1 smaller, a batch type is preferable. From the viewpoint of further facilitating controlling the hydrogenation rate distribution within the range of 0.01 to 0.5, it is preferable to provide a plurality of supply ports for supplying the polymer solution after the deactivation step to the reactor. preferable. That is, in a preferred embodiment, a hydrogenation catalyst and an inert solvent are charged into a reactor having a plurality of solution supply ports, and a polymer solution is supplied to the reactor from the plurality of supply ports while continuously supplying hydrogen. Supply.
  • the conjugated bond of the vinyl aromatic monomer unit may be hydrogenated.
  • the upper limit of the hydrogenation rate of the conjugated bond in all vinyl aromatic monomer units is, for example, 30 mol% or less, 10 mol% or less, or 3 mol% or less, based on the total amount of unsaturated groups in vinyl aromatic.
  • the lower limit value can be, for example, 0.1 mol% or more, or 0 mol%.
  • the partially hydrogenated block copolymer obtained using a compound having a functional group is selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. It is preferred to add at least one functional group.
  • a polymerization initiator containing a nitrogen-containing group is preferable.
  • the polymerization initiator containing a nitrogen-containing group include, but are not limited to, dioctylaminolithium, di-2-ethylhexylaminolithium, ethylbenzylaminolithium, (3- (dibutylamino) -propyl) lithium, Peridinolithium etc. are mentioned.
  • a monomer containing a nitrogen-containing group is preferable.
  • the monomer containing a nitrogen-containing group include, but are not limited to, N, N-dimethylvinylbenzylamine, N, N-diethylvinylbenzylamine, N, N-dipropylvinylbenzylamine, N, N-dibutylvinylbenzylamine, N, N-diphenylvinylbenzylamine, 2-dimethylaminoethylstyrene, 2-diethylaminoethylstyrene, 2-bis (trimethylsilyl) aminoethylstyrene, 1- (4-N, N-dimethylamino) Phenyl) -1-phenylethylene, N, N-dimethyl-2- (4-vinylbenzyloxy) ethylamine, 4- (2-pyrrolidinoethyl) styrene
  • the coupling agent and terminator containing a functional group among the aforementioned coupling agent and terminator, a group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group
  • a group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group a group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group
  • coupling agents containing at least one functional group selected from:
  • coupling agents and terminators containing nitrogen-containing groups or oxygen-containing groups are preferred.
  • Examples of coupling agents and terminators containing nitrogen-containing groups or oxygen-containing groups include, but are not limited to, N, N, N ′, N′-tetraglycidylmetaxylenediamine, tetraglycidyl-1,3- Bisaminomethylcyclohexane, tetraglycidyl-p-phenylenediamine, tetraglycidyldiaminodiphenylmethane, diglycidylaniline, ⁇ -caprolactone, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycid Xylpropyltriphenoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyldiethylethoxysilane, 1,3-d
  • the solvent of the polymer solution containing the partially hydrogenated block copolymer is removed.
  • the solvent removal method is not particularly limited, and examples thereof include a steam stripping method and a direct solvent removal method.
  • the amount of residual solvent in the partially hydrogenated block copolymer obtained by the solvent removal step is preferably as small as possible. For example, it is preferably 2% by mass or less, more preferably 0.5% by mass or less, and 0.2% by mass or less. Is more preferably 0.05% by mass or less, still more preferably 0.01% by mass or less, and still more preferably 0% by mass. From the viewpoint of economy, usually, the amount of residual solvent in the partially hydrogenated block copolymer is preferably in the range of 0.01% by mass to 0.1% by mass.
  • an antioxidant to the partially hydrogenated block copolymer.
  • the antioxidant include phenolic antioxidants such as radical scavengers, phosphorus antioxidants such as peroxide decomposers, and sulfur antioxidants.
  • phenolic antioxidants such as radical scavengers, phosphorus antioxidants such as peroxide decomposers, and sulfur antioxidants.
  • a phenolic antioxidant is preferable from the viewpoint of heat aging resistance and gelation suppression of the partially hydrogenated block copolymer.
  • the deashing process for removing the metal in the solution containing the partially hydrogenated block copolymer and the partially hydrogenated block copolymer before the solvent removal process may be performed, for example, addition of an acid and / or addition of a carbon dioxide gas may be performed.
  • the partially hydrogenated block copolymer of the present embodiment can be used for an adhesive composition.
  • the adhesive composition is used for assembling, for example, an adhesive tape, a label, or a diaper, and is required to have high adhesive strength, high tackiness, high adhesive retention, and heat discoloration during production.
  • the adhesive compositions as described in Patent Documents 1 to 4 are sufficient in terms of adhesive strength, tackiness, adhesive retention, and heat discoloration during production.
  • the adhesive force, tackiness, adhesive holding power, and the adhesive composition during production An adhesive composition excellent in heat discoloration can be provided.
  • the partially hydrogenated block copolymer is a vinyl aromatic monomer unit in terms of adhesiveness, tackiness, adhesion retention, and heat discoloration at the time of production of the adhesive composition.
  • a partially hydrogenated block copolymer having a polymer block (A) mainly composed of a polymer block (B1) mainly composed of a conjugated diene monomer unit is preferable.
  • the structure before hydrogenation of the partially hydrogenated block copolymer is not limited to the following, but examples thereof include structures represented by the following formulas (7) to (12).
  • A represents a polymer block mainly composed of vinyl aromatic monomer units
  • B1 represents a polymer block mainly composed of conjugated diene monomer units
  • X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium
  • m, n, and k represent an integer of 1 or more, preferably an integer of 1 to 5.
  • the structures such as the molecular weight and composition are the same. It may be good or different.
  • X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium.
  • the partially hydrogenated block copolymer may be a mixture of a coupling body in which X is a residue of a coupling agent and a non-coupling body that does not have X or X is a residue of a polymerization initiator. Good.
  • the boundary and the end of each block need not necessarily be clearly distinguished.
  • a copolymer block of a vinyl aromatic monomer unit and a conjugated diene monomer unit may be present.
  • the unit distribution is not particularly limited, and may be distributed uniformly, or may be distributed in a tapered shape, a staircase shape, a convex shape, or a concave shape.
  • a crystal part may be present in the polymer block.
  • the polymer block (A) mainly composed of vinyl aromatic monomer units a plurality of segments having different contents of vinyl aromatic monomer units may coexist.
  • the partially hydrogenated block copolymer comprises one polymer block (A1) mainly composed of vinyl aromatic monomer units, and a conjugated diene monomer. It is preferable to contain a partially hydrogenated block copolymer (d1) having one polymer block (B1) mainly composed of body units.
  • the lower limit of the content of the partially hydrogenated block copolymer (d1) is based on 100% by mass of the partially hydrogenated block copolymer from the viewpoint of high tack of the adhesive composition. It is preferably 20% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, still more preferably 65% by mass or more, and 70% by mass or more. More preferably.
  • the upper limit of the content of the partially hydrogenated block copolymer (d1) is 95% by mass based on 100% by mass of the partially hydrogenated block copolymer from the viewpoint of the high adhesive strength of the adhesive composition. Is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 83% by mass or less, and even more preferably 80% by mass or less. preferable.
  • the partially hydrogenated block copolymer in the first embodiment may contain the partially hydrogenated block copolymer (r1) having a radial structure from the viewpoint of the low viscosity and the high adhesive holding power of the adhesive composition. preferable.
  • radial structure refers to a structure in which three or more polymers are bonded to the residue X. For example, A- (B1-A) n —X (n ⁇ 3), [(A ⁇ B1) k ] m ⁇ X (m ⁇ 3), and [(A ⁇ B1) k ⁇ A] m ⁇ X (m ⁇ 3).
  • the structure of the partially hydrogenated block copolymer (r1) having a radial structure from the viewpoint of high adhesive strength, low viscosity, and high adhesive retention of the adhesive composition, [(A -B1) k ] m -X and [(A-B1) k -A] m -X (wherein m represents an integer of 3 to 6 and k represents an integer of 1 to 4. More preferably, Is preferably at least one structure selected from the group consisting of m represents an integer of 3 to 4.
  • the hydrogenation rate of the partially hydrogenated block copolymer is preferably 10 mol% to 95 mol% based on the total number of moles of the conjugated diene monomer unit, and is 20 mol% to 74 mol% or less. More preferably, it is more preferably 31 mol% to 70 mol%, still more preferably 33 mol% to 63 mol%, and still more preferably 35 mol% to 59 mol%.
  • the hydrogenation rate of the partially hydrogenated block copolymer can be adjusted by controlling the amount of hydrogenation and the hydrogenation reaction time in the hydrogenation step described later. Moreover, a hydrogenation rate can be calculated
  • the content (TS) of the vinyl aromatic monomer unit in the partially hydrogenated block copolymer in the first embodiment is the adhesive strength, tackiness, high adhesive retention strength, and adhesive strength of the adhesive composition. From the viewpoint of high heat resistance and discoloration resistance during the production of the composition, the content is preferably 10% by mass to 45% by mass, more preferably 13% by mass to 40% by mass, and further preferably 15% by mass to 35% by mass.
  • the content (BS) of the polymer block (A) mainly composed of a vinyl aromatic monomer unit in the partially hydrogenated block copolymer in the first embodiment is high in adhesive holding power of the adhesive composition. In view of the above, it is preferably 12% by mass to 43% by mass, more preferably 13% by mass to 40% by mass, and further preferably 14% by mass to 34% by mass.
  • the content (TS) of the vinyl aromatic monomer unit in the partially hydrogenated block copolymer and the content (BS) of the polymer block (A) mainly composed of the vinyl aromatic monomer unit are: It can be measured by the method described in the examples described later.
  • the molecular weight distribution of the polymer block (A) mainly composed of a vinyl aromatic monomer is preferably 1.46 or less, more preferably 1.44 or less, from the viewpoint of adhesive holding power of the adhesive composition. .42 or less is more preferable, and 1.40 or less is even more preferable. Moreover, 1.1 or more are preferable, 1.12 or more are more preferable, and 1.14 or more are preferable from the point of the adhesive force of an adhesive composition, tackiness, and adhesive holding power, and the heat-resistant discoloration property at the time of manufacture. More preferably, 1.16 or more is still more preferable.
  • the molecular weight distribution of the polymer block (A) mainly composed of a vinyl aromatic monomer can be obtained by the following equation.
  • the average vinyl content in the conjugated diene monomer unit before hydrogenation of the partially hydrogenated block copolymer in the first embodiment is preferably 15 mol% to 75 mol%, and preferably 25 mol% to 55 mol%. Is more preferably 35 mol% to 45 mol%.
  • the average vinyl content in the conjugated diene monomer unit before hydrogenation of the partially hydrogenated block copolymer in the first embodiment is 15 mol% or more, tackiness and adhesive strength of the adhesive composition , And the adhesive holding power tends to be further improved.
  • the vinyl content in the conjugated diene monomer unit before hydrogenation of the partially hydrogenated block copolymer in the first embodiment is 75 mol% or less, the tackiness and heat resistance of the adhesive composition are reduced. The discoloration tends to be further improved.
  • “vinyl content” is incorporated in the form of 1,2-bond, 3,4-bond, and 1,4-bond of the conjugated diene monomer before hydrogenation.
  • the vinyl content can be measured by NMR, specifically by the method described in the examples described later.
  • the distribution of vinyl content in the block mainly composed of conjugated diene monomer units is not limited.
  • the vinyl content may be distributed in the copolymer block (B1) mainly composed of a conjugated diene monomer unit.
  • the lower limit of the difference in the vinyl content in the copolymer block (B) mainly composed of the conjugated diene monomer unit of the partially hydrogenated block copolymer (hereinafter also referred to as “ ⁇ vinyl content”) is In terms of high tackiness of the adhesive composition, 5 mol% or more is preferable, 8 mol% or more is more preferable, 15 mol% or more is more preferable, and 20 mol% or more is even more preferable.
  • the upper limit value of the ⁇ vinyl content is preferably 30 mol% or less, more preferably 25 mol% or less, further preferably 20 mol% or less, and even more preferably 17 mol% or less from the viewpoint of high tackiness of the adhesive composition. preferable.
  • the first region to the sixth region are formed in order from the polymerization start terminal side so as to have an equal mass, and the first region to When the vinyl content before hydrogenation in the sixth region is V 1 to V 6 , respectively, the distribution of the vinyl content is not particularly limited and may be constant and distributed in a tapered shape, a convex shape, or a concave shape. It may be. By adding a polar compound during the polymerization or controlling the polymerization temperature, the vinyl distribution can be tapered, convex, or concave.
  • the tapered distribution means a distribution satisfying V 6 > V 5 > V 4 > V 3 > V 2 > V 1 , or V 6 ⁇ V 5 ⁇ V 4 ⁇ V 3 ⁇ V 2 ⁇ V 1 .
  • the convex distribution, V 6 and V 1 is smaller than V 5 and V 2
  • V 5 and V 2 refers to a smaller distribution than V 4 and V 3.
  • the concave profile, greater than V 6 and V 1 is V 5 and V 2
  • V 5 and V 2 means a larger distribution than V 4 and V 3.
  • the weight average molecular weight (Mw) of the partially hydrogenated block copolymer is preferably 100,000 or more, more preferably 180,000 or more, and more preferably 200,000 or more in terms of high adhesive strength and adhesive retention. preferable. From the viewpoint of high productivity, the weight average molecular weight (Mw) of the partially hydrogenated block copolymer is preferably 350,000 or less, more preferably 300,000 or less, and further preferably 250,000 or less.
  • the lower limit value of the molecular weight distribution (Mw / Mn) of the partially hydrogenated block copolymer is high in terms of productivity. 1.1 or more is preferable, 1.2 or more is more preferable, 1.3 or more is further preferable, and 1.4 or more is further more preferable.
  • the upper limit of the molecular weight distribution (Mw / Mn) of the partially hydrogenated block copolymer is preferably 3.0 or less, more preferably 2.0 or less, from the viewpoint of high adhesive strength or adhesive retention. 7 or less is more preferable.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the polymer can be determined by the methods described in the examples described later.
  • the partially hydrogenated block copolymer is a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, It preferably has at least one functional group selected from the group consisting of an amide group, a silanol group, and an alkoxysilane group.
  • the partially hydrogenated block copolymer preferably has at least one functional group selected from the group consisting of an amino group and an amide group, and more preferably has an amino group.
  • the partially hydrogenated block copolymer preferably contains 2 mol or more of at least one functional group selected from the group consisting of an amino group and an amide group with respect to 1 mol of the molecule.
  • the partially hydrogenated block copolymer in the first embodiment preferably has a melt flow rate (MFR, 200 ° C., 5 kgf) of 0.1 g / 10 min to 50 g / 10 min, preferably 0.2 g / 10 min. More preferably, it is ⁇ 20 g / 10 minutes, more preferably 0.3 g / 10 minutes to 10 g / 10 minutes, and still more preferably 0.4 g / 10 minutes to 5 g / 10 minutes.
  • MFR melt flow rate
  • the partially hydrogenated block copolymer in the first embodiment preferably has a melt flow rate (MFR, 200 ° C., 5 kgf) of 0.1 g / 10 min to 50 g / 10 min, preferably 0.2 g / 10 min. More preferably, it is ⁇ 20 g / 10 minutes, more preferably 0.3 g / 10 minutes to 10 g / 10 minutes, and still more preferably 0.4 g / 10 minutes to 5 g / 10 minutes.
  • the partially hydrogenated block copolymer in the first embodiment is obtained by polymerizing at least a conjugated diene monomer and a vinyl aromatic monomer in a hydrocarbon solvent, using a lithium compound as a polymerization initiator, thereby producing a vinyl aromatic monomer.
  • Performing a polymerization step to obtain a block copolymer having a polymer block (A) mainly composed of a monomer unit and a polymer block (B1) mainly composed of a conjugated diene monomer unit and after the polymerization step, A hydrogenation step of adding hydrogen to a part of the double bond in the conjugated diene monomer unit of the obtained block copolymer is performed, and the solvent of the solution containing the obtained partially hydrogenated block copolymer is removed. It can manufacture by performing the solvent removal process which carries out a solvent.
  • the polymerization process, hydrogenation process, solvent removal process, and the like are the same as described above, and are not described here.
  • the adhesive composition in the first embodiment is preferably 20 parts by weight to 400 parts by weight, more preferably 30 parts by weight with respect to 100 parts by weight of the partially hydrogenated block copolymer described above. It contains 350 parts by mass, more preferably 40 parts by mass to 300 parts by mass.
  • the “tackifying resin” is not particularly limited as long as it can impart tackiness to the adhesive composition, and is a resin (oligomer) having a number average molecular weight of 100 to less than 10,000. It is preferable that The number average molecular weight of the tackifier resin can be measured by the same method as the method for measuring the number average molecular weight described in Examples described later.
  • the tackifying resin is not particularly limited, but examples thereof include rosin derivatives (including tung oil resin), tall oil, tall oil derivatives, rosin ester resins, natural and synthetic terpene resins, aliphatic hydrocarbon resins, and aromatic carbonization.
  • Hydrogen resin mixed aliphatic-aromatic hydrocarbon resin, coumarin-indene resin, phenol resin, p-tert-butylphenol-acetylene resin, phenol-formaldehyde resin, xylene-formaldehyde resin, monoolefin oligomer, diolefin oligomer, Aromatic hydrocarbon resin, hydrogenated aromatic hydrocarbon resin, cycloaliphatic hydrocarbon resin, hydrogenated hydrocarbon resin, hydrocarbon resin, hydrogenated tung oil resin, hydrogenated oil resin, hydrogenated oil resin and monofunctional or Examples include esters with polyfunctional alcohols. These may be used alone or in combination of two or more. In the case of hydrogenation, all unsaturated groups may be hydrogenated or partially left.
  • the tackifying resin contains a tackifying resin having a softening point of 80 ° C. or higher in terms of adhesive strength, pressure-sensitive adhesive strength, and high resistance to oozing from the end during tape lamination.
  • the lower limit value of the softening point of the tackifier resin is more preferably 85 ° C or higher, further preferably 95 ° C or higher, and still more preferably 100 ° C or higher.
  • the upper limit of the softening point of the tackifier resin is not particularly limited, but is preferably 145 ° C. or lower.
  • the softening point of the tackifier resin can be measured by a JISK2207 ring and ball system.
  • the non-glass of partially hydrogenated block copolymer is used in the adhesive composition from the viewpoints of high adhesiveness of the adhesive composition, reduction of change in adhesive strength with time, and creep performance.
  • 20-75% by mass of a tackifier that has an affinity with a phase block (usually an intermediate block) and a tackifier with an affinity for a glass phase block (usually an outer block) of a partially hydrogenated block copolymer It is more preferable to contain 3 to 30% by mass of the agent.
  • the tackifier having affinity for the glass phase block of the partially hydrogenated block copolymer is not limited to the following, for example, a terminal block tackifier resin is preferred.
  • tackifiers include, but are not limited to, resins having aromatic groups such as homopolymers or copolymers containing vinyltoluene, styrene, ⁇ -methylstyrene, coumarone, or indene.
  • Kristalex and Plastolyn (trade name, manufactured by Eastman Chemical Co., Ltd.) having ⁇ -methylstyrene are preferable.
  • the content of the tackifier having an affinity for the glass phase block of the partially hydrogenated block copolymer is preferably 3 to 30% by mass, more preferably 5 to 5%, based on the total amount of the adhesive composition. It is 20% by mass, more preferably 6 to 12% by mass.
  • the tackifier has an aroma content of 3 to 12% by mass.
  • a petroleum resin having aroma content of 3 to 12% by mass and hydrogenated petroleum resin is more preferable.
  • the aroma content in the tackifier is preferably 3 to 12% by mass, more preferably 4 to 10% by mass.
  • “aroma” refers to a non-hydrogenated aromatic component.
  • the tackifier is preferably a hydrogenated tackifier resin from the viewpoint of higher weather resistance (low tack change after UV irradiation) and low odor of the adhesive composition.
  • “Hydrogenated tackifier resin” means an aliphatic tackifier resin containing an unsaturated bond or an aromatic tackifier resin containing an unsaturated bond, hydrogenated to an arbitrary hydrogenation rate. Refers to resin. The hydrogenation rate of the hydrogenated tackifier resin is preferably higher.
  • Alcon M and Ascon P (trade name, manufactured by Arakawa Chemical Co., Ltd.), Clearon P (trade name, manufactured by Yasuhara Chemical Co., Ltd.), Imabe P (trade name, manufactured by Idemitsu Kosan Co., Ltd.) Etc.
  • Content of the tackifier in the adhesive composition in 1st embodiment should just be 20 mass parts or more and 400 mass parts or less with respect to 100 mass parts of partially hydrogenated block copolymers, Preferably it is 70. It is not less than 350 parts by mass, more preferably not less than 120 parts by mass and not more than 300 parts by mass, and still more preferably not less than 140 parts by mass and not more than 250 parts by mass. When the content of the tackifier is within the above range, the balance between tackiness and adhesion retention tends to be further improved.
  • the adhesive composition includes, as necessary, an oil, an antioxidant, a weathering agent, an antistatic agent, a lubricant, and a filler in addition to the partially hydrogenated block copolymer and the tackifier.
  • Various additives such as waxes may be included.
  • the oil is not particularly limited.
  • paraffinic oil mainly containing paraffinic hydrocarbons naphthenic oil mainly containing naphthenic hydrocarbons, and aromatic oils mainly containing aromatic hydrocarbons.
  • Oil an oil that is colorless and substantially odorless is preferable.
  • the oil may be used alone or in combination of two or more.
  • the paraffinic oil is not particularly limited.
  • Diana process oil PW-32, PW-90, PW-150, PS-430 manufactured by Idemitsu Kosan
  • SYNTAX PA-95, PA-100, PA-140 (Manufactured by Kobe Oil Chemical Co., Ltd.)
  • JOMO process P200, P300, P500, 750 manufactured by Japan Energy
  • thumper 110, 115, 120, 130, 150, 2100, 2280 manufactured by Nippon San Oil
  • Fukkor process P-100, P -200, P-300, P-400, P-500 manufactured by Fuji Kosan
  • the naphthenic oil is not particularly limited.
  • Diana process oil NP-24, NR-26, NR-68, NS-90S, NS-100, NM-280 (manufactured by Idemitsu Kosan), Syntax N-40, N-60, N-70, N-75, N-80 (manufactured by Kobe Oil Chemicals), shelf rex 371JY (manufactured by Shell Japan), JOMO process R25, R50, R200, R1000 (manufactured by Japan Energy), Sansen Oil 310, 410, 415, 420, 430, 450, 380, 480, 3125, 4130, 4240 (manufactured by Nippon San Oil), Fukkor Newflex 1060W, 1060E, 1150W, 1150E, 1400W, 1400E, 2040E, 2050N (manufactured by Fuji Kosan) , Petrex Process Oil PN-3 PN-3M, PN-3N-H (
  • the aromatic oil is not particularly limited.
  • Diana Process Oil AC-12, AC-640, AH-16, AH-24, AH-58 manufactured by Idemitsu Kosan Co., Ltd.
  • Syntax HA-10, HA-15 , HA-30, HA-35 manufactured by Kobe Oil Chemical Co., Ltd.
  • Cosmo Process 40, 40A, 40C, 200A, 100, 1000 manufactured by Cosmo Oil Lubricants
  • JOMO Process X50, X100E, X140 manufactured by Japan Energy
  • JSO Aroma 790, Nitoprene 720L Non San Oil
  • Fukkor Aromax 1, 3, 5, EXP1 Flujikosan
  • Petrex Process Oil LPO-R, LPO-V, PF-2 Yamabun Oil Chemical
  • the oil content is based on 100 parts by mass of the partially hydrogenated block copolymer.
  • the amount is preferably 10 to 150 parts by weight, more preferably 30 to 130 parts by weight, and still more preferably 50 to 100 parts by weight.
  • the antioxidant is not particularly limited, and examples thereof include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
  • a weathering agent from the viewpoint of the high weather resistance (low adhesive force change after UV irradiation) of the adhesive composition.
  • weathering agents examples include benzotriazole-based UV absorbers, triazine-based UV absorbers, benzophenone-based UV absorbers, benzoate-based UV absorbers, hindered amine-based light stabilizers, and inorganic UV absorbers such as fine particle cerium oxide.
  • a benzotriazole-based UV absorber or a hindered amine light stabilizer is preferable, and a benzotriazole-based UV absorber and a hindered amine light stabilizer are more preferably used in combination.
  • the lower limit value of the weathering agent content in the adhesive composition is preferably 0.03% by mass or more, and 0.05% by mass or more in terms of the high weather resistance of the adhesive composition. Is more preferable, and 0.07% by mass or more is more preferable.
  • the upper limit value of the weathering agent content in the adhesive composition of the first embodiment is preferably 1% by mass or less of the adhesive composition in terms of suppression of bleeding of the weathering agent and economy. 5 mass% or less is more preferable, and 0.3 mass% or less is further more preferable.
  • the above antioxidant together with the above weathering agent.
  • the weathering agent and the antioxidant are used in combination, it is preferable to use at least a phosphorus-based antioxidant in addition to the above-mentioned weathering agent among the antioxidants in terms of higher weather resistance.
  • the lower limit of the antioxidant content in the adhesive composition of the first embodiment is preferably 0.02% by mass or more, more preferably 0.04% by mass or more in terms of high weather resistance, and 0 0.06 mass% or more is more preferable.
  • As an upper limit of antioxidant content in the adhesive composition of 1st embodiment 1.5 mass% or less is preferable at the point of suppression of bleeding of antioxidant, and economical efficiency, and 1.0 mass % Or less is more preferable.
  • the adhesive composition of the present embodiment preferably contains an antistatic agent.
  • antistatic agent examples include surfactants, conductive resins, and conductive fillers.
  • the adhesive composition may contain a lubricant in order to improve the slipperiness of the product surface during and after the plastic molding process.
  • Examples of the lubricant include stearamide and calcium stearate.
  • the adhesive composition may include a filler.
  • the filler include, but are not limited to, mica, calcium carbonate, kaolin, talc, diatomaceous earth, urea resin, styrene beads, calcined clay, and starch.
  • the shape of these fillers is preferably spherical.
  • the adhesive composition may include waxes.
  • the waxes are not particularly limited, and examples thereof include paraffin wax, microcristan wax, and low molecular weight polyethylene wax.
  • the adhesive composition when a low melt viscosity of an adhesive composition of 130 ° C. or lower is required, is a wax having a melting point of 50 ° C. to 110 ° C., for example, paraffin wax, fine It is preferable to contain 2 to 10% by mass of at least one wax selected from the group consisting of crystalline wax and Fischer-Tropsch wax.
  • the content of the wax having a melting point of 50 ° C. to 110 ° C. is preferably 5 to 10% by mass with respect to the total amount of the adhesive composition.
  • the melting point of these waxes is preferably 65 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 75 ° C. or higher.
  • the softening point of the tackifier used together at this time becomes like this.
  • it is 70 degreeC or more, More preferably, it is 80 degreeC or more.
  • the storage elastic modulus G ′ (measurement condition: 25 ° C., 10 rad / s) of the obtained adhesive composition is 1 Mpa or less, and preferably has a crystallization temperature of 7 ° C. or less.
  • the adhesive composition may contain a polymer other than the partially hydrogenated block copolymer of the present embodiment (hereinafter also simply referred to as “other polymer”).
  • Other polymers include, but are not limited to, olefin elastomers such as natural rubber, polyisoprene rubber, polybutadiene rubber, styrene butadiene copolymer, ethylene propylene copolymer; chloroprene rubber, acrylic rubber, ethylene vinyl acetate copolymer Coalescence is mentioned. These may be liquid at room temperature or solid.
  • the content of other polymers is the partially hydrogenated block copolymer of the present embodiment. More preferably, it is 80 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 40 parts by mass or less, and even more preferably 20 parts by mass or less with respect to 100 parts by mass. Preferably, it is 10 parts by mass or less.
  • the other polymer may be a block copolymer other than the partially hydrogenated block copolymer of the present embodiment (hereinafter also simply referred to as “other block copolymer”).
  • Other block copolymers are not particularly limited.
  • styrene-butadiene block copolymers, styrene-isoprene block copolymers, hydrogenated styrene-butadiene block copolymers (SEBS), hydrogenated Examples thereof include a styrene-isoprene block copolymer (SEPS).
  • Other block copolymers include two or more types of block copolymers having different vinyl aromatic monomer unit contents, non-hydrogenated block copolymers mainly composed of vinyl aromatic monomer units, or complete It may be a hydrogenated block copolymer.
  • the other block copolymer includes one polymer block mainly composed of a vinyl aromatic monomer unit from the viewpoint of a balance between high tackiness and high adhesive strength of the adhesive composition. And a block copolymer having one polymer block mainly composed of a conjugated diene monomer unit.
  • the other block copolymers preferably have a radial structure from the viewpoint of high holding power and low melt viscosity of the adhesive composition.
  • the hydrogenation rate of other block copolymers is not particularly limited.
  • the adhesive composition when the adhesive composition contains a fully hydrogenated block copolymer as the other polymer, conjugation in the other polymer before hydrogenation from the viewpoint of the softness of the adhesive composition.
  • the average vinyl content in the diene monomer unit is preferably 35 mol% to 80 mol%, more preferably 40 mol% to 75 mol%, and 50 mol% to 75 mol%. Is more preferable.
  • the adhesive composition is a polymer mainly composed of a vinyl aromatic monomer unit having a weight average molecular weight (Mw) of 5,000 to 30,000 (hereinafter, “also referred to as “low molecular weight vinyl aromatic polymer”.
  • the low molecular weight vinyl aromatic polymer is preferably mainly composed of vinyl aromatic monomer units contained in the polymer block (A) in the present embodiment, and mainly composed of monomer units derived from polystyrene. It is more preferable.
  • the lower limit value of the content of the low molecular weight vinyl aromatic polymer in the adhesive composition is the partially hydrogenated block co-polymerization in this embodiment from the viewpoint of the solubility of the adhesive composition.
  • the amount is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, further preferably 2.0 parts by mass or more, and 3.0 parts by mass with respect to 100 parts by mass of the coalescence. It is still more preferable that it is above.
  • the upper limit value of the content of the low molecular weight vinyl aromatic polymer is 100 parts by mass of the partially hydrogenated block copolymer in the present embodiment from the viewpoint of the adhesiveness, tackiness, adhesion retention, etc. of the adhesive composition. It is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, further preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. It is even more preferable.
  • the low molecular weight vinyl aromatic polymer is preferably mixed with the tackifying resin after previously mixed with the partially hydrogenated block copolymer of the present embodiment.
  • the low molecular weight vinyl aromatic polymer may be prepared alone and mixed with the partially hydrogenated block copolymer of this embodiment, and at the same time as the partially hydrogenated block copolymer of this embodiment is produced. It may be prepared.
  • Mw weight average molecular weight
  • a vinyl aromatic monomer is made to remain as a living polymer mainly composed of 30,000 vinyl aromatic monomer units, and the living block copolymer and the remaining living polymer are deactivated.
  • a block copolymer having a polymer block (A) mainly comprising units and a polymer block (B) containing conjugated diene monomer units, and a low molecular weight vinyl aromatic polymer are simultaneously produced. Seisuru methods.
  • a polymerization step is used as a method for allowing a part of the vinyl aromatic monomer to remain as a living polymer mainly composed of vinyl aromatic monomer units having a weight average molecular weight (Mw) of 5,000 to 30,000. Controlling the amount of the monomer to be added, the amount of the polymerization initiator, the reaction temperature, the reaction time and the like can be mentioned. From the viewpoint of controlling the molecular weight and content of the low molecular weight vinyl aromatic polymer, the reaction start temperature when polymerizing the polymer block (A) is preferably 55 ° C. or higher and 65 ° C. or lower.
  • the reaction time for polymerizing the polymer block (A) is preferably 2 minutes or more and 5 minutes 30 seconds or less after the temperature rises due to the polymerization reaction and the temperature shows the maximum value.
  • Examples of a method for simultaneously preparing the partially hydrogenated block copolymer of the present embodiment include a polymer block mainly composed of a vinyl aromatic monomer unit by polymerizing a vinyl aromatic monomer unit.
  • a low molecular weight vinyl aromatic polymer can be produced
  • the living polymer block (A) remaining without being deactivated is polymerized with a polymer block (B) containing a conjugated diene monomer unit to prepare a partially hydrogenated block copolymer of this embodiment. can do.
  • a low molecular weight vinyl aromatic polymer can be prepared at the same time.
  • the low molecular weight vinyl aromatic polymer prepared simultaneously with the production of the partially hydrogenated block copolymer of the present embodiment is the weight average molecular weight (Mw) of the partially hydrogenated block copolymer of the present embodiment. Is measured as a low molecular component, the presence of a low molecular weight vinyl aromatic polymer can be confirmed at that time, and the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) can be measured.
  • a commercially available low molecular weight vinyl aromatic polymer may be mixed with the partially hydrogenated block copolymer of this embodiment.
  • an ionomer may be used in the range of 5% by mass or less.
  • a carboxyl group and / or a carboxylic acid anhydride is used as the other polymer in the adhesive composition in order to develop excellent adhesive strength with respect to the wet hydrophilic porous substrate. It is preferable to add acid-modified polyethylene acid-modified with a liquid rubber having a functional group in the molecule and / or a carboxylic acid anhydride in the range of 0.5 to 8% by mass.
  • a copolymer using an ⁇ -olefin or a propylene homopolymer is used as the other polymer. It is preferable to contain in the range of 20 mass% or less in a wearing composition.
  • the melting point (condition: DSC measurement, 5 ° C./min) of these polymers is preferably 110 ° C. or less, more preferably 100 ° C. or less, and further preferably 60 ° C. to 90 ° C.
  • These polymers may be resins or elastomers.
  • the adhesive composition preferably contains an olefin elastomer as the other polymer.
  • the olefin-based elastomer is not particularly limited, but, for example, those having a Tg of at least ⁇ 10 ° C. or less are preferable.
  • the olefin-type elastomer which has a block from a viewpoint of creep performance is more preferable.
  • the adhesive composition when used in a high-temperature environment, as shown in JP-A-2015-28130, JP-A-2007-56119, JP-A-2014-534303, or JP-A-2015-30854, It is preferable to improve the heat resistance by using an additive capable of radical crosslinking, epoxy crosslinking or urethane crosslinking in the wearing composition.
  • the adhesive composition is not limited to the following, but can be used for adhesive tapes and labels.
  • the adhesive tape has the adhesive composition described above.
  • the label has the adhesive composition described above.
  • the adhesive composition is preferably used by being laminated on an arbitrary substrate.
  • the substrate is not limited to the following, but for example, a film made of a thermoplastic resin, or a substrate of a non-thermoplastic resin such as paper, metal, woven fabric, or nonwoven fabric can be used.
  • a release agent may be added to the base material. Examples of the release agent include a long-chain alkyl release agent and a silicon release agent. Further, when higher weather resistance (small change in adhesive force after UV irradiation) is required, it is more preferable to use a substrate having a low ultraviolet transmittance, and the ultraviolet transmittance is 1% or less. preferable.
  • the adhesive composition is produced, for example, by mixing 20 parts by mass to 400 parts by mass of a tackifier resin with 100 parts by mass of the partially hydrogenated block copolymer of the present embodiment. Can do.
  • the mixing method is not particularly limited, and components such as a partially hydrogenated block copolymer, a tackifier resin, and another block copolymer, and oil as necessary may be mixed with a known mixer, kneader, 1 Examples thereof include a method of uniformly mixing at a predetermined mixing ratio while heating with a screw extruder, a twin screw extruder, a Banbury mixer, or the like.
  • an adhesive tape and a label can be manufactured by apply
  • coating an adhesive composition on a base material For example, T-die coating method, roll coating method, multi-bead coating method, spray coating method, etc. are mentioned.
  • the adhesive composition of the first embodiment may be either an extrusion coating (hot melt coating) method or a melt coating method, and an extrusion coating method is preferred from the viewpoint of high heat aging resistance and economy. .
  • the adhesive composition comprises various adhesive tapes, labels, pressure-sensitive thin plates, pressure-sensitive sheets, surface protective sheets and films, various pastes for fixing lightweight plastic molded products, and carpet fixing. It can be suitably used for backing glue, backing glue for fixing tiles, adhesives, sealing agents, masking agents for repainting operations, sanitary products, and the like.
  • an adhesive tape is preferable.
  • the partially hydrogenated block copolymer of the present embodiment can be used in a modified asphalt composition.
  • the partially hydrogenated block copolymer of this embodiment can be used for the binder composition for pavements.
  • the partially hydrogenated block copolymer of the present embodiment for the modified asphalt composition, it is improved with excellent softening point, low temperature elongation, melt viscosity, rutting resistance, and heat stability during storage.
  • Asphalt compositions can be provided.
  • the partially hydrogenated block copolymer of the present embodiment for a pavement binder composition the softening point, low temperature elongation, melt viscosity, rutting resistance, heat resistance stability, and heat discoloration resistance were excellent.
  • a paving binder composition can be provided.
  • the partially hydrogenated block copolymer comprises a polymer block (A) mainly composed of a vinyl aromatic monomer unit, a vinyl aromatic monomer unit and a conjugated diene monomer. It is preferable that a partially hydrogenated block copolymer (d2) having a copolymer block (B2) containing units is included.
  • the block copolymer has the above structure, it is preferable in terms of heat aging resistance, flow resistance, and aggregate peeling resistance during storage of the modified asphalt composition, and high compatibility with asphalt. In terms of softening point, low temperature elongation, melt viscosity, rutting resistance, heat resistance stability and heat discoloration resistance of the binder composition for paving.
  • the structure of the partially hydrogenated block copolymer before hydrogenation (hereinafter also referred to as “hydrogenation”) is not particularly limited.
  • Examples of the structure of the partially hydrogenated block copolymer before hydrogenation include structures represented by the following formulas (13) to (18).
  • A represents a polymer block mainly composed of a vinyl aromatic monomer unit
  • B2 includes a vinyl aromatic monomer unit and a conjugated diene monomer unit.
  • X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium
  • m, n and k represent an integer of 1 or more, preferably 1 Represents an integer of ⁇ 5.
  • the structures such as molecular weight and composition may be the same. And may be different.
  • X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium.
  • the partially hydrogenated block copolymer may be a mixture of a coupling body in which X is a residue of a coupling agent and a non-coupling body that does not have X or X is a residue of a polymerization initiator. Good. The boundary and the end of each block need not necessarily be clearly distinguished.
  • a polymer block (A) mainly composed of a vinyl aromatic monomer unit or a copolymer block containing a conjugated diene monomer unit and a vinyl aromatic monomer unit ( The distribution of the vinyl aromatic monomer unit in B2) is not particularly limited, and may be uniformly distributed, or may be distributed in a taper shape, a step shape, a convex shape, or a concave shape. In addition, a crystal part may be present in the polymer block.
  • the polymer block (A) mainly composed of vinyl aromatic monomer units a plurality of segments having different contents of vinyl aromatic monomer units may coexist.
  • the partially hydrogenated block copolymer is a vinyl aromatic monomer unit.
  • a partially hydrogenated block copolymer (d2) having one polymer block (A1) mainly composed of a hydrogenated polymer block (B2) containing a vinyl aromatic monomer unit and a conjugated diene monomer. ) Is preferably contained.
  • the lower limit of the content of the partially hydrogenated block copolymer (d2) is a low viscosity viewpoint of the modified asphalt composition and a low melt viscosity viewpoint of the paving binder composition. Therefore, it is preferably 15% by mass or more based on 100% by mass of the partially hydrogenated block copolymer, more preferably 25% by mass or more, still more preferably 50% by mass or more, and 65% by mass. % Or more is more preferable, and 70% by mass or more is most preferable.
  • the upper limit of content of a partially hydrogenated block copolymer (d2) is the viewpoint of the high softening point of a modified asphalt composition, the high low temperature elongation, and the binder composition for pavements. From the viewpoint of a high softening point and a high low temperature elongation, it is preferably 90% by mass or less, more preferably 85% by mass or less, based on 100% by mass of the partially hydrogenated block copolymer, More preferably, it is at most mass%.
  • the partially hydrogenated block copolymer is partially hydrogenated having a radial structure. It is preferable to contain a block copolymer (r2).
  • radial structure refers to a structure in which three or more polymers are bonded to the residue X, for example, A- (B2-A) n —X (n ⁇ 3). ), [(A ⁇ B2) k ] m ⁇ X (m ⁇ 3), and [(A ⁇ B2) k ⁇ A] m ⁇ X (m ⁇ 3).
  • the structure of the partially hydrogenated block copolymer (r2) having a radial structure from the viewpoint of the low viscosity of the modified asphalt composition and the low melt viscosity of the binder composition for paving, [(A-B2) k] mX, and [(A-B2) kA] mX (wherein m represents an integer of 3 to 6, and k represents an integer of 1 to 4. More preferably, m Represents an integer of 3 to 4. It is preferably at least one structure selected from the group consisting of:
  • the upper limit of the hydrogenation rate of the partially hydrogenated block copolymer is from the viewpoint of compatibility of the modified asphalt composition and the low melt viscosity of the paving binder composition. , Based on the total number of moles of the conjugated diene monomer unit, preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 85 mol% or less, and 80 mol% or less. Is even more preferable.
  • the partially hydrogenated block copolymer is more preferably 10 mol% or more, further preferably 30 mol% or more, and further preferably 40 mol% or more.
  • the hydrogenation rate of the partially hydrogenated block copolymer can be prepared by controlling the amount of hydrogenation and the hydrogenation reaction time in the hydrogenation step described later. Moreover, a hydrogenation rate can be calculated
  • the content (TS) of vinyl aromatic monomer units contained in the partially hydrogenated block copolymer is preferably 30 to 60% by mass. Partial water in view of the excellent compatibility of the modified asphalt composition, high softening point, heat stability during storage, and anti-aggregation resistance, and high rutting resistance of the binder composition for paving.
  • the lower limit of the content of the vinyl aromatic monomer unit in the additive block copolymer is preferably 30% by mass or more, more preferably 33% by mass or more, still more preferably 36% by mass or more, and 40% by mass. % Or more is even more preferable.
  • the upper limit of the content of vinyl aromatic monomer units in the block copolymer is the compatibility of the modified asphalt composition, the low melt viscosity, the flexibility, and the paving binder composition. From the viewpoint of low melt viscosity, it is preferably 60% by mass or less, more preferably 55% by mass or less, still more preferably 50% by mass or less, and even more preferably 45% by mass or less.
  • the lower limit value of the content (BS) of the polymer block (A) mainly composed of vinyl aromatic monomer units in the partially hydrogenated block copolymer is modified asphalt.
  • it is preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 17% by mass or more.
  • the upper limit of the content (BS) of the polymer block (A) mainly composed of vinyl aromatic monomer units in the partially hydrogenated block copolymer is high with asphalt.
  • the modified asphalt composition In view of compatibility, flexibility of the modified asphalt composition, and low melt viscosity of the paving binder composition, it is preferably 40% by mass or less, more preferably 35% by mass or less, and further 28% by mass or less. Preferably, it is more preferably 25% by mass or less.
  • the content (TS) of the vinyl aromatic monomer unit in the partially hydrogenated block copolymer and the content (BS) of the polymer block (A) mainly composed of the vinyl aromatic monomer unit are: It can be measured by the method described in the examples described later.
  • the molecular weight distribution of the polymer block (A) mainly composed of a vinyl aromatic monomer is 1.46 from the viewpoint of the flow resistance of the modified asphalt composition and the low melt viscosity of the binder composition for paving.
  • the following are preferable, 1.44 or less are more preferable, 1.42 or less are more preferable, and 1.40 or less are still more preferable.
  • 1.1 or more are preferable, 1.12 or more are more preferable, and 1.14 or more are more preferable from the point of the recovery
  • the above is more preferable, and 1.16 or more is even more preferable.
  • the molecular weight distribution of the polymer block (A) mainly composed of a vinyl aromatic monomer can be obtained by the following equation.
  • Molecular weight distribution of polymer block (A) mainly composed of vinyl aromatic monomer (molecular weight on the high molecular weight side at full width at half maximum of peak molecular weight of polymer block (A)) / (polymer block (A) (Molecular weight on the low molecular weight side at full width at half maximum of peak molecular weight)
  • the vinyl aromatic monomer in the copolymer block (B2) containing the conjugated diene monomer unit and the vinyl aromatic monomer unit in the partially hydrogenated block copolymer The lower limit of the unit content (RS) is from the viewpoint of the separation stability of the modified asphalt composition, the heat aging resistance during storage, the recoverability after tension, and the compatibility of the binder composition for paving.
  • the amount is preferably 5% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more based on the total mass of the copolymer block (B2).
  • the amount of the partially hydrogenated block copolymer added to the asphalt is reduced, the separation stability of the modified asphalt composition, the flexibility of the modified asphalt composition, the weather resistance, and the resistance to resistance.
  • the upper limit value of the vinyl aromatic monomer unit content (RS) in the copolymer block (B2) is the same in terms of the aggregate peelability and the high rutting resistance of the paving binder composition. 50 mass% or less is preferable on the basis of the total mass of a polymer block (B2), 35 mass% or less is more preferable, and 30 mass% or less is more preferable.
  • the vinyl aromatic monomer unit content (RS) in the copolymer block (B2) is calculated from the vinyl aromatic monomer unit content (TS) in the partially hydrogenated block copolymer. This is the ratio (mass%) of the value (TS-BS) obtained by dividing the content (BS) of the polymer block (A) mainly composed of a group monomer unit.
  • the reaction time from the start of polymerization to the end of polymerization of the copolymer block (B2) is divided into three equal parts, which are sequentially designated as a first stage, a middle stage, and a second stage.
  • the vinyl aromatic monomer unit content in the combined block (B2) is S1 (mass%)
  • the vinyl aromatic monomer unit content in the copolymer block (B2) at the end of the middle stage is S2 (mass%).
  • the vinyl aromatic monomer unit content in the copolymer block (B2) at the end of the latter stage is S3 (mass%), the compatibility of the modified asphalt composition and the binder for paving From the viewpoint of compatibility of the composition, a structure in which the relationship of S2 / S1> 1 and S3 / S2> 1 is more preferable.
  • the “at the start of polymerization” of the copolymer block (B2) is the time when the raw material monomer of the copolymer block (B) is charged into the reactor, and the “at the end of polymerization” of the copolymer block (B2). Means immediately before the raw material monomer of the copolymer block (A) is charged into the reactor.
  • the vinyl aromatic monomer unit content S1 to S3 can be measured by sampling the polymer solution at each time point at the end of the former stage, at the end of the middle stage, and at the end of the latter stage.
  • the content of the short chain vinyl aromatic monomer polymerization portion in the copolymer block (B2) is preferably 50% by mass or more.
  • the compatibility between the block copolymer and the asphalt is enhanced, and the modified asphalt composition
  • pulling of a thing, the heat aging resistance, and the aggregate peeling resistance is enhanced, and it exists in the tendency for the compatibility of the binder composition for pavements to improve.
  • the lower limit of the content of the short-chain vinyl aromatic monomer polymerization portion in the copolymer block (B2) is more preferably 70% by mass or more, further preferably 80% by mass or more, and still more. Preferably it is 90 mass% or more.
  • the upper limit of the content of the short chain vinyl aromatic monomer polymerization portion in the copolymer block (B2) is not particularly limited, but is preferably 99% by mass or less.
  • the “short chain vinyl aromatic monomer polymerization portion” is a portion in which 2 to 6 vinyl aromatic monomer units are continuous in the copolymer block (B2).
  • the content of the short-chain vinyl aromatic monomer polymerized portion is 100% by mass of the content (RS) of the vinyl aromatic monomer unit in the copolymer block (B2), and 2 to It is determined as the content of 6 consecutive vinyl aromatic monomer units.
  • RS content of the vinyl aromatic monomer unit in the copolymer block (B2)
  • the content of the short-chain vinyl aromatic monomer polymerization portion in which two vinyl aromatic monomer units are continuous is 10% by mass or more and 45% by mass. % Or less, more preferably 13% by mass or more and 42% by mass or less, and further preferably 19% by mass or more and 36% by mass or less.
  • a method for measuring the content of two consecutive vinyl aromatic monomer units will be described in the examples described later.
  • the content of the short-chain vinyl aromatic monomer polymerization portion in which three vinyl aromatic monomer units are continuous is 45% by mass or more and 80% by mass. % Or less, more preferably 45% by mass or more and 75% by mass or less, and further preferably 45% by mass or more and 65% by mass or less.
  • a method for measuring the content of three consecutive vinyl aromatic monomer units will be described in the examples described later.
  • the average vinyl content in the conjugated diene monomer unit before hydrogenation of the partially hydrogenated block copolymer in the second and third embodiments is preferably 15 mol% or more and less than 50 mol%, more preferably 18 mol%. They are 40 mol% or less, More preferably, they are 21 mol% or more and 35 mol% or less, More preferably, they are 24 mol% or more and 32 mol% or less.
  • the vinyl content in the conjugated diene monomer unit before hydrogenation is 15 mol% or more, the amount of the partially hydrogenated block copolymer added to the asphalt tends to be low. Moreover, it is preferable because the melt viscosity of the binder composition for paving tends to decrease.
  • vinyl content in the conjugated diene monomer unit before hydrogenation is less than 50 mol%, the heat aging resistance and weather resistance during storage of the modified asphalt composition tend to increase, It is preferable because the heat resistance stability and heat discoloration of the paving binder composition tend to be improved.
  • “vinyl content” refers to a conjugated diene that is incorporated in a 1,2-bond, 3,4-bond, or 1,4-bond bond mode of a conjugated diene monomer unit before hydrogenation. The ratio of the conjugated diene monomer unit incorporated by 1,2-bond and 3,4-bond to the total mol amount of the monomer unit. The vinyl content can be measured by NMR, specifically by the method described in the examples described later.
  • the vinyl content may be distributed in the copolymer block (B2) containing a conjugated diene monomer unit and a vinyl aromatic monomer unit.
  • Lower limit of difference in level of vinyl content (hereinafter also referred to as “ ⁇ vinyl content”) in (B2) containing conjugated diene monomer unit and vinyl aromatic monomer unit of partially hydrogenated block copolymer The value is preferably 5 mol% or more, more preferably 8 mol% or more, still more preferably 15 mol% or more, and 20 mol in terms of the low temperature elongation of the modified asphalt composition and the low temperature elongation of the binder composition for paving. % Or more is even more preferable.
  • the upper limit value of ⁇ vinyl content is preferably 30 mol% or less, more preferably 25 mol% or less, 20 mol% or less is more preferable, and 17 mol% or less is still more preferable.
  • the first region to the sixth region are formed so as to have an equal mass in order from the polymerization initiation terminal side, and the first region to When the vinyl content before hydrogenation in the sixth region is V 1 to V 6 , respectively, the distribution of the vinyl content is not particularly limited and may be constant and distributed in a tapered shape, a convex shape, or a concave shape. It may be.
  • the vinyl content distribution is preferably distributed in a tapered shape, a convex shape, or a concave shape. .
  • the vinyl distribution can be tapered, convex, or concave.
  • the tapered distribution means a distribution satisfying V 6 > V 5 > V 4 > V 3 > V 2 > V 1 , or V 6 ⁇ V 5 ⁇ V 4 ⁇ V 3 ⁇ V 2 ⁇ V 1 .
  • the convex distribution, V 6 and V 1 is smaller than V 5 and V 2
  • V 5 and V 2 refers to a smaller distribution than V 4 and V 3.
  • the concave profile, greater than V 6 and V 1 is V 5 and V 2
  • V 5 and V 2 means a larger distribution than V 4 and V 3.
  • the weight average molecular weight (Mw) of the partially hydrogenated block copolymer is preferably 100,000 to 500,000, more preferably 120,000 to 280,000. It is preferably 140,000 to 260,000, more preferably 160,000 to 240,000.
  • Mw weight average molecular weight
  • the softening point and rutting resistance of the modified asphalt composition tend to be further improved, and a paving binder This is preferable because the softening point and rutting resistance of the composition tend to be improved.
  • the weight average molecular weight (Mw) of the partially hydrogenated block copolymer is 280,000 or less
  • Mw weight average molecular weight
  • the low temperature elongation and discoloration resistance of the modified asphalt composition are further improved, and the melt viscosity is further reduced.
  • the processability tends to be further improved, and the melt viscosity of the paving binder composition tends to decrease, which is preferable.
  • the lower limit value of the molecular weight distribution (Mw / Mn) (the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)) of the partially hydrogenated block copolymer is added to asphalt.
  • Mw / Mn the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)
  • Mw / Mn the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the partially hydrogenated block copolymer
  • the partial hydrogenated block copolymer weight is reduced in terms of the productivity of the modified asphalt composition, the amount of addition of the partially hydrogenated block copolymer added to the asphalt, and the low melt viscosity of the paving binder composition.
  • the upper limit of the molecular weight distribution (Mw / Mn) of the coalescence is preferably 2.0 or less, more preferably 1.7 or less, still more preferably 1.4 or less, and even more preferably 1.3 or less.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the polymer can be determined by the methods described in the examples described later.
  • the lower limit of the peak temperature of loss tangent (tan ⁇ ) measured by dynamic viscoelasticity of the partially hydrogenated block copolymer is high compatibility with asphalt and short production time.
  • it is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 47 ° C. or higher, and further preferably ⁇ 44 ° C. or higher.
  • the peak temperature of the loss tangent (tan ⁇ ) of the partially hydrogenated block copolymer in terms of the short production time of the modified asphalt composition and the flexibility and the high low temperature elongation of the paving binder composition.
  • the upper limit is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, still more preferably ⁇ 15 ° C. or lower, and even more preferably ⁇ 25 ° C. or lower.
  • the peak temperature of loss tangent (tan ⁇ ) can be measured by the method described in the examples described later.
  • the peak temperature of the loss tangent (tan ⁇ ) can be adjusted to the above range depending on the vinyl bond content of the intermediate block, the vinyl aromatic monomer content, and the like.
  • the peak height of the loss tangent (tan ⁇ ) in the range of ⁇ 50 ° C. to ⁇ 5 ° C. measured by dynamic viscoelasticity of the partially hydrogenated block copolymer is the modified asphalt composition.
  • high recoverability after tension, heat aging resistance during storage, and high low temperature elongation of binder composition for paving Is preferably 0.8 or more and 1.8 or less, more preferably 0.9 or more and 1.7 or less, and even more preferably 1.0 or more and 1.5 or less.
  • the peak height of the loss tangent (tan ⁇ ) can be measured by the method described in Examples described later.
  • the peak height of the loss tangent (tan ⁇ ) can be adjusted to the above range by the vinyl bond distribution and the hydrogenation rate distribution of the intermediate block.
  • partially hydrogenated blocks in terms of compatibility of the modified asphalt composition, heat aging resistance during storage, mechanical properties, and compatibility of the paving binder composition.
  • the copolymer has at least one functional group selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group.
  • the partially hydrogenated block copolymer preferably has at least one functional group selected from the group consisting of an amino group and an amide group, and more preferably has an amino group.
  • the partially hydrogenated block copolymer preferably contains 2 mol or more of at least one functional group selected from the group consisting of an amino group and an amide group with respect to 1 mol of the molecule.
  • the lower limit value of the melt flow rate (MFR, 200 ° C., 5 kgf) of the partially hydrogenated block copolymer is the short production time of the modified asphalt composition, and the binder composition for paving In view of the low melt viscosity of the product, it is preferably 0.1 g / 10 min or more, more preferably 1 g / 10 min or more, and further preferably 2 g / 10 min or more.
  • the upper limit of the melt flow rate (MFR, 200 ° C., 5 kgf) of the partially hydrogenated block copolymer is that the amount of the partially hydrogenated block copolymer added to the asphalt is reduced, and the modified asphalt composition From the viewpoint of recoverability after tension of the object and the high rutting resistance of the paving binder composition, 50 g / 10 min or less is preferable, and 10 g / 10 min or less is more preferable.
  • the partially hydrogenated block copolymer in the second and third embodiments is obtained by, for example, polymerizing at least a conjugated diene monomer and a vinyl aromatic monomer using a lithium compound as a polymerization initiator in a hydrocarbon solvent.
  • the polymerization process, hydrogenation process, solvent removal process, and the like are as described above, and are not described here.
  • the block copolymer of the present embodiment can be used in a modified asphalt composition.
  • the modified asphalt composition of the second embodiment contains 1 part by mass or more and 20 parts by mass or less of the partially hydrogenated block copolymer described above with respect to 100 parts by mass of asphalt.
  • the content of the partially hydrogenated block copolymer in the modified asphalt composition is preferably 2 to 13 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of asphalt.
  • the asphalt is not particularly limited, and examples thereof include those obtained as a by-product during petroleum refining (petroleum asphalt), natural products (natural asphalt), or a mixture of these with petroleum.
  • the main component of asphalt is generally called bitumen.
  • the asphalt is not particularly limited, and examples thereof include straight asphalt, semi-blown asphalt, blown asphalt, solvent deasphalted asphalt, tar back, pitch, oil-added cutback asphalt, and asphalt emulsion. From the viewpoint of availability, the asphalt is preferably straight asphalt. These may be used alone or in combination. Moreover, you may add aromatic heavy mineral oils, such as petroleum-type solvent extraction oil, aroma-type hydrocarbon process oil, or an extract, to various asphalts.
  • aromatic heavy mineral oils such as petroleum-type solvent extraction oil, aroma-type hydrocarbon process oil, or an extract
  • Asphalt has a penetration (measured according to JIS-K2207) of preferably 30 or more and 300 or less, more preferably 50 or more and 250 or less, and still more preferably 60 or more and 200 or less.
  • penetration of asphalt preferably 30 or more and 300 or less, more preferably 50 or more and 250 or less, and still more preferably 60 or more and 200 or less.
  • the modified asphalt composition tends to have an excellent balance of softening point, elongation, melt viscosity, rutting resistance, and heat stability during storage.
  • the modified asphalt composition contains the above-described tackifying resin from the viewpoint of shortening the production time of the modified asphalt composition, improving the compatibility of the asphalt composition, and improving the aggregate peel resistance. It is preferable.
  • tackifying resins include rosin resins, hydrogenated rosin resins, terpene resins, coumarone resins, phenol resins, terpene-phenol resins, aromatic hydrocarbon resins, and aliphatic hydrocarbon resins. Can be mentioned.
  • the tackifier resins may be used alone or in combination of two or more. Specific examples of the tackifying resin include those described in “Rubber / Plastic Compounding Chemicals” (edited by Rubber Digest Co., Ltd.). Aromatic hydrocarbon resins are preferred from the viewpoints of high compatibility of the modified asphalt composition and improvement of aggregate peel resistance.
  • the content of the tackifying resin in the modified asphalt composition is preferably more than 0 to 200 parts by mass when the partially hydrogenated block copolymer is 100 parts by mass. More preferably, it is 3 parts by mass or more and 100 parts by mass or less. By setting it as the content of the said range, it exists in the tendency for compatibility and an aggregate peeling resistance to be improved more.
  • the modified asphalt composition preferably contains oil from the viewpoint of obtaining a low viscosity and high compatibility of the modified asphalt composition.
  • oil preferably contains paraffinic oil, naphthenic oil, aromatic oil, and the like.
  • paraffinic hydrocarbons having 50% or more of carbon atoms in the oil are called “paraffinic oil”, and the number of carbon atoms of naphthenic hydrocarbons is Those having 30% or more and 45% or less are called “naphthenic oils”, and those having aromatic hydrocarbons occupying 35% or more are called “aromatic oils”.
  • the workability of the modified asphalt composition can be improved.
  • a mineral oil softener paraffinic oil is preferable from the viewpoint of low viscosity and low temperature performance of the asphalt composition, and naphthenic oil is preferable from the viewpoint of low viscosity and high compatibility of the asphalt composition. .
  • the synthetic resin softener is not particularly limited, but for example, polybutene, low molecular weight polybutadiene, and the like are preferable.
  • the content of oil in the modified asphalt composition is the same as that of the partially hydrogenated block described above from the viewpoint of suppressing oil bleed and ensuring practically sufficient mechanical strength of the modified asphalt composition.
  • the amount is preferably 10 to 50 parts by mass, more preferably 15 to 40 parts by mass, and still more preferably 20 to 30 parts by mass with respect to 100 parts by mass of the polymer.
  • the asphalt composition preferably contains a crosslinking agent.
  • a crosslinking agent For example, sulfur, sulfur compounds, inorganic vulcanizing agents other than sulfur, oximes, nitroso compounds, polyamines, organic peroxides, resin crosslinking agents, isocyanate compounds, polyphosphoric acid, and crosslinking Auxiliaries are mentioned.
  • sulfur, a sulfur compound, and polyphosphoric acid are preferable as the crosslinking agent in view of the high softening point, compatibility, and heat aging resistance during storage of the modified asphalt composition.
  • the lower limit of the addition amount of the crosslinking agent in the modified asphalt composition is high compatibility between the conjugated diene copolymer and asphalt, and high mass resistance when the modified asphalt mixture adheres to oil. In terms of loss and high strength resistance reduction, 0.02% by mass or more is preferable, 0.04% by mass or more is more preferable, and 0.06% by mass or more is more preferable based on the total mass of the modified asphalt composition. Further, the amount of the crosslinking agent added to the modified asphalt composition is such that a modified asphalt composition having a high penetration can be obtained. About 20 to 60% by mass based on the mass may be used. The upper limit of the addition amount of the crosslinking agent in the modified asphalt composition is 1.
  • modified asphalt composition based on the total mass of the modified asphalt composition from the viewpoint of obtaining a modified asphalt composition having a high penetration and economical efficiency. 0 mass% or less is preferable, 0.4 mass% or less is more preferable, and 0.2 mass% or less is further more preferable.
  • the mixing time after adding the crosslinking agent to the modified asphalt composition is preferably 20 minutes or more, and 40 minutes or more. Is more preferable, 60 minutes or more is further preferable, and 90 minutes or more is most preferable.
  • the mixing time after adding the crosslinking agent to the modified asphalt composition is preferably 5 hours or less and more preferably 3 hours or less from the viewpoint of suppressing thermal degradation of the conjugated diene copolymer.
  • a foaming agent may be included during the production of the modified asphalt.
  • examples of the foaming agent include sodium hydrogen carbonate, ammonium carbonate, diazoaminobenzene, N, N′-dinitrosopentamethylenetetramine, 2,2′-azobis (isobutyronitrile), and the like. From the viewpoint of compatibility with the modified asphalt, diazoaminobenzene, N, N′-dinitrosopentamethylenetetramine, and 2,2′-azobis (isobutyronitrile) are preferable.
  • the addition amount of the foaming agent in the modified asphalt composition is preferably 0.1% by mass, and 0.3% by mass or more in terms of low viscosity and short production time of the modified asphalt composition. Is more preferable.
  • the amount of the foaming agent added to the modified asphalt composition is preferably 3% by mass or less from the viewpoint of economy. 2 mass% or less is more preferable, and 1 mass% or less is further more preferable.
  • the modified asphalt composition may contain other additives generally used for blending thermoplastic resins and rubber-like polymers.
  • Other additives include, for example, inorganic fillers, lubricants, mold release agents, plasticizers, antioxidants, stabilizers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, metal whiskers, etc. Agents, colorants, pigments, viscosity modifiers, anti-peeling agents, and pigment dispersants.
  • the content of other additives is not particularly limited, and is usually 50 parts by mass or less with respect to 100 parts by mass of asphalt.
  • examples of the inorganic filler include calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium sulfate, barium sulfate, silica, clay, talc, mica, wollastonite, montmorillonite, zeolite, alumina, and titanium oxide. , Magnesium oxide, zinc oxide, slug wool, and glass fiber.
  • examples of the lubricant / release agent include pigments such as carbon black and iron oxide, stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, and ethylene bisstearamide. Can be mentioned.
  • examples of the stabilizer include various stabilizers such as an antioxidant and a light stabilizer.
  • examples of the antioxidant include phenol-based antioxidants such as radical scavengers, phosphorus-based antioxidants such as peroxide decomposing agents, and sulfur-based antioxidants. Moreover, you may use the antioxidant which has both performances together. These may be used alone or in combination of two or more. Among these, a phenolic antioxidant is preferable from the viewpoint of heat aging resistance and gelation suppression of the block copolymer.
  • the antioxidant is not particularly limited.
  • examples of the light stabilizer include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′, 5′-t-butylphenyl).
  • Benzotriazole ultraviolet absorbers such as benzotriazole and 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) -5-chlorobenzotriazole; benzophenones such as 2-hydroxy-4-methoxybenzophenone UV absorbers; hindered amine light stabilizers and the like.
  • the peeling preventing agent can prevent peeling between the modified asphalt composition and the aggregate when the modified asphalt composition is mixed with the aggregate.
  • a resin acid is suitable, which is a polycyclic diterpene having 20 carbon atoms and having a carboxyl group, and is composed of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, isopimaric acid, parastriic acid Among them, rosin containing one or more of them can be mentioned.
  • the fatty acid or fatty acid amide can function as an anti-peeling agent and a lubricant.
  • the modified asphalt composition may contain a rubber component other than the partially hydrogenated block copolymer (hereinafter also simply referred to as “rubber component”).
  • rubber component other than the partially hydrogenated block copolymer include natural rubber and synthetic rubber.
  • synthetic rubber include polyisoprene rubber, polybutadiene rubber (BR), styrene butadiene rubber (SBR), modified styrene butadiene rubber (modified SBR), styrene-butadiene-styrene block copolymer (SBS), and styrene-ethylene-butylene.
  • -Olefin elastomers such as styrene block copolymer (SEBS), styrene-butylene-butadiene-styrene copolymer (SBBS), ethylene propylene copolymer (EPDM); chloroprene rubber, acrylic rubber, ethylene vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), nitrile butadiene rubber (NBR) and the like.
  • SEBS styrene block copolymer
  • SBBS styrene-butylene-butadiene-styrene copolymer
  • EPDM ethylene propylene copolymer
  • chloroprene rubber acrylic rubber, ethylene vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), nitrile butadiene rubber (NBR) and the like.
  • EVA ethylene
  • polyisoprene rubber polybutadiene rubber, styrene butadiene rubber, styrene--in terms of improving the high compatibility of the modified asphalt composition and improving the peeling resistance to the aggregate.
  • a butazine-styrene block copolymer and an ethylene vinyl acetate copolymer are preferable, and a polybutadiene rubber and a styrene-butadiene-styrene block copolymer are more preferable.
  • the rubber component other than the partially hydrogenated block copolymer may have a functional group.
  • the functional group is selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. It preferably has at least one functional group selected. Rubber components other than the partially hydrogenated block copolymer may be used alone or in combination of two or more.
  • the content of the rubber component other than the partially hydrogenated block copolymer in the modified asphalt composition is 0.5 when the partially hydrogenated block copolymer described above is 100 parts by mass. It is preferably from ⁇ 400 parts by weight, more preferably from 0.5 to 300 parts by weight, even more preferably from 1 to 200 parts by weight, and most preferably from 5 to 150 parts by weight.
  • the modified asphalt composition may contain a resin component other than the partially hydrogenated block copolymer of the present embodiment.
  • the resin component other than the partially hydrogenated block copolymer of the present embodiment is not limited to the following, but for example, polyethylene (PE), low density polyethylene (low density PE), polyvinyl chloride (PVC), polyamide (PA).
  • PS Polystyrene
  • acrylic resin polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyvinylidene fluoride (PVDF), Teflon (registered trademark) (PTFE), polyether ether ketone (PEEK)
  • PPS polyphenylene sulfide
  • PI polyimide
  • PAI polyamideimide
  • polyethylene PE
  • low density polyethylene in terms of improving the high compatibility of the modified asphalt composition and the anti-aggregation resistance
  • Low density PE Low density PE
  • PVC polyvinyl chloride
  • PA polyamide
  • the resin component other than the partially hydrogenated block copolymer may have a functional group.
  • the functional group includes at least one functional group selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. It is preferable to have.
  • Resin components other than the partially hydrogenated block copolymer may be used alone or in combination of two or more.
  • the content of the resin component other than the partially hydrogenated block copolymer in the modified asphalt composition is 0.5 when the above partially hydrogenated block copolymer is 100 parts by mass. It is preferably from ⁇ 400 parts by weight, more preferably from 0.5 to 300 parts by weight, even more preferably from 1 to 200 parts by weight, and most preferably from 5 to 150 parts by weight.
  • the modified asphalt composition comprises a vinyl aromatic monomer having a weight average molecular weight (Mw) of 5,000 to 30,000 as a resin component other than the partially hydrogenated block copolymer of the present embodiment.
  • a polymer mainly composed of a body unit (hereinafter also referred to as “low molecular weight vinyl aromatic polymer”) may be included.
  • the low molecular weight vinyl aromatic polymer is preferably mainly composed of vinyl aromatic monomer units contained in the polymer block (A) in the present embodiment, and mainly composed of monomer units derived from polystyrene. It is more preferable.
  • the lower limit of the content of the molecular weight vinyl aromatic polymer is 0.5 mass relative to 100 parts by mass of the partially hydrogenated block copolymer in terms of lowering the viscosity of the modified asphalt composition.
  • Part or more preferably 1.0 part by weight or more, more preferably 2.0 parts by weight or more, and most preferably 3.0 parts by weight or more.
  • the upper limit of the content of the low molecular weight vinyl aromatic polymer is 5.0 parts by mass or less with respect to 100 parts by mass of the partially hydrogenated block copolymer in terms of the low softening point of the modified asphalt composition.
  • 4.0 parts by mass or less is more preferable, 3.0 parts by mass or less is more preferable, and 2.0 parts by mass or less is even more preferable.
  • the preferred method for preparing the low molecular weight vinyl aromatic polymer is as described in the first embodiment, and the description is omitted here.
  • a commercially available low molecular weight vinyl aromatic polymer may be mixed with the partially hydrogenated block copolymer of this embodiment.
  • the modified asphalt composition can be produced by mixing 1 part by weight or more and 20 parts by weight or less of the partially hydrogenated block copolymer described above with respect to 100 parts by weight of asphalt.
  • the mixing method is not particularly limited, and any mixing machine can be used.
  • the mixer include a melt kneader such as an extruder, a kneader, and a Banbury mixer, a stirrer such as a vertical impeller and a side arm type impeller, a homogenizer including an emulsifier, and a pump.
  • the asphalt it is preferable to mix the asphalt, the partially hydrogenated block copolymer, and optionally the additive in the range of 140 ° C. to 220 ° C. using a stirring tank or the like.
  • the modified asphalt mixture includes the modified asphalt composition described above and an aggregate.
  • the aggregate is not limited.
  • any aggregate can be used as long as it is described in the “Asphalt Pavement Summary” published by the Japan Road Association.
  • aggregates include crushed stone, cobblestone, gravel, steel slag, and the like.
  • asphalt-coated aggregates and recycled aggregates obtained by coating these aggregates with asphalt can also be used.
  • similar granular materials, artificial fired aggregates, fired foam aggregates, artificial lightweight aggregates, ceramic grains, loxobite, aluminum grains, plastic grains, ceramics, emery, construction waste, fibers, etc. can also be used. .
  • Aggregates are generally classified into coarse aggregates, fine aggregates, and fillers.
  • Coarse aggregate is an aggregate that remains on a 2.36 mm sieve, and is generally No. 7 crushed stone with a particle size range of 2.5-5 mm, No. 6 crushed stone with a particle size range of 5-13 mm, and a particle size range of 13-20 mm No. 5 crushed stone, and No. 4 crushed stone having a particle size range of 20 to 30 mm.
  • an aggregate obtained by mixing one or two or more kinds of coarse aggregates having various particle size ranges, or a synthesized aggregate can be used. These coarse aggregates may be coated with about 0.3 to 1% by mass of straight asphalt with respect to the aggregates.
  • Fine aggregate means an aggregate that passes through a 2.36 mm sieve and stops at a 0.075 mm sieve.
  • Fine aggregate means an aggregate that passes through a 2.36 mm sieve and stops at a 0.075 mm sieve.
  • river sand, hill sand, mountain sand, sea sand, screenings, crushed stone dust, silica sand, artificial Examples include sand, glass cullet, foundry sand, and recycled aggregate crushed sand.
  • the filler is an aggregate that passes through a 0.075 mm sieve, and examples thereof include screening filler, stone powder, slaked lime, cement, incinerator ash, clay, talc, fly ash, and carbon black.
  • screening filler stone powder, slaked lime, cement, incinerator ash, clay, talc, fly ash, and carbon black.
  • rubber powder, cork powder, wood powder, resin powder, fiber powder, pulp, artificial aggregate, etc. can be used as long as they pass through a 0.075 mm sieve. can do.
  • the coarse aggregate, the fine aggregate, or the filler may be used alone, and generally, two or more kinds are mixed and used.
  • the asphalt mixture of the present embodiment can be manufactured by mixing at least the modified asphalt composition of the present embodiment and the aggregate.
  • the mixing method is not particularly limited.
  • the mixing temperature of the modified asphalt composition and the aggregate can usually be in the range of 120 ° C. or higher and 200 ° C. or lower.
  • the content of the aggregate in the asphalt mixture is preferably in the range of 85% by mass or more and 98% by mass or less from the viewpoint of obtaining an asphalt mixture having a high mass loss loss at the time of oil adhesion and a high strength reduction, and 90% by mass. % To 97% by mass is more preferable.
  • modified asphalt composition and modified asphalt mixture of the present embodiment include Edited by White Oak, Shell Bitumen U. K. Can be used in a variety of applications as described in The Shell Bitumen Handbook, published in the UK in 1990.
  • Other applications include waterproof sheets, roof coatings, primer adhesives for waterproof sheets, sealing adhesives for paving, adhesives for recycled asphalt paving, cold prepared asphalt concrete.
  • These include binders, fiberglass mat binders, concrete slip coats, protective coats for concrete, pipelines and cracking of steel parts.
  • the pavement form using the modified asphalt mixture of the present embodiment is not limited to the following, but is a dense-graded pavement, drainage pavement, water-permeable pavement, dense-gap asphalt pavement, crushed stone mastic asphalt pavement, color pavement, semi-flexibility Pavement, water-retaining pavement, and thin pavement are listed.
  • each pavement form is not particularly limited, and examples thereof include a heat method, a medium temperature method, and a room temperature method.
  • the asphalt mixture used for dense-graded pavement has a total amount of aggregate of 100% by mass, 40 to 55% by mass of coarse aggregate, and 40 to 55% by mass of fine aggregate. %, And 3 to 10% by mass of filler is preferable.
  • the modified asphalt mixture used for the dense-graded pavement is 5 to 7 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate, and in the present embodiment with respect to 100 parts by mass of asphalt.
  • the partially hydrogenated block copolymer is preferably 3 to 5.5 parts by mass.
  • the modified asphalt mixture used for drainage pavement is 60 to 85 mass% coarse aggregate, 5 to 5 It preferably contains 20% by mass and 3-20% by mass of filler.
  • the modified asphalt mixture used for drainage pavement is 4 to 6 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate, and in the present embodiment with respect to 100 parts by mass of asphalt.
  • the partially hydrogenated block copolymer is preferably 5 to 10 parts by mass.
  • the modified asphalt mixture used in the water-permeable pavement is composed of 60 to 85% by weight of coarse aggregate, 5 to 20% by weight of fine aggregate, and 100% by weight of the aggregate. It is preferable to contain 3 to 20% by mass.
  • the modified asphalt mixture used in the water-permeable pavement is 4 to 6 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate, and in the present embodiment with respect to 100 parts by mass of asphalt.
  • the partially hydrogenated block copolymer is preferably more than 0 to 6 parts by weight.
  • the modified asphalt mixture used for dense-graded gap pavement is 50-60 mass% of coarse aggregate, with the total amount of aggregate being 100 mass%. Further, it is preferable to contain 30-40% by mass of fine aggregate and 3-10% by mass of filler.
  • the modified asphalt mixture used for dense grain gap pavement is 4.5 to 6 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate.
  • the partially hydrogenated block copolymer in the embodiment is preferably 5 to 12 parts by mass.
  • the modified asphalt mixture used in the crushed stone mastic asphalt pavement has a total amount of aggregate of 100% by mass, and the coarse aggregate 55 to 70 It preferably contains 15% by mass, fine aggregate 15-30% by mass, and filler 5-15% by mass.
  • the modified asphalt mixture used for the crushed stone mastic asphalt pavement is 5.5 to 8 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate.
  • the partially hydrogenated block copolymer of the embodiment is preferably 4 to 10 parts by mass.
  • the modified asphalt mixture used for water retention pavement has a total aggregate amount of 100% by mass, coarse aggregate 60-85% by mass, fine aggregate 5 It is preferable to contain 20 to 20% by mass and filler 3 to 20% by mass.
  • the modified asphalt mixture used for the water-retaining pavement is 4 to 6 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate, and in the present embodiment with respect to 100 parts by mass of asphalt.
  • the partially hydrogenated block copolymer is preferably 4 to 10 parts by mass.
  • the modified asphalt mixture used for water-retaining pavement preferably has a porosity of about 15 to 20% and is filled with a water retention material such as cement or gypsum.
  • the modified asphalt mixture used for thin-layer pavement is 60 to 85% by mass of coarse aggregate and 5 to 20 of fine aggregate, with the total amount of aggregate being 100% by mass. It is preferable to contain 3% by mass and 3-20% by mass of filler.
  • the modified asphalt mixture used for the thin pavement is 4 to 6.5 parts by mass of the modified asphalt composition with respect to 100 parts by mass of the aggregate.
  • the partially hydrogenated block copolymer in the form is preferably 4 to 8 parts by mass.
  • the modified asphalt mixture used for the thin pavement is preferably No. 7 crushed stone having a coarse aggregate particle size of 2.5 to 5 mm.
  • the modified asphalt composition of the second embodiment can also be suitably used as a composition for asphalt waterproof sheets.
  • the softening point and low-temperature bending characteristics of the asphalt waterproof sheet can be improved.
  • the content of the partially hydrogenated block copolymer of the present embodiment is such that the asphalt and partially hydrogenated block copolymer have a high softening point and resistance to cracking at a lower temperature.
  • the proportion of the partially hydrogenated block copolymer is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 9% by mass or more.
  • the total amount of asphalt and partially hydrogenated block copolymer is 100% by mass, and the proportion of partially hydrogenated block copolymer is 20% by mass or less Preferably, it is 17 mass% or less, and more preferably 14 mass% or less.
  • the asphalt waterproof sheet composition includes various polymers, tackifiers, softeners, antioxidants, weathering agents, inorganic fillers, if necessary. Lubricants, mold release agents, and crosslinking agents may be used.
  • asphalt with a penetration of 80 or more from the viewpoint of high low temperature useability of the asphalt tarpaulin, low melt viscosity of the composition for asphalt tarpaulin, and high workability Is preferable, asphalt having a penetration of 100 or more is more preferable, asphalt having a penetration of 130 or more is more preferable, and asphalt having a penetration of 160 or more is more preferable.
  • an asphalt having a penetration of 30 to 150 is preferable so that the viscosity of the composition for the asphalt waterproof sheet does not become too low.
  • the following asphalts are more preferable, and asphalts having a penetration of 80 to 100 are even more preferable.
  • the asphalt waterproof sheet composition preferably contains a softening agent.
  • oil is preferable, and process oil is more preferable.
  • the construction method of the asphalt waterproof sheet there are a heat method, a torch method, a self-adhesion method, and a composite method. Since the composition for asphalt waterproof sheets using the block copolymer of the embodiment has high heat aging resistance, it can be suitably used for a heat method and a torch method.
  • the partially hydrogenated block copolymer of the present embodiment can be used for a paving binder composition.
  • the binder composition for paving of the third embodiment contains 20 to 70% by mass of a tackifier resin, 20 to 70% by mass of oil, and 2 to 15% by mass of the partially hydrogenated block copolymer of the present embodiment. .
  • the binder composition for paving of the third embodiment contains black asphalt because it contains a specific amount of the partially hydrogenated block copolymer of the present embodiment and is excellent in heat discoloration and transparency during production. Compared with the modified asphalt composition to be developed, the coloring of the natural color of the material is remarkable without adding a colorant such as a pigment. For this reason, in 3rd embodiment, the binder composition for pavement also includes pavement that expresses the natural color of the material without blending a colorant such as a pigment. From the viewpoint of color development, the paving binder composition of the third embodiment preferably contains a colorant such as a pigment and is positively colored.
  • the lower limit value of the content of the partially hydrogenated block copolymer of the present embodiment in the binder composition for paving is a high softening point, high low-temperature elongation, and high rutting resistance.
  • the binder composition may be 2% by mass or more in 100% by mass, preferably 4% by mass or more, and more preferably 6% by mass or more.
  • the upper limit value of the content of the partially hydrogenated block copolymer of the present embodiment is 15% by mass or less in 100% by mass of the binder composition for paving in terms of the low melt viscosity of the binder composition for paving. What is necessary is just 13 mass% or less, and 11 mass% or less is more preferable.
  • tackifying resin a tackifying resin similar to the tackifying resin described in the second embodiment can be used.
  • the lower limit of the content of the tackifying resin in the paving binder composition is preferably 20% by mass or more, and 25% by mass in 100% by mass of the paving binder composition in terms of low melt viscosity. % Or more is more preferable, and 30% by mass or more is more preferable.
  • the upper limit of the content of the tackifying resin is preferably 70% by mass or less in 100% by mass of the pavement binder composition in terms of high low temperature elongation and high rutting resistance of the pavement binder composition, 60 mass% or less is more preferable, and 55 mass% or less is further more preferable.
  • the same oil as that mentioned in the second embodiment can be used.
  • the lower limit of the content of oil in the paving binder composition is preferably 20% by mass or more, more preferably 25% by mass or more in 100% by mass of the paving binder composition in terms of low melt viscosity. Is more preferable, and 30% by mass or more is more preferable.
  • the upper limit of the oil content is preferably 70% by mass or less in 100% by mass of the pavement binder composition in terms of high low temperature elongation and high rutting resistance of the pavement binder composition, and 65% by mass. % Or less is more preferable, and 60% by mass or less is more preferable.
  • examples of the pigment include inorganic pigments such as at least one pigment selected from the group consisting of iron oxide, chromium oxide, iron hydroxide, and titanium oxide.
  • the content of the pigment in the pavement binder composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more in 100% by mass of the pavement binder composition in terms of color developability. Is more preferable. Moreover, 3 mass% or less is preferable in 100 mass% of pavement binder compositions, and 1 mass% or less is more preferable at the point of compatibility of the binder composition for pavements, and economical efficiency.
  • the binder composition for paving according to the third embodiment preferably contains an anti-peeling agent from the viewpoint of improving the adhesiveness to the aggregate (also referred to as “anti-peeling resistance”).
  • an anionic compound such as a higher fatty acid or a metal salt of a higher fatty acid represented by an inorganic compound such as slaked lime, an acidic organic phosphorus compound, maleic anhydride, a maleated organic compound, or the like
  • an inorganic compound such as slaked lime, an acidic organic phosphorus compound, maleic anhydride, a maleated organic compound, or the like
  • Bipolar polymer compound having both cation and anion in one molecule represented by fatty acid salt of aliphatic amine and the like.
  • an ambipolar polymer compound is preferable from the viewpoint of high aggregate peel resistance of the paving binder composition. Examples of commercially available products include Neogard S-100 (trade name, manufactured by Toho Chemical Co., Ltd.).
  • 0.1 mass% or more is preferable in 100 mass% of pavement binder compositions, and content of the peeling inhibitor in a binder composition for pavement is the point of aggregate peeling resistance, 0 More preferably 3% by mass or more. Moreover, 3 mass% or less is preferable in 100 mass% of pavement binder compositions, and 1 mass% or less is more preferable at the point of compatibility of the binder composition for pavements, and economical efficiency.
  • the paving binder composition may contain an additive.
  • the additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
  • thermoplastic resins and rubber-like polymers for example, inorganic fillers, dyes, lubricants, mold release agents, plasticizers, antioxidants. , Stabilizers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, metal whiskers and other reinforcing agents, viscosity modifiers, and pigment dispersants.
  • content of the additive in the binder composition for pavements Although it can select suitably, It is 50 mass parts or less normally with respect to 100 mass parts of binder compositions for pavements.
  • the pavement binder composition is produced, for example, by mixing 20 to 70% by mass of a tackifier resin, 20 to 70% by mass of oil, and 2 to 15% by mass of the partially hydrogenated block copolymer of the present embodiment. can do.
  • the mixing method is not particularly limited.
  • a stirring tank (the stirring method includes a stirrer such as a vertical impeller, a side arm type impeller, a homogenizer including an emulsifier, or a stirring by a pump), an extruder, a kneader, and a banbury. They can be mixed with a melt kneader such as a mixer.
  • the mixing temperature is generally in the range of 140 ° C to 220 ° C.
  • the paving binder mixture includes the paving binder composition described above and an aggregate.
  • the aggregate is not limited, and the same aggregate as that used in the modified asphalt mixture mentioned in the second embodiment can be used.
  • the aggregate is preferably a colored aggregate.
  • the paving binder mixture can be produced by mixing the paving binder composition and the aggregate.
  • the mixing method is not particularly limited, and the same method as the method for producing a paving binder composition can be used.
  • the mixing temperature of the paving binder composition and the aggregate can usually be in the range of 120 ° C. or higher and 200 ° C. or lower.
  • the content of the aggregate in the binder mixture for paving is not particularly limited, but from the viewpoint of obtaining an asphalt composition having a high mass loss loss when oil adheres and a high strength reduction, it is 85 mass% or more and 98 mass%. % Or less is preferable, and it is more preferably 97% by mass or more and 90% by mass or less.
  • the paving binder composition and the paving binder mixture can be used, for example, for color paving.
  • Color pavement forms include, but are not limited to, dense grained pavement, drainage pavement, water permeable pavement, dense grain gap asphalt pavement, crushed stone mastic asphalt pavement, semi-flexible pavement, water retention pavement, thin layer pavement. It is done.
  • each pavement form is not particularly limited, and examples thereof include a heat method, a medium temperature method, and a room temperature method.
  • the block copolymer was precipitated and recovered by adding a large amount of methanol to the reaction solution containing the block copolymer before the hydrogenation reaction. Subsequently, this block copolymer was extracted with acetone, and the block copolymer was vacuum-dried. This was used as a sample for 1 H-NMR measurement, and the vinyl content of the block copolymer was measured.
  • the partially hydrogenated block copolymer was precipitated and recovered.
  • the partially hydrogenated block copolymer was extracted with acetone, and the partially hydrogenated block copolymer was vacuum dried. This was used as a sample for 1 H-NMR measurement, and the hydrogenation rate was measured.
  • the BS measurement sample was analyzed by GPC.
  • the analysis conditions were the same as the following (measurement of weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the block copolymer).
  • the continuous vinyl aromatic monomer unit content was determined from the obtained molecular weight distribution.
  • the apparatus is manufactured by Waters Co., Ltd.), and a calibration curve (prepared from the standard molecular weight of standard polystyrene) obtained in advance from measurement of commercially available standard polystyrene was prepared. )
  • a differential molecular weight distribution (B) The maximum peak height in the molecular weight range of 800 to 3000 in this differential molecular weight distribution (B) was defined as H. That is, the larger the H, the narrower the hydrogenation rate distribution in the molecular weight range of 800 to 3000, and the smaller the H, the wider the hydrogenation rate distribution.
  • the length of the perpendicular L drawn from the peak peak of the maximum molecular weight component to the baseline is L1
  • the differential molecular weight distribution of the decomposition product obtained by ozonolysis The distance on the perpendicular L between the intersection point where the differential molecular weight distribution (B) intersects the perpendicular L and the base line when the B) is superimposed on the differential molecular weight distribution (A) is defined as L2.
  • the differential molecular weight distribution (B) was calculated by the analysis method described above.
  • the differential molecular weight distribution (A) was calculated in the same manner as the differential molecular weight distribution (A) using the following analytical equipment.
  • GPC HLC-8320GPC (manufactured by Tosoh Corporation)
  • Detector UV Detection sensitivity: 3 mV / min
  • Sampling pitch 600 msec
  • Solvent THF Flow rate; 0.6 mm / min Concentration; 0.5 mg / mL Column temperature: 40 ° C Injection volume: 20 ⁇ L
  • the weight average molecular weight (Mw) of the block copolymer is based on the molecular weight of the peak of the chromatogram using a calibration curve (created using the peak molecular weight of standard polystyrene) obtained from measurement of commercially available standard polystyrene. Asked.
  • the measurement software was HLC-8320 EcoSEC collection, and the analysis software was HLC-8320 analysis.
  • the molecular weight distribution (Mw / Mn) of the block copolymer was determined from the ratio of the weight average molecular weight (Mw) in terms of polystyrene and the number average molecular weight (Mn). The measurement conditions are shown below.
  • GPC HLC-8320GPC (manufactured by Tosoh Corporation) Detector; RI Detection sensitivity: 3 mV / min Sampling pitch: 600 msec
  • Partially hydrogenated block copolymer (P-1)] (First stage) After charging 43.6 kg of cyclohexane into the reactor and adjusting the temperature to 60 ° C., a cyclohexane solution containing 1980 g of styrene as a monomer (monomer concentration 22% by mass) was added over about 3 minutes, and then 77 mL of n-butyllithium was added. , N, N, N ′, N′-tetramethylethylenediamine (hereinafter referred to as TMEDA) was added thereto to start the reaction.
  • TMEDA N, N, N ′, N′-tetramethylethylenediamine
  • the obtained coupling polymer has a content (TS) of vinyl aromatic monomer units (styrene monomer units) and a content of blocks (polystyrene blocks) mainly composed of vinyl aromatic monomer units. Both (BS) were 15 mass%, and the vinyl content of the conjugated diene monomer unit (vinyl content in butadiene) was 34 mol%.
  • the obtained coupling polymer was continuously hydrogenated at 80 ° C. to obtain a partially hydrogenated block copolymer (P-1).
  • P-1 partially hydrogenated block copolymer
  • 80% by weight of the total amount of the block copolymer is continuously fed from the top of the reactor, 20% by weight of the total amount is continuously fed from the middle of the reactor, and the whole amount is continuously fed from the bottom of the reactor.
  • hydrogen was continuously supplied from the lower part of the reactor separately from the outlet of the block copolymer.
  • the hydrogen pressure in the hydrogenation polymerization vessel was 0.8 MPa, and the average residence time was 30 minutes.
  • a stabilizer (octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) is added to 100 parts by mass of the partially hydrogenated block copolymer (P-1). 25 parts by weight were added.
  • the hydrogenation rate of the partially hydrogenated block copolymer (P-1) was 40 mol%, and the hydrogenation rate distribution H was 0.150.
  • H2 was 0.001 and L2 / L1 was 0.000365.
  • MFR 200 degreeC, 5 kgf
  • a partially hydrogenated block copolymer (P-2) was obtained in the same manner as in the production of the partially hydrogenated block copolymer (P-1) except that the hydrogenation method was changed to batch.
  • the hydrogenation reaction was started at 80 ° C. from the state where the entire amount of the block copolymer was supplied to the reactor, the hydrogen pressure in the hydrogenation reactor was 0.8 MPa, and the reaction time was 30 minutes. Met.
  • the content of the vinyl aromatic monomer unit contained in the partially hydrogenated block copolymer (P-2) is 15 parts by weight, and the content of the polymer block mainly composed of the vinyl aromatic monomer unit is 15 parts by weight.
  • the hydrogenation rate of parts by weight of the partially hydrogenated block copolymer B was 40 mol%, and the hydrogenation rate distribution H was 0.59. Moreover, H2 was 0.1 and L2 / L1 was 0.00015. MFR (200 degreeC, 5 kgf) was 2.0 g / 10min.
  • adhesive tapes were produced by the following method.
  • the melted adhesive composition was cooled to room temperature, dissolved in toluene, and coated on a transparent polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m as a substrate with an applicator. Thereafter, toluene was completely evaporated at room temperature for 30 minutes and in an oven at 70 ° C. for 7 minutes to prepare an adhesive tape having a transparent PET film having a thickness of 30 ⁇ m as a substrate.
  • PET polyethylene terephthalate
  • the tackiness is determined by J.H. Dow [Proc. Inst. Rub. Ind. , 1.105 (1954)].
  • An adhesive tape cut to a length of 10 cm was attached to a slope on a glass plate with an inclination of 30 degrees with the adhesive layer surface facing upward.
  • the size of the sphere with the largest diameter that stops at is measured.
  • the ball tack was evaluated according to the following evaluation criteria based on the size of the sphere.
  • the size of the sphere having the maximum diameter that stops on the pressure-sensitive adhesive tape is larger than 7/32 inches, it is judged that the adhesive composition can be used practically without any problem, and the evaluation is “ ⁇ ”.
  • the size of the sphere having the maximum diameter that stops on the adhesive tape is larger than 4/32 inches and smaller than 7/32 inches, it is evaluated as ⁇ .
  • the size of the sphere having the maximum diameter that stops on the adhesive tape was 4/32 inches or less, it was marked as x. 7/32 inch ⁇ ball size: ⁇ 4/32 inch ⁇ ball size ⁇ 7/32 inch: ⁇ Ball size ⁇ 5/32 inch: ⁇
  • Method 1 for measuring peel strength of JIS Z0237 It was measured in accordance with a method for measuring peel strength of 180 ° against the test plate.
  • the adhesive tape produced as described in “[Example of production of adhesive tape]” was cut into a width of 25 mm to prepare an adhesive tape sample having a width of 25 mm.
  • the adhesive tape sample was attached to a stainless steel plate, and the 180 ° peeling force was measured at a peeling speed of 300 mm / min. Based on the obtained peeling force, the adhesive strength of the adhesive composition was evaluated according to the following criteria. Evaluation was made into ⁇ , ⁇ , ⁇ , and ⁇ from the good order. If it is more than ⁇ , it can be used practically without problems as an adhesive composition. Peeling force (N / 10mm) 6 or more: ⁇ 5 or more and less than 6: ⁇ Less than 5: ⁇
  • the obtained block copolymer was continuously hydrogenated at 80 ° C. to obtain a partially hydrogenated block copolymer (Q-1).
  • Q-1 partially hydrogenated block copolymer
  • 80% by weight of the total amount of the block copolymer is continuously fed from the top of the reactor, 20% by weight of the total amount is continuously fed from the middle of the reactor, and the whole amount is continuously fed from the bottom of the reactor.
  • hydrogen was continuously supplied from the lower part of the reactor separately from the outlet of the block copolymer.
  • the hydrogen pressure in the hydrogenation polymerization vessel was 1.2 MPa, and the average residence time was 60 minutes.
  • the stabilizer (octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) is added to 100 parts by mass of the partially hydrogenated block copolymer (Q-1). 0.25 parts by weight were added.
  • the content of the vinyl aromatic monomer unit contained in the partially hydrogenated block copolymer (Q-1) is 45% by mass, and the content of the polymer block mainly composed of the vinyl aromatic monomer unit. Is 30% by mass, the average vinyl content in the conjugated diene monomer unit before hydrogenation is 25 mol%, the hydrogenation rate is 90 mol%, and the hydrogenation rate distribution H is 0.186. there were. H2 was 0.001 and L2 / L1 was 0.000365. The molecular weight distribution measured to determine H and L2 / L1 is shown in FIGS.
  • the differential molecular weight distribution (A) before ozonolysis is indicated by a broken line
  • the differential molecular weight distribution (B) after ozonolysis is indicated by a solid line.
  • the peak temperature of loss tangent (tan ⁇ ) measured by dynamic viscoelasticity of the partially hydrogenated block copolymer (Q-1) is ⁇ 14 ° C.
  • the tan ⁇ peak height is 1.7
  • the weight average molecular weight (Mw) was 200,000.
  • the peak temperature and peak height of the loss tangent (tan ⁇ ) were determined by the following method.
  • a partially hydrogenated block copolymer (Q-2) was obtained in the same manner as in the production of the partially hydrogenated block copolymer (Q-1) except that the hydrogenation method was changed to batch.
  • the hydrogenation reaction was started at 80 ° C. from the state where the entire amount of the block copolymer was supplied to the reactor, the hydrogen pressure in the hydrogenation reactor was 1.2 MPa, and the reaction time was 60 minutes. Met.
  • the content of the vinyl aromatic monomer unit contained in the partially hydrogenated block copolymer (Q-2) is 45% by mass, and the content of the polymer block mainly composed of the vinyl aromatic monomer unit.
  • the average vinyl content in the conjugated diene monomer unit before hydrogenation is 25 mol%
  • the hydrogenation rate is 89 mol%
  • the hydrogenation rate distribution H is 0.562. there were.
  • H2 was 0.01
  • L2 / L1 was 0.00015.
  • the molecular weight distribution measured to determine H and L2 / L1 is shown in FIG. In this figure, the differential molecular weight distribution (A) before ozonolysis is indicated by a broken line, and the differential molecular weight distribution (B) after ozonolysis is indicated by a solid line.
  • the peak temperature of loss tangent (tan ⁇ ) of the partially hydrogenated block copolymer (Q-2) measured by dynamic viscoelasticity is ⁇ 14 ° C.
  • the tan ⁇ peak height is 1.7
  • the weight average molecular weight is 200,000. Met.
  • Examples 7 to 11 and Comparative Examples 3 to 4 (Preparation of modified asphalt composition) 500 g of asphalt (straight asphalt 60-80 (manufactured by Nippon Oil Corporation)) was put into a 750 mL metal can, and the metal can was sufficiently immersed in an oil bath at 180 ° C. Next, the asphalt in a molten state was Each partially hydrogenated block copolymer, SBS, and SIS were added in small amounts while stirring at the ratio shown in Table 2. After each material was completely charged, it was stirred for 60 minutes at a rotational speed of 3000 rpm for modification. Asphalt compositions were prepared, and the evaluation results of each of these blended compositions and each modified asphalt composition are shown in Table 2.
  • Example 12 to 14 and Comparative Examples 5 to 6 (Preparation of color paving composition)
  • a 750 mL metal can with 160 g of tackifier resin (trade name: Imabu P-125 (manufactured by Idemitsu Kosan Co., Ltd., softening point 125 ° C., DCPD / aromatic copolymer hydrogenated petroleum resin)) and oil (polycyclic) 208 g of an aromatic hydrocarbon content: 1.9% by mass, aromatic content: 9%, kinematic viscosity at 40 ° C. of 480 mm 2 / s, flash point: 310 ° C.), 180 g
  • the metal can was sufficiently immersed in an oil bath at °C.
  • each partially hydrogenated block copolymer was added little by little with stirring during mixing of the molten tackifier resin and oil.
  • Each material was completely charged and then stirred for 60 minutes at a rotational speed of 3000 rpm to prepare a paving binder composition.
  • Table 3 shows the evaluation results of each of these blending compositions and pavement binder compositions.
  • Examples 15 to 17 and Comparative Examples 7 to 8 (Preparation of composition for asphalt waterproof sheet) 400 g of asphalt (straight asphalt 100-150 (manufactured by Shin Nippon Oil Co., Ltd.)) was introduced into a 750 mL metal can, and the metal can was sufficiently immersed in an oil bath at 180 ° C. Next, each partially hydrogenated block copolymer and naphthenic oil (polycyclic aromatic hydrocarbon content: 1.9% by mass, aromatic content: Mineral heavy oil (DYNA process oil NS90S) having 9%, kinematic viscosity at 40 ° C. of 480 mm 2 / s and flash point: 310 ° C. was added little by little with stirring. After completely charging each material, it was stirred for 90 minutes at a rotational speed of 3000 rpm to prepare a composition for asphalt waterproof sheet. Table 4 shows the evaluation results for each of these blended compositions and each asphalt waterproof sheet composition.
  • Table 4 shows the evaluation results for each of these blended compositions and each asphalt waterproof sheet
  • Softening point of modified asphalt composition and pavement binder composition (ring and ball method)
  • the softening point of the modified asphalt composition and the paving binder composition was measured according to JIS-K2207.
  • a 3.5 g sphere is placed in the center of the sample, and the liquid temperature is increased at a rate of 5 ° C./min. Measured the temperature when touching the bottom plate of the ring base.
  • 80 ° C or higher ⁇ 70 ° C or higher and lower than 80 ° C: ⁇ 60 degreeC or more and less than 70 degreeC: ⁇ 50 ° C or higher and lower than 60 ° C: ⁇ Less than 50 ° C: XX If the measured value is 60 ° C. or higher ( ⁇ or higher), it can be used as a modified asphalt composition and a paving binder composition without any practical problems.
  • ⁇ Measuring device ARES manufactured by Rheometric Scientific ⁇ Measurement conditions Measurement temperature: 60 °C Angular velocity: 10 rad / sec Measurement mode: Parallel plate (diameter 50mm ⁇ ) Sample amount: 2g -Evaluation criteria G * / sin ⁇ is 5,000 Pa or more: ⁇ 4,000 Pa or more and less than 5,000 Pa: ⁇ 3,000 Pa or more and less than 4,000 Pa: ⁇ 2,000 Pa to less than 3,000: ⁇ Less than 2,000 Pa: XX When G * / sin ⁇ is 3,000 mPa ⁇ s or more ( ⁇ or more), it can be used as a modified asphalt composition and a pavement binder composition without problems in practice.
  • Thermal stability during storage of modified asphalt composition and paving binder composition separation characteristics
  • the modified asphalt composition was poured into an aluminum can having an inner diameter of 50 mm and a height of 130 mm up to the upper limit of the aluminum can, and heated in an oven at 180 ° C. for 24 hours. Thereafter, the aluminum can was taken out and allowed to cool naturally.
  • 4 cm from the lower end and 4 cm from the upper end of the modified asphalt composition lowered to room temperature were collected, the softening points of the upper layer portion and the lower layer portion were measured, and the difference between the softening points was used as a measure for high-temperature storage stability.
  • the binder composition for paving was evaluated in the same manner. Difference in softening point between upper layer and lower layer is less than 2 ° C: ⁇ 2 ° C or higher and lower than 5 ° C: ⁇ 5 ° C or more and less than 10 ° C: ⁇ 10 ° C or higher and lower than 20 ° C: ⁇ 20 ° C or higher: XX If the difference between the softening points of the upper layer portion and the lower layer portion is less than 10 ° C. ( ⁇ or more), the modified asphalt composition and the binder composition for paving can be used without any practical problems.
  • B value (b value after mixing adhesive composition) by color difference meter is within 2: ⁇ 2 or more and less than 5: ⁇ 5 or more and less than 8: ⁇ 8 or more and less than 10: ⁇ 10 or more: XX If the b value difference is less than 5 ( ⁇ or more), it can be used as a pavement binder composition without any practical problems.
  • a measured value is 110 degreeC or more ((triangle
  • the asphalt waterproof sheet composition was pressed at 150 ° C. to prepare a sheet having a thickness of 2 mm. Cut the sheet size into 20 mm x 100 mm size, soak in a dry ice-ethanol solution adjusted for 10 minutes or more, and bend the sheet in the longitudinal direction to a metal rod with a diameter of 20 mm immediately after removing the sheet. The sheet was visually observed for cracks and cracks. The minimum temperature of the dry ice-ethanol solution was measured so that no cracking or cracking of the sheet occurred.
  • the partially hydrogenated block copolymer of the present invention is industrially applicable to an adhesive composition, a modified asphalt composition, and a paving binder composition, although not limited to the following.
  • the adhesive composition of the present invention is not limited to the following, but various adhesive tapes / labels, pressure-sensitive thin plates, pressure-sensitive sheets, surface protective sheets / films, back paste for fixing various lightweight plastic molded products, carpet fixing It has industrial applicability as a back paste, tile back adhesive, adhesives, sealing agents, masking agents for paint repainting operations, and sanitary products.
  • the modified asphalt composition of the present invention is not limited to the following, but has industrial applicability in the fields of road pavement, roofing, asphalt waterproof sheet, sealant and the like, and can be suitably used particularly in the field of road pavement.
  • the binder composition for paving of the present invention has industrial utility for color paving applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesive Tapes (AREA)
  • Road Paving Structures (AREA)

Abstract

本発明に係る部分水添ブロック共重合体は、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含有する重合体ブロック(B)とを有する部分水添ブロック共重合体であって、オゾン分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(B)において、分子量800以上分子量3000以下の領域における最大ピーク高さを水素添加率分布Hとするとき、当該Hが0.01~0.5である。

Description

部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物
 本発明は、部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物に関する。
 ブロック共重合体は、粘接着組成物、アスファルト組成物、及び舗装用バインダ組成物等に広く利用されている。
 粘接着組成物においては、近年、環境汚染を低減し、労働環境を改善するという観点から、ホットメルト型粘接着組成物が広く使用されるようになってきている。一般に、ホットメルト型粘接着組成物は、ブロック共重合体を含有する。このようなブロック共重合体としては、例えば、ビニル芳香族単量体単位と共役ジエン単量体単位とを有するブロック共重合体が挙げられる。
 例えば、特許文献1及び2には、ブロック共重合体として、スチレンとブタジエンとのトリブロック共重合体とジブロック共重合体とを用いた粘接着組成物が記載されている。
 特許文献3には、スチレンとブタジエンとの水素添加ブロック共重合体を用いた粘接着組成物が記載されている。特許文献3の実施例と比較例には、スチレンとブタジエンとの水添ブロック共重合体と、粘着付与剤と、オイルとを含む種々の配合比率の粘接着組成物が記載されている。
 特許文献4には、スチレンとブタジエンとのブロック共重合体、及び粘着付与樹脂を含む粘接着組成物であって、スチレンとブタジエンとのブロック共重合体として、部分水添ブロック共重合体と非水添ブロック共重合体とを併用した粘接着組成物、及び部分水添ブロック共重合体と完全水添ブロック共重合体とを併用した粘接着組成物が記載されている。
 一方、アスファルト組成物の技術分野において、道路舗装、遮音シート、アスファルトルーフィング等のアスファルト組成物の用途に応じた性能を付加するため、アスファルト組成物に改質剤として種々のブロック共重合体を添加した改質アスファルト組成物が広く利用されている。このような改質剤としてのブロック共重合体としては、例えば、共役ジエン単量体単位とビニル芳香族単量体単位とを有するブロック共重合体が利用されている。
 例えば、特許文献5~7には、共役ジエン単量体とビニル芳香族単量体とを共重合した水添ブロック重合体を含有する改質アスファルト組成物が記載されている。
 また、歩道、車道、公園等の舗装上には、意匠性、区画の明確化、道路表示、滑り防止等のために、舗装用バインダ組成物が塗工されることがある。舗装用バインダ組成物は、一般的には、ブロック共重合体と、粘着付与樹脂と、オイルとを含有し、更に顔料等の着色剤を含有することにより彩色されている。
 例えば、特許文献8には、非芳香族系重質鉱油、石油樹脂、熱可塑性エラストマー、エチレンコポリマー、両極性型高分子化合物のはく離防止剤を加熱、混合して得られるカラー舗装用バインダ組成物が記載されている。
特開昭64-81877号公報 特開昭61-278578号公報 国際公開第2001/85818号 特開平7-157738号公報 特開2005-126485号公報 米国特許出願公開第2003/0149140号公報 特開2012-246378号公報 特許第5059595号公報
 粘接着組成物には、高いタック性、高い粘着力、及び高い粘着保持力、及び粘接着組成物製造時の高い耐熱変色性等が求められる。また、改質アスファルト組成物には、高い軟化点、高い低温伸度、低い溶融粘度、高い耐わだち掘れ性、優れた低温折曲げ性、及び改質アスファルト組成物貯蔵時における高い耐熱安定性等が求められる。さらに、舗装用バインダ組成物には、高い軟化点、高い低温伸度、低い溶融伝度、高い耐わだち掘れ性、舗装用バインダ組成物貯蔵時の高い耐熱安定性、及び舗装用バインダ組成物製造時の高い耐熱変色性等が求められる。しかしながら、特許文献1~8に記載の技術では、上述した要求に十分に応えることができていない。
 本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、粘接着組成物、改質アスファルト組成物、舗装用バインダ組成物等とした際に、各々良好な物性を付与できる部分水添ブロック共重合体を提供することを目的とする。さらに、上記部分水添ブロック共重合体を含む粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、特定の水素添加率分布を有する部分水添ブロック共重合体により、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、以下のとおりである。
[1]
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含有する重合体ブロック(B)とを有する部分水添ブロック共重合体であって、
 オゾン分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(B)において、分子量800以上分子量3000以下の領域における最大ピーク高さを水素添加率分布Hとするとき、当該Hが0.01~0.5である、部分水添ブロック共重合体。
[2]
 オスミウム酸分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(C)を、前記微分分子量分布(B)から引いて得られる微分分子量分布(D)において、分子量200以上1000000以下の領域における総面積に対する最大ピーク高さを水素添加率分布H2とするとき、当該H2が0.001~0.007である、[1]に記載の部分水添ブロック共重合体。
[3]
 前記部分水添ブロック共重合体の水素添加率が、前記共役ジエン単量体単位の全モル数を基準として95モル%以下である、[1]又は[2]に記載の部分水添ブロック共重合体。
[4]
 前記部分水添ブロック共重合体の水素添加率が、前記共役ジエン単量体単位の全モル数を基準として10モル%以上である、[1]~[3]のいずれかに記載の部分水添ブロック共重合体。
[5]
 前記部分水添重合体の微分分子量分布(A)におけるピークであって、最大分子量成分に対応するピークの頂点から、ベースラインに引いた垂線Lの長さをL1とし、
 前記微分分子量分布(B)を前記微分分子量分布(A)に重ね合わせたときに微分分子量分布(B)が垂線Lと交差する交点とベースラインとの垂線L上の距離をL2とするとき、
 L2/L1が0.02未満である、[1]~[4]のいずれかに記載の部分水添ブロック共重合体。
[6]
 前記部分水添ブロック共重合体のビニル芳香族単量体単位含有量が10質量%~60質量%である、[1]~[5]のいずれかに記載の部分水添ブロック共重合体。
[7]
 前記部分水添ブロック共重合体が、ビニル芳香族単量体単位を主体とする一つの重合体ブロック(A1)と、共役ジエン単量体単位を主体とする一つの重合体ブロック(B1)とを有する部分水添ブロック共重合体(d1)を含有する、[1]~[6]のいずれかに記載の部分水添ブロック共重合体。
[8]
 前記部分水添ブロック共重合体100質量%を基準として、前記部分水添ブロック共重合体(d1)を20質量%~80質量%含有する、[7]に記載の部分水添ブロック共重合体。
[9]
 前記部分水添ブロック共重合体が、ラジアル構造を有する部分水添ブロック共重合体(r1)を含有する、[7]又は[8]に記載の部分水添ブロック共重合体。
[10]
 [1]~[9]のいずれかに記載の部分水添ブロック共重合体100質量部と、粘着付与樹脂20質量部~400質量部と、を含有する、粘接着組成物。
[11]
 [10]に記載の粘接着組成物を有する、粘接着性テープ。
[12]
 [10]に記載の粘接着組成物を有する、ラベル。
[13]
 前記部分水添ブロック共重合体が、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位及びビニル芳香族単量体単位を含む共重合体ブロック(B2)とを有する部分水添ブロック共重合体(d2)を含有する、[1]~[6]に記載の部分水添ブロック共重合体。
[14]
 前記部分水添ブロック共重合体の重量平均分子量(Mw)が10万~50万である、[13]に記載の部分水添ブロック共重合体。
[15]
 前記部分水添ブロック共重合体の動的粘弾性測定による損失正接(tanδ)のピーク温度が-50℃以上-5℃以下である、[13]又は[14]に記載の部分水添ブロック共重合体。
[16]
 前記部分水添ブロック共重合体の動的粘弾性測定による損失正接(tanδ)のピーク温度が-50℃以上-5℃以下であり、ピーク高さの値が0.7超1.6以下である、[13]~[15]のいずれかに記載の部分水添ブロック共重合体。
[17]
 アスファルト100質量部に対し、
 [1]~[6],[13]~[16]のいずれかに記載の部分水添ブロック共重合体1質量部以上20質量部以下を含有する、改質アスファルト組成物。
[18]
 [17]に記載の改質アスファルト組成物と、骨材とを含む、改質アスファルト混合物。
[19]
 粘着付与樹脂20~70質量%と、
 オイル20~70質量%と、
 [1]~[6],[13]~[16]のいずれかに記載の部分水添ブロック共重合体2~15質量%と、
 を含有する、舗装用バインダ組成物。
 本発明の部分水添ブロック共重合体によれば、粘接着組成物、改質アスファルト組成物、舗装用バインダ組成物等とした際に、各々良好な物性を付与できる。すなわち、各々良好な物性を有する粘接着組成物、改質アスファルト組成物、及び舗装用バインダ組成物を提供することができる。
図1は、実施例において得られた部分水添ブロック共重合体Q-1の分子量分布を測定した結果を示すグラフである。 図2は、L2を図示する目的で、図1の一部を拡大して示すグラフである。 図3は、実施例において得られた部分水添ブロック共重合体Q-2の分子量分布を測定した結果を示すグラフである。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
<部分水添ブロック共重合体>
 本実施形態の部分水添ブロック共重合体は、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含有する重合体ブロック(B)とを有する部分水添ブロック共重合体であって、オゾン分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(B)において、分子量800以上分子量3000以下の領域における最大ピーク高さを水素添加率分布Hとするとき、当該Hが0.01~0.5である。本実施形態の部分水添ブロック共重合体は、このように構成されているため、粘接着組成物、改質アスファルト組成物、舗装用バインダ組成物等とした際に、各々良好な物性を付与できる。すなわち、粘接着組成物とする際には、当該粘接着組成物の製造時の耐熱変色性に優れ、さらに高いタック性、高い粘着力、及び高い粘着保持力を付与できる。また、改質アスファルト組成物とする際には、当該改質アスファルト組成物の貯蔵時の耐熱安定性に優れ、さらに高い軟化点、高い低温伸度、低い溶融粘度、高い耐わだち掘れ性及び優れた低温折曲げ性を付与できる。さらに、舗装用バインダ組成物とする際には、当該舗装用バインダ組成物の製造時の耐熱変色性に優れるとともに貯蔵時の耐熱安定性に優れ、さらに高い軟化点、高い低温伸度、低い溶融粘度、高い耐わだち掘れ性を付与できる。
 本実施形態において、「水素添加率分布H」とは、部分水添ブロック共重合体の水素添加率の分布を表す指標であり、以下のようにして求めることができる。
 部分水添ブロック共重合体のオゾン分解法により得られる分解物の微分分子量分布(B)の分子量800以上分子量3000以下の領域における最大ピーク高さをHとする。
 Hの値は分子量800以上分子量3000以下における水素添加率分布の指標であり、Hの値が小さいほど水素添加率分布が広いことを示す。本発明者が検討したところによると、分子量800以上分子量3000以下における水素添加率分布が、粘接着組成物、改質アスファルト組成物及び舗装用バインダ組成物の物性に影響する。オゾン分解法による微分分子量分布の測定は、後述する実施例に記載の方法により行うことができる。
 部分水添ブロック共重合体の水素添加率分布Hは、0.01以上0.5以下であればよく、0.05以上0.45以下であることが好ましく、0.1以上0.4以下であることがより好ましい。なお、水素添加率分布Hは、後述する重合工程における極性化合物やランダム化剤の多段添加、水添工程における反応器へ複数の重合体供給口を設けた、連続水添手法、連続水添時の滞留時間及び撹拌条件、部分水添ブロック共重合体ブレンド等で調整することができる。
 本発明者らは、鋭意検討の結果、部分水添ブロック共重合体の水素添加率分布Hが0.01以上0.5以下であることにより、粘接着組成物の粘着力、タック性、粘着保持力、及び製造時の耐熱変色性を改善することができ、改質アスファルト組成物の軟化点、低温伸度、溶融粘度、耐わだち掘れ性、低温折曲げ性、及び貯蔵時における耐熱安定性を改善することができ、また、舗装用バインダ組成物の軟化点、低温伸度、溶融伝度、耐わだち掘れ性、貯蔵時の耐熱安定性、及び製造時の耐熱変色性を改善することができることを見出した。その理由は、以下に限定する趣旨ではないが、水素添加率分布が広いことで中間ブロックの溶解度パラメータに幅ができ、種々配合剤との相容性を良化させるからと考えられる。
 本明細書において、ブロック共重合体を構成する構成単位のことを「~単量体単位」といい、重合体の材料として記載する場合は「単位」を省略し、単に「~単量体」と記載する。また、本明細書において、「主体とする」とは、ブロック中、所定の単量体単位の含有量が70質量%以上であることをいう。ビニル芳香族単量体単位を主体とする重合体ブロックは、所定の単量体単位の含有量が70質量%以上であればよく、好ましくは80質量%、更に好ましくは90質量%以上である。また、本明細書において、「共役ジエン単量体」は、水素添加された共役ジエン単量体も包含する。
 本実施形態において、部分水添ブロック共重合体の水素添加(以下、「水添」ともいう)前の構造としては、以下に限定されないが、例えば、以下の式(1)~(6)で表される構造が挙げられる。
(A-B)n・・・(1)
B-(A-B)n・・・(2)
A-(B-A)n・・・(3)
A-(B-A)n-X・・・(4)
[(A-B)km-X・・・(5)
[(A-B)k-A]m-X・・・(6)
 上記式(1)~(6)中、Aは、ビニル芳香族単量体単位を主体とする重合体ブロックを表し、Bは、共役ジエン単量体単位を含む重合体ブロックを表し、Xは、カップリング剤の残基、又は多官能有機リチウム等の重合開始剤の残基を表し、m、n及びkは、1以上の整数を表し、好ましくは1~5の整数を表す。
 水素添加前のブロック共重合体中に重合体ブロック(A)及び(B)が複数存在している場合には、各々の分子量や組成等の構造は同一であってもよいし、異なっていてもよい。部分水添ブロック共重合体は、Xがカップリング剤の残基であるカップリング体と、Xを有しない又はXが重合開始剤の残基である非カップリング体との混合物であってもよい。各ブロックの境界や最端部は必ずしも明瞭に区別される必要はない。例えば、ビニル芳香族単量体単位と共役ジエン単量体単位との共重合体ブロックが存在してもよい。
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)中や、共役ジエン単量体単位を含む重合体ブロック(B)中のビニル芳香族単量体単位の分布は、特に限定されず、均一に分布していても、テーパー状、階段状、凸状、あるいは凹状に分布していてもよい。重合体ブロック中に、結晶部が存在していてもよい。ビニル芳香族単量体単位を主体とする重合体ブロック(A)中には、ビニル芳香族単量体単位の含有量の異なるセグメントが複数個共存していてもよい。
 共役ジエン単量体単位としては、特に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエンに由来する共役ジエン単量体単位が挙げられる。このなかでも、好ましくは、1,3-ブタジエン、及びイソプレンに由来する共役ジエン単量体単位が挙げられる。1,3-ブタジエンに由来する共役ジエン単量体単位がより好ましい。共役ジエン単量体単位は1種単独で使用してもよいし、2種以上を併用してもよい。
 ビニル芳香族単量体単位としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレンに由来するビニル芳香族単量体単位が挙げられる。このなかでも経済性の観点から、スチレンに由来するビニル芳香族単量体単位が好ましい。ビニル芳香族単量体単位は1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態において、「部分水添」とは、共役ジエンの水素添加率が共役ジエン単量体単位の全モル数を基準として、0モル%より大きく97モル%以下であることをいう。部分水添ブロック共重合体の水素添加率は、この範囲であれば特に限定されない。
 本実施形態において、粘接着組成物および、改質アスファルト組成物、舗装用バインダ組成物の粘度の観点から、部分水添ブロック共重合体の水素添加率の上限値は、共役ジエン単量体単位の全モル数を基準として95モル%以下であることが好ましく、93モル%以下であることがより好ましく、90モル%以下であることがさらに好ましい
 本実施形態において、粘接着組成物および、改質アスファルト組成物、舗装用バインダ組成物の耐熱安定性の観点から、部分水添ブロック共重合体の水素添加率の下限値は、共役ジエン単量体単位の全モル数を基準として10モル%以上であることが好ましく、15モル%以上であることがより好ましく、20モル%以下であることがさらに好ましい。
 部分水添ブロック共重合体の水素添加率は、後述する水添工程における水素添加量や水添反応時間を制御することにより調整することができる。また、水素添加率は後述する実施例記載の方法で求めることができる。
 また、オスミウム酸分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(C)を、前記微分分子量分布(B)から引いて得られる微分分子量分布(D)において、分子量200以上1000000以下の領域における総面積に対する最大ピーク高さを水素添加率分布H2とするとき、当該H2が0.001~0.007であることが好ましい。
 H2の値は分子量200以上1000000以下の領域における水素添加率分布の指標であり、H2の値が小さいほどこの分子量領域での水素添加率分布が広いことを示す。オゾン分解法による分子量分布の測定、及びオスミウム酸分解法による分子量分布の測定は、本明細書の実施例の欄に詳述する。
 H2は水添率及び中間ランダムスチレンの分布の指標であり、0.001~0.007の範囲にあることで粘接着組成物、改質アスファルト組成物及び塗装用バインダ組成物の長期性能安定性が改善される傾向にある。同様の観点から、H2は、0.001以上0.0055以下であることがより好ましく、0.001以上0.004以下であることがさらに好ましい。水素添加率分布H2は、後述する水添工程における連続水添、連続水添時の滞留時間及び撹拌条件、部分水添ブロック共重合体ブレンド等で調整することができる。
 さらに、前記部分水添重合体の微分分子量分布(A)におけるピークであって、最大分子量成分に対応するピークの頂点から、ベースラインに引いた垂線Lの長さをL1とし、前記微分分子量分布(B)を前記微分分子量分布(A)に重ね合わせたときに微分分子量分布(B)が垂線Lと交差する交点とベースラインとの垂線L上の距離をL2とするとき、L2/L1が0.02未満であることが好ましく、0.018未満であることがより好ましく、0.015未満であることがさらに好ましい。
 L2/L1が0.02未満であることは、水添率が100%の成分が少ないことを表しており、水添率分布が広くなることと共に、高粘度成分が少なくなり、各種物性と粘度のバランスに優れることを意味する。
 微分分子量分布(A)及び、微分分子量分布(B)は、後述する実施例に記載の方法により測定することができる。
 本実施形態において、粘接着組成物および、改質アスファルト組成物、舗装用バインダ組成物の粘度の観点から、部分水添ブロック共重合体中のビニル芳香族単量体単位の含有量は、10質量%~60質量%であることが好ましく、13質量%~58質量%であることがより好ましく、15質量%~55質量%であることがさらに好ましい。
<部分水添ブロック共重合体の製造方法>
 部分水添ブロック共重合体の製造方法としては、以下に限定されないが、例えば、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体とを重合させて、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含有する重合体ブロック(B)とを有するブロック共重合体を得る重合工程を行い、重合工程の後、得られたブロック共重合体の共役ジエン単量体単位中の二重結合の一部に水素を添加する水素添加工程を行い、得られた部分水添ブロック共重合体を含む溶液の溶媒を脱溶剤する脱溶剤工程を行うことにより、製造することができる。
 重合工程における水素添加工程を連続式(以下、「連続水添」ともいう)で行うこと、連続水添における反応器への重合体の供給口を複数個所設けること、滞留時間及び撹拌条件を調整すること、部分水添ブロック共重合体のブレンドを行うこと等により、水素添加率分布Hを0.01以上0.5以下にすること、水素添加率分布H2を0.001以上0.007以下にすること、及びL2/L1を0.02未満にすることがより容易となる。
 連続水添における反応器への重合体の供給口を複数個所設けることとしては、特に限定されないが、例えば、反応器上部から重合体全量の80%を連続的に供給し、全量の20%を反応器中部から連続的に供給し、水添反応後の重合体全量を反応器下部から連続的に取り出すなどの手法をとることができる。
 連続水添における滞留時間及び撹拌条件としては、特に限定されないが、例えば水素圧を、好ましくは0.1MPa~5.0MPa、より好ましくは0.3MPa~4.0MPaの状態で、平均滞留時間を、好ましくは5分~3時間、より好ましくは10分~2時間にすることで水素添加率分布Hを0.01以上0.5以下にすること、水素添加率分布H2を0.001以上0.007以下にすること、及びL2/L1を0.02未満にすることがより容易になる。また、撹拌数や撹拌翼の形状によっても、水素添加率分布Hを0.01以上0.5以下に調整し、水素添加率分布H2を0.001以上0.007以下に調整し、さらにL2/L1を0.02未満に調整することもできる。なお、水素圧を高くし、平均滞留時間を短くすることで、H及びH2は大きくなる傾向にあり、L2/L1は小さくなる傾向にある。逆に水素圧を低くし、平均滞留時間を長くすることで、H及びH2は小さくなる傾向にあり、L2/L1は大きくなる傾向にある。
 部分水添ブロック共重合体のブレンドの態様としては、特に限定されないが、例えば前記連続水添の条件を変更すること、又は回分式水添を実施することにより、2種以上の水添率分布を持つ部分水添ブロック共重合体を得て、それぞれをウエット又はドライ条件で混合することで得ることができる。
 重合工程では、例えば、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体とを含む単量体を重合させて、ブロック共重合体を得ることができる。
 重合工程において用いる炭化水素溶媒としては、特に限定されないが、例えば、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等が挙げられる。これらは1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。
 重合工程において重合開始剤として用いるリチウム化合物としては、特に限定されないが、例えば、有機モノリチウム化合物、有機ジリチウム化合物、有機ポリリチウム化合物等の分子中に一個以上のリチウム原子を結合した化合物が挙げられる。このような有機リチウム化合物としては、特に限定されないが、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウム等が挙げられる。これらは1種のみを単独で使用してもよく、2種以上を併用してもよい。
 共役ジエン単量体としては、特に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の1対の共役二重結合を有するジオレフィンが挙げられる。このなかでも、好ましくは、1,3-ブタジエン、イソプレンが挙げられる。また、機械強度の観点から、1,3-ブタジエンがより好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
 ビニル芳香族単量体としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等のビニル芳香族化合物が挙げられる。このなかでも経済性の観点から、スチレンが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 上記共役ジエン単量体及びビニル芳香族単量体の他、共役ジエン単量体及びビニル芳香族単量体と共重合可能な他の単量体を用いることもできる。
 重合工程においては、重合速度の調整、重合した共役ジエン単量体単位のミクロ構造(シス、トランス、及びビニルの比率)の調整、共役ジエン単量体とビニル芳香族単量体との反応比率の調整等を目的として、極性化合物やランダム化剤を使用してもよい。水素添加率分布H、水素添加率分布H2、及びL2/L1を小さくする目的で、極性化合物やランダム化剤を多段添加することが好ましい。
 極性化合物やランダム化剤としては、特に限定されないが、例えば、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン(以下、「TMEDA」ともいう)等のアミン類;チオエーテル類、ホスフィン類、ホスホルアミド類、アルキルベンゼンスルホン酸塩、カリウムやナトリウムのアルコキシド等が挙げられる。
 ブロック共重合体の重合工程で実施する重合方法としては、特に限定されず、公知の方法を適用できる。公知の方法としては、例えば、特公昭36-19286号公報、特公昭43-17979号公報、特公昭46-32415号公報、特公昭49-36957号公報、特公昭48-2423号公報、特公昭48-4106号公報、特公昭56-28925号公報、特開昭59-166518号公報、特開昭60-186577号公報等に記載された方法が挙げられる。
 ブロック共重合体は、カップリング剤を用いてカップリングしてもよい。カップリング剤としては、特に限定されないが、2官能以上の任意のカップリング剤を用いることができる。2官能のカップリング剤としては、特に限定されないが、例えば、ジクロロシラン、モノメチルジクロロシラン、ジメチルジクロロシランなどの2官能性ハロゲン化シラン;ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシランなどの2官能性アルコキシシラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタンなどの2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズなどの2官能性ハロゲン化スズ;ジブロモベンゼン、安息香酸、CO、2―クロロプロペンなどが挙げられる。
 3官能のカップリング剤としては、特に限定されないが、例えば、トリクロロエタン、トリクロロプロパンなどの3官能性ハロゲン化アルカン;メチルトリクロロシラン、エチルトリクロロシランなどの3官能性ハロゲン化シラン;メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどの3官能性アルコキシシラン;などが挙げられる。
 4官能のカップリング剤としては、特に限定されないが、例えば、四塩化炭素、四臭化炭素、テトラクロロエタンなどの4官能性ハロゲン化アルカン;テトラクロロシラン、テトラブロモシランなどの4官能性ハロゲン化シラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性アルコキシシラン;テトラクロロスズ、テトラブロモスズなどの4官能性ハロゲン化スズ;などが挙げられる。
 5官能以上のカップリング剤としては、特に限定されないが、例えば、1,1,1,2,2-ペンタクロロエタン,パークロロエタン、ペンタクロロベンゼン、パークロロベンゼン、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテルなどのポリハロゲン化炭化水素化合物が挙げられる。その他、エポキシ化大豆油、2~6官能のエポキシ基含有化合物、カルボン酸エステル、ジビニルベンゼンなどのポリビニル化合物を用いることもできる。カップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いることもできる。
 重合工程の後に、ブロック共重合体の活性末端を失活する失活工程を行うことが好ましい。活性水素を有する化合物と活性末端とを反応させることで、重合体の活性末端を失活することができる。活性水素を有する化合物としては、特に限定されないが、経済性の点で、アルコール、及び水等を挙げることができる。
 水素添加工程では、重合工程で得られたブロック共重合体の共役ジエン単量体単位中の二重結合の一部に水素を添加する。水素添加工程に使用される水素添加触媒としては、特に限定されないが、例えば、Ni、Pt、Pd、Ru等の金属を、カーボン、シリカ、アルミナ、ケイソウ土等の担体に担持させた、担持型不均一系触媒;Ni、Co、Fe、Cr等の有機塩又はアセチルアセトン塩と有機Al等の還元剤とを用いる、いわゆるチーグラー型触媒;Ru、Rh等の有機金属化合物等のいわゆる有機錯触媒;及びチタノセン化合物に還元剤として有機Li、有機Al、有機Mg等を用いる均一触媒等が挙げられる。このなかでも、経済性、重合体の着色性あるいは接着力の観点から、チタノセン化合物に還元剤として有機Li、有機Al、有機Mg等を用いる均一触媒系が好ましい。
 水素添加工程の方法としては、特に限定されないが、例えば、特公昭42-8704号公報、特公昭43-6636号公報に記載された方法や、好ましくは特公昭63-4841号公報及び特公昭63-5401号公報に記載された方法が挙げられる。具体的には、不活性溶媒中で水素添加触媒の存在下に水素添加工程を行い、部分水添ブロック共重合体溶液を得ることができる。水素添加工程は、高い水添活性の観点から、失活工程の後に行うことが好ましい。水素添加工程は、バッチ式、連続式、或いはそれらの組み合わせのいずれでも行うことができる。部分水添ブロック共重合体の水素添加率分布Hの値を0.01以上0.5以下の範囲にすること、水素添加率分布H2を0.001以上0.007以下にすること、及びL2/L1を0.02未満にすることが容易になる点で、水素添加工程は、連続式であることが好ましい。また、L2/L1をより小さくする観点からは、バッチ式であることが好ましい。
 また、水素添加率分布を0.01以上0.5以下の範囲に制御することを更に容易にする観点から、失活工程後の重合体溶液を反応器に供給する供給口を複数設けるのが好ましい。すなわち、好ましい態様においては、複数の溶液供給口を有する反応器に水素添加触媒と不活性溶媒を充填しておき、連続的に水素を供給しながら、複数の供給口から反応器に重合体溶液を供給する。
 水素添加工程において、ビニル芳香族単量体単位の共役結合が水素添加されてもよい。全ビニル芳香族単量体単位中の共役結合の水素添加率の上限値は、ビニル芳香族中の不飽和基全量を基準として、例えば30mol%以下、10mol%以下、又は3mol%以下とすることができ、下限値は、例えば0.1mol%以上とすることができ、又は0mol%であってもよい。
 重合開始剤、単量体、カップリング剤、又は停止剤として、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群から選択される少なくとも一つの官能基を有する化合物を用いて、得られる部分水添ブロック共重合体に、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群から選択される少なくとも一つの官能基を付加することが好ましい。
 官能基を含む重合開始剤としては、窒素含有基を含有する重合開始剤が好ましい。窒素含有基を含有する重合開始剤としては、以下に限定されないが、例えば、ジオクチルアミノリチウム、ジ-2-エチルヘキシルアミノリチウム、エチルベンジルアミノリチウム、(3-(ジブチルアミノ)-プロピル)リチウム、ピペリジノリチウム等が挙げられる。
 官能基を含む単量体としては、窒素含有基を含有する単量体が好ましい。窒素含有基を含有する単量体としては、以下に限定されないが、例えば、N,N-ジメチルビニルベンジルアミン、N,N-ジエチルビニルベンジルアミン、N,N-ジプロピルビニルベンジルアミン、N,N-ジブチルビニルベンジルアミン、N,N-ジフェニルビニルベンジルアミン、2-ジメチルアミノエチルスチレン、2-ジエチルアミノエチルスチレン、2-ビス(トリメチルシリル)アミノエチルスチレン、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン、N,N-ジメチル-2-(4-ビニルベンジロキシ)エチルアミン、4-(2-ピロリジノエチル)スチレン、4-(2-ピペリジノエチル)スチレン、4-(2-ヘキサメチレンイミノエチル)スチレン、4-(2-モルホリノエチル)スチレン、4-(2-チアジノエチル)スチレン、4-(2-N-メチルピペラジノエチル)スチレン、1-((4-ビニルフェノキシ)メチル)ピロリジン、及び1-(4-ビニルベンジロキシメチル)ピロリジン等が挙げられる。
 官能基を含むカップリング剤及び停止剤としては、前述のカップリング剤及び停止剤の内、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群から選択される少なくとも一つの官能基を含むカップリング剤及び停止剤が挙げられる。
 この中でも窒素含有基又は酸素含有基を含有するカップリング剤及び停止剤が好ましい。窒素含有基又は酸素含有基を含有するカップリング剤及び停止剤としては、以下に限定されないが、例えば、N,N,N’,N’-テトラグリシジルメタキシレンジアミン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、テトラグリシジル-p-フェニレンジアミン、テトラグリシジルジアミノジフェニルメタン、ジグリシジルアニリン、γ-カプロラクトン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルジエチルエトキシシラン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、及びN-メチルピロリドン等が挙げられる。
 脱溶剤工程では、部分水添ブロック共重合体を含む重合体溶液の溶媒を脱溶剤する。脱溶剤の方法としては、特に限定されないが、スチームストリッピング法、及び直接脱溶媒法が挙げられる。
 脱溶剤工程により得られる部分水添ブロック共重合体中の残存溶媒量は、少なければ少ないほど好ましく、例えば2質量%以下が好ましく、0.5質量%以下がより好ましく、0.2質量%以下がさらに好ましく、0.05質量%以下がよりさらに好ましく、0.01質量%以下が一層好ましく、より一層好ましくは0質量%である。経済性の観点から、通常、部分水添ブロック共重合体中の残存溶媒量は、0.01質量%~0.1質量%の範囲であることが好ましい。
 部分水添ブロック共重合体の耐熱老化性やゲル化抑制の観点から、部分水添ブロック共重合体に酸化防止剤を添加することが好ましい。酸化防止剤としては、例えばラジカル補捉剤等のフェノール系酸化防止剤、過酸化物分解剤等のリン系酸化防止剤、及びイオウ系酸化防止剤等が挙げられる。また、両性能を併せ持つ酸化防止剤を使用してもよい。これらは単独で用いてもよく、二種以上を併用してもよい。このなかでも、部分水添ブロック共重合体の耐熱老化性やゲル化抑制の観点から、フェノール系酸化防止剤が好ましい。
 部分水添ブロック共重合体の着色防止や機械強度向上の観点から、脱溶剤工程の前に、部分水添ブロック共重合体を含む溶液中の金属を除去する脱灰工程、部分水添ブロック共重合体を含む溶液のpHを調整する中和工程を行ってもよく、例えば、酸の添加、及び/又は炭酸ガスの添加を行ってもよい。
<粘接着組成物及びこれに用いる部分水添ブロック共重合体>
 第一実施形態において、本実施形態の部分水添ブロック共重合体は、粘接着組成物に用いることができる。
 粘接着組成物は、例えば粘接着性テープ、ラベル、又はおむつ等の組み立てに用いられ、高い粘着力、高いタック性、及び高い粘着保持力、並びに製造時の耐熱変色性が求められる。なお、本発明者らの鋭意検討の結果、特許文献1~4に記載されているような粘接着組成物では、粘着力、タック性、粘着保持力、及び製造時の耐熱変色性において十分であるとはいえず、なお一層改善の余地があることが分かっている。
 一方、第一実施形態において、本実施形態の部分水添ブロック共重合体を、粘接着組成物に用いることにより、粘着力、タック性、粘着保持力、及び粘接着組成物製造時の耐熱変色性に優れた粘接着組成物を提供することができる。
<部分水添ブロック共重合体>
 第一実施形態において、粘接着組成物の接着性、タック性、接着保持力、及び製造時の耐熱変色性の点で、部分水添ブロック共重合体は、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を主体とする重合体ブロック(B1)とを有する部分水添ブロック共重合体であることが好ましい。
 第一実施形態において、部分水添ブロック共重合体の水素添加前の構造としては、以下に限定されないが、例えば、下記の式(7)~(12)で表される構造が挙げられる。
(A-B1)n・・・(7)
B1-(A-B1)n・・・(8)
A-(B1-A)n・・・(9)
A-(B1-A)n-X・・・(10)
[(A-B1)km-X・・・(11)
[(A-B1)k-A]m-X・・・(12)
 上記式(7)~(12)中、Aは、ビニル芳香族単量体単位を主体とする重合体ブロックを表し、B1は、共役ジエン単量体単位を主体とする重合体ブロックを表し、Xは、カップリング剤の残基、又は多官能有機リチウム等の重合開始剤の残基を表し、m、n及びkは、1以上の整数を表し、好ましくは1~5の整数を表す。
 第一実施形態において、水素添加前のブロック共重合体中に重合体ブロック(A)及び(B1)が複数存在している場合には、各々の分子量や組成等の構造は同一であってもよいし、異なっていてもよい。上記式(7)~(12)中、Xは、カップリング剤の残基又は多官能有機リチウム等の重合開始剤の残基を表す。部分水添ブロック共重合体は、Xがカップリング剤の残基であるカップリング体と、Xを有しない又はXが重合開始剤の残基である非カップリング体との混合物であってもよい。各ブロックの境界や最端部は必ずしも明瞭に区別される必要はない。例えば、ビニル芳香族単量体単位と共役ジエン単量体単位との共重合体ブロックが存在してもよい。
 第一実施形態において、ビニル芳香族単量体単位を主体とする重合体ブロック(A)中や、共役ジエン単量体単位を主体とする重合体ブロック(B1)中のビニル芳香族単量体単位の分布は、特に限定されず、均一に分布していても、テーパー状、階段状、凸状、あるいは凹状に分布していてもよい。また、重合体ブロック中に、結晶部が存在していてもよい。ビニル芳香族単量体単位を主体とする重合体ブロック(A)中には、ビニル芳香族単量体単位の含有量の異なるセグメントが複数個共存していてもよい。
 第一実施形態において、製造時の
溶解時間短縮の観点から、部分水添ブロック共重合体は、ビニル芳香族単量体単位を主体とする一つの重合体ブロック(A1)と、共役ジエン単量体単位を主体とする一つの重合体ブロック(B1)とを有する部分水添ブロック共重合体(d1)を含有することが好ましい。なお、部分水添ブロック共重合体(d1)は、上記式(7)においてn=1の構造をいう。
 第一実施形態において、部分水添ブロック共重合体(d1)の含有量の下限値は、粘接着組成物の高いタックの観点から、部分水添ブロック共重合体100質量%を基準として、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、65質量%以上であることがより更に好ましく、70質量%以上であることが一層好ましい。また、部分水添ブロック共重合体(d1)の含有量の上限値は、粘接着組成物の高い粘着力の観点から、部分水添ブロック共重合体100質量%を基準として、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることが更に好ましく、83質量%以下であることがより更に好ましく、80質量%以下であることが一層好ましい。
 第一実施形態における部分水添ブロック共重合体は、粘接着組成物の低い粘度と高い粘着保持力の観点から、ラジアル構造を有する部分水添ブロック共重合体(r1)を含有することが好ましい。ここで、本明細書中、「ラジアル構造」とは、残基Xに対して重合体が3つ以上結合している構造をいい、例えば、A-(B1-A)n-X(n≧3)、[(A-B1)km-X(m≧3)、及び[(A-B1)k-A]m-X(m≧3)が挙げられる。
 第一実施形態において、ラジアル構造を有する部分水添ブロック共重合体(r1)の構造としては、粘接着組成物の高い粘着力、低い粘度、及び高い粘着保持力の観点から、[(A-B1)km-X、及び[(A-B1)k-A]m-X(各式中、mは3~6の整数を表し、kは1~4の整数を表す。より好ましくは、mは3~4の整数を表す。)からなる群から選択される少なくとも一つの構造であることが好ましい。
 第一実施形態において、部分水添ブロック共重合体の水素添加率は、共役ジエン単量体単位の全モル数を基準として10mol%~95mol%であることが好ましく、20mol%~74mol%以下であることがより好ましく、31mol%~70mol%であることが更に好ましく、33mol%~63mol%であることがより更に好ましく、35mol%~59mol%であることが一層好ましい。
 部分水添ブロック共重合体の水素添加率は、後述する水添工程における水素添加量や水添反応時間を制御することにより調整することができる。また、水素添加率は後述する実施例記載の方法で求めることができる。
 第一実施形態における部分水添ブロック共重合体中のビニル芳香族単量体単位の含有量(TS)は、粘接着組成物の粘着力、タック性、高い粘着保持力、及び粘接着組成物製造時の高い耐耐熱変色性の観点から、10質量%~45質量%であることが好ましく、13質量%~40質量%がより好ましく、15質量%~35質量%がさらに好ましい。
 第一実施形態における部分水添ブロック共重合体中の、ビニル芳香族単量体単位を主体とする重合体ブロック(A)の含有量(BS)は、粘接着組成物の高い粘着保持力、の観点から、12質量%~43質量%が好ましく、13質量%~40質量%がより好ましく、14質量%~34質量%がさらに好ましい。
 なお、部分水添ブロック共重合体中のビニル芳香族単量体単位の含有量(TS)と、ビニル芳香族単量体単位を主体とする重合体ブロック(A)の含有量(BS)は、後述する実施例記載の方法で測定することができる。
 ビニル芳香族単量体を主体とする重合体ブロック(A)の分子量分布は、粘接着組成物の粘着保持力の点から、1.46以下が好ましく、1.44以下がより好ましく、1.42以下がさらに好ましく、1.40以下がより更に好ましい。また、粘接着組成物の粘着力、タック性、及び粘着保持力、及び製造時の耐熱変色性の点から、1.1以上が好ましく、1.12以上がより好ましく、1.14以上がさらに好ましく、1.16以上がよりさらに好ましい。ビニル芳香族単量体を主体とする重合体ブロック(A)の分子量分布は、以下の式により求めることができる。
 分子量分布=(重合体ブロック(A)のピーク分子量の半値全幅時の高分子量側の分子量)/(重合体ブロック(A)のピーク分子量の半値全幅時の低分子量側の分子量)
 第一実施形態における部分水添ブロック共重合体の水素添加前の共役ジエン単量体単位中の平均ビニル含有量は、15mol%~75mol%であることが好ましく、25mol%~55mol%であることが更に好ましく、35mol%~45mol%であることがより更に好ましい。第一実施形態における部分水添ブロック共重合体の、水素添加前の共役ジエン単量体単位中の平均ビニル含有量が15mol%以上であることにより、粘接着組成物のタック性、粘着力、及び粘着保持力がより向上する傾向にある。また、第一実施形態における部分水添ブロック共重合体の、水素添加前の共役ジエン単量体単位中のビニル含有量が75mol%以下であることにより、粘接着組成物のタック性及び耐熱変色性がより向上する傾向にある。ここで、本明細書において、「ビニル含有量」とは、水素添加前の共役ジエン単量体の1,2-結合、3,4-結合、及び1,4-結合の結合様式で組み込まれている共役ジエン単量体単位の総mol量に対し、1,2-結合及び3,4-結合で組み込まれている共役ジエン単量体単位の割合とする。なお、ビニル含有量は、NMRにより測定でき、具体的には後述する実施例に記載の方法により測定できる。共役ジエン単量体単位を主体とするブロック中のビニル含有量の分布は限定されない。
 第一実施形態において、共役ジエン単量体単位を主体とする共重合体ブロック(B1)内において、ビニル含有量に分布があってもよい。部分水添ブロック共重合体の共役ジエン単量体単位を主体とする共重合体ブロック(B)中のビニル含有量の高低の差(以下、「Δビニル含有量」ともいう)の下限値は、粘接着組成物の高いタック性、の点で、5mol%以上が好ましく、8mol%以上がより好ましく、15mol%以上がさらに好ましく、20mol%以上がより更に好ましい。また、粘接着組成物の高いタック性の点で、Δビニル含有量の上限値は、30mol%以下が好ましく、25mol%以下がより好ましく、20mol%以下がさらに好ましく、17mol%以下がより更に好ましい。
 共役ジエン単量体単位とビニル芳香族単量体単位を含む共重合体ブロック(B)内において、重合開始末端側から順に等質量となるよう第1領域~第6領域とし、第1領域~第6領域の水素添加前のビニル含有量を、それぞれV1~V6としたとき、ビニル含有量の分布は、特に限定されず、一定でもよく、テーパー状、凸状、あるいは凹状に分布していてもよい。重合途中で極性化合物を添加したり、重合温度をコントロールしたりすることにより、ビニル分布をテーパー状、凸状、凹状、にすることができる。
 テーパー状の分布とは、V6>V5>V4>V3>V2>V1、もしくはV6<V5<V4<V3<V2<V1を満たす分布をいう。凸状の分布とは、V6及びV1がV5及びV2よりも小さく、V5及びV2がV4及びV3よりも小さくなる分布をいう。凹状の分布とは、V6及びV1がV5及びV2よりも大きく、V5及びV2がV4及びV3よりも大きくなる分布をいう。
 第一実施形態において、部分水添ブロック共重合体の重量平均分子量(Mw)は、高い粘着力や粘着保持力の点で10万以上が好ましく、18万以上がより好ましく、20万以上が更に好ましい。また、高い製造性の点で、部分水添ブロック共重合体の重量平均分子量(Mw)は、35万以下が好ましく、30万以下がより好ましく、25万以下がさらに好ましい。
 第一実施形態において、部分水添ブロック共重合体の分子量分布(Mw/Mn)(重量平均分子量(Mw)の数平均分子量(Mn)に対する比)の下限値は、高い製造性の点で、1.1以上が好ましく、1.2以上がより好ましく、1.3以上がさらに好ましく、1.4以上がより更に好ましい。また、高い粘着力や粘着保持力の点で、部分水添ブロック共重合体の分子量分布(Mw/Mn)の上限値は、3.0以下が好ましく、2.0以下がより好ましく、1.7以下がさらに好ましい。重合体の重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、後述する実施例記載の方法により求めることができる。
 第一実施形態において、粘接着組成物の高い粘着力、高いタック、及び高い粘着保持力の観点から、部分水添ブロック共重合体が、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群より選ばれる少なくとも一つの官能基を有することが好ましい。この中でも、部分水添ブロック共重合体が、アミノ基、及びアミド基からなる群から選択される少なくとも一つの官能基を有することがより好ましく、アミノ基を有することがさらに好ましい。部分水添ブロック共重合体は、その分子1molに対して、アミノ基、及びアミド基からなる群から選択される少なくとも一つの官能基を2mol以上含有することがより好ましい。
 第一実施形態における部分水添ブロック共重合体は、メルトフローレート(MFR、200℃、5kgf)が、0.1g/10分~50g/10分であることが好ましく、0.2g/10分~20g/10分であることがより好ましく、0.3g/10分~10g/10分であることが更に好ましく、0.4g/10分~5g/10分であることがより更に好ましい。第一実施形態において、部分水添ブロック共重合体のMFRが0.1g/10分以上であることにより、粘接着組成物をテープに積層する場合に端部からの耐染み出し性がより向上する傾向にある。また、第一実施形態において、部分水添ブロック共重合体のMFRが50g/10分以下であることにより、粘接着組成物の塗工性、及び耐熱変色性がより向上する傾向にある。
<部分水添ブロック共重合体の製造方法>
 第一実施形態における部分水添ブロック共重合体は、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体とを重合させて、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を主体とする重合体ブロック(B1)とを有するブロック共重合体を得る重合工程を行い、重合工程の後、得られたブロック共重合体の共役ジエン単量体単位中の二重結合の一部に水素を添加する水素添加工程を行い、得られた部分水添ブロック共重合体を含む溶液の溶媒を脱溶剤する脱溶剤工程を行うことにより、製造することができる。
 重合工程、水素添加工程、脱溶剤工程等については上述した内容と同様であり、ここでは記載を省略する。
<粘接着組成物>
 第一実施形態における粘接着組成物は、上記で説明した部分水添ブロック共重合体100質量部に対し、好ましくは粘着付与樹脂20質量部~400質量部を、より好ましくは30質量部~350質量部を、さらに好ましくは40質量部~300質量部を含有する。
 第一実施形態において、「粘着付与樹脂」とは、粘接着組成物に粘着性を付与することができるものであれば特に限定されず、数平均分子量100~1万未満の樹脂(オリゴマー)であることが好ましい。粘着付与樹脂の数平均分子量は、後述する実施例に記載の数平均分子量の測定方法と同様の方法で測定することができる。
 粘着付与樹脂としては、特に限定されないが、例えば、ロジン誘導体(桐油樹脂を含む)、トール油、トール油の誘導体、ロジンエステル樹脂、天然及び合成のテルペン樹脂、脂肪族炭化水素樹脂、芳香族炭化水素樹脂、混合脂肪族-芳香族炭化水素樹脂、クマリン-インデン樹脂、フェノール樹脂、p-tert-ブチルフェノール-アセチレン樹脂、フェノール-ホルムアルデヒド樹脂、キシレン-ホルムアルデヒド樹脂、モノオレフィンのオリゴマー、ジオレフィンのオリゴマー、芳香族炭化水素樹脂、水素化芳香族炭化水素樹脂、環式脂肪族炭化水素樹脂、水素化炭化水素樹脂、炭化水素樹脂、水素化桐油樹脂、水素化油樹脂、水素化油樹脂と単官能又は多官能アルコールとのエステル等が挙げられる。これらは、1種類で用いてもよいし、2種以上を併用してもよい。水素化する場合、不飽和基を全て水添してもよいし、一部、残してもよい。
 粘着付与樹脂は、接着力、粘着保持力、及びテープ積層時の端部からの高い耐染み出し性の点で、軟化点が80℃以上の粘着付与樹脂を含有することが好ましい。粘着付与樹脂の軟化点の下限値は、より好ましくは85℃以上であり、さらに好ましくは95℃以上であり、よりさらに好ましくは100℃以上である。また、粘着付与樹脂の軟化点はの上限値は、特に限定されないが、145℃以下であることが好ましい。粘着付与樹脂の軟化点は、JISK2207環球式で測定することができる。
 第一実施形態において、粘接着組成物の高い接着性、接着強度の経時変化の低減、及びクリープ性能等の観点から、粘接着組成物中に、部分水添ブロック共重合体の非ガラス相のブロック(通常は中間ブロック)と親和性のある粘着付与剤を20~75質量%と、部分水添ブロック共重合体のガラス相のブロック(通常は外側ブロック)に親和性のある粘着付与剤を3~30質量%とを含有することがより好ましい。
 部分水添ブロック共重合体のガラス相のブロックと親和性のある粘着付与剤としては、以下に限定されないが、例えば、末端ブロックの粘着付与樹脂が好ましい。このような粘着付与剤としては、以下に限定されないが、例えば、ビニルトルエン、スチレン、α-メチルスチレン、クマロン又はインデンを含有する、ホモポリマー又はコポリマー等の芳香族基を有する樹脂が挙げられる。これらの中で、α-メチルスチレンを有するKristalexやPlastolyn(イーストマンケミカル社製、商品名)が好ましい。部分水添ブロック共重合体のガラス相のブロックと親和性のある粘着付与剤の含有量は、粘接着組成物の総量に対し、好ましくは3~30質量%であり、より好ましくは5~20質量%であり、さらに好ましくは6~12質量%である。
 第一実施形態において、粘接着組成物の高い初期接着力、高い濡れ性、低い溶融粘度、及び高い塗工性等の観点から、粘着付与剤としては、アロマ含有量が3~12質量%である石油樹脂が好ましく、アロマ含有量が3~12質量%であり、かつ水素添加した石油樹脂がより好ましい。粘着付与剤中のアロマ含有量は、好ましくは3~12質量%であり、より好ましくは4~10質量%である。本明細書中「アロマ」とは、非水添の芳香族成分をいう。
 第一実施形態において、粘接着組成物のより高い耐候性(UV照射後の低い粘着力変化)や低臭気の観点から、粘着付与剤としては、水添した粘着付与樹脂であることが好ましい。「水添した粘着付与樹脂」とは、不飽和結合を含む脂肪族系粘着付与樹脂、又は不飽和結合を含む芳香族系粘着付与樹脂を、任意の水素添加率となるよう水素添加した粘着付与樹脂をいう。水添した粘着付与樹脂の水添率は、高い方が好ましい。
 水添した粘着付与樹脂としては、アルコンMやアスコンP(荒川化学工業株社製、商品名)、クリアロンP(ヤスハラケミカル株社製、商品名)、アイマーブP(出光興産株式会社製、商品名)等が挙げられる。
 第一実施形態における粘接着組成物中の粘着付与剤の含有量は、部分水添ブロック共重合体100質量部に対して、20質量部以上400質量部以下であればよく、好ましくは70質量部以上350質量部以下であり、より好ましくは120質量部以上300質量部以下であり、さらに好ましくは140質量部以上250質量部以下である。粘着付与剤の含有量が上記範囲内であることにより、タック性と粘着保持力のバランスがより向上する傾向にある。
 第一実施形態において、粘接着組成物は、部分水添ブロック共重合体、及び粘着付与剤以外に、必要に応じて、オイル、酸化防止剤、耐候剤、帯電防止剤、滑剤、充填剤、ワックス類等の種々の添加剤を含んでもよい。
 オイルとしては、特に限定されないが、例えば、パラフィン系炭化水素を主成分としたパラフィン系オイル、ナフテン系炭化水素を主成分としたナフテン系オイル、芳香族系炭化水素を主成分とした芳香族系オイルが挙げられる。このなかでも、無色であり、かつ、実質的に無臭であるオイルが好ましい。オイルは、1種類で用いてもよいし、2種以上を併用してもよい。
 パラフィン系オイルとしては、特に限定されないが、例えば、ダイアナプロセスオイルPW-32、PW-90、PW-150、PS-430(出光興産製)、シンタックPA-95、PA-100、PA-140(神戸油化学製)、JOMOプロセスP200、P300、P500、750(ジャパンエナジー製)、サンパー110、115、120、130、150、2100、2280(日本サン石油製)、フッコールプロセスP-100、P-200、P-300、P-400、P-500(富士興産製)等が挙げられる。
 ナフテン系オイルとしては、特に限定されないが、例えば、ダイアナプロセスオイルNP-24、NR-26、NR-68、NS-90S、NS-100、NM-280(出光興産製)、シンタックN-40、N-60、N-70、N-75、N-80(神戸油化学製)、シェルフレックス371JY(シェルジャパン製)、JOMOプロセスR25、R50、R200、R1000(ジャパンエナジー製)、サンセンオイル310、410、415、420、430、450、380、480、3125、4130、4240(日本サン石油製)、フッコールニューフレックス1060W、1060E、1150W、1150E、1400W、1400E、2040E、2050N(富士興産製)、ペトレックスプロセスオイルPN-3、PN-3M、PN-3N-H(山文油化製)等が挙げられる。
 芳香族系オイルとしては、特に限定されないが、例えば、ダイアナプロセスオイルAC-12、AC-640、AH-16、AH-24、AH-58(出光興産製)、シンタックHA-10、HA-15、HA-30、HA-35(神戸油化学製)、コスモプロセス40、40A、40C、200A、100、1000(コスモ石油ルブリカンツ製)、JOMOプロセスX50、X100E、X140(ジャパンエナジー製)、JSOアロマ790、ニトプレン720L(日本サン石油製)、フッコールアロマックス1、3、5、EXP1(富士興産製)、ペトレックスプロセスオイルLPO-R、LPO-V、PF-2(山文油化製)等が挙げられる。粘接着組成物のより高い耐候性が必要な場合には、パラフィン系オイルを用いることが好ましい。
 第一実施形態において、粘接着組成物の高い粘着保持力、粘着力、耐糊残り性のバランスの観点から、オイルの含有量は、部分水添ブロック共重合体100質量部に対して、10質量部~150質量部であることが好ましく、30質量部~130質量部であることがより好ましく、50質量%~100質量部であることが更に好ましい。
 酸化防止剤としては、特に限定されないが、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤及びリン系酸化防止剤等が挙げられる。
 粘接着組成物の高い耐候性(UV照射後の低い粘着力変化)の点で、耐候剤を添加することが好ましい。
 耐候剤としては、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ヒンダードアミン系光安定剤、微粒子酸化セリウム等の無機紫外線吸収剤等が挙げられる。粘接着組成物のより高い耐候性の点で、ベンゾトリアゾール系紫外線吸収剤やヒンダードアミン系光安定剤が好ましく、ベンゾトリアゾール系紫外線吸収剤とヒンダードアミン系光安定剤を併用することがより好ましい。
 第一実施形態において、粘接着組成物中の耐候剤含有量の下限値としては、粘接着組成物の高い耐候性の点で0.03質量%以上が好ましく、0.05質量%以上がより好ましく、0.07質量%以上がさらに好ましい。第一実施形態の粘接着組成物中の耐候剤含有量の上限値としては、耐候剤のブリードの抑制や経済性の点で、粘接着組成物の1質量%以下が好ましく、0.5質量%以下がより好ましく、0.3質量%以下がさらに好ましい。
 粘接着組成物のより高い耐候性の点で、上記の耐候剤にさらに上記の酸化防止剤を併用することが好ましい。耐候剤と酸化防止剤とを併用する場合、酸化防止剤の中でも、より高い耐候性の点で、上記耐候剤に加えて、少なくともリン系酸化防止剤を用いることが好ましい。
 第一実施形態の粘接着組成物中の酸化防止剤含有量の下限値としては、高い耐候性の点で、0.02質量%以上が好ましく、0.04質量%以上がより好ましく、0.06質量%以上がさらに好ましい。第一実施形態の粘接着組成物中の酸化防止剤含有量の上限値としては、酸化防止剤のブリードの抑制や経済性の点で、1.5質量%以下が好ましく、1.0質量%以下がより好ましい。
 第一実施形態において、粘着付与樹脂の静電気の発生を防止する観点から、本実施形態の粘接着組成物は帯電防止剤を含むことが好ましい。
 帯電防止剤としては、例えば界面活性剤、導電性樹脂、及び導電性フィラーなどが挙げられる。
 第一実施形態において、プラスチックの成型加工時および成型加工後の製品表面の滑り性を向上させるため、粘接着組成物は滑剤を含んでもよい。
 滑剤としては、例えばステアリン酸アミド、ステアリン酸カルシウム等が挙げられる。
 第一実施形態において、粘接着組成物は充填剤を含んでもよい。充填剤としては、特に限定されないが、例えば、雲母、炭酸カルシウム、カオリン、タルク、ケイソウ土、尿素系樹脂、スチレンビーズ、焼成クレー、澱粉等が挙げられる。これら充填剤の形状は、球状であることが好ましい。
 第一実施形態において、粘接着組成物はワックス類を含んでもよい。ワックス類としては、特に限定されないが、例えば、パラフィンワックス、マイクロクリスタンワックス、低分子量ポリエチレンワックス等が挙げられる。
 第一実施形態において、130℃以下の粘接着組成物の低い溶融粘度が必要な場合には、粘接着組成物は、50℃~110℃の融点を有するワックス、例えば、パラフィンワックス、微晶質ワックス、及びフィッシャー-トロプシュワックスからなる群より選択される少なくとも一種のワックスを2~10質量%含有することが好ましい。これら50℃~110℃の融点を有するワックスの含有量は、粘接着組成物の総量に対し、好ましくは5~10質量%である。また、これらワックスの融点は、好ましくは65℃以上であり、より好ましくは70℃以上であり、さらに好ましくは75℃以上である。また、このときに併用する粘着付与剤の軟化点は、好ましくは70℃以上であり、より好ましくは80℃以上である。このとき、得られる粘接着組成物の貯蔵弾性率G’(測定条件:25℃、10rad/s)が1Mpa以下であり、さらに、7℃以下の結晶化温度を有することが好ましい。
 第一実施形態において、粘接着組成物は、本実施形態の部分水添ブロック共重合体以外のポリマーを含有してもよい(以下、単に「その他のポリマー」ともいう)。その他のポリマーとしては、以下に限定されないが、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、スチレンブタジエン共重合体、エチレンプロピレン共重合体等のオレフィン系エラストマー;クロロプレンゴム、アクリルゴム、エチレン酢酸ビニル共重合体が挙げられる。これらは室温で液状であってもよく、固体状であってもよい。
 第一実施形態において、粘接着組成物の高い粘着力、高いタック性、及び高い粘着保持力のバランスの観点から、その他のポリマーの含有量は、本実施形態の部分水添ブロック共重合体100質量部に対して、80質量部以下であることがより好ましく、60質量部以下であることが更に好ましく、40質量部以下であることがより更に好ましく、20質量部以下であることが一層好ましく、10質量部以下であることがより一層好ましい。
 その他のポリマーとしては、本実施形態の部分水添ブロック共重合体以外のブロック共重合体(以下、単に「その他のブロック共重合体」ともいう)であってもよい。その他のブロック共重合体としては、特に限定されないが、例えば、スチレン-ブタジエン系ブロック共重合体、スチレン-イソプレン系ブロック共重合体、水素化スチレン-ブタジエン系ブロック共重合体(SEBS)、水素化スチレン-イソプレン系ブロック共重合体(SEPS)が挙げられる。その他のブロック共重合体は、ビニル芳香族単量体単位含有量が異なる2種以上のブロック共重合体や、ビニル芳香族単量体単位を主体とする非水添ブロック共重合体、又は完全水添ブロック共重合体であってもよい。
 第一実施形態において、その他のブロック共重合体は、粘接着組成物の高いタック性と高い粘着力のバランスの観点から、ビニル芳香族単量体単位を主体とする一つの重合体ブロックと、共役ジエン単量体単位を主体とする一つの重合体ブロックとを有するブロック共重合体であることが好ましい。
 第一実施形態において、その他のブロック共重合体は、高い保持力や粘接着組成物の低い溶融粘度の観点から、ラジアル構造であることが好ましい。
 第一実施形態において、その他のブロック共重合体の水素添加率は特に限定されない。
 第一実施形態において、粘接着組成物がその他のポリマーとして完全水添ブロック共重合体を含有する場合、粘接着組成物の柔らかさの観点から、水素添加前のその他のポリマー中の共役ジエン単量体単位中の平均ビニル含有量は、35モル%~80モル%であることが好ましく、40モル%~75モル%であることがより好ましく、50モル%~75モル%であることが更に好ましい。
 第一実施形態において、粘接着組成物は、その他のポリマーとして、重量平均分子量(Mw)が5,000~30,000のビニル芳香族単量体単位を主体とする重合体(以下、「低分子量ビニル芳香族重合体」ともいう)を含んでもよい。低分子量ビニル芳香族重合体としては、本実施形態における重合体ブロック(A)に含まれるビニル芳香族単量体単位を主体とすることが好ましく、ポリスチレンに由来する単量体単位を主体とすることがより好ましい。
 第一実施形態において、粘接着組成物中、低分子量ビニル芳香族重合体の含有量の下限値は、粘接着組成物の溶解性の観点から、本実施形態における部分水添ブロック共重合体100質量部に対して0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、2.0質量部以上であることがさらに好ましく、3.0質量部以上であることがより更に好ましい。また、低分子量ビニル芳香族重合体の含有量の上限値は、粘接着組成物の接着性、タック性、接着保持力等の観点から、本実施形態における部分水添ブロック共重合体100質量部に対して5.0質量部以下であることが好ましく、4.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましく、2.0質量部以下であることがより更に好ましい。
 第一実施形態において、低分子量ビニル芳香族重合体は、本実施形態の部分水添ブロック共重合体と予め混合した後に、粘着付与樹脂と混合することが好ましい。低分子量ビニル芳香族重合体は、単独で調製して、本実施形態の部分水添ブロック共重合体と混合してもよく、本実施形態の部分水添ブロック共重合体を製造する際に同時に調製してもよい。
 本実施形態の水添ブロック共重合体を製造する際に同時に低分子量ビニル芳香族重合体を調製する方法としては、例えば、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含む重合体ブロック(B)とを有するリビングブロック共重合体を製造する際、用いるビニル芳香族単量体の一部を、重量平均分子量(Mw)が5,000~30,000のビニル芳香族単量体単位を主体とするリビング重合体として残存させ、そして、リビングブロック共重合体、及び残存するリビング重合体を失活させることにより、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含む重合体ブロック(B)とを有するブロック共重合体、及び低分子量ビニル芳香族重合体を同時に調製する方法が挙げられる。
 ビニル芳香族単量体の一部を、重量平均分子量(Mw)が5,000~30,000のビニル芳香族単量体単位を主体とするリビング重合体として残存させる方法としては、重合工程で添加する単量体の量、重合開始剤の量、反応温度、及び反応時間等を制御することが挙げられる。低分子量ビニル芳香族重合体の分子量及び含有量を制御する観点から、重合体ブロック(A)を重合する際の反応開始温度を55℃以上65℃以下とすることが好ましい。重合体ブロック(A)を重合する際の反応時間としては、重合反応により温度が上昇し、温度が最高値を示してから2分以上、5分30秒以下であることが好ましい。
 本実施形態の部分水添ブロック共重合体を製造する際に同時に調製する方法としては、例えば、ビニル芳香族単量体単位を重合させてビニル芳香族単量体単位を主体とする重合体ブロック(A)を調製する際に、リビング重合体ブロック(A)の一部をメタノール等の活性水素化合物を添加して失活せることにより、低分子量ビニル芳香族重合体を生成することができる。その後、失活せずに残ったリビング重合体ブロック(A)に、共役ジエン単量体単位を含有する重合体ブロック(B)を重合し、本実施形態の部分水添ブロック共重合体を調製することができる。これによって、本実施形態の部分水添ブロック共重合体を調製する際に、同時に低分子量ビニル芳香族重合体を調製することができる。
 上記のように本実施形態の部分水添ブロック共重合体を製造する際に同時に調製した低分子量ビニル芳香族重合体は、本実施形態の部分水添ブロック共重合体の重量平均分子量(Mw)を測定する際に、低分子成分として検出されるので、その際に低分子量ビニル芳香族重合体の存在を確認することができ、また、その重量平均分子量(Mw)、及び分子量分布(Mw/Mn)を測定することができる。
 第一実施形態において、市販の低分子量ビニル芳香族重合体を、本実施形態の部分水添ブロック共重合体と混合してもよい。
 第一実施形態において、高い低温塗工性(低粘度)、クリープ性能(値が小さい方が良好)、高強度あるいは高伸度等が必要な場合には、粘接着組成物中に、その他のポリマーとして、アイオノマーを5質量%以下の範囲で使用してもよい。
 第一実施形態において、湿潤状態の親水性多孔質基材に対して優れた接着強度を発現するためには、粘接着組成物中に、その他のポリマーとして、カルボキシル基及び/又はカルボン酸無水物基を分子内に有する液状ゴム及び/又はカルボン酸無水物によって酸変性された酸変性ポリエチレンを0.5~8質量%の範囲で添加することが好ましい。
 一実施形態において、高温貯蔵安定性、高伸度あるいは組成物中の粘着付与樹脂量を低減する場合には、その他のポリマーとして、α-オレフィンを用いたコポリマー、あるいはプロピレンホモポリマーを、粘接着組成物中の20質量%以下の範囲で含有することが好ましい。これらのポリマーの融点(条件:DSC測定、5℃/分)は、好ましくは110℃以下であり、より好ましくは100℃以下であり、さらに好ましくは60℃~90℃である。これらのポリマーは樹脂であってもエラストマーであってもよい。
 第一実施形態において、粘接着組成物の伸度等の観点から、粘接着組成物は、その他のポリマーとして、オレフィン系エラストマー含有することが好ましい。オレフィン系エラストマーとしては、特に限定されないが、例えば、少なくとも-10℃以下にTgを有するものが好ましい。また、クリープ性能の観点で、ブロックを有するオレフィン系エラストマーがより好ましい。
 第一実施形態において、粘接着組成物を高温環境下で用いる場合には、特開2015-28130、特開2007-56119、特開2014-534303あるいは特開2015-30854のように、粘接着組成物に、ラジカル架橋やエポキシ架橋やウレタン架橋が可能な添加剤を用い、耐熱性を向上させることが好ましい。
 第一実施形態において、粘接着組成物は、以下に限定されないが、粘接着性テープ、及びラベルに用いることができる。
<粘接着性テープ及びラベル>
 第一実施形態において、粘接着性テープは、上記で説明した粘接着組成物を有する。第一実施形態において、ラベルは、上記で説明した粘接着組成物を有する。
 第一実施形態において、粘接着組成物は、任意の基材に積層して用いることが好ましい。基材としては、以下に限定されないが、例えば、熱可塑性樹脂からなるフィルムや、紙、金属、織布、不織布等の非熱可塑性樹脂の基材を用いることもできる。基材の材料には剥離剤を添加してもよい。剥離剤としては、長鎖アルキル系剥離剤、シリコン系剥離剤などが挙げられる。また、より高い耐候性(UV照射後の粘着力変化が少ない)が必要な場合には、紫外線透過率が低い基材を用いることがより好ましく、紫外線透過率は1%以下であることがさらに好ましい。
<粘接着組成物の製造方法>
 第一実施形態において、粘接着組成物は、例えば、本実施形態の部分水添ブロック共重合体100質量部に対し、粘着付与樹脂20質量部~400質量部を混合することにより製造することができる。混合方法としては特に限定されず、部分水添ブロック共重合体、及び粘着付与樹脂、並びに必要に応じて他のブロック共重合体、及びオイルなどの各成分を、公知の混合機、ニーダー、1軸押出機、2軸押出機、バンバリーミキサー等などで、加熱しながら、所定の配合比で均一に混合する方法が挙げられる。
<粘接着性テープ、及びラベルの製造方法>
 第一実施形態において、粘接着性テープ及びラベルは、粘接着組成物を任意の基材上に塗工することにより製造することができる。粘接着組成物を基材上に塗工する方法としては、特に限定されないが、例えば、Tダイ塗工法、ロール塗工法、マルチビード塗工法、及びスプレー塗工法等が挙げられる。また、第一実施形態の粘接着組成物は、押出し塗工(熱溶融塗工)法、又は溶展塗工法のどちらでもよく、高い耐熱老化性、経済性観点から、押出し塗工法が好ましい。
 第一実施形態において、粘接着組成物は、各種粘接着性テープ、ラベル類、感圧性薄板、感圧性シート、表面保護シート・フィルム、各種軽量プラスチック成型品固定用裏糊、カーペット固定用裏糊、タイル固定用裏糊、接着剤、シーリング剤、塗料の塗り替え作業時のマスキング剤、及び衛生用品等に好適に用いることができる。特に、粘接着性テープが好ましい。
<改質アスファルト組成物及び舗装用バインダ組成物、並びにこれらに用いる部分水添ブロック共重合体>
 第二実施形態において、本実施形態の部分水添ブロック共重合体は、改質アスファルト組成物に用いることができる。また、第三実施形態において、本実施形態の部分水添ブロック共重合体は、舗装用バインダ組成物に用いることができる。
 本発明者らの鋭意検討の結果、特許文献5~7に開示されたブロック共重合体を用いた改質アスファルト組成物では、改質アスファルト組成物の貯蔵時の耐熱安定性、低温伸度、及び耐骨材剥離性において満足できる結果が得られず、さらなる改良の余地があることが分かっている。また、特許文献8に記載の舗装用バインダ組成物では、軟化点、低温伸度、溶融粘度、耐わだち掘れ性、耐熱安定性、及び耐熱変色性において満足できる結果が得られず、さらなる改善の余地があることが分かっている。
 一方、本実施形態の部分水添ブロック共重合体を改質アスファルト組成物に用いることにより、軟化点、低温伸度、溶融粘度、耐わだち掘れ性、及び貯蔵時の耐熱安定性に優れた改質アスファルト組成物を提供することができる。また、本実施形態の部分水添ブロック共重合体を舗装用バインダ組成物に用いることにより、軟化点、低温伸度、溶融粘度、耐わだち掘れ性、耐熱安定性、及び耐熱変色性に優れた舗装用バインダ組成物を提供することができる。
<部分水添ブロック共重合体>
 第二及び第三実施形態において、部分水添ブロック共重合体は、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、ビニル芳香族単量体単位と共役ジエン単量体単位とを含む共重合体ブロック(B2)とを有する部分水添ブロック共重合体(d2)を含むであることが好ましい。ブロック共重合体が上記構造を有することにより、改質アスファルト組成物の貯蔵時の耐熱老化性、耐流動性、及び耐骨材剥離性、並びにアスファルトとの高い相容性の点で好ましく、また、舗装用バインダ組成物の軟化点、低温伸度、溶融粘度、耐わだち掘れ性、耐熱安定性、及び耐熱変色性の点において好ましい。
 第二及び第三実施形態において、部分水添ブロック共重合体の水素添加(以下、「水添」ともいう)前の構造としては特に限定されない。部分水添ブロック共重合体の水素添加前の構造としては、例えば、下記の式(13)~(18)で表される構造が挙げられる。(A-B2)n・・・(13)B2-(A-B2)n・・・(14)A-(B2-A)n・・・(15)A-(B2-A)n-X・・・(16)[(A-B2)km-X・・・(17)[(A-B2)k-A]m-X・・・(18)
 上記式(13)~(18)中、Aは、ビニル芳香族単量体単位を主体とする重合体ブロックを表し、B2は、ビニル芳香族単量体単位及び共役ジエン単量体単位を含む共重合体ブロックを表し、Xは、カップリング剤の残基、又は多官能有機リチウム等の重合開始剤の残基を表し、m、n及びkは、1以上の整数を表し、好ましくは1~5の整数を表す。
 第二及び第三実施形態において、水素添加前のブロック共重合体中に重合体ブロックA及びB2が複数存在している場合には、各々の分子量や組成等の構造は同一であってもよいし、異なっていてもよい。上記式(13)~(18)中、Xは、カップリング剤の残基又は多官能有機リチウム等の重合開始剤の残基を表す。部分水添ブロック共重合体は、Xがカップリング剤の残基であるカップリング体と、Xを有しない又はXが重合開始剤の残基である非カップリング体との混合物であってもよい。各ブロックの境界や最端部は必ずしも明瞭に区別される必要はない。
 第二及び第三実施形態において、ビニル芳香族単量体単位を主体とする重合体ブロック(A)中や、共役ジエン単量体単位及びビニル芳香族単量体単位を含む共重合体ブロック(B2)中のビニル芳香族単量体単位の分布は、特に限定されず、均一に分布していても、テーパー状、階段状、凸状、あるいは凹状に分布していてもよい。また、重合体ブロック中に、結晶部が存在していてもよい。ビニル芳香族単量体単位を主体とする重合体ブロック(A)中には、ビニル芳香族単量体単位の含有量の異なるセグメントが複数個共存していてもよい。
 第二及び第三実施形態において、改質アスファルト組成物の低い粘度の観点、及び舗装用バインダ組成物の低い溶融粘度の観点から、部分水添ブロック共重合体は、ビニル芳香族単量体単位を主体とする一つの重合体ブロック(A1)と、ビニル芳香族単量体単位及び共役ジエン単量体を含む一つの水添重合体ブロック(B2)を有する部分水添ブロック共重合体(d2)を含有することが好ましい。なお、部分水添ブロック共重合体(d2)は、上記式(13)においてn=1の構造をいう。
 第二及び第三実施形態において、部分水添ブロック共重合体(d2)の含有量の下限値は、改質アスファルト組成物の低い粘度の観点、及び舗装用バインダ組成物の低い溶融粘度の観点から、部分水添ブロック共重合体100質量%を基準として、15質量%以上であることが好ましく、25質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、65質量%以上であることがより更に好ましく、70質量%以上であることが最も好ましい。また、第二実施形態において、部分水添ブロック共重合体(d2)の含有量の上限値は、改質アスファルト組成物の高い軟化点、及び高い低温伸度の観点、並びに舗装用バインダ組成物の高い軟化点、及び高い低温伸度の観点から、部分水添ブロック共重合体100質量%を基準として、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。
 第二及び第三実施形態において、改質アスファルト組成物の低い粘度の観点、及び舗装用バインダ組成物の低い溶融粘度の観点から、部分水添ブロック共重合体が、ラジアル構造を有する部分水添ブロック共重合体(r2)を含有することが好ましい。ここで、本明細書中、「ラジアル構造」とは、残基Xに対して重合体が3つ以上結合している構造をいい、例えばA-(B2-A)n-X(n≧3)、[(A-B2)km-X(m≧3)、及び[(A-B2)k-A]m-X(m≧3)が挙げられる。
 ラジアル構造を有する部分水添ブロック共重合体(r2)の構造としては、改質アスファルト組成物の低い粘度の観点、及び舗装用バインダ組成物の低い溶融粘度の観点から、[(A-B2)k]m-X、及び[(A-B2)k-A]m-X(各式中、mは3~6の整数を表し、kは1~4の整数を表す。より好ましくは、mは3~4の整数を表す。)からなる群から選択される少なくとも一つの構造であることが好ましい。
 第二及び第三実施形態において、部分水添ブロック共重合体の水素添加率の上限値は、改質アスファルト組成物の相容性の点、及び舗装用バインダ組成物の低い溶融粘度の点で、共役ジエン単量体単位の全モル数を基準として、95mol%以下であることが好ましく、90mol%以下であることがより好ましく、85mol%以下であることが更に好ましく、80mol%以下であることがより更に好ましい。また、改質アスファルト組成物の貯蔵時の耐熱老化性、及び耐流動性の点、並びに舗装用バインダ組成物の高い耐熱安定性及び高い耐熱変色性の観点で、部分水添ブロック共重合体の水素添加率の下限値は、10mol%以上であることがより好ましく、30mol%以上であることが更に好ましく、40mol%以上であることがより更に好ましい。
 部分水添ブロック共重合体の水素添加率は、後述する水添工程における水素添加量や水添反応時間を制御することにより調製することができる。また、水素添加率は後述する実施例記載の方法で求めることができる。
 第二及び第三実施形態において、部分水添ブロック共重合体中に含まれるビニル芳香族単量体単位の含有量(TS)は、30~60質量%であることが好ましい。改質アスファルト組成物の優れた相容性、高い軟化点、貯蔵時の耐熱安定性、及び耐骨材剥離性の点、並びに舗装用バインダ組成物の高い耐わだち掘れ性の観点で、部分水添ブロック共重合体中のビニル芳香族単量体単位の含有量の下限値は、30質量%以上であることが好ましく、33質量%以上がより好ましく、36質量%以上が更に好ましく、40質量%以上がより更に好ましい。また、ブロック共重合体中のビニル芳香族単量体単位の含有量の上限値は、改質アスファルト組成物の相容性、低い溶融粘度、及び柔軟性の点、並びに舗装用バインダ組成物の低い溶融粘度の観点で、60質量%以下であることが好ましく、55質量%以下がより好ましく、50質量%以下が更に好ましく、45質量%以下がより更に好ましい。
 第二及び第三実施形態において、部分水添ブロック共重合体中の、ビニル芳香族単量体単位を主体とする重合体ブロック(A)の含有量(BS)の下限値は、改質アスファルト組成物の高い軟化点の点、及び舗装用バインダ組成物の高い耐わだち掘れ性の観点で、10質量%以上が好ましく、15質量%以上がより好ましく、17質量%以上がさらに好ましい。また、第二実施形態において、部分水添ブロック共重合体中の、ビニル芳香族単量体単位を主体とする重合体ブロック(A)の含有量(BS)の上限値は、アスファルトとの高い相容性、改質アスファルト組成物の柔軟性の点、及び舗装用バインダ組成物の低い溶融粘度の観点で、40質量%以下が好ましく、35質量%以下がより好ましく、28質量%以下がさらに好ましく、25質量%以下がよりさらに好ましい。
 なお、部分水添ブロック共重合体中のビニル芳香族単量体単位の含有量(TS)と、ビニル芳香族単量体単位を主体とする重合体ブロック(A)の含有量(BS)は、後述する実施例記載の方法で測定することができる。
 ビニル芳香族単量体を主体とする重合体ブロック(A)の分子量分布は、改質アスファルト組成物の耐流動性の点、及び舗装用バインダ組成物の低い溶融粘度の点から、1.46以下が好ましく、1.44以下がより好ましく、1.42以下がさらに好ましく、1.40以下がより更に好ましい。また、改質アスファルト組成物の引張後の回復性の点、及び舗装用バインダ組成物の高い耐わだち掘れ性の点から、1.1以上が好ましく、1.12以上がより好ましく、1.14以上がさらに好ましく、1.16以上がより更に好ましい。ビニル芳香族単量体を主体とする重合体ブロック(A)の分子量分布は、以下の式により求めることができる。
 ビニル芳香族単量体を主体とする重合体ブロック(A)の分子量分布=(重合体ブロック(A)のピーク分子量の半値全幅時の高分子量側の分子量)/(重合体ブロック(A)のピーク分子量の半値全幅時の低分子量側の分子量)
 第二及び第三実施形態において、部分水添ブロック共重合体中の、共役ジエン単量体単位及びビニル芳香族単量体単位を含む共重合体ブロック(B2)中のビニル芳香族単量体単位含有量(RS)の下限値は、改質アスファルト組成物の分離安定性、貯蔵時の耐熱老化性、及び引張後の回復性の点、並びに舗装用バインダ組成物の相容性の観点で、共重合体ブロック(B2)の全質量を基準として5質量%以上であることが好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。
 第二及び第三実施形態において、アスファルトに添加する部分水添ブロック共重合体の添加量の低減、改質アスファルト組成物の分離安定性、改質アスファルト組成物の柔軟性、耐候性、及び耐骨材剥離性の点、並びに舗装用バインダ組成物の高い耐わだち掘れ性の点で、共重合体ブロック(B2)中のビニル芳香族単量体単位含有量(RS)の上限値は、共重合体ブロック(B2)の全質量を基準として50質量%以下が好ましく、35質量%以下がさらに好ましく、30質量%以下がよりさらに好ましい。
 共重合体ブロック(B2)中のビニル芳香族単量体単位含有量(RS)は、部分水添ブロック共重合体中のビニル芳香族単量体単位の含有量(TS)から、上記ビニル芳香族単量体単位を主体とする重合体ブロック(A)の含有量(BS)を除した値(TS-BS)の割合(質量%)である。RSは、以下の式により求めることができる。 RS(質量%)=(TS-BS)/(100-BS)×100
 第二及び第三実施形態において、共重合体ブロック(B2)の重合開始時から重合終了時までの反応時間を三等分して、順に前段、中段、及び後段とし、前段終了時の共重合体ブロック(B2)中のビニル芳香族単量体単位含有量をS1(質量%)、中段終了時の共重合体ブロック(B2)中のビニル芳香族単量体単位含有量をS2(質量%)、後段終了時の共重合体ブロック(B2)中のビニル芳香族単量体単位含有量をS3(質量%)としたとき、改質アスファルト組成物の相容性の点、及び舗装用バインダ組成物の相容性の点で、S2/S1>1、且つS3/S2>1の関係が成り立つ構造がより好ましい。なお、共重合体ブロック(B2)の「重合開始時」とは、共重合体ブロック(B)の原料モノマーを反応器に投入した時とし、共重合体ブロック(B2)の「重合終了時」とは、共重合体ブロック(A)の原料モノマーを反応器に投入する直前とする。ビニル芳香族単量体単位含有量S1~S3は、前段終了時、中段終了時、及び後段終了時の各時点における重合体溶液をサンプリングして測定することができる。
 第二及び第三実施形態において、共重合体ブロック(B2)中の短連鎖ビニル芳香族単量体重合部分の含有量は、50質量%以上であることが好ましい。共重合体ブロック(B2)中の短連鎖ビニル芳香族単量体重合部分の含有量が上記範囲内であることにより、ブロック共重合体とアスファルトとの相容性が高くなり、改質アスファルト組成物の引張後の回復性、耐熱老化性、耐骨材剥性が向上する傾向にあり、また、舗装用バインダ組成物の相容性が向上する傾向にある。共重合体ブロック(B2)中の短連鎖ビニル芳香族単量体重合部分の含有量の下限値は、70質量%以上であることがより好ましく、さらに好ましくは80質量%以上であり、よりさらに好ましくは90質量%以上である。共重合体ブロック(B2)中の短連鎖ビニル芳香族単量体重合部分の含有量の上限値は、特に限定されないが99質量%以下であることが好ましい。
 本明細書中、「短連鎖ビニル芳香族単量体重合部分」とは、共重合体ブロック(B2)中、ビニル芳香族単量体単位が2~6個連続する部分である。そして、短連鎖ビニル芳香族単量体重合部分の含有量は、共重合体ブロック(B2)中のビニル芳香族単量体単位の含有量(RS)を100質量%とし、その中で2~6個連続したビニル芳香族単量体単位の含有量として求められる。2~6個連続したビニル芳香族単量体単位含有量の測定方法は、後述する実施例に記載する。
 第二及び第三実施形態における共重合体ブロック(B2)中、ビニル芳香族単量体単位が2個連続した短連鎖ビニル芳香族単量体重合部分の含有量が、10質量%以上45質量%以下であることが好ましく、13質量%以上42質量%以下であることがより好ましく、19質量%以上36質量%以下であることが更に好ましい。2個連続したビニル芳香族単量体単位含有量の測定方法は、後述する実施例に記載する。
 第二及び第三実施形態における共重合体ブロック(B2)中、ビニル芳香族単量体単位が3個連続した短連鎖ビニル芳香族単量体重合部分の含有量が、45質量%以上80質量%以下であることが好ましく、45質量%以上75質量%以下であることがより好ましく、45質量%以上65質量%以下であることが更に好ましい。3個連続したビニル芳香族単量体単位含有量の測定方法は、後述する実施例に記載する。
 第二及び第三実施形態における部分水添ブロック共重合体の水素添加前の共役ジエン単量体単位中の平均ビニル含有量は、好ましくは15mol%以上50mol%未満であり、より好ましくは18mol%以上40mol%以下であり、さらに好ましくは21mol%以上35mol%以下であり、より更に好ましくは24mol%以上32mol%以下である。第二実施形態において、水素添加前の共役ジエン単量体単位中のビニル含有量が15mol%以上であることにより、アスファルトに添加する部分水添ブロック共重合体の添加量が低くなる傾向にあり、また、舗装用バインダ組成物の溶融粘度が低下する傾向にあるため好ましい。また、水素添加前の共役ジエン単量体単位中のビニル含有量が50mol%未満であることにより、改質アスファルト組成物の貯蔵時の耐熱老化性や耐候性が高くなる傾向にあり、また、舗装用バインダ組成物の耐熱安定性や耐熱変色性が向上する傾向にあるため好ましい。ここで、「ビニル含有量」とは、水素添加前の共役ジエン単量体単位の1,2-結合、3,4-結合、及び1,4-結合の結合様式で組み込まれている共役ジエン単量体単位の総mol量に対し、1,2-結合及び3,4-結合で組み込まれている共役ジエン単量体単位の割合とする。なお、ビニル含有量は、NMRにより測定でき、具体的には後述する実施例に記載の方法により測定できる。
 第二及び第三実施形態において、共役ジエン単量体単位とビニル芳香族単量体単位を含む共重合体ブロック(B2)内において、ビニル含有量に分布があってもよい。部分水添ブロック共重合体の共役ジエン単量体単位とビニル芳香族単量体単位を含む(B2)中のビニル含有量の高低の差(以下、「Δビニル含有量」ともいう)の下限値は、改質アスファルト組成物の低温伸度の点、及び舗装用バインダ組成物の低温伸度の点で、5mol%以上が好ましく、8mol%以上がより好ましく、15mol%以上がさらに好ましく、20mol%以上がより更に好ましい。また、改質アスファルト組成物の相容性の点、及び舗装用バインダ組成物の相容性の点で、Δビニル含有量の上限値は、30mol%以下が好ましく、25mol%以下がより好ましく、20mol%以下がさらに好ましく、17mol%以下がより更に好ましい。
 共役ジエン単量体単位とビニル芳香族単量体単位を含む共重合体ブロック(B2)内において、重合開始末端側から順に等質量となるよう第1領域~第6領域とし、第1領域~第6領域の水素添加前のビニル含有量を、それぞれV1~V6としたとき、ビニル含有量の分布は、特に限定されず、一定でもよく、テーパー状、凸状、あるいは凹状に分布していてもよい。水素添加率分布H、水素添加率分布H2、及びL2/L1を小さくする目的で、ビニル含有量の分布は、テーパー状、凸状、あるいは凹状のいずれかの形に分布していることが好ましい。重合途中で極性化合物を添加したり、重合温度をコントロールしたりすることより、ビニル分布をテーパー状、凸状、凹状、にすることができる。
 テーパー状の分布とは、V6>V5>V4>V3>V2>V1、もしくはV6<V5<V4<V3<V2<V1を満たす分布をいう。凸状の分布とは、V6及びV1がV5及びV2よりも小さく、V5及びV2がV4及びV3よりも小さくなる分布をいう。凹状の分布とは、V6及びV1がV5及びV2よりも大きく、V5及びV2がV4及びV3よりも大きくなる分布をいう。
 第二及び第三実施形態において、部分水添ブロック共重合体の重量平均分子量(Mw)は、100,000~500,000であることが好ましく、120,000~280,000であることがより好ましく、140,000~260,000であることが更に好ましく、又は160,000~240,000であることがより更に好ましい。部分水添ブロック共重合体の重量平均分子量(Mw)が120,000以上であることにより、改質アスファルト組成物の軟化点及び耐わだち掘れ性がより向上する傾向にあり、また、舗装用バインダ組成物の軟化点及び耐わだち掘れ性が向上する傾向にあるため好ましい。また、部分水添ブロック共重合体の重量平均分子量(Mw)が280,000以下であることにより、改質アスファルト組成物の低温伸度、耐変色性がより向上し、溶融粘度がより低くなり、加工性がより向上する傾向にあり、また、舗装用バインダ組成物の溶融粘度が低下する傾向にあるため好ましい。
 第二及び第三実施形態において、部分水添ブロック共重合体の分子量分布(Mw/Mn)(重量平均分子量(Mw)の数平均分子量(Mn)に対する比)の下限値は、アスファルトに添加する部分水添ブロック共重合体の添加量を低減する点、及び舗装用バインダ組成物の低溶融粘度の点で、1.03以上が好ましく、1.05以上がより好ましく、1.11以上がさらに好ましく、1.20以上がより更に好ましい。また、改質アスファルト組成物の製造性やアスファルトに添加する部分水添ブロック共重合体の添加量を低減する点、及び舗装用バインダ組成物の低溶融粘度の点で、部分水添ブロック共重合体の分子量分布(Mw/Mn)の上限値は、2.0以下が好ましく、1.7以下がより好ましく、1.4以下がさらに好ましく、1.3以下がよりさらに好ましい。重合体の重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、後述する実施例記載の方法により求めることができる。
 第二及び第三実施形態において、部分水添ブロック共重合体の動的粘弾性測定による損失正接(tanδ)のピーク温度の下限値は、アスファルトとの高い相容性、及び短い製造時間の点、並びに舗装用バインダ組成物の粘着付与樹脂及びオイルとの高い相容性の点で、-50℃以上であることが好ましく、-47℃以上がより好ましく、-44℃以上がさらに好ましい。また、改質アスファルト組成物の短い製造時間、及び柔軟性の点、及び舗装用バインダ組成物の高い低温伸度の点で、部分水添ブロック共重合体の損失正接(tanδ)のピーク温度の上限値は、-5℃以下であることが好ましく、-10℃以下がより好ましく、-15℃以下がさらに好ましく、-25℃以下がより更に好ましい。損失正接(tanδ)のピーク温度は、後述する実施例に記載の方法により測定することができる。なお、損失正接(tanδ)のピーク温度は、中間ブロックのビニル結合含有量やビニル芳香族単量体の含有量等により上記範囲に調整することができる。
 第二及び第三実施形態において、部分水添ブロック共重合体の動的粘弾性測定による-50℃以上-5℃以下の範囲における損失正接(tanδ)のピーク高さは、改質アスファルト組成物の短い製造時間、高い引張後の回復性、及び貯蔵時の耐熱老化性の点、及び舗装用バインダ組成物の高い低温伸度の点で、0.7を超えて1.6以下であることが好ましく、0.8以上1.8以下がより好ましく、0.9以上1.7以下がさらに好ましく、1.0以上1.5以下がより更に好ましい。損失正接(tanδ)のピーク高さは、後述する実施例に記載の方法により測定することができる。なお、損失正接(tanδ)のピーク高さは、中間ブロックのビニル結合分布や水添率分布等により上記範囲に調整することができる。
 第二及び第三実施形態において、改質アスファルト組成物の相容性、貯蔵時の耐熱老化性、及び機械物性の点、並びに舗装用バインダ組成物の相容性の点で、部分水添ブロック共重合体が、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群から選択される少なくとも一つの官能基を有することが好ましい。この中でも、部分水添ブロック共重合体が、アミノ基、及びアミド基からなる群から選択される少なくとも一つの官能基を有することがより好ましく、アミノ基を有することがさらに好ましい。部分水添ブロック共重合体は、その分子1molに対して、アミノ基、及びアミド基からなる群から選択される少なくとも一つの官能基を2mol以上含有することがより好ましい。
 第二及び第三実施形態において、部分水添ブロック共重合体のメルトフローレート(MFR、200℃、5kgf)の下限値は、改質アスファルト組成物の短い製造時間の点、及び舗装用バインダ組成物の低い溶融粘度の点で、0.1g/10分以上が好ましく、1g/10分以上がより好ましく、2g/10分以上がさらに好ましい。また、部分水添ブロック共重合体のメルトフローレート(MFR、200℃、5kgf)の上限値は、アスファルトに添加する部分水添ブロック共重合体の添加量が少なくなることや、改質アスファルト組成物の引張後の回復性の点、及び舗装用バインダ組成物の高い耐わだち掘れ製の点で、50g/10分以下が好ましく、10g/10分以下がさらに好ましい。
<部分水添ブロック共重合体の製造方法>
 第二及び第三実施形態における部分水添ブロック共重合体は、例えば、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体とを重合させて、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位及びビニル芳香族単量体単位を含む重合体ブロック(B2)とを有するブロック共重合体を得る重合工程を行い、重合工程の後、得られたブロック共重合体の共役ジエン単量体単位中の二重結合の一部に水素を添加する水素添加工程を行い、得られた部分水添ブロック共重合体を含む溶液の溶媒を脱溶剤する脱溶剤工程を行うことにより、製造することができる。
 重合工程、水素添加工程、脱溶剤工程等については上述したとおりであり、ここでは記載を省略する。
<改質アスファルト組成物>
 第二実施形態において、本実施形態のブロック共重合体は、改質アスファルト組成物に使用することができる。第二実施形態の改質アスファルト組成物は、アスファルト100質量部に対し、上記で説明した部分水添ブロック共重合体1質量部以上20質量部以下を含有する。改質アスファルト組成物中の部分水添ブロック共重合体の含有量は、好ましくはアスファルト100質量部に対し2~13質量部であり、より好ましくは3~10質量部である。
 アスファルトとしては、特に限定されないが、例えば、石油精製の際の副産物(石油アスファルト)、又は天然の産出物(天然アスファルト)として得られるもの、もしくはこれらと石油類を混合したもの等が挙げられる。アスファルトの主成分は瀝青(ビチューメン)と呼ばれるものが一般的である。
 アスファルトとしては、特に限定されないが、例えば、ストレートアスファルト、セミブローンアスファルト、ブローンアスファルト、溶剤脱瀝アスファルト、タール、ピッチ、オイルを添加したカットバックアスファルト、アスファルト乳剤等が挙げられる。入手性の観点から、アスファルトは、ストレートアスファルトであることが好ましい。これらは単独で使用しても、混合して使用してもよい。また、各種アスファルトに石油系溶剤抽出油、アロマ系炭化水素系プロセスオイルあるいはエキストラクト等の芳香族系重質鉱油等を添加してもよい。
 アスファルトは、針入度(JIS-K2207によって測定)が30以上300以下であることが好ましく、より好ましくは50以上250以下、さらに好ましくは60以上200以下である。アスファルトの針入度が上記範囲内であることにより、改質アスファルト組成物の軟化点、伸度、溶融粘度、耐わだち掘れ性、及び貯蔵時の耐熱安定性のバランスが優れる傾向にある。
 第二実施形態において、改質アスファルト組成物の製造時間短縮や、アスファルト組成物の相容性や、耐骨材剥離性を改良する観点から、改質アスファルト組成物は上述した粘着付与樹脂を含むことが好ましい。
 粘着付与樹脂としては、例えば、ロジン系樹脂、水添ロジン系樹脂、テルペン系樹脂、クマロン系樹脂、フェノール系樹脂、テルペン-フェノール系樹脂、芳香族炭化水素樹脂、及び脂肪族炭化水素樹脂等が挙げられる。
 粘着付与樹脂は、単独で使用してもよく、2種類以上組み合わせて使用してもよい。粘着付与樹脂の具体例としては、「ゴム・プラスチック配合薬品」(ラバーダイジェスト社編)に記載されたものが使用できる。改質アスファルト組成物の高い相容性や、耐骨材剥離性改良の点で、芳香族炭化水素樹脂が好ましい。
 第二実施形態において、改質アスファルト組成物中における粘着付与樹脂の含有量は、部分水添ブロック共重合体を100質量部としたとき、0質量部超~200質量部以下であることが好ましく、3質量部以上100質量部以下であることがより好ましい。上記範囲の含有量とすることにより、相容性と耐骨材剥離性がより改善される傾向にある。
 第二実施形態において、改質アスファルト組成物の低い粘度や、高い相容性を得る観点から、改質アスファルト組成物はオイルを含むことが好ましい。オイルとしては、特に限定されないが、例えば、鉱物油系軟化剤、又は合成樹脂系軟化剤のいずれも使用できる。鉱物油系軟化剤としては、一般に、パラフィン系オイル、ナフテン系オイル、芳香族系オイル等が挙げられる。
 なお、一般的に、パラフィン系炭化水素の炭素原子数が、オイルに含まれる全炭素原子中の50%以上を占めるものが「パラフィン系オイル」と呼ばれ、ナフテン系炭化水素の炭素原子数が30%以上45%以下のものが「ナフテン系オイル」と呼ばれ、また、芳香族系炭化水素の炭素原子数が35%以上を占めるものが「芳香族系オイル」と呼ばれている。
 鉱物油系軟化剤を含有させることにより、改質アスファルト組成物の施工性の改良が図られる。鉱物油系軟化剤としては、アスファルト組成物の低い粘度や、低温性能の観点から、パラフィン系オイルが好ましく、アスファルト組成物の低い粘度や、高い相容性の観点からは、ナフテン系オイルが好ましい。
 また、合成樹脂系軟化剤としては、特に限定されないが、例えば、ポリブテン、低分子量ポリブタジエン等が好ましい。
 第二実施形態において、改質アスファルト組成物中のオイルの含有量は、オイルのブリード抑制や、改質アスファルト組成物の実用上十分な機械強度を確保する観点から、上述した部分水添ブロック共重合体100質量部に対して、10質量部~50質量部であることが好ましく、15質量部~40質量部であることがより好ましく、20質量部~30質量部であることが更に好ましい。
 第二実施形態において、改質アスファルト組成物の高い軟化点、相容性、高温貯蔵安定性を改良する観点から、アスファルト組成物は架橋剤を含むことが好ましい。架橋剤としては、特に限定されないが、例えば、硫黄、硫黄化合物、硫黄以外の無機加硫剤、オキシム類、ニトロソ化合物、ポリアミン、有機過酸化物、樹脂架橋剤、イソシアネート化合物、ポリリン酸、及び架橋助剤が挙げられる。
 第二実施形態において、改質アスファルト組成物の高い軟化点、相容性、貯蔵時の耐熱老化性の点で、架橋剤としては、硫黄、硫黄化合物、ポリリン酸が好ましい。
 第二実施形態において、改質アスファルト組成物中の架橋剤の添加量の下限値は、共役ジエン共重合体とアスファルトとの高い相容性、及び改質アスファルト混合物の油付着時の高い耐質量損失や高い耐強度低下の点で、改質アスファルト組成物の全質量を基準として0.02質量%以上が好ましく、0.04質量%以上がより好ましく、0.06質量%以上がさらに好ましい。また、改質アスファルト組成物中の架橋剤の添加量は、高い針入度の改質アスファルト組成物を得るという点から、特表2013-520543号広報のように、改質アスファルト組成物の全質量を基準として約20~60質量%を用いてもよい。改質アスファルト組成物中の架橋剤の添加量の上限値は、高い針入度の改質アスファルト組成物を得る点や経済性の点で、改質アスファルト組成物の全質量を基準として1.0質量%以下が好ましく、0.4質量%以下がより好ましく、0.2質量%以下がさらに好ましい。
 第二実施形態において、共役ジエン共重合体と架橋剤とを十分反応させる観点から、改質アスファルト組成物に架橋剤を添加した後の混合時間を20分以上にすることが好ましく、40分以上がより好ましく、60分以上がさらに好ましく、90分以上が最も好ましい。また、共役ジエン共重合体の熱劣化抑制の点で、改質アスファルト組成物に架橋剤を添加した後の混合時間は、5時間以下が好ましく、3時間以内がより好ましい。
 第二実施形態において、改質アスファルト組成物の粘度を低下させる観点、及び改質アスファルト組成物の製造時間をより短縮する観点から、改質アスファルト製造時は発泡剤を含んでもよい。
 第二実施形態において、発泡剤としては、炭酸水素ナトリウム、炭酸アンモニウム、ジアゾアミノベンゼン、N,N’-ジニトロソペンタメチレンテトラミン、2,2’-アゾビス(イソブチロニトリル)等が挙げられる。改質アスファルトとの相容性の点で、ジアゾアミノベンゼン、N,N’-ジニトロソペンタメチレンテトラミン、2,2’-アゾビス(イソブチロニトリル)が好ましい。
 第二実施形態において、改質アスファルト組成物中の発泡剤の添加量は、改質アスファルト組成物の低い粘度や短い製造時間の点で、0.1質量%が好ましく、0.3質量%以上がより好ましい。また、改質アスファルト組成物中の発泡剤の添加量は、経済性の点で、3質量%以下が好ましく。2質量%以下がより好ましく、1質量%以下がさらに好ましい。
 第二実施形態において、改質アスファルト組成物は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられる他の添加剤を含んでもよい。他の添加剤としては、例えば、無機充填剤、滑剤、離型剤、可塑剤、酸化防止剤、安定剤、難燃剤、帯電防止剤、有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤、着色剤、顔料、粘度調製剤、剥離防止剤、及び顔料分散剤等が挙げられる。他の添加剤の含有量は特に限定されず、アスファルト100質量部に対して、通常、50質量部以下である。
 第二実施形態において、無機充填剤としては、例えば、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム、シリカ、クレー、タルク、マイカ、ウォラストナイト、モンモリロナイト、ゼオライト、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、スラッグウール、及びガラス繊維等が挙げられる。
 第二実施形態において、滑剤・離型剤としては、例えば、カーボンブラック、酸化鉄等の顔料、ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、及びエチレンビスステアロアミド等が挙げられる。
 第二実施形態において、安定剤としては、酸化防止剤、及び光安定剤等の各種安定剤が挙げられる。
 第二実施形態において、酸化防止剤としては、例えば、ラジカル補捉剤等のフェノール系酸化防止剤、過酸化物分解剤等のリン系酸化防止剤、及びイオウ系酸化防止剤等が挙げられる。また、両性能を併せ持つ酸化防止剤を使用してもよい。これらは単独で用いてもよく、二種以上を併用してもよい。このなかでも、ブロック共重合体の耐熱老化性やゲル化抑制の観点から、フェノール系酸化防止剤が好ましい。酸化防止剤としては、特に限定されないが、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(4'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)プロピオネート、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルべンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-[1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル]フェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)]アクリレート等のヒンダードフェノール系酸化防止剤;ジラウリルチオジプロピオネート、ラウリルステアリルチオジプロピオネートペンタエリスリトール-テトラキス(β-ラウリルチオプロピオネート)等のイオウ系酸化防止剤;トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト等のリン系酸化防止剤等が挙げられる。
 第二実施形態において、光安定剤としては、例えば、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-t-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2-ヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;ヒンダードアミン系光安定剤等が挙げられる。
 第二実施形態において、剥離防止剤は、改質アスファルト組成物を骨材と混合したときの改質アスファルト組成物と骨材との剥離を防止することができる。剥離防止剤としては、例えば樹脂酸が好適であり、カルボキシル基を有する炭素数20の多環式ジテルペンであって、アビエチン酸、デヒドロアビエチン酸、ネオアビエチン酸、ピマール酸、イソピマール酸、パラストリン酸のうち何れか1種以上を含有するロジンが挙げられる。また、脂肪酸又は脂肪酸アミドは、剥離防止剤及び滑剤として機能することができる。
 第二実施形態において、改質アスファルト組成物は、部分水添ブロック共重合体以外のゴム成分(以下、単に「ゴム成分」ともいう。)を含有してもよい。部分水添ブロック共重合体以外のゴム成分としては、例えば、天然ゴム、及び合成ゴムが挙げられる。合成ゴムとしては、例えばポリイソプレンゴム、ポリブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、変性スチレンブタジエンゴム(変性SBR)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-ブチレン-ブタジエン-スチレン共重合体(SBBS)、エチレンプロピレン共重合体(EPDM)等のオレフィン系エラストマー;クロロプレンゴム、アクリルゴム、エチレン酢酸ビニル共重合体(EVA)、エチレン-エチルアクリレート共重合体(EEA)、ニトリルブタジエンゴム(NBR)等が挙げられる。
 部分水添ブロック共重合体以外のゴム成分としては、改質アスファルト組成物の高い相容性や、耐骨材剥離性を改良する点で、ポリイソプレンゴム、ポリブタジエンゴム、スチレンブタジエンゴム、スチレン-ブタジン-スチレンブロック共重合体、エチレン酢酸ビニル共重合体が好ましく、ポリブタジエンゴム、スチレン-ブタジエン-スチレンブロック共重合体がより好ましい。
 部分水添ブロック共重合体以外のゴム成分は官能基を有していてもよい。耐流動性を改良する点で、ゴム成分としては、オレフィン系エラストマー、又は官能基を有するオレフィン系エラストマーを使用することが好ましい。
 部分水添ブロック共重合体以外のゴム成分が官能基を有する場合、官能基としては、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群から選択される少なくとも一つの官能基を有することが好ましい。部分水添ブロック共重合体以外のゴム成分は、単独で使用してもよく、2つ以上を組み合わせて使用してもよい。
 第二実施形態において、改質アスファルト組成物中における、部分水添ブロック共重合体以外のゴム成分の含有量は、上述した部分水添ブロック共重合体を100質量部としたとき、0.5~400質量部であることが好ましく、0.5~300質量部であることがより好ましく、1~200質量部であることが更に好ましく、5~150質量部であることが最も好ましい。部分水添ブロック共重合体以外のゴム成分の含有量を上記範囲とすることにより、改質アスファルト組成物の相容性と耐骨材剥離性の改良効果がより確実に得られる。
 第二実施形態において、改質アスファルト組成物は、本実施形態の部分水添ブロック共重合体以外の樹脂成分を含有してもよい。本実施形態の部分水添ブロック共重合体以外の樹脂成分としては、以下に限定されないが、例えばポリエチレン(PE)、低密度ポリエチレン(低密度PE)、ポリ塩化ビニル(PVC)、ポリアミド(PA)、ポリスチレン(PS)、アクリル樹脂、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフッ化ビニリデン(PVDF)、テフロン(登録商標)(PTFE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリアミドイミド(PAI)等の熱可塑性樹脂が挙げられる。
 本実施形態の部分水添ブロック共重合体以外の樹脂成分としては、改質アスファルト組成物の高い相容性や、耐骨材剥離性を改良する点で、ポリエチレン(PE)、低密度ポリエチレン(低密度PE)、ポリ塩化ビニル(PVC)、ポリアミド(PA)がより好ましい。
 部分水添ブロック共重合体以外の樹脂成分は官能基を有していてもよい。樹脂成分が官能基を有する場合、官能基としては、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群から選択される少なくとも一つの官能基を有することが好ましい。部分水添ブロック共重合体以外の樹脂成分は、単独で使用してもよく、2つ以上を組み合わせて使用してもよい。
 第二実施形態において、改質アスファルト組成物中における、部分水添ブロック共重合体以外の樹脂成分の含有量は、上述した部分水添ブロック共重合体を100質量部としたとき、0.5~400質量部であることが好ましく、0.5~300質量部であることがより好ましく、1~200質量部であることが更に好ましく、5~150質量部であることが最も好ましい。部分水添ブロック共重合体以外の樹脂成分の含有量を上記範囲とすることにより、改質アスファルト組成物の相容性と耐骨材剥離性の改良効果がより確実に得られる。
 第二実施形態において、改質アスファルト組成物は、本実施形態の部分水添ブロック共重合体以外の樹脂成分として、重量平均分子量(Mw)が5,000~30,000のビニル芳香族単量体単位を主体とする重合体(以下、「低分子量ビニル芳香族重合体」ともいう)を含んでもよい。低分子量ビニル芳香族重合体としては、本実施形態における重合体ブロック(A)に含まれるビニル芳香族単量体単位を主体とすることが好ましく、ポリスチレンに由来する単量体単位を主体とすることがより好ましい。
 第二実施形態において、分子量ビニル芳香族重合体の含有量の下限値は、改質アスファルト組成物の低粘度化の点で、部分水添ブロック共重合体100質量部に対して0.5質量部以上が好ましく、1.0質量部以上がより好ましく、2.0質量部以上がさらに好ましく、3.0質量部以上が最も好ましい。また、低分子量ビニル芳香族重合体の含有量の上限値は、改質アスファルト組成物の低い軟化点の点で、部分水添ブロック共重合体100質量部に対して5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましく、2.0質量部以下がより更に好ましい。
 低分子量ビニル芳香族重合体の好ましい調製方法は、第一実施形態において説明したとおりであり、ここでは記載を省略する。
 第二実施形態において、市販の低分子量ビニル芳香族重合体を、本実施形態の部分水添ブロック共重合体と混合してもよい。
 第二実施形態において、改質アスファルト組成物は、アスファルト100質量部に対し、上記で説明した部分水添ブロック共重合体1質量部以上20重量部以下を混合することにより製造することができる。
 混合方法は特に限定されず、任意の混合機を用いて行うことができる。混合機としては、例えば、押出機、ニーダー、バンバリーミキサーなどの溶融混練機、垂直インペラ、サイドアーム型インペラ等の攪拌機、乳化機を含めたホモジナイザー、及びポンプが挙げられる。
 アスファルト、部分水添ブロック共重合体、及び任意に添加剤を、140℃から220℃の範囲で、撹拌タンク等を用いて混合することが好ましい。
<改質アスファルト混合物>
 第二実施形態において、改質アスファルト混合物は、上記で説明した改質アスファルト組成物と骨材とを含む。
 骨材としては限定されず、例えば、社団法人日本道路協会発行の「アスファルト舗装要綱」に記載されている舗装用の骨材であればどのようなものでも使用できる。骨材としては、具体的には、砕石、玉石、砂利、鉄鋼スラグ等である。また、これらの骨材にアスファルトを被覆したアスファルト被覆骨材および再生骨材なども使用できる。その他、これに類似する粒状材料、人工焼成骨材、焼成発泡骨材、人工軽量骨材、陶磁器粒、ルクソバイト、アルミニウム粒、プラスチック粒、セラミックス、エメリー、建設廃材、繊維等も使用することができる。
 骨材は、一般に、粗骨材、細骨材、及びフィラーに大別される。
 粗骨材とは、2.36mmふるいに留まる骨材であって、一般には粒径範囲2.5~5mmの7号砕石、粒径範囲5~13mmの6号砕石、粒径範囲13~20mmの5号砕石、更には、粒径範囲20~30mmの4号砕石などの種類がある。本実施形態のアスファルト混合物においては、これら種々の粒径範囲の粗骨材の1種または2種以上を混合した骨材、或いは、合成された骨材などを使用することができる。これらの粗骨材には、骨材に対して0.3~1質量%程度のストレートアスファルトを被覆しておいてもよい。
 細骨材とは、2.36mmふるいを通過し、かつ、0.075mmふるいに止まる骨材をいい、例えば、川砂、丘砂、山砂、海砂、スクリーニングス、砕石ダスト、シリカサンド、人工砂、ガラスカレット、鋳物砂、再生骨材破砕砂などが挙げられる。
 フィラーとは、0.075mmふるいを通過する骨材であって、例えば、スクリーニングスのフィラー分、石粉、消石灰、セメント、焼却炉灰、クレー、タルク、フライアッシュ、カーボンブラックなどが挙げられる。このほか、フィラーとしては、ゴム粉粒、コルク粉粒、木質粉粒、樹脂粉粒、繊維粉粒、パルプ、人工骨材等であっても、0.075mmふるいを通過するものであれば使用することができる。
 粗骨材、細骨材、又はフィラーは、単独で用いてもよく、一般的には、2種以上を混合して用いられる。
 本実施形態のアスファルト混合物は、少なくとも、本実施形態の改質アスファルト組成物と骨材とを混合することにより製造することができる。混合方法は特に限定されない。
 改質アスファルト組成物と骨材との混合温度は、通常、120℃以上、200℃以下の範囲とすることができる。
 アスファルト混合物中の骨材の含有量は、油付着時の高い耐質量損失や高い耐強度低下を有するアスファルト混合物を得るという観点からは、85質量%以上98質量%以下の範囲が好ましく、90質量%以上97質量%以下がより好ましい。
 また、アスファルト混合物を製造する方法としては、アスファルトと骨材とを混合する際に、直接本実施形態における部分水添ブロック共重合体を混合してアスファルトを改質する、いわゆるプラントミックス方式を使用することもできる。
<改質アスファルト組成物、及び改質アスファルト混合物の利用方法>
 本実施形態の改質アスファルト組成物及び改質アスファルト混合物は、D.Whiteoakによって編集され、Shell Bitumen U.K.によって英国で1990年に発行されたThe Shell Bitumen Handbookに記載されている様々な用途に使用できる。また、他の用途としては、防水シート、屋根のコーティング、防水シート用のプライマー接着剤、舗装用封止結合剤、再利用アスファルト舗装における接着剤、低温調製アスファルトコンクリート(cold prepared asphaltic concrete)用の結合剤、ファイバーグラスマット結合剤、コンクリート用のスリップコート、コンクリート用の保護コート、パイプラインおよび鉄製部品のクラックの封着等が含まれる。
 本実施形態の改質アスファルト混合物を用いる舗装形態としては、以下に限定されないが、密粒度舗装、排水性舗装、透水性舗装、密粒度ギャップアスファルト舗装、砕石マスチックアスファルト舗装、カラー舗装、半たわみ性舗装、保水性舗装、薄層舗装が挙げられる。
 また、各舗装形態を得る為の製造方法としては、特に限定されないが、例えば、熱工法、中温化工法、常温工法などが挙げられる。
 耐流動性、滑り抵抗性の改善の観点から、密粒度舗装に用いられるアスファルト混合物は、骨材の合計量を100質量%として、粗骨材40~55質量%、細骨材40~55質量%、フィラー3~10質量%を含有することが好ましい。密粒度舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が5~7質量部であり、アスファルト100質量部に対して、本実施形態における部分水添ブロック共重合体が3~5.5質量部であることが好ましい。
 排水性、視認性、騒音性の改善の観点から、排水性舗装に用いられる改質アスファルト混合物は、骨材合計量を100質量%として、粗骨材60~85質量%、細骨材5~20質量%、フィラー3~20質量%を含有することが好ましい。排水性舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が4~6質量部であり、アスファルト100質量部に対して、本実施形態における部分水添ブロック共重合体が5~10質量部であることが好ましい。
 透水性の改善の観点から、透水性舗装に用いられる改質アスファルト混合物は、骨材の合計量を100質量%として、粗骨材60~85質量%、細骨材5~20質量%、フィラー3~20質量%を含有することが好ましい。透水性舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が4~6質量部であり、アスファルト100質量部に対して、本実施形態における部分水添ブロック共重合体が0超~6重量部であることが好ましい。
 摩耗性、耐流動、耐久性、滑り抵抗性の改善の観点から、密粒度ギャップ舗装に用いられる改質アスファルト混合物は、骨材の合計量を100質量%として、粗骨材50~60質量%、細骨材30~40質量%、フィラー3~10質量%を含有することが好ましい。密粒度ギャップ舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が4.5~6質量部であり、アスファルト100質量部に対して、本実施形態における部分水添ブロック共重合体が5~12質量部であることが好ましい。
 摩耗性、不透水性、応力緩和性、耐流動、騒音性の観点から、砕石マスチックアスファルト舗装に用いられる改質アスファルト混合物は、骨材の合計量を100質量%として、粗骨材55~70質量%、細骨材15~30質量%、フィラー5~15質量%を含有することが好ましい。砕石マスチックアスファルト舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が5.5~8質量部であり、アスファルト100質量部に対して、本実施形態の部分水添ブロック共重合体が4~10質量部であることが好ましい。
 舗装温度上昇の抑制、保水性の改善の観点から、保水性舗装に用いられる改質アスファルト混合物は、骨材の合計量を100質量%として、粗骨材60~85質量%、細骨材5~20質量%、フィラー3~20質量%を含有することが好ましい。保水性舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が4~6質量部であり、アスファルト100質量部に対して、本実施形態における部分水添ブロック共重合体が4~10質量部であることが好ましい。保水性舗装に用いられる改質アスファルト混合物は、空隙率が15~20%程度で、空隙にセメント系や石膏系などの保水材が充填されていることが好ましい。
 経済性、工期短縮、施工性の観点から、薄層舗装に用いられる改質アスファルト混合物は、骨材の合計量を100質量%として、粗骨材60~85質量%、細骨材5~20質量%、フィラー3~20質量%を含有することが好ましい。薄層舗装に用いられる改質アスファルト混合物は、骨材の合計量100質量部に対して、改質アスファルト組成物が4~6.5質量部であり、アスファルト100質量部に対して、本実施形態における部分水添ブロック共重合体が4~8質量部であることが好ましい。薄層舗装に用いられる改質アスファルト混合物は、粗骨材が粒径範囲2.5~5mmの7号砕石であることが好ましい。
 第二実施形態の改質アスファルト組成物は、アスファルト防水シート用組成物としても好適に使用できる。
 第二実施形態の改質アスファルト組成物を用いることによって、アスファルト防水シートの軟化点、低温折り曲げ特性を改善することができる。
 アスファルト防水シート組成物中、本実施形態の部分水添ブロック共重合体の含有量としては、高い軟化点、より低温での耐ひび割れ性の点で、アスファルトと部分水添ブロック共重合体との合計を100質量%として、部分水添ブロック共重合体の割合は5質量%以上であることが好ましく、7質量%以上であることがより好ましく、9質量%以上であることがさらに好ましい。一方、アスファルト防水シート用組成物の製造性や経済性の点で、アスファルトと部分水添ブロック共重合体との合計を100質量%として、部分水添ブロック共重合体の割合は20質量%以下であることが好ましく、17質量%以下であることがより好ましく、14質量%以下であることがさらに好ましい。
 アスファルト防水シート用組成物には、本実施形態の部分水添ブロック共重合体以外に、必要に応じて、種々のポリマー、粘着付与剤、軟化剤、酸化防止剤、耐候剤、無機充填剤、滑材、離型剤、架橋剤を用いてよい。
 アスファルト防水シートを常温で施工する場合には、アスファルト防水シートの高い低温使用性、アスファルト防水シート用組成物の低い溶融粘度、高い施工性の観点から、針入度が針入度80以上のアスファルトを用いることが好ましく、針入度100以上のアスファルトがより好ましく、針入度130以上のアスファルトがさらに好ましく、針入度160以上のアスファルトがよりさらに好ましい。
 アスファルト防水シートをトーチ工法等の高温で施工する場合には、アスファルト防水シート用組成物の粘度が低くなり過ぎないように、針入度30以上150以下のアスファルトが好ましく、針入度60以上120以下のアスファルトがより好ましく、針入度80以上100以下のアスファルトが更に好ましい。
 アスファルト防水シートの高い低温使用性、アスファルト防水シート用組成物の低い溶融粘度、及び高い施工性の観点から、アスファルト防水シート組成物は、軟化剤を含有することが好ましい。効果の大きさの点で、オイルが好ましく、プロセスオイルがより好ましい。また、必要に応じて無機充填剤を使用してもよい。
 アスファルト防水シートの施工方法としては、熱工法、トーチ工法、自着工法、複合工法が挙げられる。実施形態のブロック共重合体を用いたアスファルト防水シート用組成物は、高い耐熱老化性を有するため、熱工法やトーチ工法にも好適に使用できる。
<舗装用バインダ組成物>
 第三実施形態において、本実施形態の部分水添ブロック共重合体は、舗装用バインダ組成物に用いることができる。第三実施形態の舗装用バインダ組成物は、粘着付与樹脂20~70質量%と、オイル20~70質量%と、本実施形態の部分水添ブロック共重合体2~15質量%とを含有する。
 第三実施形態の舗装用バインダ組成物は、本実施形態の部分水添ブロック共重合体を特定量含有することにより、製造時の耐熱変色性、及び透明性に優れるので、黒色のアスファルトを含有する改質アスファルト組成物と対比すると、顔料等の着色剤を配合せずとも、材料の自然の色による発色が顕著である。このため、第三実施形態において、舗装用バインダ組成物は、顔料等の着色剤を配合しなくとも、材料の自然の色が発現するような舗装も包含する。発色性の観点から、第三実施形態の舗装用バインダ組成物は、顔料等の着色剤を含有して、積極的に色彩が施されていることが好ましい。
 第三実施形態において、舗装用バインダ組成物中の本実施形態の部分水添ブロック共重合体の含有量の下限値は、高い軟化点、高い低温伸度、高い耐わだち掘れの点で、舗装用バインダ組成物100質量%中、2質量%以上であればよく、4質量%以上が好ましく、6質量%以上がより好ましい。また、本実施形態の部分水添ブロック共重合体の含有量の上限値は、舗装用バインダ組成物の低い溶融粘度の点で、舗装用バインダ組成物100質量%中、15質量%以下であればよく、13質量%以下が好ましく、11質量%以下がより好ましい。
 第三実施形態において、粘着付与樹脂としては、第二実施形態において挙げた粘着付与樹脂と同様の粘着付与樹脂を使用することができる。
 第三実施形態において、舗装用バインダ組成物中の粘着付与樹脂の含有量の下限値は、低い溶融粘度の点で、舗装用バインダ組成物100質量%中、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましい。また、粘着付与樹脂の含有量の上限値は、舗装用バインダ組成物の高い低温伸度及び高い耐わだち掘れ性の点で、舗装用バインダ組成物100質量%中、70質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下がさらに好ましい。
 第三実施形態において、オイルとしては、第二実施形態において挙げたオイルと同様のオイルを使用することができる。
 第三実施形態において、舗装用バインダ組成物中のオイルの含有量の下限値は、低い溶融粘度の点で、舗装用バインダ組成物100質量%中、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましい。また、オイルの含有量の上限値は、舗装用バインダ組成物の高い低温伸度及び高い耐わだち掘れ性の点で、舗装用バインダ組成物100質量%中、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましい。
 第三実施形態において、顔料としては、無機顔料、例えば酸化鉄、酸化クロム、水酸化鉄、及び酸化チタンからなる群から選択される少なくとも一つの顔料が挙げられる。
 第三実施形態において、舗装用バインダ組成物中の顔料の含有量は、発色性の点で、舗装用バインダ組成物100質量%中、0.05質量%以上が好ましく、0.1質量%以上がより好ましい。また、舗装用バインダ組成物の相容性や経済性の点で、舗装用バインダ組成物100質量%中、3質量%以下が好ましく、1質量%以下がより好ましい。
 第三実施形態の舗装用バインダ組成物は、骨材との接着性(「耐骨材剥離性」ともいう)を改良する観点から、剥離防止剤を含有することが好ましい。
 第三実施形態において、剥離防止剤としては、消石灰などの無機系化合物、酸性有機リン化合物、無水マレイン酸、マレイン化有機化合物などに代表される、高級脂肪酸または高級脂肪酸の金属塩などのアニオン系化合物;アミン系有機化合物などに代表される、カチオン系化合物;脂肪族アミンの脂肪酸塩などに代表される、一分子中にカチオンとアニオンの両方を有する両極性型高分子化合物などが挙げられる。これらの中で、剥離防止剤としては、舗装用バインダ組成物の高い耐骨材剥離性の点で、両極性型高分子化合物が好ましい。市販品としては、ネオガードS-100(東邦化学製、商品名)等が挙げられる。
 第三実施形態において、舗装用バインダ組成物中の剥離防止剤の含有量は、耐骨材剥離性の点で、舗装用バインダ組成物100質量%中、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。また、舗装用バインダ組成物の相容性や経済性の点で、舗装用バインダ組成物100質量%中、3質量%以下が好ましく、1質量%以下がより好ましい。
 第三実施形態において、舗装用バインダ組成物は添加剤を含有してもよい。添加剤としては、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に限定されず、例えば、無機充填剤、染料、滑剤、離型剤、可塑剤、酸化防止剤、安定剤、難燃剤、帯電防止剤、有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤、粘度調製剤、及び顔料分散剤等が挙げられる。舗装用バインダ組成物中の添加剤の含有量に関しては特に限定されず、適宜選択することができるが、舗装用バインダ組成物100質量部に対して、通常、50質量部以下である。
<舗装用バインダ組成物の製造方法>
 舗装用バインダ組成物は、例えば、粘着付与樹脂20~70質量%と、オイル20~70質量%と、本実施形態の部分水添ブロック共重合体2~15質量%とを混合することにより製造することができる。
 混合方法は特に限定されず、例えば、撹拌タンク(撹拌方法は、垂直インペラ、サイドアーム型インペラ等の攪拌機、乳化機を含めたホモジナイザー、あるいはポンプによる撹拌が挙げられる)、押出機、ニーダー、バンベリーミキサーなどの溶融混練機等で混合することができる。混合温度は、140℃から220℃の範囲が一般的である。
<舗装用バインダ混合物>
 第三実施形態において、舗装用バインダ混合物は、上記で説明した舗装用バインダ組成物と、骨材とを含む。
 第三実施形態において、骨材としては限定されず、第二実施形態において挙げた改質アスファルト混合物に使用される骨材と同様のものを使用できる。骨材は、有色骨材であることが好ましい。
 第三実施形態において、舗装用バインダ混合物は、舗装用バインダ組成物と、骨材とを混合することにより製造することができる。
 混合方法は特に限定されず、舗装用バインダ組成物の製造方法と同様のものを使用できる。舗装用バインダ組成物と骨材との混合温度は、通常、120℃以上、200℃以下の範囲とすることができる。
 舗装用バインダ混合物中の骨材の含有量は、特に限定されないが、油付着時の高い耐質量損失や、高い耐強度低下を有するアスファルト組成物を得るという観点からは、85質量%以上98質量%以下の範囲が好ましく、97質量%以上90質量%以下であることがより好ましい。
<舗装用バインダ組成物、及び舗装用バインダ混合物の利用方法>
 第三実施形態において、舗装用バインダ組成物、及び舗装用バインダ混合物は、例えば、カラー舗装に使用することができる。カラー舗装の形態としては、以下に限定されないが、密粒度舗装、排水性舗装、透水性舗装、密粒度ギャップアスファルト舗装、砕石マスチックアスファルト舗装、半たわみ性舗装、保水性舗装、薄層舗装が挙げられる。
 また、各舗装形態を得る為の製造方法としては、特に限定されないが、例えば、熱工法、中温化工法、常温工法などが挙げられる。
 以下、具体的な実施例と比較例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。
<測定方法>
 ブロック共重合体及びブロック共重合体を含む各種組成物の測定方法を以下に示す。
(部分水添ブロック共重合体のビニル含有量、及び水素添加率の測定)
 ブロック共重合体中のビニル含有率、及び共役ジエン単量体単位中の不飽和基の水素添加率は、核磁気共鳴スペクトル解析(NMR)により、下記の条件で測定した。
 水素添加反応前のブロック共重合体を含む反応液に、大量のメタノールを添加することで、ブロック共重合体を沈殿させて回収した。次いで、このブロック共重合体をアセトンで抽出し、ブロック共重合体を真空乾燥した。これを、1H-NMR測定のサンプルとして用いて、ブロック共重合体のビニル含有量を測定した。
 水素添加反応後の部分水添ブロック共重合体を含む反応液に、大量のメタノールを添加することで、部分水添ブロック共重合体を沈殿させて回収した。次いで、部分水添ブロック共重合体をアセトンで抽出し、部分水添ブロック共重合体を真空乾燥した。これを、1H-NMR測定のサンプルとして用いて、水素添加率を測定した。
 1H-NMR測定の条件を以下に記す。
 測定機器   :JNM-LA400(JEOL製)
 溶媒     :重水素化クロロホルム
 測定サンプル :ポリマーを水素添加する前後の抜き取り品
 サンプル濃度 :50mg/mL
 観測周波数  :400MHz
 化学シフト基準:TMS(テトラメチルシラン)
 パルスディレイ:2.904秒
 スキャン回数 :64回
 パルス幅   :45°
 測定温度   :26℃
(ブロック共重合体中の、ビニル芳香族単量体単位(スチレン)の含有量(TS)の測定)
 一定量のブロック共重合体をクロロホルムに溶解し、紫外分光光度計(島津製作所製、UV-2450)を用いて、溶解液中のビニル芳香族化合物成分(スチレン)に起因する吸収波長(262nm)のピーク強度を測定した。得られたピーク強度から、検量線を用いて、ブロック共重合体中のビニル芳香族単量体単位(スチレン)の含有率(TS)を算出した。
(ブロック共重合体中の、ビニル芳香族単量体単位を主体とする重合体ブロックの含有量(BS)の測定)
 I.M.Kolthoff,etal.,J.Polym.Sci.,1946,Vol.1,p.429に記載の四酸化オスミウム酸分解法で、下記ポリマー分解用溶液を用いて、ブロック共重合体中のビニル芳香族単量体単位を主体とする重合体ブロックの含有量(BS)を測定した。
 測定サンプル:ブロック共重合体を水素添加する前の抜き取り品
 ポリマー分解用溶液:四酸化オスミウム0.1gを第3級ブタノ-ル125mLに溶解した溶液
(連続したビニル芳香族単量体単位含有量の測定方法)
 上記BS測定サンプルをGPCで分析した。分析条件は下記(ブロック共重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定)と同様にした。得られた分子量分布から連続したビニル芳香族単量体単位含有量を求めた。
(部分水添ブロック共重合体の水素添加率分布Hの測定)
 水添後のブロック共重合体のジクロロメタン溶液にオゾン(O3)濃度1.5%の酸素を150mL/分で通過させて酸化分解し、得られたオゾニドを、水素化アルミニウムリチウムを混合したジエチルエーテル中に滴下して還元した。つぎに、純水を滴下して加水分解し、炭酸カリウムを添加し塩析、濾過を行うことによりビニル芳香族炭化水素と共役ジエン炭化水素からなる成分を得た。この成分をゲル浸透クロマトグラフィー(以下、「GPC」ともいう。装置は、ウォーターズ社製)により測定し、あらかじめ市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して微分分子量分布(B)を得た。この微分分子量分布(B)における分子量800~3000の範囲での最大ピーク高さをHとした。すなわち、Hが大きいほど分子量800~3000の範囲の水素添加率分布が狭く、Hが小さいほど水素添加率分布が広いことを意味する。
 GPC      ;Waters2695(ウォーターズ株式会社製)
 検出器      ;UV
サンプリングピッチ;1000msec
 カラム      ;Shodex K-803L、K801、K8013本(昭和電工株式会社製)
 溶媒       ;クロロホルム
 流量       ;1mL/分
 濃度       ;20mg/mL
 カラム温度    ;40℃
 注入量      ;50μL
(部分水添ブロック共重合体の水素添加率分布H2の測定)
水添後のブロック共重合体を上記四酸化オスミウム酸分解法により処理し、得られたビニル芳香族単量体ブロックをGPCにより測定し、微分分子量分布(C)を得た。
 (B)および(C)に対し、{(B)-(C)}を行い、新たに得られた分子量分布(D)の分子量200以上1000000以下の領域の総面積に対する最大ピークの高さをH2とした。すなわち、H2が大きいほど分子量200以上1000000以下における水素添加率分布が狭く、H2が小さいほど水素添加率分布が広いことを意味する。
(L2/L1の測定)
 得られた部分水添重合体の微分分子量分布(A)におけるピークの最大分子量成分のピークの頂点からベースラインに引いた垂線Lの長さをL1とし、オゾン分解した分解物の微分分子量分布(B)を微分分子量分布(A)に重ね合わせたときに微分分子量分布(B)が垂線Lと交差する交点とベースラインとの垂線L上の距離をL2とした。微分分子量分布(B)は前述の分析方法にて算出した。また、微分分子量分布(A)は以下の分析機器を用いて微分分子量分布(A)と同様に算出した。
 GPC      ;HLC-8320GPC(東ソー株式会社製)
 検出器      ;UV
 検出感度     ;3mV/分
 サンプリングピッチ;600msec
 カラム      ;TSKgel superHZM-N(6mmI.D×15cm)4本(東ソー株式会社製)
 溶媒       ;THF
 流量       ;0.6mm/分
 濃度       ;0.5mg/mL
 カラム温度    ;40℃
 注入量      ;20μL
(ブロック共重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定)
 ブロック共重合体の重量平均分子量(Mw)は、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して、クロマトグラムのピークの分子量に基づいて求めた。測定ソフトは、HLC-8320EcoSEC収集を用い、解析ソフトは、HLC-8320解析を用いた。また、ポリスチレン換算重量平均分子量(Mw)と数平均分子量(Mn)の比から、ブロック共重合体の分子量分布(Mw/Mn)を求めた。測定条件を下記に示す。
 GPC      ;HLC-8320GPC(東ソー株式会社製)
 検出器      ;RI
 検出感度     ;3mV/分
 サンプリングピッチ;600msec
 カラム      ;TSKgel superHZM-N(6mmI.D×15cm)4本(東ソー株式会社製)
 溶媒       ;THF
 流量       ;0.6mm/分
 濃度       ;0.5mg/mL
 カラム温度    ;40℃
 注入量      ;20μL
<粘接着組成物>
〔水素添加触媒の製造〕
 窒素置換した反応容器内に、乾燥及び精製したシクロヘキサン1Lを入れ、ビス(シクロペンタジエニル)チタニウムジクロリド100mmolを添加し、十分に攪拌しながらトリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させることにより、水素添加触媒を製造した。
〔部分水添ブロック共重合体(P-1)〕
(1段目)
 シクロヘキサン43.6kgを反応器に仕込んで温度60℃に調製した後、モノマーとしてスチレン1980gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を約3分間かけて添加し、その後n-ブチルリチウムを77mL、N,N,N’,N’-テトラメチルエチレンジアミン(以下TMEDAと称する)を8.15mL添加し、反応を開始させた。
(2段目)
 次に、反応器内の温度が最高値を示してから3分間後に、ブタジエン5560gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を6分間かけて一定速度で連続的に反応器に供給後、0.5分間経過後、さらにTMEDA4.09mLを含むブタジエン5560gを22分間かけて一定速度で連続的に反応器に供給し、反応させた。その後、反応器内の温度が最高値を示してから3分後に、カップリング剤としてテトラエトキシシランをn-ブチルリチウムの総mol数に対するmol比が0.1となるように添加し、10分間カップリング反応させ、カップリング重合体を得た。
 得られたカップリング重合体は、ビニル芳香族単量体単位(スチレン単量体単位)の含有量(TS)、及びビニル芳香族単量体単位を主体とするブロック(ポリスチレンブロック)の含有量(BS)が、共に15質量%であり、共役ジエン単量体単位のビニル含有量(ブタジエン中のビニル含有量)は34mol%であった。
 その後、上記水素添加触媒を用いて、得られたカップリング重合体を80℃で連続的に水素添加し、部分水添ブロック共重合体(P-1)を得た。その際、ブロック共重合体全量の80重量%を反応器の上部より連続的に供給し、全量の20重量%を反応器の中部より連続的に供給し、全量を反応器の下部より連続的に抜き出した。また、水素はブロック共重合体の抜出口とは別に反応器下部から連続的に供給した。水添重合器内の水素圧は0.8MPa、平均滞留時間は30分であった。応終了後に、部分水添ブロック共重合体(P-1)100質量部に対して、安定剤(オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)0.25質量部を添加した。部分水添ブロック共重合体(P-1)の水素添加率は40mol%であり、水添率分布Hは0.150であった。また、H2は0.001、また、L2/L1は0.000365であった。MFR(200℃、5kgf)は、2.0g/10分であった。
 部分水添ブロック共重合体(P-1)の構造及び組成は、
   (S-B):65質量%、Mw90000
   (S-B)2-X:4質量%、Mw180000
   (S-B)3-X:8質量%、Mw270000
   (S-B)4-X:23質量%、Mw360000
(式中、Sは、スチレンブロックを示し、Bはブタジエンブロックを示し、Xは、カップリング剤の残基を示す。以下、同様とする。)であった。
〔部分水添ブロック共重合体(P-2)の製造〕
 水添方法を回分式に変更したこと以外は、部分水添ブロック共重合体(P-1)の製造と同様にして部分水添ブロック共重合体(P-2)を得た。回分式の水添については、ブロック共重合体の全量を反応器に供給した状態から80℃で水添反応を開始した、水添重合器内の水素圧は0.8MPa、反応時間は30分であった。部分水添ブロック共重合体中(P-2)に含まれるビニル芳香族単量体単位の含有量は15重量部、ビニル芳香族単量体単位を主体とする重合体ブロックの含有量は15重量部、部分水添ブロック共重合体Bの水素添加率は40mol%であり、水添率分布Hは0.59であった。また、H2は0.1、L2/L1は0.00015であった。MFR(200℃、5kgf)は、2.0g/10分であった。
 部分水添ブロック共重合体(P-2)の構造及び組成は、
   (S-B):65質量%、Mw90000
   (S-B)2-X:4質量%、Mw180000
   (S-B)3-X:8質量%、Mw270000
   (S-B)4-X:23質量%、Mw360000
であった。
〔その他の材料〕
 上記部分水添ブロック共重合体(P-1)及び(P-2)の他、下記ブロック共重合体(SBS)及び(SIS)、粘着付与剤(b-1)及び(b-2)、オイル(c-1)及び(c-2)、並びに酸化防止剤を用いた。
 ブロック共重合体(SBS):D1102(非水添ブロック共重合体、Kraton社製、ポリスチレンブロックの含有率29質量%、ジブロック含有率17質量%)
 ブロック共重合体(SIS):Quintac3433N(日本ゼオン社製、ポリスチレンブロックの含有率16質量%、ジブロック含有率56質量%)
 粘着付与樹脂(b-1):Quintone R100(日本ゼオン株式会社製、C4~C5の炭化水素留分の重合物99%以上、軟化点96℃、脂肪族系粘着付与剤)
 粘着付与樹脂(b-2):アルコンM100(荒川化学工業社製、軟化点100℃、部分水添芳香族系粘着付与剤
 オイル(c-1):ダイアナプロセスオイルPW-90(出光興産株式会社製、パラフィン系オイル)
 オイル(c-2):ダイアナプロセスオイルNS-90S(出光興産株式会社製、ナフテン系オイル)
 酸化防止剤:Irganox1010(BASF社製、フェノール系酸化防止剤)
〔粘接着組成物の製造例〕
 表1に示す組成で、部分水添ブロック共重合体と、粘着付与樹脂と、オイルと、酸化防止剤とを、170℃に加熱しつつプロペラで混合して、実施例1~6、及び比較例1~2の粘接着組成物を製造した。
〔粘接着性テープの製造例〕
 実施例1~6、及び比較例1~2の粘接着組成物を用いて、下記方法で粘接着性テープを作製した。溶融させた粘接着組成物を室温まで冷却し、これをトルエンに溶かし、アプリケーターで、基材としての厚さ50μmの透明ポリエチレンテレフタレート(PET)フィルムにコーティングした。その後、室温で30分間、70℃のオーブンで7分間、トルエンを完全に蒸発させ、基材として厚さ30μmの透明PETフィルムを有する、粘接着性テープを作製した。
<評価方法>
 実施例1~6、及び比較例1~2の粘接着組成物及び粘接着性テープについて、下記方法により評価した。
(粘接着組成物の耐熱変色性)
 上記「(粘接着組成物の製造例)」で得られた粘接着組成物を圧縮成型して厚さ2mmのシートを作成し、ギヤオーブンにより180℃で30分間加熱を行った。加熱前及び加熱後の該シートのb値を色差計(日本電色工業株式会社製 ZE-2000)を用いて測定した。
 加熱前のbと加熱後のb値の差(Δb値)が大きいほど、重合体は黄色味が強く加熱後の色調に劣ることを示す。
 下記評価基準により、加熱後の色調に優れる方から○、△、×と評価した。
<評価基準>
  〇:Δb値が3未満
  △:Δb値が3以上15未満
  ×:Δb値が15以上
(タック性)
 タック性は、J.Dow[Proc.Inst.Rub.Ind.,1.105(1954)]のボールタック試験に準じて評価した。傾斜30度のガラス板上の斜面に、長さ10cmにカットした粘接着性テープを、粘着層面を上側にして貼り付けた。粘接着性テープの上端から斜面に沿って上方10cmの位置より直径1/32インチから1インチまでの32種類の大きさのステンレス製ボールを初速度0で転がして、粘接着性テープ上で停止する最大径の球の大きさを測定した。球の大きさに基づいて下記評価基準によりボールタックを評価した。評価は、粘着テープ上で停止する最大径の球の大きさが7/32インチより大きければ、粘接着組成物として実用上問題なく使用できると判断し、○とした。粘着テープ上で停止する最大径の球の大きさが4/32インチより大きく7/32インチ未満の場合、△とした。粘着テープ上で停止する最大径の球の大きさが4/32インチ以下の場合、×とした。
 7/32インチ<ボールサイズ         :○
 4/32インチ<ボールサイズ≦7/32インチ :△
         ボールサイズ≦5/32インチ :×
(粘接着組成物の粘着力の評価)
 JIS Z0237の引きはがし粘着力の測定の方法1:試験板に対する180°引きはがし粘着力の測定方法に準じて測定した。まず、上記「〔粘接着性テープの製造例〕」のようにして製造した粘接着性テープを25mm幅にカットして、25mm幅の粘接着性テープ試料を作製した。粘接着性テープ試料をステンレス板に貼り付け、引き剥がし速度300mm/minで180°剥離力を測定した。得られた剥離力に基づいて下記の基準により粘接着組成物の粘着力を評価した。評価は、良い順から◎、○、△、×とした。△以上であれば粘接着組成物として実用上問題なく使用できる。
 剥離力(N/10mm)6以上    :○
            5以上6未満 :△
            5未満    :×
(粘接着組成物の粘着性保持力の評価)
 上記「〔粘接着性テープの製造例〕」のようにして製造した粘接着性テープをカットして、25mm長×15mm幅の粘接着性テープ試料を作製した。ステンレス板に粘着テープサンプルを貼り付け、ステンレス板を垂直にし、50℃において、垂直下方向に1kgの荷重を与えて粘着テープがずれ落ちるまでの時間を測定した。下記の基準により粘接着組成物の粘着性保持力を評価した。評価は、良い順から○、△、×とした。△以上であれば粘接着組成物として実用上問題なく使用できる。
 粘着性保持力(分)10分以上         :〇
          5分以上10分未満     :△
          5分未満          :×
Figure JPOXMLDOC01-appb-T000001
<改質アスファルト組成物、及び舗装用バインダ組成物>
〔水素添加触媒の製造〕
 窒素置換した反応容器内に、乾燥及び精製したシクロヘキサン1Lを入れ、ビス(シクロペンタジエニル)チタニウムジクロリド100mmolを添加し、十分に攪拌しながらトリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させることにより、水素添加触媒を製造した。
〔部分水添ブロック共重合体(Q-1)の製造〕
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を用いて、重合を以下の方法で行った。
(1段目)
 シクロヘキサン43.6kgを反応器に仕込んで温度60℃に調製した後、モノマーとしてスチレン990gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を約3分間かけて添加し、その後n-ブチルリチウムを38.5mL、N,N,N’,N’-テトラメチルエチレンジアミン(以下TMEDAと称する)を4.09mL添加し、反応を開始させた。
(2段目)
 次に、反応器内の温度が最高値を示してから3分間後に、スチレン2700g部を含有するシクロヘキサン溶液(モノマー濃度22質量%)を2分間かけて一定速度で連続的に反応器に供給した後、ブタジエン5360gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を6分間かけて一定速度で連続的に反応器に供給後、0.5分間経過後、さらにTMEDA4.09mLを含むブタジエン5360gを22分間かけて一定速度で連続的に反応器に供給し、反応させた。
(3段目)
 その後、反応器の温度が最高温度に到達した後、5分後、更にモノマーとしてスチレン810gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を約1分間かけて添加し、5分間保持させた。次に、反応終了後にメタノールを3.5mL添加し、ブロック共重合体を得た。
(水素添加工程)
 その後、上記水素添加触媒を用いて、得られたブロック共重合体を80℃で連続的に水素添加し、部分水添ブロック共重合体(Q-1)を得た。その際、ブロック共重合体全量の80重量%を反応器の上部より連続的に供給し、全量の20重量%を反応器の中部より連続的に供給し、全量を反応器の下部より連続的に抜き出した。また、水素はブロック共重合体の抜出口とは別に反応器下部から連続的に供給した。水添重合器内の水素圧は1.2MPa、平均滞留時間は60分であった。
 水素添加工程終了後に、部分水添ブロック共重合体(Q-1)100質量部に対して、安定剤(オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)0.25質量部を添加した。
 部分水添ブロック共重合体(Q-1)中に含まれるビニル芳香族単量体単位の含有量は45質量%であり、ビニル芳香族単量体単位を主体とする重合体ブロックの含有量は30質量%であり、水素添加前の共役ジエン単量体単位中の平均ビニル含有量は25モル%であり、水素添加率は90モル%であり、水添率分布Hは0.186であった。また、H2は0.001、L2/L1は0.000365であった。H及びL2/L1を求めるために測定した分子量分布を図1~2に示す。これらの図において、オゾン分解前の微分分子量分布(A)を破線で示し、オゾン分解後の微分分子量分布(B)を実線で示す。部分水添ブロック共重合体(Q-1)の動的粘弾性測定による損失正接(tanδ)のピーク温度は-14℃、そのtanδピーク高さは1.7であり、重量平均分子量(Mw)は20万であった。なお、上記の損失正接(tanδ)のピーク温度及びピーク高さは、以下の方法により求めた。
(損失正接(tanδ)のピーク温度とピーク高さ)
 動的粘弾性スペクトルを下記の方法により測定し、損失正接(tanδ)のピーク温度とピーク高さを求めた。装置ARES(ティーエイインスツルメントー株式会社製、商品名)のトーションタイプのジオメトリーで、サンプル厚み2mm、幅10mm、長さ20mmで、ひずみ(初期歪み)0.5%、周波数1Hz、測定範囲-100℃から100℃まで、昇温速度3℃/分の条件により測定した。
〔部分水添ブロック共重合体(Q-2)の製造〕
 水添方法を回分式に変更したこと以外は、部分水添ブロック共重合体(Q-1)の製造と同様にして部分水添ブロック共重合体(Q-2)を得た。回分式の水添については、ブロック共重合体の全量を反応器に供給した状態から80℃で水添反応を開始した、水添重合器内の水素圧は1.2MPa、反応時間は60分であった。部分水添ブロック共重合体(Q-2)中に含まれるビニル芳香族単量体単位の含有量は45質量%であり、ビニル芳香族単量体単位を主体とする重合体ブロックの含有量は30質量%であり、水素添加前の共役ジエン単量体単位中の平均ビニル含有量は25モル%であり、水素添加率は89モル%であり、水添率分布Hは0.562であった。H2は0.01また、L2/L1は0.00015であった。H及びL2/L1を求めるために測定した分子量分布を図3に示す。この図において、オゾン分解前の微分分子量分布(A)を破線で示し、オゾン分解後の微分分子量分布(B)を実線で示す。部分水添ブロック共重合体(Q-2)の動的粘弾性測定による損失正接(tanδ)のピーク温度は-14℃、そのtanδピーク高さは1.7であり、重量平均分子量は20万であった。
〔実施例7~11、及び比較例3~4〕
(改質アスファルト組成物の調製)
 750mLの金属缶にアスファルト(ストレートアスファルト60-80(新日本石油(株)製)〕を500g投入し、180℃のオイルバスに金属缶を充分に浸した。次に、溶融状態のアスファルトに、表2に示す割合で、各部分水添ブロック共重合体、SBS、及びSISを攪拌しながら少量ずつ投入した。各材料を完全に投入した後、3000rpmの回転速度で60分間攪拌して改質アスファルト組成物を調製した。これらの各配合組成及び各改質アスファルト組成物の評価結果を表2に示す。
 なお、SBS、SISとしては、以下のものを使用した。
  ブロック共重合体(SBS):D1102(非水添ブロック共重合体、Kraton社製、ポリスチレンブロックの含有率29質量%、ジブロック含有率17質量%)
  ブロック共重合体(SIS):Quintac3433N(日本ゼオン社製、ポリスチレンブロックの含有率16質量%、ジブロック含有率56質量%)
〔実施例12~14、及び比較例5~6〕
(カラー舗装用組成物の調製)
 750mLの金属缶に粘着付与樹脂(商品名:アイマーブP-125(出光興産(株)製、軟化点125℃、DCPD/芳香族共重合系の水添石油樹脂))を160gとオイル(多環芳香族炭化水素の含有量:1.9質量%、芳香族分:9%、40℃の動粘度が480mm2/s、引火点:310℃の鉱物系重質油)を208g投入し、180℃のオイルバスに金属缶を充分に浸した。次に、表3に示す割合で、溶融状態の粘着付与樹脂とオイルとの混合中に各部分水添ブロック共重合体を攪拌しながら少量ずつ投入した。各材料を完全に投入した後3000rpmの回転速度で60分間攪拌して舗装用バインダ組成物を調製した。これらの各配合組成及び各舗装用バインダ組成物の評価結果を表3に示す。
〔実施例15~17、及び比較例7~8〕
(アスファルト防水シート用組成物の調製)
 750mLの金属缶に、アスファルト(ストレートアスファルト100-150(新日本石油(株)製))を400g投入し、180℃のオイルバスに金属缶を充分に浸した。次に、溶融状態のアスファルトに、表4に示す割合で、各部分水添ブロック共重合体、及びナフテン系オイル(多環芳香族炭化水素の含有量:1.9質量%、芳香族分:9%、40℃の動粘度が480mm2/s、引火点:310℃の鉱物系重質油 ダイナプロセスオイルNS90S)を攪拌しながら少量ずつ投入した。各材料を完全投入後3000rpmの回転速度で90分間攪拌して、アスファルト防水シート用組成物を調製した。これらの各配合組成及び各アスファルト防水シート用組成物の評価結果を表4に示す。
<評価方法>
 改質アスファルト組成物、及び舗装用バインダ組成物の評価は、以下のようにして行った。
(改質アスファルト組成物、及び舗装用バインダ組成物の軟化点(リング&ボール法))
 JIS-K2207に準じて、改質アスファルト組成物、及び舗装用バインダ組成物の軟化点を測定した。規定の環に試料を充填し、グリセリン液中に水平に支え、試料の中央に3.5gの球を置き、液温を5℃/minの速度で上昇させたとき、球の重さで試料が環台の底板に触れた時の温度を測定した。
80℃以上      :◎
70℃以上80℃未満 :○
60℃以上70℃未満 :△
50℃以上60℃未満 :×
50℃未満      :××
 測定値が60℃以上(△以上)であれば、改質アスファルト組成物及び舗装用バインダ組成物として実用上問題なく使用できる。
(改質アスファルト組成物、及び舗装用バインダ組成物の低温伸度)
 JIS-K2207に準じ、試料を形枠に流し込み、規定の形状にした後、恒温水浴内で15℃に保ち、次に試料を5cm/minの速度で引っ張ったとき、試料が切れるまでに伸びた距離を測定した。
100cm以上       :◎
75cm以上100cm未満 :○
50cm以上75cm未満  :△
30cm以上50cm未満  :×
30cm未満        :××
 測定値が50cm以上(△以上)であれば、改質アスファルト組成物及び舗装用バインダ組成物として実用上問題なく使用できる。
(改質アスファルト組成物、及び舗装用バインダ組成物の溶融粘度)
 測定温度180℃で、ブルックフィールド型粘度計により測定した。
200mPa・s未満           :◎
200mPa・s以上300mPa・s以下 :○
300mPa・s以上400mPa・s未満 :△
400mPa・s以上500mPa・s未満 :×
500mPa・s以上           :××
 測定値が400mPa・s未満(△以上)であれば、改質アスファルト組成物及び舗装用バインダ組成物として実用上問題なく使用できる。
(改質アスファルト組成物、及び舗装用バインダ組成物の耐わだち掘れ性:G*/sinδ)
 ダイナミックシェアレオメーターによる動的粘弾性を測定し、得られた複素弾性率(G*)とsinδから、改質アスファルト組成物、及び舗装用バインダ組成物の耐わだち掘れに対する評価指標として、G*/sinδを求めた。なお、測定装置、測定条件は以下のとおりであった。
・測定装置:Rheometric Scientific社製 ARES
・測定条件
  測定温度:60℃
  角速度:10rad/sec
  測定モード:パラレルプレート(直径50mmφ)
  サンプル量:2g
・評価基準
G*/sinδが5,000Pa以上          :◎
4,000Pa以上5,000Pa未満 :○
3,000Pa以上4,000Pa未満 :△
2,000Pa以上3,000未満   :×
2,000Pa未満          :××
 G*/sinδが3,000mPa・s以上(△以上)であれば、改質アスファルト組成物及び舗装用バインダ組成物として実用上問題なく使用できる。
(改質アスファルト組成物、及び舗装用バインダ組成物の貯蔵時の耐熱安定性:分離特性)
 改質アスファルト組成物の製造直後、内径50mm、高さ130mmのアルミ缶に、改質アスファルト組成物をアルミ缶の上限まで流し込み、180℃のオーブン中で、24時間加熱した。その後、アルミ缶を取り出して自然冷却させた。次に室温まで下がった改質アスファルト組成物の下端から4cm、上端から4cmを採取し、それぞれ上層部と下層部の軟化点を測定し、その軟化点差を高温貯蔵安定性の尺度とした。上層部と下層部の軟化点の差が小さいほど、貯蔵時の耐熱安定性が良好であることを示す。舗装用バインダ組成物も同様にして評価した。
上層部と下層部の軟化点の差が2℃未満       :◎
2℃以上5℃未満   :○
5℃以上10℃未満  :△
10℃以上20℃未満 :×
20℃以上      :××
 上層部と下層部の軟化点の差が10℃未満(△以上)であれば、改質アスファルト組成物及び舗装用バインダ組成物として実用上問題なく使用できる。
(舗装用バインダ組成物の耐熱変色性)
 粘接着組成物混合後の色を日本電色工業(株)製EZ2000で測定し、以下のように評価した。
 色差計によるb値(粘接着組成物混合後のb値)が
2以内         :◎
2以上5未満  :○
5以上8未満  :△
8以上10未満 :×
10以上        :××
 b値差が5未満(○以上)であれば、舗装用バインダ組成物として実用上問題なく使用できる。
(アスファルト防水シート用組成物の軟化点(リング&ボール法))
 JIS-K2207に準じて、組成物の軟化点を測定した。規定の環に試料を充填し、グリセリン液中に水平に支え、試料の中央に3.5gの球を置き、液温を5℃/minの速度で上昇させたとき、球の重さで試料が環台の底板に触れた時の温度を測定した。
130℃以上       :◎
120℃以上130℃未満 :○
110℃以上120℃未満 :△
100℃以上110℃未満 :×
100℃未満       :××
 測定値が110℃以上(△以上)であれば、アスファルト防水シート用組成物として実用上問題なく使用できる。
(アスファルト防水シート用組成物の溶融粘度)
 測定温度180℃で、ブルックフィールド型粘度計により測定した。
1000mPa・s未満            :◎
1000mPa・s以上1500mPa・s以下 :○
1500mPa・s以上2000mPa・s未満 :△
2000mPa・s以上2500mPa・s未満 :×
2500mPa・s以上            :××
 測定値が2000mPa・s未満(△以上)であれば、アスファルト防水シート用組成物として実用上問題なく使用できる。
(アスファルト防水シート用組成物の低温折り曲げ性)
 アスファルト防水シート用組成物を、150℃でプレスして、厚み2mmのシートを作成した。シートの大きさを20mm×100mmの大きさに切出し、温度調製されたドライアイス-エタノール液に10分間以上浸漬後、シートを取出した直後に、直径20mmの金属棒にシートの長手方向を曲げるように巻き付けたときの、シートのひびや割れを目視で観察した。シートのひびや割れが発生しない、ドライアイス-エタノール液の最低温度を測定した。
-25℃以下         :◎
-20℃以下-25℃を超える :〇
-15℃以下-20℃を超える :△
-10℃以下-15℃を超える :×
-10℃を超える       :××
 シートのひびや割れが発生しない温度が-15℃以下(△以上)であれば、アスファルト防水シート用組成物として実用上問題なく使用できる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本出願は、2015年7月16日出願の日本特許出願(特願2015-142436号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の部分水添ブロック共重合体は、以下に限定されないが、粘接着組成物、改質アスファルト組成物、及び舗装用バインダ組成物に産業上の利用可能性がある。
 本発明の粘接着組成物は、下記に限定されないが、各種粘着テープ・ラベル類、感圧性薄板、感圧性シート、表面保護シート・フィルム、各種軽量プラスチック成型品固定用裏糊、カーペット固定用裏糊、タイル固定用裏糊、接着剤、シーリング剤、塗料の塗り替え作業時のマスキング剤、及び衛生用品として産業上利用可能性がある。
 本発明の改質アスファルト組成物は、以下に限定されないが、道路舗装、ルーフィング、アスファルト防水シート、シーラント等の分野で産業上の利用性があり、特に道路舗装の分野で好適に利用できる。
 本発明の舗装用バインダ組成物は、カラー舗装用途に産業上の利用性がある。

Claims (19)

  1.  ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位を含有する重合体ブロック(B)とを有する部分水添ブロック共重合体であって、
     オゾン分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(B)において、分子量800以上分子量3000以下の領域における最大ピーク高さを水素添加率分布Hとするとき、当該Hが0.01~0.5である、部分水添ブロック共重合体。
  2.  オスミウム酸分解法により得られる前記部分水添ブロック共重合体の分解物の微分分子量分布(C)を、前記微分分子量分布(B)から引いて得られる微分分子量分布(D)において、分子量200以上1000000以下の領域における総面積に対する最大ピーク高さを水素添加率分布H2とするとき、当該H2が0.001~0.007である、請求項1に記載の部分水添ブロック共重合体。
  3.  前記部分水添ブロック共重合体の水素添加率が、前記共役ジエン単量体単位の全モル数を基準として95モル%以下である、請求項1又は2に記載の部分水添ブロック共重合体。
  4.  前記部分水添ブロック共重合体の水素添加率が、前記共役ジエン単量体単位の全モル数を基準として10モル%以上である、請求項1~3のいずれか一項に記載の部分水添ブロック共重合体。
  5.  前記部分水添重合体の微分分子量分布(A)におけるピークであって、最大分子量成分に対応するピークの頂点から、ベースラインに引いた垂線Lの長さをL1とし、
     前記微分分子量分布(B)を前記微分分子量分布(A)に重ね合わせたときに微分分子量分布(B)が垂線Lと交差する交点とベースラインとの垂線L上の距離をL2とするとき、
     L2/L1が0.02未満である、請求項1~4のいずれか一項に記載の部分水添ブロック共重合体。
  6.  前記部分水添ブロック共重合体のビニル芳香族単量体単位含有量が10質量%~60質量%である、請求項1~5のいずれか一項に記載の部分水添ブロック共重合体。
  7.  前記部分水添ブロック共重合体が、ビニル芳香族単量体単位を主体とする一つの重合体ブロック(A1)と、共役ジエン単量体単位を主体とする一つの重合体ブロック(B1)とを有する部分水添ブロック共重合体(d1)を含有する、請求項1~6のいずれか一項に記載の部分水添ブロック共重合体。
  8.  前記部分水添ブロック共重合体100質量%を基準として、前記部分水添ブロック共重合体(d1)を20質量%~80質量%含有する、請求項7に記載の部分水添ブロック共重合体。
  9.  前記部分水添ブロック共重合体が、ラジアル構造を有する部分水添ブロック共重合体(r1)を含有する、請求項7又は8に記載の部分水添ブロック共重合体。
  10.  請求項1~9のいずれか一項に記載の部分水添ブロック共重合体100質量部と、粘着付与樹脂20質量部~400質量部と、を含有する、粘接着組成物。
  11.  請求項10に記載の粘接着組成物を有する、粘接着性テープ。
  12.  請求項10に記載の粘接着組成物を有する、ラベル。
  13.  前記部分水添ブロック共重合体が、ビニル芳香族単量体単位を主体とする重合体ブロック(A)と、共役ジエン単量体単位及びビニル芳香族単量体単位を含む共重合体ブロック(B2)とを有する部分水添ブロック共重合体(d2)を含有する、請求項1~6に記載の部分水添ブロック共重合体。
  14.  前記部分水添ブロック共重合体の重量平均分子量(Mw)が10万~50万である、請求項13に記載の部分水添ブロック共重合体。
  15.  前記部分水添ブロック共重合体の動的粘弾性測定による損失正接(tanδ)のピーク温度が-50℃以上-5℃以下である、請求項13又は14に記載の部分水添ブロック共重合体。
  16.  前記部分水添ブロック共重合体の動的粘弾性測定による損失正接(tanδ)のピーク温度が-50℃以上-5℃以下であり、ピーク高さの値が0.7超1.6以下である、請求項13~15のいずれか一項に記載の部分水添ブロック共重合体。
  17.  アスファルト100質量部に対し、
     請求項1~6,13~16のいずれか一項に記載の部分水添ブロック共重合体1質量部以上20質量部以下を含有する、改質アスファルト組成物。
  18.  請求項17に記載の改質アスファルト組成物と、骨材とを含む、改質アスファルト混合物。
  19.  粘着付与樹脂20~70質量%と、
     オイル20~70質量%と、
     請求項1~6,13~16のいずれか一項に記載の部分水添ブロック共重合体2~15質量%と、
     を含有する、舗装用バインダ組成物。
PCT/JP2016/070952 2015-07-16 2016-07-15 部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物 WO2017010562A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US15/744,357 US10414849B2 (en) 2015-07-16 2016-07-15 Partially hydrogenated block copolymer, viscous adhesive composition, viscous adhesive tape, label, modified asphalt composition, modified asphalt mixture, and paving binder composition
SG11201800053VA SG11201800053VA (en) 2015-07-16 2016-07-15 Partially hydrogenated block copolymer, viscous adhesive composition, viscous adhesive tape, label, modified asphalt composition, modified asphalt mixture, and paving binder composition
ES16824542T ES2733470T3 (es) 2015-07-16 2016-07-15 Copolímero en bloque parcialmente hidrogenado, composición adhesiva viscosa, cinta adhesiva viscosa, etiqueta, composición de asfalto modificado, mezcla de asfalto modificado y composición ligante de pavimentación
JP2017528732A JP6687617B2 (ja) 2015-07-16 2016-07-15 部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物
EP16824542.1A EP3323838B1 (en) 2015-07-16 2016-07-15 Partially hydrogenated block copolymer, viscous adhesive composition, viscous adhesive tape, label, modified asphalt composition, modified asphalt mixture, and paving binder composition
PL16824542T PL3323838T3 (pl) 2015-07-16 2016-07-15 Częściowo uwodorniony kopolimer blokowy, lepka kompozycja klejowa, lepka taśma klejąca, etykieta, kompozycja modyfikowanego asfaltu, mieszanina modyfikowanego asfaltu i kompozycja spoiwowa do budowy nawierzchni
CN201680039659.5A CN107735413B (zh) 2015-07-16 2016-07-15 部分氢化嵌段共聚物、粘着粘结组合物、粘着粘结性胶带、标签、改性沥青组合物、改性沥青混合物和铺装用粘结剂组合物
EA201890067A EA035569B1 (ru) 2015-07-16 2016-07-15 Частично гидрированный блок-сополимер, клейкая адгезивная композиция, клейкая адгезивная лента, этикетка, модифицированная асфальтовая композиция, модифицированная асфальтовая смесь и композиция связующего для дорожного покрытия
KR1020187000419A KR102069031B1 (ko) 2015-07-16 2016-07-15 부분 수소 첨가 블록 공중합체, 점접착 조성물, 점접착성 테이프, 라벨, 개질 아스팔트 조성물, 개질 아스팔트 혼합물 및 포장용 바인더 조성물
MX2018000607A MX2018000607A (es) 2015-07-16 2016-07-15 Copolimero de bloques parcialmente hidrogenado, composicion adhesiva viscosa, cinta adhesiva viscosa, etiqueta, composicion de asfalto modificado, mezcla de asfalto modificado y composicion de aglutinante de pavimentacion.
MYPI2018700156A MY183443A (en) 2015-07-16 2016-07-15 Partially hydrogenated block copolymer, viscous adhesive composition, viscous adhesive tape, label, modified asphalt composition, modified asphalt mixture, and paving binder composition
BR112018000249-6A BR112018000249B1 (pt) 2015-07-16 2016-07-15 Copolímero em bloco parcialmente hidrogenado, composição adesiva viscosa, fita adesiva viscosa, etiqueta, composição de asfalto modificado, mistura de asfalto modificado e composição de aglutinante de pavimentação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015142436 2015-07-16
JP2015-142436 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010562A1 true WO2017010562A1 (ja) 2017-01-19

Family

ID=57758168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070952 WO2017010562A1 (ja) 2015-07-16 2016-07-15 部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物

Country Status (14)

Country Link
US (1) US10414849B2 (ja)
EP (1) EP3323838B1 (ja)
JP (2) JP6687617B2 (ja)
KR (1) KR102069031B1 (ja)
CN (1) CN107735413B (ja)
BR (1) BR112018000249B1 (ja)
EA (1) EA035569B1 (ja)
ES (1) ES2733470T3 (ja)
MX (1) MX2018000607A (ja)
MY (1) MY183443A (ja)
PL (1) PL3323838T3 (ja)
SG (1) SG11201800053VA (ja)
TW (1) TWI602837B (ja)
WO (1) WO2017010562A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163453A (ja) * 2018-03-20 2019-09-26 旭化成株式会社 ブロック共重合体組成物及び粘接着剤組成物
FR3079835A1 (fr) * 2018-04-04 2019-10-11 Asahi Kasei Kabushiki Kaisha Additif pour feuille impermeable contenant de l'asphalte, procede de production d'une feuille impermeable contenant de l'asphalte, composition d'asphalte, et feuille impermeable contenant de l'asphalte
CN113801487A (zh) * 2021-09-28 2021-12-17 福州大学 一种基于绿色复合型填料的改性沥青胶浆及其制备方法
WO2024101394A1 (ja) * 2022-11-08 2024-05-16 旭化成株式会社 水添共役ジエン系重合体及び水添共役ジエン系重合体の製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987791A (zh) * 2017-12-12 2018-05-04 苏州铂邦胶业有限公司 一种耐严寒的沥青路面裂缝密封胶及其制备方法
CN107936914A (zh) * 2017-12-12 2018-04-20 苏州铂邦胶业有限公司 一种具有良好耐老化性的道路密封胶及其制备方法
CN107974235A (zh) * 2017-12-12 2018-05-01 苏州铂邦胶业有限公司 一种耐腐蚀性强的道路灌封胶及其制备方法
CN107936915A (zh) * 2017-12-12 2018-04-20 苏州铂邦胶业有限公司 一种耐受温度范围广的道路灌封胶及其制备方法
CN110922948B (zh) * 2018-09-20 2022-03-29 中国石油天然气股份有限公司 堵水剂及其制备方法
JP2022522468A (ja) 2019-02-28 2022-04-19 エコラボ ユーエスエー インコーポレイティド エッジ硬化を改善するための硬度添加剤および硬度添加剤を含有するブロック洗剤
KR102047471B1 (ko) * 2019-07-24 2019-11-22 한상주 저소음 내수성 중온화 아스팔트 조성물 및 이를 이용한 중온화 아스팔트 시공방법
KR102120816B1 (ko) * 2019-07-24 2020-06-09 한상주 투수성 고내구성 중온 개질 아스팔트 콘크리트 혼합물 및 이를 이용한 투수성 고내구성 중온 개질 아스팔트 콘크리트 시공방법
KR102120811B1 (ko) * 2019-07-24 2020-06-09 한상주 중온화 아스팔트 조성물 및 이를 이용한 중온화 아스팔트 시공방법
TWI721560B (zh) * 2019-09-16 2021-03-11 正修學校財團法人正修科技大學 一階段拌合製備常溫瀝青混凝土之方法
ES2948399T3 (es) * 2019-11-08 2023-09-11 Tsrc Corp Composición polimérica y fibra o tela no tejida elaborada a partir de la misma
US11760881B1 (en) * 2020-01-08 2023-09-19 Adventus Material Strategies, Llc Crack sealant method and composition for resistance to UV aging and weathering
US11891334B2 (en) * 2020-01-08 2024-02-06 Adventus Material Strategies, Llc Crack sealant method and composition for reduced color contrast
US11608404B2 (en) * 2020-05-22 2023-03-21 Kraton Corporation Block copolymers and polymer modified bitumen therefrom
KR102170361B1 (ko) * 2020-06-26 2020-10-28 (주)씨제이건설기술 고탄소성 아스팔트 콘크리트 조성물 및 이의 시공방법
KR102170359B1 (ko) * 2020-06-26 2020-10-27 (주)씨제이건설기술 세립 완충 칼라 아스팔트 콘크리트 조성물 및 이를 이용한 시공방법
JP6913891B1 (ja) * 2020-07-02 2021-08-04 パナソニックIpマネジメント株式会社 タイル施工方法及び接着剤組成物
KR102363256B1 (ko) * 2021-01-14 2022-02-15 (주)유진컨스텍 내열 안정성이 우수한 플랜트 믹스 타입 개질재 조성물 및 이를 이용한 배수성 아스팔트 조성물
KR102663260B1 (ko) * 2021-12-10 2024-05-03 한국석유공업 주식회사 친환경 중온 재생첨가제 및 이를 이용한 중온 순환 아스팔트 혼합물
CO2021016867A1 (es) * 2021-12-13 2023-06-20 C I Multiservicio De Ingenieria 1A S A Composición aditiva multifuncional para asfaltos
WO2024186520A1 (en) * 2023-03-03 2024-09-12 Ciuperca Romeo Ilarian Hyaloclastite polymeric foam, hyaloclastite mineral polymeric filler, hyaloclastite polymeric compositions, and method of making and using same
KR102608352B1 (ko) * 2023-10-11 2023-11-30 진산아스콘(주) 고강도·저소음 및 배수성 기능을 갖는 개질된 아스콘 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157738A (ja) * 1993-12-08 1995-06-20 Asahi Chem Ind Co Ltd 粘接着剤組成物
JPH08109219A (ja) * 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd 水添重合体
JPH09510498A (ja) * 1994-03-21 1997-10-21 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー 水素化ゴムの製造法
JP2011246648A (ja) * 2010-05-28 2011-12-08 Asahi Kasei Chemicals Corp アスファルト改質用ブロック共重合体及びアスファルト組成物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2245165A5 (ja) 1973-09-24 1975-04-18 Ferrari Serge
JPH0689311B2 (ja) 1985-06-05 1994-11-09 日東電工株式会社 感圧性接着剤組成物
ES2059446T3 (es) * 1987-07-16 1994-11-16 Asahi Chemical Ind Composicion de copolimero bloque hidrogenado especifico y procedimiento para su fabricacion.
JPS6481877A (en) 1987-09-22 1989-03-28 Japan Synthetic Rubber Co Ltd Tacky adhesive composition
DE60106556T2 (de) 2000-05-09 2005-08-18 Asahi Kasei Kabushiki Kaisha Blockcopolymer und zusammensetzung die dieses enthält
JP4956865B2 (ja) 2001-04-11 2012-06-20 Jsr株式会社 オレフィン性不飽和ポリマーの水素添加方法
US7141621B2 (en) 2002-02-07 2006-11-28 Kraton Polymers U.S. Llc Gels from controlled distribution block copolymers
JP4776155B2 (ja) 2003-10-21 2011-09-21 旭化成ケミカルズ株式会社 水添共重合体
JP5059595B2 (ja) 2005-01-31 2012-10-24 Jx日鉱日石エネルギー株式会社 カラーバインダー組成物
US8563646B2 (en) 2008-04-14 2013-10-22 Asahi Kasei Chemicals Corporation Adhesive composition
KR101464450B1 (ko) 2010-10-15 2014-11-21 아사히 가세이 케미칼즈 가부시키가이샤 점접착제용 블록 공중합체, 그의 제조 방법 및 점접착제 조성물
JP5797458B2 (ja) 2011-05-26 2015-10-21 旭化成ケミカルズ株式会社 アスファルト組成物
DE102012206273A1 (de) * 2012-04-17 2013-10-17 Tesa Se Vernetzbare Klebmasse mit Hart- und Weichblöcken als Permeantenbarriere
DE102013206624A1 (de) * 2013-04-15 2014-10-16 Tesa Se Haftklebemasse und Verwendung derselben in einem Haftklebstreifen
US10640639B2 (en) 2014-01-17 2020-05-05 Asahi Kasei Kabushiki Kaisha Polymer and asphalt composition
JP6272468B2 (ja) 2014-05-19 2018-01-31 旭化成株式会社 水素添加ブロック共重合体組成物及び粘接着剤組成物
CN105585809B (zh) 2014-10-30 2019-04-16 旭化成株式会社 氢化嵌段共聚物组合物和粘合剂组合物
CN106317350B (zh) 2015-07-07 2018-07-31 中国石油化工股份有限公司 一种部分氢化聚苯乙烯-b-无规共聚共轭二烯/苯乙烯共聚物及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157738A (ja) * 1993-12-08 1995-06-20 Asahi Chem Ind Co Ltd 粘接着剤組成物
JPH09510498A (ja) * 1994-03-21 1997-10-21 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー 水素化ゴムの製造法
JPH08109219A (ja) * 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd 水添重合体
JP2011246648A (ja) * 2010-05-28 2011-12-08 Asahi Kasei Chemicals Corp アスファルト改質用ブロック共重合体及びアスファルト組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALLEN, N. S. ET AL.: "Influence of ozone on styrene-ethylene-butylene-styrene (SEBS) copolymer", POLYMER DEGRADATION AND STABILITY, vol. 79, no. 2, 2003, pages 297 - 307, XP004397649, ISSN: 0141-3910 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163453A (ja) * 2018-03-20 2019-09-26 旭化成株式会社 ブロック共重合体組成物及び粘接着剤組成物
JP7477262B2 (ja) 2018-03-20 2024-05-01 旭化成株式会社 ブロック共重合体組成物及び粘接着剤組成物
FR3079835A1 (fr) * 2018-04-04 2019-10-11 Asahi Kasei Kabushiki Kaisha Additif pour feuille impermeable contenant de l'asphalte, procede de production d'une feuille impermeable contenant de l'asphalte, composition d'asphalte, et feuille impermeable contenant de l'asphalte
CN113801487A (zh) * 2021-09-28 2021-12-17 福州大学 一种基于绿色复合型填料的改性沥青胶浆及其制备方法
WO2024101394A1 (ja) * 2022-11-08 2024-05-16 旭化成株式会社 水添共役ジエン系重合体及び水添共役ジエン系重合体の製造方法

Also Published As

Publication number Publication date
KR20180016502A (ko) 2018-02-14
MX2018000607A (es) 2018-05-17
JP2020073661A (ja) 2020-05-14
EA201890067A1 (ru) 2018-08-31
CN107735413A (zh) 2018-02-23
EA035569B1 (ru) 2020-07-08
PL3323838T3 (pl) 2019-09-30
TWI602837B (zh) 2017-10-21
CN107735413B (zh) 2020-11-06
EP3323838A4 (en) 2018-07-25
ES2733470T3 (es) 2019-11-29
TW201710313A (zh) 2017-03-16
EP3323838B1 (en) 2019-04-17
KR102069031B1 (ko) 2020-01-22
MY183443A (en) 2021-02-18
EP3323838A1 (en) 2018-05-23
US10414849B2 (en) 2019-09-17
SG11201800053VA (en) 2018-02-27
BR112018000249B1 (pt) 2021-12-21
BR112018000249A2 (ja) 2018-09-04
JPWO2017010562A1 (ja) 2018-04-05
JP6687617B2 (ja) 2020-04-22
US20180201716A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6687617B2 (ja) 部分水添ブロック共重合体、粘接着組成物、粘接着性テープ、ラベル、改質アスファルト組成物、改質アスファルト混合物及び舗装用バインダ組成物
JP6628514B2 (ja) 水添ブロック共重合体、並びにこれを用いた粘接着組成物、改質アスファルト組成物及び改質アスファルト混合物
JP6616113B2 (ja) ブロック共重合体組成物、並びにこれを用いた粘接着組成物、改質アスファルト組成物、舗装用バインダ組成物及びブロック共重合体組成物の製造方法
JP6373365B2 (ja) アスファルト組成物
KR101820618B1 (ko) 중합체 및 아스팔트 조성물
US10138319B2 (en) Polymer and asphalt composition
JP6563679B2 (ja) 接着用改質アスファルト組成物及び混合物、並びにその積層体
JP2016210878A (ja) 改質アスファルト組成物、及び改質アスファルト混合物、並びにこれらの製造方法
JP2018150430A (ja) アスファルト組成物及び改質アスファルト混合物
JP2016210647A (ja) 改質アスファルト組成物、及び改質アスファルト混合物、並びにこれらの製造方法
JP6504949B2 (ja) 改質アスファルト組成物及び改質アスファルト混合物
JP6521696B2 (ja) アスファルト組成物
JP6607672B2 (ja) 重合体及びアスファルト組成物
JP2021138920A (ja) ブロック共重合体、アスファルト組成物、及び改質アスファルト混合物
JP2016210877A (ja) カラー舗装用組成物、及びカラー舗装用混合物、並びにこれらの製造方法
TW202325761A (zh) 嵌段共聚物、瀝青組合物、及改質瀝青混合物
JP2022066733A (ja) ブロック共重合体、アスファルト組成物、及び改質アスファルト混合物
JP2024120842A (ja) ブロック共重合体、アスファルト組成物、及び改質アスファルト混合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528732

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201800053V

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187000419

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15744357

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 201890067

Country of ref document: EA

Ref document number: MX/A/2018/000607

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824542

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000249

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000249

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180105