WO2017010480A1 - 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法 - Google Patents

積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法 Download PDF

Info

Publication number
WO2017010480A1
WO2017010480A1 PCT/JP2016/070546 JP2016070546W WO2017010480A1 WO 2017010480 A1 WO2017010480 A1 WO 2017010480A1 JP 2016070546 W JP2016070546 W JP 2016070546W WO 2017010480 A1 WO2017010480 A1 WO 2017010480A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
porous
polyolefin resin
laminated
film
Prior art date
Application number
PCT/JP2016/070546
Other languages
English (en)
French (fr)
Inventor
裕人 山田
昌幸 瀬尾
根本 友幸
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to US15/743,796 priority Critical patent/US20180294459A1/en
Priority to CN201680053205.3A priority patent/CN108025539B/zh
Priority to JP2017528688A priority patent/JP6652135B2/ja
Priority to KR1020187004655A priority patent/KR20180030666A/ko
Publication of WO2017010480A1 publication Critical patent/WO2017010480A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses or catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminated porous film that can be used as packaging, hygiene, livestock, agriculture, building, medical, separation membrane, light diffusion plate, battery separator.
  • the present invention also relates to a separator for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery using the laminated porous film.
  • the polymer porous body with many fine communication holes is the separation membrane used for the production of ultrapure water, the purification of chemicals, the water treatment, the waterproof and moisture permeable film used for clothing and sanitary materials, or the secondary battery, etc. It is used in various fields such as battery separators.
  • Secondary batteries are widely used as power sources for portable devices such as OA, FA, household appliances or communication devices.
  • portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency and are reduced in size and weight when installed in devices.
  • large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.
  • the working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1V to 4.2V.
  • the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages.
  • a solvent for the non-aqueous electrolyte a high dielectric constant organic solvent capable of causing more lithium ions to be present is used.
  • organic carbonate compounds such as propylene carbonate and ethylene carbonate are mainly used. Is used.
  • a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.
  • a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit.
  • the separator is required to have insulating properties due to its role.
  • a porous film is used as the separator.
  • SD characteristic As a characteristic that contributes to the safety of the battery separator, there is a shutdown characteristic (hereinafter referred to as “SD characteristic”).
  • This SD characteristic is a function that can prevent a subsequent increase in temperature inside the battery because the micropores are closed when the temperature is about 100 to 150 ° C., and as a result, ion conduction inside the battery is blocked.
  • the lowest temperature among the temperatures at which the micropores of the porous film are blocked is referred to as a shutdown temperature (hereinafter referred to as “SD temperature”).
  • SD temperature shutdown temperature
  • lithium ion secondary batteries tend to have higher energy density and higher capacity.
  • the temperature inside the battery further rises above around 130 ° C, which is the melting point of polyethylene used as a material for conventional battery separators.
  • the separator is required to have higher heat resistance than the current SD characteristics.
  • Patent Documents 1 to 5 laminated porous films having a porous coating layer on at least one surface of an olefin-based porous film have been proposed. These are provided by laminating a porous coating layer highly filled with fine particles on a porous film, so that even when the temperature continues to rise beyond the SD temperature due to abnormal heat generation, short-circuiting of both electrodes is possible. It can be prevented and is considered a very safe method.
  • the “flow direction” of the film means the film conveyance direction (so-called MD) when producing the film, and the “width direction” of the film is orthogonal to the flow direction, and It means a direction (so-called TD) substantially horizontal to the floor surface.
  • Patent Document 6 Regarding the technique for suppressing curling in the width direction of a laminated porous film (hereinafter also referred to as curling resistance), the present inventor controls the circularity of inorganic particles in a porous coating layer laminated on the porous film within a specific range.
  • the technique (patent document 6) is disclosed.
  • none of the above Patent Documents 1 to 6 has yet realized a laminated porous film excellent in all of curling resistance, heat resistance, air permeability, and SD characteristics.
  • An object of the present invention is to realize a laminated porous film excellent in all of curling resistance, heat resistance, air permeability, and SD characteristics.
  • the present inventor used a polyolefin-based resin porous film having a specific configuration and a heat shrinkage rate in the width direction of a specific range, and at least one surface thereof, inorganic particles and a binder resin
  • the present inventors have found that a laminated porous film provided with a porous coating layer containing a composition so as to be asymmetrical on the front and back sides can solve the problem, and have completed the present invention. That is, the present invention is as follows.
  • a porous layer A mainly composed of a polyolefin resin having a melting point of 150 ° C. or higher
  • a porous layer B mainly composed of a polyolefin resin and having pores closed in a temperature range of 100 ° C. or higher and lower than 150 ° C.
  • a porous porous film provided by laminating a porous coating layer containing inorganic particles and a binder resin composition on at least one surface of a polyolefin-based resin porous film having a structure laminated in the order of B / A.
  • the coating layer is asymmetric with respect to the polyolefin resin porous film, and the width shrinkage ratio when the polyolefin resin porous film is heat-treated at a temperature of 130 ° C. for 1 hour is 0.1% or more and 3% or less.
  • the laminated porous film has a size of 15 cm square, and is allowed to stand on a stainless steel (SUS) plate for 5 minutes in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50%. Maximum curl height in the width direction when it is 5mm or less, the laminated porous film.
  • a polyolefin resin porous film having a B / A configuration and having a width shrinkage rate of less than 0.1% when heat-treated at a temperature of 130 ° C. for 1 hour is applied with a tension in the width direction to a temperature of 130
  • a porous coating layer containing inorganic particles and a binder resin composition on at least one surface of the polyolefin-based resin porous film after the width shrinkage ratio when heated at 1 ° C. for 1 hour is 0.1% or more and 3% or less.
  • the laminated porous film of the present invention has SD characteristics, and has excellent handling properties and safety due to small curl when the porous coating layer is provided so as to be asymmetrical on the front and back sides, and has heat resistance and air permeability. Therefore, it can be suitably used as a separator for non-aqueous electrolyte secondary batteries.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
  • the content ratio of the component is not specified, the main component occupies the largest content ratio in the composition, preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass. The intention to occupy the above (including 100%) is included.
  • “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” and “preferably smaller than Y” with the meaning of “X to Y” unless otherwise specified. Is included.
  • the laminated porous film of the present invention has a structure in which a porous coating layer is laminated on a polyolefin resin porous film.
  • the polyolefin resin porous film and the porous coating layer constituting the laminated porous film of the present invention will be described below.
  • the porous polyolefin resin film used in the present invention has a porous layer A mainly composed of a polyolefin resin having a melting point of 150 ° C. or higher, and a pore blockage in a temperature range of 100 ° C. or higher and lower than 150 ° C. based on the polyolefin resin. It is important to have the porous layer B to be structured in the order of A / B / A. In the polyolefin resin porous film, the porous layer A has a role of maintaining heat resistance (shape retention).
  • the porous layer B has a role of improving safety by exhibiting SD characteristics when the laminated porous film of the present invention is used as a battery separator by closing the pores in a temperature range of 100 ° C. or more and less than 150 ° C.
  • the polyolefin resin used for the porous layer A is not particularly limited as long as the melting point is 150 ° C. or higher.
  • a homopolymer or copolymer obtained by polymerizing an ⁇ -olefin such as propylene or 4-methyl-1-pentene is used. Can be mentioned. Also, two or more of these homopolymers or copolymers can be mixed. Among these, it is preferable to use a polypropylene resin as a main component from the viewpoint of easy porosity and excellent productivity of the polyolefin resin porous film, and maintaining the air permeability and mechanical strength of the laminated porous film of the present invention.
  • fusing point of polyolefin resin is a melting peak temperature calculated
  • polypropylene resin examples of the polypropylene resin used in the present invention include homopolypropylene (propylene homopolymer), propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or Examples thereof include random copolymers or block copolymers with ⁇ -olefins such as 1-decene.
  • homopolypropylene is more preferably used from the viewpoint of maintaining the mechanical strength and heat resistance of the laminated porous film of the present invention.
  • the polypropylene resin has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity, preferably 80 to 99%, more preferably 83 to 98%, and still more preferably 85 to 97%. Things can be used.
  • the isotactic pentad fraction is not less than the lower limit, the mechanical strength of the film is improved.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion.
  • the isotactic pentad fraction (mmmm fraction) was calculated based on the measurement result of 13C-NMR. It conforms to Zambelli et al (Macromolecules 8,687, (1975)).
  • Mw / Mn which is a parameter indicating the molecular weight distribution of the polypropylene resin and is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably 2.0 to 10.0. 0.0 to 8.0 is more preferable, and 2.0 to 6.0 is more preferable.
  • Mw / Mn the narrower the molecular weight distribution. However, when the Mw / Mn is within this range, the extrusion moldability is improved and the mechanical strength of the laminated porous film is also improved.
  • Mw / Mn of polypropylene resin is measured by GPC (gel permeation chromatography) method.
  • the density of the polypropylene resin is preferably 0.890 to 0.970 g / cm 3 , 0.895 to 0.970 g / cm 3 is more preferable, and 0.900 to 0.970 g / cm 3 is still more preferable. If the density is 0.890 g / cm 3 or more, it can have appropriate SD characteristics. On the other hand, if it is 0.970 g / cm 3 or less, it can have appropriate SD characteristics and can maintain stretchability.
  • the density of the polypropylene resin is measured according to JIS K7112 (1999) using a density gradient tube method.
  • the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but is preferably 0.5 to 15 g / 10 min, more preferably 1.0 to 10 g / 10 min, and 1.5 to 8. 0 g / 10 min is more preferable, and 2.0 to 6.0 g / 10 min is particularly preferable.
  • MFR melt flow rate
  • the MFR of the polypropylene resin is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg according to JIS K7210 (1999).
  • the method for producing the polypropylene resin is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst or a metallocene catalyst represented by a Ziegler-Natta type catalyst. And suspension polymerization method, melt polymerization method, bulk polymerization method, gas phase polymerization method, and bulk polymerization method using a radical initiator.
  • a known polymerization method using a known olefin polymerization catalyst for example, a multisite catalyst or a metallocene catalyst represented by a Ziegler-Natta type catalyst.
  • suspension polymerization method melt polymerization method, bulk polymerization method, gas phase polymerization method, and bulk polymerization method using a radical initiator.
  • polypropylene-based resin examples include trade names “Novatech PP”, “WINTEC (registered trademark)” (manufactured by Nippon Polypro Co., Ltd.), “Notio”, “Toughmer XR” (manufactured by Mitsui Chemicals, Inc.), “Zeras (registered trademark)", “Thermo Run (registered trademark)” (Mitsubishi Chemical Corporation), “Sumitomo Noblen”, “Tough Selenium (registered trademark)” (Sumitomo Chemical Co., Ltd.), “Prime Polypro” (Registered trademark) ”,“ Prime TPO (registered trademark) ”(manufactured by Prime Polymer Co., Ltd.),“ Adflex ”,“ Adsyl ”,“ HMS-PP (PF814) ”(manufactured by Sun Allomer Co., Ltd.),“ Commercially available products such as “Versify (registered trademark)” and “Inspire” (above
  • the porous layer B of the polyolefin resin porous film used in the present invention has a function of blocking pores at 100 ° C. or higher, so that when the laminated porous film of the present invention is used as a battery separator, SD characteristics are improved. It expresses and maintains safety, and has a role of allowing air permeability, that is, ion permeability, to be maintained in a temperature range of less than 100 ° C. On the other hand, the porous layer B has the role of blocking the ion flow (current) due to the rapid development of SD characteristics and controlling the chemical reaction inside the battery and preventing thermal runaway by closing the pores in the region below 150 ° C. Have.
  • the polyolefin resin used as the main component in the porous layer B is not particularly limited as long as it is a resin that closes the pores in a temperature range of 100 ° C. or higher and lower than 150 ° C. That is, even if the melting point is less than 100 ° C. or 150 ° C. or more, it can be used as long as the porous layer B is closed in the temperature region of 100 ° C. or more and less than 150 ° C.
  • Specific examples include a homopolymer or a copolymer obtained by polymerizing an ⁇ -olefin such as ethylene, propylene, and 1-butene. Also, two or more of these homopolymers or copolymers can be mixed. Among these, it is easy to make porous, excellent in productivity of polyolefin resin porous film, and stably exhibits pore blocking function in a temperature range of 100 ° C. or higher and lower than 150 ° C. Is preferred.
  • Polyethylene resin examples of the polyethylene resin used in the present invention include low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, medium-density polyethylene, high-density polyethylene, and a copolymer mainly composed of ethylene.
  • the copolymer having ethylene as a main component that is, ethylene and an ⁇ -olefin having 3 to 10 carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene; Vinyl esters such as vinyl acetate and vinyl propionate; unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate; selected from unsaturated compounds such as conjugated and non-conjugated dienes Examples thereof include a copolymer with one or more comonomers, a multi-component copolymer, or a mixed composition thereof.
  • the ethylene unit content of the ethylene polymer is usually more than 50% by mass.
  • polyethylene resins one or more polyethylene resins selected from low density polyethylene, linear low density polyethylene, and high density polyethylene are preferable, and high density polyethylene is more preferable.
  • Density of the polyethylene resin is preferably 0.910 ⁇ 0.970g / cm 3, more preferably 0.930 ⁇ 0.970g / cm 3, more preferably 0.940 ⁇ 0.970g / cm 3. If the density is 0.910 g / cm 3 or more, appropriate SD characteristics can be obtained. On the other hand, if it is 0.970 g / cm 3 or less, it can have appropriate SD characteristics, and stretchability is maintained. The density of the polyethylene resin is measured according to JIS K7112 (1999) using a density gradient tube method.
  • the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but is preferably 0.03 to 30 g / 10 minutes, and more preferably 0.3 to 10 g / 10 minutes.
  • MFR melt flow rate
  • the MFR of the polyethylene resin is measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg according to JIS K7210 (1999).
  • the production method of the polyethylene resin is not particularly limited, and is a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • a polymerization method using a single site catalyst may be mentioned.
  • Examples of the polymerization method for the polyethylene resin include one-stage polymerization, two-stage polymerization, and higher multistage polymerization.
  • a polyethylene resin polymerized by any method can be used.
  • additives that are generally blended in the resin composition are appropriately added to the porous layer A and the porous layer B of the polyolefin-based resin porous film within a range that does not impair the effects of the present invention. it can.
  • recycled resin generated from trimming loss such as ears which is added for the purpose of improving and adjusting the moldability, productivity and various physical properties of the polyolefin resin porous film; silica, talc, kaolin, Inorganic particles such as calcium carbonate; pigments such as carbon black; flame retardants; weather resistance stabilizers; heat stabilizers; antistatic agents; melt viscosity improvers; cross-linking agents; Additives such as an inhibitor; a light stabilizer; an ultraviolet absorber; a neutralizer; an antifogging agent; an antiblocking agent; a slip agent; In addition, various resins and low molecular weight compounds such as wax may be added within a range that does not hinder the effects of the present invention in order to promote opening and impart moldability.
  • the polyolefin resin porous film inhibits the effect of the present invention with respect to the presence or absence of other layers.
  • the number of layers may be increased to 6 or 7 as necessary.
  • an A / B / A two-type three-layer configuration is preferable.
  • a / B / A 1 / 0.2 / 1 to 1/8/1.
  • the “width shrinkage rate” means the thermal shrinkage rate of the film in the width direction of the polyolefin resin porous film. Even when a porous coating layer to be described later is provided so as to be asymmetrical by having a width shrinkage ratio of 0.1% or more when a polyolefin resin porous film is heat-treated at 130 ° C. for 1 hour.
  • Curling of the laminated porous film of the present invention is suppressed.
  • the width shrinkage rate is 3% or less, so that the shrinkage of the laminated porous film is suppressed, and when incorporated into a non-aqueous electrolyte secondary battery The risk of short circuiting is reduced.
  • the lower limit of the width shrinkage rate when the polyolefin resin porous film is heat-treated at 130 ° C. for 1 hour is more preferably 0.15% or more, and more preferably 0.2% or more from the viewpoint of curling suppression. Further preferred.
  • the upper limit is more preferably 2% or less, further preferably 1% or less, and particularly preferably 0.5% or less, from the viewpoint of shrinkage suppression.
  • the width shrinkage rate when the polyolefin resin porous film is heat-treated at 130 ° C. for 1 hour is measured by the method described in Examples below.
  • the curl reduction mechanism in the present invention will be described more specifically.
  • a laminated porous film is prepared by laminating a porous coating layer on a polyolefin resin porous film using inorganic particles and a binder resin composition described later, the porous coating layer shrinks due to drying shrinkage of the binder resin.
  • this porous coating layer is formed asymmetrically on the front and back sides, that is, when it is formed on one side of one surface of the polyolefin resin porous film and the other surface, or one surface of the polyolefin resin porous film When formed on both surfaces of the other surface with different thicknesses, curling occurs in the laminated porous film as the porous coating layer contracts.
  • This phenomenon is caused by a difference in shrinkage force between the polyolefin-based resin porous film and the porous coating layer and a difference in shrinkage force between the porous coating layers on both sides.
  • a porous coating layer is formed on the surface of a polyolefin resin porous film so as to be asymmetrical on both sides by a coating and drying method as described later, curling is likely to occur during the transition from a high humidity atmosphere to a dry atmosphere. Become.
  • the detailed reason is not clear, in the case of a polyolefin-based resin porous film having a porous layer A and a porous layer B as used in the present invention, the ease of curling becomes more remarkable.
  • the present inventor offsets the shrinkage force of the porous coating layer and the shrinkage force of the polyolefin resin porous film by using a polyolefin resin porous film having a specific configuration and a width shrinkage ratio in a specific range as a base material.
  • the inventors have conceived that the curl of the laminated porous film can be reduced when the porous coating layer is formed so as to be asymmetrical.
  • the width shrinkage rate of the polyolefin resin porous film is adjusted, for example, by adjusting the inflation rate, draft rate, stretching temperature, stretch ratio, etc. when the polyolefin resin porous film is produced using a production method as described later. By doing so, it is possible to control within the above range.
  • a tension is applied in the width direction of the film using a tenter or an expander roll.
  • the width shrinkage rate in the above range can be controlled.
  • the tension applied to the film in terms of cross-sectional area 1 mm 2 around, preferably 0.5 N / mm 2 or more 50 N / mm 2 or less, 1N / mm 2 or more 30 N / mm 2 or less, more preferably, 2N / mm 2 or 20 N / mm 2 or less still more preferred.
  • the ambient temperature when applying tension in the width direction of the film is preferably 20 ° C. or higher and 170 ° C. or lower, more preferably 25 ° C. or higher and 160 ° C. or lower, and 25 ° C. or higher and 150 ° C. or lower. More preferably. If the atmospheric temperature at the time of applying a tension is 20 ° C. or higher, film tearing can be reduced. On the other hand, if it is 170 degrees C or less, sufficient width shrinkage rate can be provided to a film.
  • the porosity of the polyolefin resin porous film is preferably 30% or more and 50% or less.
  • the porosity is more preferably 35% to 45%, and still more preferably 38% to 42%.
  • the porosity of the polyolefin resin porous film is measured by the method described in Examples described later.
  • the thickness (T PO ) of the polyolefin resin porous film is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, and still more preferably 10 to 30 ⁇ m. If the thickness of the polyolefin resin porous film is 5 ⁇ m or more, when the laminated porous film of the present invention is used as a separator for a non-aqueous electrolyte secondary battery, substantially necessary electrical insulation can be obtained. Even when a large force is applied to the protruding portion of the electrode, it is difficult to break through the separator and is excellent in safety.
  • the electrical resistance can be reduced when the laminated porous film of the present invention is used as a separator for a non-aqueous electrolyte secondary battery. It can be secured sufficiently.
  • the other physical properties of the polyolefin resin porous film used in the present invention can be freely adjusted by the layer constitution, the lamination ratio, the composition of each layer, and the production method.
  • the method for producing a polyolefin-based resin porous film can be suitably used a conventionally known method for producing a porous film, and is not particularly limited, but is usually a precursor for forming a polyolefin-based resin porous film.
  • a method of forming a polyolefin-based resin porous film by producing a non-porous film-like material and making it porous is preferably employed.
  • thermoplastic resin composition is melted using an extruder. And a method of extruding from a T-die and cooling and solidifying with a cast roll. Further, a method of cutting a film-like material manufactured by a tubular method into a flat shape can be applied.
  • the method for making the nonporous membrane-like material is not particularly limited, and a known method such as wet uniaxial or more stretched porous or dry uniaxial or more stretched porous may be used.
  • a known method such as wet uniaxial or more stretched porous or dry uniaxial or more stretched porous may be used.
  • the stretching method there are methods such as a roll stretching method, a rolling method, a tenter stretching method, a simultaneous biaxial stretching method, an inflation method, etc., and these methods are used alone or in combination of two or more to perform uniaxial stretching.
  • stretching as needed is also applied.
  • heat treatment or relaxation treatment can be performed after stretching.
  • the surface of the polyolefin resin porous film is preferable to subject the surface of the polyolefin resin porous film to surface treatment such as corona treatment, plasma treatment, chemical oxidation treatment and the like.
  • any method can be adopted.
  • the laminated porous film of the present invention has a porous coating layer containing inorganic particles and a binder resin composition on at least one of the front and back surfaces of the polyolefin-based resin porous film so as to be asymmetrical.
  • “Front-back asymmetric” means including a case where a porous coating layer is provided only on one surface of a polyolefin resin porous film.
  • it when it has a porous coating layer on both surfaces of a polyolefin resin porous film, it means that the average thickness of the porous coating layer of one surface differs from the average thickness of the porous coating layer of one surface.
  • the method for measuring and calculating the average thickness of the porous coating layer is as described in Examples below.
  • inorganic particles examples include metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate; metal sulfates such as calcium sulfate, magnesium sulfate, and barium sulfate; calcium fluoride, magnesium fluoride, and the like.
  • Metal hydroxides such as aluminum hydroxide and magnesium hydroxide; metal oxides such as alumina, calcia, magnesia, titania, zinc oxide and silica; clay minerals such as talc, clay and mica; and titanium Examples include barium acid. Among these, it is preferable to contain barium sulfate or alumina from the viewpoint of being chemically inert when incorporated in a battery.
  • the lower limit of the average particle size of the inorganic particles is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and still more preferably 0.2 ⁇ m or more.
  • the upper limit is preferably 3.0 ⁇ m or less, more preferably 1.5 ⁇ m or less.
  • the average particle size of the inorganic particles is measured and calculated by, for example, a method using an image analysis device or a method using a laser diffraction particle size distribution measurement device.
  • the average particle diameter in the case of using the image analysis apparatus is a value obtained by averaging the minor axis and the major axis of the two-dimensional projection image when the inorganic particles are projected from an arbitrary direction (direction Z), and the direction Z
  • direction X a value obtained by averaging the minor axis and the major axis of the two-dimensional projection image when the inorganic particles are projected from an arbitrary direction perpendicular to the axis is calculated as an average value.
  • the number of inorganic particles used for calculation may be 50 or more.
  • the specific surface area of the inorganic particles is preferably 5 m 2 / g or more and less than 15 m 2 / g.
  • the specific surface area is 5 m 2 / g or more
  • the laminated porous film of the present invention is incorporated as a separator in a non-aqueous electrolyte secondary battery
  • the penetration of the electrolyte solution becomes fast, and the productivity is improved.
  • a specific surface area is less than 15 m ⁇ 2 > / g, adsorption
  • the specific surface area of the inorganic particles is measured by a constant volume gas adsorption method.
  • the content of the inorganic particles with respect to the total amount of the inorganic particles and the binder resin composition is preferably 80% by mass or more and 99% by mass or less.
  • the content rate of an inorganic particle 92 mass% or more is more preferable, 95 mass% or more is still more preferable, 98 mass% or more is especially preferable.
  • the porous coating layer can maintain excellent air permeability, while maintaining the adhesion between the polyolefin resin porous film and the porous coating layer, The heat resistance in the case of a laminated porous film can be improved.
  • the binder resin composition can satisfactorily bond the inorganic particles and the polyolefin resin porous film, is electrochemically stable, and is used when the laminated porous film is used as a separator for a nonaqueous electrolyte secondary battery. It is preferable that the organic electrolyte is stable.
  • carboxymethyl cellulose and polyvinyl alcohol are more preferable because of their high stability with respect to organic electrolytes.
  • Modifier In this invention, you may contain modifiers, such as surfactant, a stabilizer, a hardening
  • the porous coating layer in the present invention is applied to at least one surface of a polyolefin resin porous film with a dispersion for forming a porous coating layer formed by dissolving or dispersing the inorganic particles and the binder resin in a solvent.
  • the dispersion preferably contains an acid component.
  • the acid component may remain in the porous coating layer as an acid itself, or may remain as a salt formed by reacting with an alkaline impurity in the porous coating layer. May be.
  • the acid component preferably has a first acid dissociation constant (pK a1 ) of 5 or less in a dilute aqueous solution at 25 ° C. and no second acid dissociation constant (pK a2 ) or 7 or more.
  • acid components having such characteristics include lower primary carboxylic acids such as formic acid, acetic acid, propionic acid, and acrylic acid; nitro acids such as nitric acid and nitrous acid; and halogens such as perchloric acid and hypochlorous acid.
  • Oxo acids such as hydrochloric acid, hydrofluoric acid, hydrobromic acid; phosphoric acid, salicylic acid, glycolic acid, lactic acid, ascorbic acid, erythorbic acid, and the like.
  • formic acid, acetic acid, nitric acid, hydrochloric acid, and phosphoric acid are preferable from the viewpoint that pH can be lowered by adding a small amount, availability, and acid stability are high.
  • the acid component satisfies the above-described conditions, the aggregation of inorganic particles is suppressed, and the viscosity stability during long-term storage of the porous coating layer-forming dispersion used for forming the porous coating layer is improved.
  • the porous coating layer-forming dispersion preferably contains the acid component in a range of 10 mass ppm to 10000 mass ppm.
  • content of the said acid component it is more preferable that they are 30 mass ppm or more and 9000 mass ppm or less, and it is still more preferable that they are 50 mass ppm or more and 8000 mass ppm or less.
  • content of the acid component in the dispersion for forming a porous coating layer is 10 mass ppm or more, a dispersion having excellent viscosity stability during long-term storage can be obtained, and a uniform porous coating layer can be formed.
  • the non-aqueous electrolyte secondary battery Does not adversely affect battery performance.
  • Examples of the method for forming the porous coating layer in the laminated porous film of the present invention include a coextrusion method, a laminating method, a coating drying method, etc., but in terms of continuous productivity, at least one side of the polyolefin resin porous film, It is preferably formed by a method of applying and drying a dispersion liquid for forming a porous coating layer obtained by dissolving or dispersing the inorganic particles and the binder resin in a solvent.
  • the solvent of the dispersion for forming the porous coating layer disperses the inorganic particles in an appropriately uniform and stable manner, and the binder resin is dissolved in an appropriately uniform and stable manner.
  • a dispersible solvent examples include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, water, dioxane, acetonitrile, alcohols having 1 to 4 carbon atoms, glycols, glycerin, Examples include lactic acid esters.
  • the alcohol having 1 to 4 carbon atoms is preferably a monohydric alcohol having 1 to 4 carbon atoms, and more preferably one or more selected from methanol, ethanol and isopropyl alcohol.
  • the content of water in the solvent is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of improving the viscosity stability of the coating liquid. More preferably, it is more preferably 90% by weight or more.
  • water or a mixed solvent of water and an alcohol having 1 to 4 carbon atoms is preferable from the viewpoint of cost and environmental load, and a mixed solvent of water and a monohydric alcohol having 1 to 4 carbon atoms is more preferable.
  • a mixed solvent of water and isopropyl alcohol is more preferable.
  • Examples of the method for dispersing the inorganic particles in a solvent include, for example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, a high-speed impact mill, and an ultrasonic dispersion. And a mechanical stirring method using stirring blades.
  • the resin binder may be dissolved or dispersed at the same time when the inorganic particles are dispersed.
  • the dispersion stability of the dispersion liquid for forming the porous coating layer is improved, and the porous coating layer is formed.
  • a dispersion aid, a stabilizer, a thickener and the like may be further blended.
  • the step of applying the dispersion for forming a porous coating layer to the surface of the polyolefin resin porous film may be performed at a stage in the middle of the production process of the polyolefin resin porous film to be used. For example, it may be performed after the extrusion process of the polyolefin resin film and before the stretching process, or after the stretching process. Among these, it is particularly preferable to apply after the stretching step from the viewpoint of forming a more uniform porous coating layer.
  • the coating method in the coating step is not particularly limited as long as the required layer thickness and coating area can be realized.
  • coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod Examples include a coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method.
  • the porous coating layer containing inorganic particles and the binder resin composition can be formed on at least one surface of the polyolefin resin porous film.
  • the method for removing the solvent any method that does not adversely affect the polyolefin resin porous film can be adopted without any particular limitation. Examples include a method of drying at a temperature and a method of drying at a low temperature under reduced pressure.
  • the temperature at the time of drying is a tension in the width direction of the polyolefin resin porous film. It is preferable that the temperature is equal to or lower than the temperature at the time of application because the applied tension is difficult to relax.
  • the average thickness (T) of the porous coating layer in the laminated porous film of the present invention is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 2 ⁇ m or more, and particularly preferably 3 ⁇ m or more. is there.
  • it is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the average thickness of the said porous coating layer means the thickness per layer.
  • the average thickness of the porous coating layer is, for example, by repeating the measurement of the thickness of the porous coating layer from five different unspecified cross sections from the image of the cross section perpendicular to the thickness direction of the laminated porous film of the present invention. It can be calculated as an arithmetic average of the values. Further, when the porous coating layer is provided only on one side of the polyolefin resin porous film, for example, as described in Examples below, the total thickness of the laminated porous film after the porous coating layer is formed, and the polyolefin resin porous It can be calculated as a difference from the total thickness of the film.
  • the average thickness of the porous coating layer laminated on the front surface and the lamination on the back surface is different.
  • the absolute value (T d ) of the difference in average thickness of the porous coating layers on the front and back surfaces is usually 1 ⁇ m or more.
  • Td is preferably 20 ⁇ m or less.
  • the total thickness of the laminated porous film of the present invention can be appropriately selected depending on the application.
  • the total thickness of the laminated porous film is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, and still more preferably 10 to 30 ⁇ m.
  • the total thickness is 5 ⁇ m or more, it is possible to obtain substantially the necessary electrical insulation as a separator for a non-aqueous electrolyte secondary battery.
  • the ratio T d / T PO of the absolute value difference (T d ) of the average thickness of the porous coating layers on the front and back surfaces with respect to the thickness (T PO ) of the polyolefin resin porous film described above. Is preferably 0.1 or more and 0.5 or less.
  • Td / TPO the average thickness of the porous coating layer becomes Td .
  • Td / TPO is 0.1 or more, sufficient heat resistance can be imparted to the laminated porous film of the present invention.
  • Td / TPO is 0.5 or less, the cracking and dropping off of the porous coating layer can be reduced.
  • the porosity is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more. If the porosity is 30% or more, it is possible to obtain a laminated porous film that ensures communication and has excellent air permeability.
  • the porosity of the laminated porous film is preferably 70% or less, more preferably 65% or less, and still more preferably 60% or less. If the porosity is 70% or less, the strength of the laminated porous film can be sufficiently maintained, which is preferable from the viewpoint of handling.
  • the air permeability of the laminated porous film of the present invention is preferably 1000 sec / 100 mL or less, more preferably 10 to 800 sec / 100 mL, still more preferably 50 to 500 sec / 100 mL.
  • An air permeability of 1000 seconds / 100 mL or less is preferable because the laminated porous film can be communicated and can exhibit excellent air permeability.
  • the air permeability represents the ease of passage of air in the film thickness direction, and is specifically expressed as the time required for 100 mL of air to pass through the film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass.
  • the air permeability of the laminated porous film of the present invention is low, it can be used for various applications. For example, when used as a separator for a non-aqueous electrolyte secondary battery, low air permeability means that ions can be easily transferred, which is preferable because battery performance is excellent.
  • the laminated porous film of the present invention preferably has SD characteristics when used as a battery separator.
  • the air permeability after heating at 135 ° C. for 5 seconds is preferably 10,000 seconds / 100 mL or more, more preferably 25000 seconds / 100 mL or more, and further preferably 50000 seconds / 100 mL or more.
  • the melt surface shrinkage of the laminated porous film of the present invention is preferably less than 8%, more preferably less than 7%, and even more preferably less than 6%. If the melt surface shrinkage is less than 8%, even when abnormal heat is generated above the SD temperature, it is suggested that it has good dimensional stability and heat resistance, preventing film breakage and reducing the internal short circuit temperature. Can be improved.
  • the melt surface shrinkage rate of the laminated porous film is measured by the method described in Examples described later.
  • the laminated porous film of the present invention is excellent in adhesion between the polyolefin resin porous film and the porous coating layer.
  • the adhesion of the porous coating layer can be evaluated by the peel strength measured by the method described in the examples below, and the higher the peel strength, the better the film.
  • the peel strength is preferably 3 N / 18 mm or more from the viewpoint of reducing film conveyance troubles and appearance defects, and more preferably 4 N / 18 mm or more.
  • the upper limit is not particularly limited and is ideally 20 N / 18 mm or less, but practically, it is preferably 10 N / 18 mm or less.
  • the laminated porous film of the present invention is a laminated porous film with reduced curl, and in particular, the laminated porous film has a size of 15 cm square, stainless steel (SUS) at a temperature of 25 ° C. and a relative humidity of 50%.
  • SUS stainless steel
  • the maximum curl height in the width direction when left on a plate for 5 minutes is 5 mm or less, when a laminated porous film is wound up as a roll-shaped product, or used for a cylindrical battery as a battery separator. Therefore, it is important to produce an effect of reducing the risk of problems such as creases and wrinkles when a wound body is manufactured together with electrodes.
  • the maximum curl height in the width direction of the laminated porous film is preferably 4 mm or less, more preferably 3 mm or less, particularly preferably 2 mm or less, particularly preferably 1 mm or less, ideal. Is 0 mm.
  • the maximum curl height in the width direction of the laminated porous film is measured by the method described in Examples below, under the above-described conditions.
  • Nonaqueous electrolyte secondary battery 20 containing the laminated porous film of the present invention as a non-aqueous electrolyte secondary battery separator will be described with reference to FIG.
  • the present invention is not limited to the non-aqueous electrolyte secondary battery 20 according to the present invention.
  • Both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body. The winding process will be described in detail.
  • One end of the battery separator is passed between the slit portions of the pin, and the pin is slightly rotated to wind one end of the battery separator around the pin. At this time, the surface of the pin is in contact with the porous coating layer of the battery separator. Thereafter, the positive electrode and the negative electrode are arranged so as to sandwich the battery separator, and the pins are rotated by a winding machine to wind the positive and negative electrodes and the battery separator. After winding, the pin is pulled out of the wound object.
  • the wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25.
  • the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed.
  • a cylindrical nonaqueous electrolyte secondary battery 20 is produced.
  • an electrolytic solution in which a lithium salt is used as an electrolytic solution and this is dissolved in an organic solvent is used.
  • the organic solvent is not particularly limited.
  • esters such as propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile.
  • an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
  • the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials.
  • These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
  • ⁇ Evaluation method> Width shrinkage of polyolefin resin porous film
  • the porous coating layer of the laminated porous film is removed by wiping with a medium (such as water or alcohol) that does not swell or dissolve the polyolefin resin porous film.
  • the polyolefin resin porous film was obtained by making it vacuum-dry at normal temperature. The film is cut into a strip of 20 cm in the width direction and 1 cm in the flow direction, left in an oven at 130 ° C. for 1 hour and heat-treated, and then the amount of dimension reduction in the width direction after the treatment is measured.
  • the width shrinkage ratio of the polyolefin resin porous film was calculated by dividing by the above dimensions.
  • Porosity (%) 100 ⁇ ⁇ W 1 / (50 ⁇ 50 ⁇ T PO ⁇ R / 1000) ⁇ 100 ⁇ W 1 : Mass of polyolefin resin porous film (g) T PO : Thickness (mm) of polyolefin resin porous film R: True density of polyolefin resin porous film: (g / cm 3 )
  • the thickness of the polyolefin resin porous film and the total thickness of the laminated porous film are not in-plane with the 1/1000 mm dial gauge. Specifically, five locations were measured and calculated as the average value.
  • the average thickness of porous coating layer was calculated as the difference between the total thickness of the laminated porous film after the formation of the porous coating layer and the total thickness of the polyolefin resin porous film.
  • Air permeability (Gurley value) The air permeability was measured according to JIS P8117 (2009).
  • Heat resistance Heat resistance was evaluated according to the following evaluation criteria. ⁇ : When the melt surface shrinkage is less than 8%. X: When melt surface shrinkage is 8% or more.
  • the peel strength between the polyolefin resin porous film and the porous coating layer was measured according to JIS Z0237 (2009).
  • the laminated porous film is cut into a strip shape of 150 mm in the flow direction and 50 mm in the width direction to obtain a sample 41, and a cellophane tape (manufactured by Nichiban Co., width: 18 mm) as a tape 42 (FIG. 2) in the vertical direction of the sample.
  • a cellophane tape manufactured by Nichiban Co., width: 18 mm
  • one end of the peeled portion of the sample is fixed to the lower chuck 45 of a tensile tester (manufactured by Intesco; Intesco IM-20ST), and the cellophane tape is fixed to the upper chuck 44 at a test speed of 300 mm / min.
  • the peel strength was measured (FIG. 2). After the measurement, the first measurement value of 25 mm length was ignored, and the 50 mm length peel strength measurement value peeled off from the test piece was averaged to give the peel strength.
  • Adhesiveness was evaluated according to the following evaluation criteria. ⁇ : When the peel strength is 3 N / 18 mm or more. X: When the peel strength is less than 3 N / 18 mm.
  • a sample 32 obtained by cutting a polyolefin resin porous film into a 60 mm ⁇ 60 mm square is an aluminum plate 31 (material: JIS) having a circular hole of ⁇ 40 mm in the center as shown in FIG. A5052, size: length 60 mm, width 60 mm, thickness 1 mm) was sandwiched between two sheets, and the periphery was fixed with a clip 33 as shown in FIG. Next, two aluminum plates were fixed to the center of an oil bath (manufactured by ASONE, OB-200A) at 135 ° C. filled with glycerin (manufactured by Nacalai Tesque, grade 1) to 100 mm from the bottom. The film in the state was immersed and heated for 5 seconds.
  • an oil bath manufactured by ASONE, OB-200A
  • glycerin manufactured by Nacalai Tesque, grade 1
  • Polyolefin resin porous film A porous film having a two-layer three-layer structure of A / B / A, in which the porous layer A is a polypropylene resin and the porous layer B is a polyethylene resin as main components. Thickness: 20 ⁇ m; Air permeability 530 seconds / 100 mL; Air permeability during heating at 135 ° C.
  • Polyolefin-based resin porous film 2 A porous film in which the porous layer A has a polypropylene-based resin and the porous layer B has a polyethylene-based resin as a main component and has a two-layer / three-layer configuration of A / B / A. Thickness: 16 ⁇ m; air permeability 470 seconds / 100 mL; air permeability when heated at 135 ° C.
  • Polyolefin-based resin porous film 3 A porous film having a single-layer structure mainly composed of a polypropylene-based resin. Thickness: 20 ⁇ m; Air permeability 160 seconds / 100 mL; Air permeability 170 seconds / 100 mL when heated at 135 ° C. for 5 seconds; Width shrinkage ratio 1.3%; Porosity 55%
  • Each of the above polyolefin-based resin porous films 1 to 3 was subjected to corona surface treatment on one side under the conditions of an output of 0.4 kW and a speed of 10 m / min using a corona treatment device (manufactured by VETAPHONE; generator CP1).
  • NVM-1.5 manufactured by Imex Corporation Beads: Diameter 0.5mm Made of zirconia Filling rate 85% Peripheral speed: 10 m / sec Discharge amount: 350 mL / min
  • alumina slurry was allowed to stand for 1 week, 62 parts by mass of alumina slurry, 5 mass% polyvinyl alcohol (“PVA-124” manufactured by Kuraray Co., Ltd.) 10 mass And 28 parts by mass of ion-exchanged water were mixed, and hydrochloric acid was added to a total mass of 70 mass ppm to obtain a porous coating layer-forming dispersion having a solid content concentration of 33% by mass.
  • PVA-124 polyvinyl alcohol
  • Example 1 The polyolefin resin porous film 1 is cut into a rectangular shape having a flow direction of 20 cm and a width direction of 40 cm, and a tension of 4.8 N is applied uniformly in the width direction in an atmosphere at a temperature of 25 ° C., and then the dispersion obtained on the corona-treated surface is applied. After applying using a # 12 number bar coater, it was dried in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50% for 20 minutes. After drying, the tension of the obtained laminated porous film was released, physical properties were evaluated, and the results are summarized in Table 1. The width shrinkage rate of the polyolefin resin porous film 1 at this time was 0.2%.
  • Example 2 The polyolefin-based resin porous film 2 is cut into a rectangular shape having a flow direction of 20 cm ⁇ width direction of 40 cm, and a tension of 4.8 N is uniformly applied in the width direction in an atmosphere at a temperature of 25 ° C., and then the dispersion obtained on the corona-treated surface is applied. After applying using a # 12 number bar coater, it was dried in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50% for 20 minutes. After drying, the tension of the obtained laminated porous film was released, physical properties were evaluated, and the results are summarized in Table 1. The width shrinkage ratio of the polyolefin resin porous film 2 at this time was 0.2%.
  • the polyolefin resin porous film 1 is cut into a rectangular shape having a flow direction of 20 cm and a width direction of 40 cm, and a tension of 4.8 N is applied uniformly in the width direction in an atmosphere at a temperature of 25 ° C., and then the dispersion obtained on the corona-treated surface is applied. After applying using a # 12 number bar coater, it was dried for 2 minutes in a dryer at a temperature of 80 ° C. After drying, the tension of the obtained laminated porous film was released, physical properties were evaluated, and the results are summarized in Table 1. The width shrinkage ratio of the polyolefin resin porous film 1 at this time was 0.0%.
  • the polyolefin-based resin porous film 1 is cut into a rectangular shape having a flow direction of 20 cm and a width direction of 40 cm, and a 2.4 N tension is uniformly applied to the flow direction in an atmosphere at a temperature of 25 ° C., and then the dispersion obtained on the corona surface is After applying using a # 12 bar coater, it was dried for 20 minutes in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50%. After drying, the tension of the obtained laminated porous film was released, physical properties were evaluated, and the results are summarized in Table 1. The width shrinkage of the polyolefin resin porous film 1 at this time was ⁇ 0.1%.
  • the polyolefin-based resin porous film 3 is cut into a rectangular shape having a flow direction of 20 cm and a width direction of 40 cm, and a 2.4 N tension is uniformly applied in the width direction in an atmosphere at a temperature of 25 ° C., and then the dispersion obtained on the corona surface is After applying using a # 12 bar coater, it was dried for 20 minutes in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50%. After drying, the tension of the obtained laminated porous film was released, physical properties were evaluated, and the results are summarized in Table 1. At this time, the width shrinkage of the polyolefin resin porous film 3 was 13.9%.
  • Comparative Example 4 In Comparative Example 4, the porous coating layer was not laminated, the physical properties of the polyolefin resin porous film 1 were evaluated, and the results are summarized in Table 1.
  • the width shrinkage rate of the polyolefin resin porous film is within a specified range, and the curled of the laminated porous film on which the porous coating layer is formed is small. In addition, it had good heat resistance, air permeability, adhesion of the porous coating layer, and SD characteristics.
  • the laminated porous films obtained in Comparative Examples 1 and 2 had a width shrinkage rate of the polyolefin resin porous film that was too small, both were curled in the width direction to form a cylindrical shape and were inferior in curling resistance.
  • the laminated porous film obtained in Comparative Example 3 was inferior in heat resistance and did not have SD characteristics because the width shrinkage rate and melt surface shrinkage rate of the polyolefin resin porous film were too large.
  • the polyolefin resin porous film of Comparative Example 4 had insufficient heat resistance because the porous coating layer was not laminated.
  • the laminated porous film of the present invention can be applied to various uses that require air permeability.
  • separators for lithium ion secondary batteries sanitary materials such as disposable paper diapers and sanitary pads for absorbing body fluids or bed sheets; medical materials such as surgical clothing or base materials for hot compresses; jumpers, sports Materials for clothing such as clothes or rainwear; Building materials such as wallpaper, roof waterproofing materials, heat insulating materials, sound absorbing materials; desiccants; moisture-proofing agents; oxygen scavengers; disposable warmers; packaging materials such as freshness-keeping packaging or food packaging It can be used very suitably as a material such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)

Abstract

SD特性を有し、多孔性被覆層を表裏非対称となるように設けた場合のカールが小さいためハンドリング性及び安全性に優れており、かつ、耐熱性及び透気性を有する、非水電解液二次電池用セパレータとして好適な積層多孔フィルムを得る。融点が150℃以上のポリオレフィン系樹脂を主成分とする多孔層Aと、ポリオレフィン系樹脂を主成分とし、100℃以上150℃未満の温度領域で孔閉塞する多孔層Bを、A/B/Aの順に積層した構造を有し、かつ130℃で1時間加熱処理した際の幅収縮率が、0.1%以上3%以下であるポリオレフィン系樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダー樹脂組成物を含有する多孔性被覆層を、表裏非対称に積層して設け、幅方向の最大カール高さが5mm以下の積層多孔フィルムである。

Description

積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法
 本発明は、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用することができる積層多孔フィルムに関する。本発明はまた、この積層多孔フィルムを用いた非水電解液二次電池用セパレータ及び非水電解液二次電池に関する。
 多数の微細連通孔を有する高分子多孔体は、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは二次電池などに使用する電池用セパレータなど各種の分野で利用されている。
 二次電池はOA、FA、家庭用電器又は通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化及び軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧及び長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
 リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用した、いわゆる非水電解液が用いられている。非水電解液用溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、この高誘電率有機溶媒として、プロピレンカーボネートやエチレンカーボネート等の有機炭酸エステル化合物が主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶解させて使用している。
 リチウムイオン二次電池には内部短絡の防止の点から、正極と負極の間にセパレータが介在されている。セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすため、セパレータとしては多孔性フィルムが使用されている。
 最近の電池の高容量化に伴い、電池の安全性に対する重要度が増してきている。電池用セパレータの安全に寄与する特性として、シャットダウン特性(以後、「SD特性」と称す)がある。このSD特性は、100~150℃程度の高温状態になると微細孔が閉塞され、その結果、電池内部のイオン伝導が遮断されるため、その後の電池内部の温度上昇を防止できるという機能である。この時、多孔性フィルムの微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度(以後、「SD温度」と称す)という。電池用セパレータとして使用する場合は、このSD特性を具備していることが必要となる。
 しかしながら、近年リチウムイオン二次電池が益々高エネルギー密度化、高容量化する傾向があり、このような高いエネルギーを有する電池においては、シャットダウンにより電気化学反応の進行を停止させても、電池内の温度が上昇し続け、電池内部の温度が従来の電池用セパレータの材料として用いられるポリエチレンの融点である130℃前後を超えてさらに上昇し、セパレータの熱収縮に伴う破膜によって、両極が短絡し、発火に至る事故が発生するおそれがある。そこで、安全性を確保するため、セパレータには現在のSD特性よりもさらに高い耐熱性が求められている。
 前記要望に対し、オレフィン系の多孔フィルムの少なくとも片面に、多孔性被覆層を備えた積層多孔フィルム(特許文献1~5)が提案されている。
 これらは、多孔フィルム上に、微粒子を高充填させた多孔性被覆層を積層して設けることで、異常発熱を起こしてSD温度を越えて温度が上昇し続けた際においても、両極の短絡を防ぐことができ、非常に安全性に優れる方法とされている。
特開2004-227972号公報 特開2008-186721号公報 国際公開2008/149986号 特開2008-305783号公報 国際公開2012/023199号 国際公開2014/002701号
 しかし、上記の多孔性被覆層を、多孔フィルムの一方の表面と他方の表面(以下、「表面と裏面」とも表現する)のうち、片面のみに設ける場合や、多孔フィルムの表面と裏面の両面にそれぞれ異なる厚みで設ける場合(以下、これら双方の場合を含めて「表裏非対称に設ける」とも表現する)、得られる積層多孔フィルムの幅方向にカールが生じやすくなる。その結果として、積層多孔フィルムをロール形状の製品として巻き取る場合や、電池用セパレータとして円筒型電池に使用するために電極と共に捲回体を作製する場合などに、折れシワやバタつきといった不具合が生じるおそれがある。
 なお、本明細書において、フィルムの「流れ方向」とは、フィルムを作製する際のフィルムの搬送方向(いわゆるMD)を意味し、フィルムの「幅方向」とは、流れ方向に直交し、かつ床面に対し略水平な方向(いわゆるTD)を意味する。
 積層多孔フィルムの幅方向におけるカールを抑制する(以下、耐カール性ともいう)技術に関し、本発明者は、多孔フィルムに積層する多孔性被覆層中の無機粒子の円形度を特定範囲に制御する技術(特許文献6)を開示している。
 しかし、上記の特許文献1~6の何れでも、未だ、耐カール性と耐熱性と透気性とSD特性の全てに優れた積層多孔フィルムは実現されていない。
 本発明は、耐カール性と耐熱性と透気性とSD特性の全てに優れた積層多孔フィルムの実現を課題とする。
 本発明者は前記の課題を鑑みて鋭意検討を行った結果、特定の構成と特定範囲の幅方向の熱収縮率を有するポリオレフィン系樹脂多孔フィルムを用い、その少なくとも片面に、無機粒子とバインダー樹脂組成物とを含む多孔性被覆層を表裏非対称となるように設けた積層多孔フィルムが、係る課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち本発明は以下の通りである。
[1] 融点が150℃以上のポリオレフィン系樹脂を主成分とする多孔層Aと、ポリオレフィン系樹脂を主成分とし、100℃以上150℃未満の温度領域で孔閉塞する多孔層Bを、A/B/Aの順に積層した構造を有するポリオレフィン系樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダー樹脂組成物を含有する多孔性被覆層を積層して設けた積層多孔フィルムであって、前記多孔性被覆層を、前記ポリオレフィン系樹脂多孔フィルムに対して、表裏非対称に備え、前記ポリオレフィン系樹脂多孔フィルムを温度130℃で1時間加熱処理した際の幅収縮率が0.1%以上3%以下であり、該積層多孔フィルムを15cm四方の大きさとし、温度25℃、相対湿度50%雰囲気下でステンレス鋼(SUS)板の上に5分間静置した際の幅方向の最大カール高さが5mm以下である、積層多孔フィルム。
[2] 前記ポリオレフィン系樹脂多孔フィルムの厚み(TPO)に対する、前記ポリオレフィン系樹脂多孔フィルムの表裏各面の多孔性被覆層同士の平均厚み差の絶対値(T)の比T/TPOが、0.1以上0.5以下である、[1]に記載の積層多孔フィルム。
[3] 前記多孔層Aがポリプロピレン系樹脂を主成分とする、[1]又は[2]に記載の積層多孔フィルム。
[4] 前記多孔層Bがポリエチレン系樹脂を主成分とする、[1]~[3]のいずれかに記載の積層多孔フィルム。
[5] 前記ポリオレフィン系樹脂多孔フィルムの空孔率が30%以上50%以下である、[1]~[4]のいずれかに記載の積層多孔フィルム。
[6] 前記バインダー樹脂組成物の平衡含水率が1%以上である、[1]~[5]のいずれかに記載の積層多孔フィルム。
[7] 溶融面収縮率が8%以下である、[1]~[6]のいずれかに記載の積層多孔フィルム。
[8] [1]~[7]のいずれかに記載の積層多孔フィルムを用いた非水電解液二次電池用セパレータ。
[9] [8] に記載の非水電解液二次電池用セパレータを用いた非水電解液二次電池。
[10]融点が150℃以上のポリオレフィン系樹脂を主成分とする多孔層Aと、ポリオレフィン系樹脂を主成分とし、100℃以上150℃未満の温度領域で孔閉塞する多孔層Bを、A/B/Aの構成で有し、温度130℃で1時間加熱処理した際の幅収縮率が0.1%未満であるポリオレフィン系樹脂多孔フィルムに対して、幅方向に張力を印加して温度130℃で1時間加熱処理した際の幅収縮率を0.1%以上3%以下とした後、該ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダー樹脂組成物を含有する多孔性被覆層を形成する、積層多孔フィルムの製造方法。
 本発明の積層多孔フィルムは、SD特性を有し、多孔性被覆層を表裏非対称となるように設けた場合のカールが小さいためハンドリング性及び安全性に優れており、かつ、耐熱性及び透気性を有するため、非水電解液二次電池用セパレータとして好適に用いることができる。
本発明の積層多孔フィルムを収容している電池の概略的断面図である。 引き剥がし強度の測定方法を説明する図である。 SD特性の測定方法を説明する図である。
 以下、本発明の積層多孔フィルムの実施形態について詳細に説明する。
 なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中において最も多い含有割合を占めるものであり、好ましくは50質量%以上、更に好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
 また、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
[積層多孔フィルム]
 本発明の積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルムに多孔性被覆層を積層して設けた構造を有する。
 以下に、本発明の積層多孔フィルムを構成するポリオレフィン系樹脂多孔フィルムと多孔性被覆層について説明する。
<ポリオレフィン系樹脂多孔フィルム>
 本発明に用いるポリオレフィン系樹脂多孔フィルムは、融点が150℃以上のポリオレフィン系樹脂を主成分とする多孔層Aと、ポリオレフィン系樹脂を主成分とし、100℃以上150℃未満の温度領域で孔閉塞する多孔層Bを、A/B/Aの順の構成で有することが重要である。
 ポリオレフィン系樹脂多孔フィルムにおいて、多孔層Aは耐熱性維持(形状保持性)の役割を有する。また、多孔層Bは100℃以上150℃未満の温度領域で孔閉塞することによって、本発明の積層多孔フィルムを電池用セパレータとして用いる場合にSD特性を発現し、安全性向上の役割を有する。
(多孔層A)
 多孔層Aに用いるポリオレフィン系樹脂としては、融点が150℃以上であれば特に限定されないが、例えばプロピレン、4-メチル-1-ペンテンなどのα-オレフィンを重合した単独重合体又は共重合体が挙げられる。また、これらの単独重合体または共重合体を2種以上混合することもできる。この中でも、多孔化が容易でポリオレフィン系樹脂多孔フィルムの生産性に優れ、本発明の積層多孔フィルムの透気性と機械的強度を維持する観点から、ポリプロピレン系樹脂を主成分とすることが好ましい。
 なお、ポリオレフィン系樹脂の融点は、JIS K7121(2012年)に準拠して、示差走査熱量測定(DSC)により求められる融解ピーク温度である。
(ポリプロピレン系樹脂)
 本発明に用いるポリプロピレン系樹脂としては、ホモポリプロピレン(プロピレン単独重合体)、又はプロピレンとエチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネンもしくは1-デセンなどα-オレフィンとのランダム共重合体又はブロック共重合体などが挙げられる。この中でも、本発明の積層多孔フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
 前記ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が、好ましくは80~99%、より好ましくは83~98%、更に好ましくは85~97%であるものを使用することができる。アイソタクチックペンタッド分率が前記下限値以上であるとフィルムの機械的強度が向上する。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。
 アイソタクチックペンタッド分率(mmmm分率)は13C-NMRの測定結果に基づき算出され、メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠する。
 前記ポリプロピレン系樹脂の分子量分布を示すパラメータであって、数平均分子量(Mn)に対する重量平均分子量(Mw)の比であるMw/Mnは、2.0~10.0であることが好ましく、2.0~8.0がより好ましく、2.0~6.0がさらに好ましい。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnがこの範囲内であると押出成形性が向上すると共に、積層多孔フィルムの機械的強度も向上する。
 ポリプロピレン系樹脂のMw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって測定される。
 前記ポリプロピレン系樹脂の密度は、0.890~0.970g/cmが好ましく、
0.895~0.970g/cmがより好ましく、0.900~0.970g/cmが更に好ましい。密度が0.890g/cm以上であれば適度なSD特性を有することができる。一方、0.970g/cm以下であれば適度なSD特性を有することができる他、延伸性を維持することができる。
 ポリプロピレン系樹脂の密度は、密度勾配管法を用いてJIS K7112(1999年)に準じて測定される。
 前記ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、0.5~15g/10分が好ましく、1.0~10g/10分がより好ましく、1.5~8.0g/10分が更に好ましく、2.0~6.0g/10分が特に好ましい。MFRを0.5g/10分以上とすることで、成形加工時の樹脂の溶融粘度が高く、十分な生産性を確保することができる。一方、15g/10分以下とすることで、得られる積層多孔フィルムの機械的強度を十分に保持することができる。
 ポリプロピレン系樹脂のMFRはJIS K7210(1999年)に従い、温度230℃、荷重2.16kgの条件で測定される。
 なお、前記ポリプロピレン系樹脂の製造方法は、特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた、懸濁重合法、溶融重合法、塊状重合法、気相重合法、またラジカル開始剤を用いた塊状重合法などが挙げられる。
 ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」、「WINTEC(登録商標)」(以上、日本ポリプロ株式会社製)、「ノティオ」、「タフマーXR」(以上、三井化学株式会社製)、「ゼラス(登録商標)」、「サーモラン(登録商標)」(以上、三菱化学株式会社製)、「住友ノーブレン」、「タフセレン(登録商標)」(以上、住友化学株式会社製)、「プライムポリプロ(登録商標)」、「プライムTPO(登録商標)」(以上、株式会社プライムポリマー製)、「Adflex」、「Adsyl」、「HMS-PP(PF814)」(以上、サンアロマー株式会社製)、「バーシファイ(登録商標)」、「インスパイア」(以上、ダウケミカル株式会社製)など市販されている商品を使用できる。
(多孔層B)
 本発明に用いるポリオレフィン系樹脂多孔フィルムの多孔層Bは前記の通り、100℃以上で孔閉塞する機能を有することで、本発明の積層多孔フィルムを電池用セパレータとして用いた場合に、SD特性を発現し安全性を保持すると共に、100℃未満の温度領域においては透気性、すなわちイオン透過性を維持可能とするという役割を有する。一方、多孔層Bは150℃未満の領域で孔閉塞することによって、速やかなSD特性の発現によるイオン流(電流)の遮断と電池内部の化学反応制御を行い、熱暴走を防止するという役割を有する。
 多孔層Bに主成分として用いるポリオレフィン系樹脂としては、100℃以上150℃未満の温度領域で孔閉塞するような樹脂であれば、特に限定されない。すなわち、融点が100℃未満又は150℃以上であっても、多孔層Bが100℃以上150℃未満の温度領域で孔閉塞するのであれば使用することができる。
 具体的には例えば、エチレン、プロピレン、1-ブテンなどのα-オレフィンを重合した単独重合体又は共重合体が挙げられる。また、これらの単独重合体または共重合体を2種以上混合することもできる。この中でも、多孔化が容易でポリオレフィン系樹脂多孔フィルムの生産性に優れ、安定的に100℃以上150℃未満の温度領域で孔閉塞機能を発現することから、ポリエチレン系樹脂を主成分とすることが好ましい。
(ポリエチレン系樹脂)
 本発明に用いるポリエチレン系樹脂としては、低密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン及びエチレンを主成分とする共重合体等が挙げられる。
 エチレンを主成分とする共重合体としては、すなわち、エチレンと、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテンなどの炭素数3~10のα-オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル;共役ジエンや非共役ジエンなどの不飽和化合物の中から選ばれる1種以上のコモノマーとの共重合体又は多元共重合体あるいはその混合組成物が挙げられる。エチレン系重合体のエチレン単位の含有量は通常50質量%を超えるものである。
 これらのポリエチレン系樹脂の中では、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレンの中から選ばれる1種以上のポリエチレン系樹脂が好ましく、高密度ポリエチレンがより好ましい。
 前記ポリエチレン系樹脂の密度は、0.910~0.970g/cmが好ましく、0.930~0.970g/cmがより好ましく、0.940~0.970g/cmが更に好ましい。密度が0.910g/cm以上であれば適度なSD特性を有することができる。一方、0.970g/cm以下であれば適度なSD特性を有することができるほか、延伸性が維持される。
 ポリエチレン系樹脂の密度は、密度勾配管法を用いてJIS K7112(1999年)に準じて測定される。
 前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、0.03~30g/10分であることが好ましく、0.3~10g/10分であることがより好ましい。MFRが0.03g/10分以上であれば成形加工時の樹脂の溶融粘度が十分に低いため生産性に優れる。一方、30g/10分以下であれば、十分な機械的強度を得ることができる。
 ポリエチレン系樹脂のMFRはJIS K7210(1999年)に従い、温度190℃、荷重2.16kgの条件で測定される。
 ポリエチレン系樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン触媒に代表されるシングルサイト触媒を用いた重合方法が挙げられる。ポリエチレン系樹脂の重合方法としては、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法で重合したポリエチレン系樹脂も使用可能である。
(他の成分)
 本発明においては、前述した樹脂の他、本発明の効果を阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を前記ポリオレフィン系樹脂多孔フィルムの多孔層A及び多孔層Bに適宜添加できる。前記添加剤としては、成形加工性、生産性及びポリオレフィン系樹脂多孔フィルムの諸物性を改良、調整する目的で添加される、耳等のトリミングロス等から発生するリサイクル樹脂;シリカ、タルク、カオリン、炭酸カルシウム等の無機粒子;カーボンブラック等の顔料;難燃剤;耐候性安定剤;耐熱安定剤;帯電防止剤;溶融粘度改良剤;架橋剤;滑剤;核剤;可塑剤;老化防止剤;酸化防止剤;光安定剤;紫外線吸収剤;中和剤;防曇剤;アンチブロッキング剤;スリップ剤;着色剤等の添加剤が挙げられる。
 また開孔を促進するためや、成形加工性を付与するために、本発明の効果を阻害しない範囲で、各種樹脂や、ワックス等の低分子量化合物を添加してもよい。
(ポリオレフィン系樹脂多孔フィルムの層構成)
 本発明においてポリオレフィン系樹脂多孔フィルムは、前記多孔層Aと前記多孔層BがA/B/Aの順の構成となっていれば、他の層の有無に関しては本発明の効果を阻害するものでない限り特に制限されるものではない。すなわち例えばA/他の層/B/Aのような4層構成や、他の層/A/B/A/他の層のような5層構成、A/B/A/B/Aのような5層構成なども許容することができる。更に層数としては6層、7層と必要に応じて増やしてもよい。
 これらの中でも、本発明の積層多孔フィルムの厚みを薄くする観点や、ポリオレフィン系樹脂多孔フィルムの生産性向上の観点から、A/B/Aの2種3層構成が好ましい。
 また、ポリオレフィン系樹脂多孔フィルムにおける前記多孔層Aと前記多孔層Bの厚み比は、A/B/A=1/0.2/1~1/8/1の範囲であることが好ましい。係る範囲にあることによって、前述した多孔層Aと多孔層Bの各々の機能が相乗効果を発揮し、耐熱性と機械的強度を維持しつつ、SD特性を発現することができる。
(ポリオレフィン系樹脂多孔フィルムの幅収縮率)
 本発明においては、ポリオレフィン系樹脂多孔フィルムとして、130℃で1時間加熱処理した際の幅収縮率が、0.1%以上3%以下の熱収縮特性を備えるものを用いることが重要である。本明細書において、「幅収縮率」とは、ポリオレフィン系樹脂多孔フィルムの幅方向におけるフィルムの熱収縮率のことを意味する。
 ポリオレフィン系樹脂多孔フィルムを130℃で1時間加熱処理した際の幅収縮率が0.1%以上であることにより、後述する多孔性被覆層を表裏非対称となるように設けた場合であっても、本発明の積層多孔フィルムのカールが抑制される。一方、ポリオレフィン系樹脂多孔フィルムを130℃で1時間加熱処理した際の幅収縮率が3%以下であることにより、積層多孔フィルムの収縮が抑えられ、非水電解液二次電池に組み込んだ際の短絡のリスクが低減される。
 ポリオレフィン系樹脂多孔フィルムを130℃で1時間加熱処理した際の幅収縮率の下限は、カール抑制の観点から、0.15%以上であることがより好ましく、0.2%以上であることが更に好ましい。一方上限については、収縮抑制の観点から、2%以下であることがより好ましく、1%以下であることが更に好ましく、0.5%以下であることが特に好ましい。
 ポリオレフィン系樹脂多孔フィルムを130℃で1時間加熱処理した際の幅収縮率は、後述の実施例に記載の方法で測定される。
 以下、本発明におけるカール低減のメカニズムについてより具体的に説明する。
 後述する無機粒子とバインダー樹脂組成物を用いて、ポリオレフィン系樹脂多孔フィルムに多孔性被覆層を積層して積層多孔フィルムを作製する場合、バインダー樹脂の乾燥収縮により、多孔性被覆層が収縮する。
 この多孔性被覆層を、表裏非対称に形成した場合、すなわち、ポリオレフィン系樹脂多孔フィルムの一方の表面と他方の表面のうち何れか片面に形成した場合や、ポリオレフィン系樹脂多孔フィルムの一方の表面と他方の表面の両面にそれぞれ異なる厚みで形成した場合には、多孔性被覆層の収縮に伴って、積層多孔フィルムにカールが生じる。この現象は、ポリオレフィン系樹脂多孔フィルムと多孔性被覆層の収縮力の差異や、上記両面の多孔性被覆層の収縮力の差異に起因するものである。
 特に、後述するように塗布乾燥法によってポリオレフィン系樹脂多孔フィルムの表面に多孔性被覆層を表裏非対称となるように形成する場合、高湿度雰囲気下から乾燥雰囲気下に遷移する過程でカールが生じやすくなる。加えて、詳細な理由は明らかでないが、本発明で用いるような多孔層Aと多孔層Bを有する構成のポリオレフィン系樹脂多孔フィルムの場合、更にカールの生じやすさが顕著となる。
 そこで本発明者は、特定の構成と特定範囲の幅収縮率を有するポリオレフィン系樹脂多孔フィルムを基材として用いることによって、多孔性被覆層の収縮力とポリオレフィン系樹脂多孔フィルムの収縮力とを相殺することで、多孔性被覆層を表裏非対称となるように形成する場合に積層多孔フィルムのカールを小さくし得ることに想到したのである。
 前記ポリオレフィン系樹脂多孔フィルムの幅収縮率は、後述するような製造方法を用いて前記ポリオレフィン系樹脂多孔フィルムを製造する場合において、例えばインフレーション率やドラフト率、延伸時の温度や延伸倍率などを調整することにより前記の範囲に制御することができる。
 また、130℃1時間の条件下における幅収縮率が0.1%未満である市販のポリオレフィン系樹脂多孔フィルムを使用する場合は、テンターやエキスパンダーロール等を用いて、フィルムの幅方向に張力を印加し微延伸することで、前記範囲の幅収縮率に制御することができる。
 この時、フィルムに印加する張力は断面積1mm辺りに換算し、0.5N/mm以上50N/mm以下が好ましく、1N/mm以上30N/mm以下がより好ましく、2N/mm以上20N/mm以下がさらに好ましい。印加する張力が0.5N/mm以上であれば、本フィルムに好適な幅収縮率を付与することができる。一方、50N/mm以下であればフィルムの裂けを低減することができる。
 また、フィルムの幅方向に張力を印加する際の雰囲気温度は、20℃以上170℃以下であることが好ましく、25℃以上160℃以下であることがより好ましく、25℃以上150℃以下であることがさらに好ましい。張力を印加する際の雰囲気温度が20℃以上であれば、フィルムの裂けを低減することができる。一方、170℃以下であれば、フィルムに充分な幅収縮率を付与することができる。
(ポリオレフィン系樹脂多孔フィルムの空孔率)
 本発明においては、ポリオレフィン系樹脂多孔フィルムの空孔率が30%以上50%以下であることが好ましい。空孔率が30%以上であることで、良好な透過性を発現するという効果があり、50%以下であることで、高電圧に対する絶縁性を保持することができるという効果がある。空孔率はより好ましくは35%以上45%以下、さらに好ましくは38%以上42%以下である。
 ポリオレフィン系樹脂多孔フィルムの空孔率は、後述の実施例に記載の方法で測定される。
 ポリオレフィン系樹脂多孔フィルムの厚み(TPO)は5~100μmが好ましく、より好ましくは8~50μm、さらに好ましくは10~30μmである。ポリオレフィン系樹脂多孔フィルムの厚みが5μm以上であれば、本発明の積層多孔フィルムを非水電解液二次電池用セパレータとして用いる場合に、実質的に必要な電気絶縁性を得ることができ、例えば電極の突起部分に大きな力がかかった場合でも、セパレータを突き破って短絡しにくく安全性に優れる。また、ポリオレフィン系樹脂多孔フィルムの厚みが100μm以下であれば、本発明の積層多孔フィルムを非水電解液二次電池用セパレータとして用いる場合に電気抵抗を小さくすることができるので、電池の性能を十分に確保することができる。
 本発明に用いるポリオレフィン系樹脂多孔フィルムのその他の物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
(ポリオレフィン系樹脂多孔フィルムの製造方法)
 ポリオレフィン系樹脂多孔フィルムの製造方法は、従来公知の多孔性フィルムの製造方法を好適に用いることができ、特に限定されるものではないが、通常、ポリオレフィン系樹脂多孔フィルムを形成するための前駆体である無孔膜状物を作製し、これを多孔化することによってポリオレフィン系樹脂多孔フィルムを形成する方法が好ましく採用される。
 ポリオレフィン系樹脂多孔フィルムを形成するための前駆体である無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。またチューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
 無孔膜状物の多孔化方法としては、特に限定されることなく、湿式による一軸以上の延伸多孔化、乾式による一軸以上の延伸多孔化等、公知の方法を用いてもよい。延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法、インフレーション法等の手法があり、これらを単独あるいは2つ以上組み合わせて一軸以上の延伸を行う。また必要に応じて、延伸の前後にポリオレフィン系樹脂組成物に含まれている可塑剤を溶剤によって抽出、乾燥させる方法も適用される。さらに、寸法安定性の改良を目的として、延伸の後に熱処理や弛緩処理を施すこともできる。
 また、後述する多孔性被覆層との層間接着性を向上させる目的で、前記ポリオレフィン系樹脂多孔フィルムの表面に、コロナ処理、プラズマ処理、化学的酸化処理等の表面処理を施すことが好ましい。
 また、ポリオレフィン系樹脂多孔フィルムを、多孔層A/多孔層B/多孔層Aとして積層した3層構造、又は4層以上の構造とする方法は、多孔化と積層の順序等によって以下の3つに大別され、本発明においてはいずれの方法も採用することができる。
(i)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(ii)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(iii)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
<多孔性被覆層>
 本発明の積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルムの表面と裏面のうち、少なくとも片面に、無機粒子とバインダー樹脂組成物を含有する多孔性被覆層を表裏非対称となるように有する。
 「表裏非対称」とは、ポリオレフィン系樹脂多孔フィルムの片面にのみ多孔性被覆層を有する場合を含むことを意味する。また、ポリオレフィン系樹脂多孔フィルムの両面に多孔性被覆層を有する場合には、一方の面の多孔性被覆層の平均厚みと反対面の多孔性被覆層の平均厚みが異なることを意味する。
 多孔性被覆層の平均厚みの測定・算出方法は、後述の実施例に記載の通りである。
(無機粒子)
 本発明に用いることができる無機粒子の例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの金属炭酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸バリウムなどの金属硫酸塩;フッ化カルシウム、フッ化マグネシウムなどの金属フッ化物;水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物;アルミナ、カルシア、マグネシア、チタニア、酸化亜鉛、シリカなどの金属酸化物;タルク、クレー、マイカなどの粘土鉱物、更にはチタン酸バリウム等が挙げられる。これらの中でも、電池に組み込んだ際に化学的に不活性であるという観点で、硫酸バリウム又はアルミナを含むことが好ましい。
 前記無機粒子の平均粒径の下限としては、好ましくは0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上である。一方、上限として好ましくは3.0μm以下、より好ましくは1.5μm以下である。前記平均粒径を0.01μm以上とすることで、本発明の積層多孔フィルムが十分な耐熱性を発現することができる。また、前記平均粒径を3.0μm以下とすることで、前記多孔性被覆層や塗工液中における無機粒子の分散性が向上する。
 無機粒子の平均粒径は、例えば画像解析装置を用いる方法や、レーザー回折式粒度分布測定装置を用いる方法などによって測定・算出される。画像解析装置を用いる場合の平均粒径は、任意の方向(方向Zとする)から当該無機粒子を投影した場合の二次元的な投影像の短径と長径を平均した値と、前記方向Zと直交する任意の方向(方向Xとする)から当該無機粒子を投影した場合の二次元的な投影像の短径と長径を平均した値とを、平均した値として算出される。算出に用いる無機粒子の個数は50個以上であればよい。
 前記無機粒子の比表面積は、5m/g以上、15m/g未満であることが好ましい。比表面積が5m/g以上であれば、本発明の積層多孔フィルムを非水電解液二次電池にセパレータとして組み込む際に電解液の浸透が速くなり、生産性が良好となる。また、比表面積が15m/g未満であれば、本発明の積層多孔フィルムを非水電解液二次電池にセパレータとして組み込む際に電解液成分の吸着を抑えられる。
 無機粒子の比表面積は定容量式ガス吸着法により測定される。
 前記多孔性被覆層において、前記無機粒子と前記バインダー樹脂組成物との総量に対する無機粒子の含有量は、80質量%以上、99質量%以下が好ましい。無機粒子の含有率は92質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。無機粒子の含有率がこの範囲内であることにより、前記多孔性被覆層が優れた透気性を維持することができ、ポリオレフィン系樹脂多孔フィルムと多孔性被覆層との密着性を維持しつつ、積層多孔フィルムとした場合の耐熱性を向上させることができる。
(バインダー樹脂組成物)
 バインダー樹脂組成物は、前記無機粒子と、前記ポリオレフィン系樹脂多孔フィルムとを良好に接着でき、電気化学的に安定で、かつ積層多孔フィルムを非水電解液二次電池用セパレータとして使用する場合に有機電解液に対して安定であることが好ましい。
 このようなバインダー樹脂組成物の主成分であるバインダー樹脂の具体例としては、ポリアクリル酸、ポリアクリル酸-2-ヒドロキシエチル、ポリメタクリル酸-2-ヒドロキシエチル、ポリアクリルアミドなどの(メタ)アクリル酸誘導体;ヒドロキシエチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体;ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラールなどのポリビニルアルコール誘導体;ポリビニルピロリドン、ポリビニルアセトアミドなどのポリビニルアミド誘導体;ポリエチレンオキシド、ポリプロピレンオキシドなどのポリエーテル誘導体;脂肪族ポリアミド、芳香族ポリアミド、芳香族脂肪族ポリアミドなどのポリアミド系樹脂;及びこれらの共重合体が挙げられる。これらの中でも特に有機電解液に対する安定性が高いことからカルボキシメチルセルロース、ポリビニルアルコールがより好ましい。
(改質剤)
 本発明においては、バインダー樹脂組成物に対し、界面活性剤、安定剤、硬化剤、可塑剤などの改質剤を含有してもよい。
(酸成分)
 本発明における多孔性被覆層を、後述するようにポリオレフィン系樹脂多孔フィルムの少なくとも片面に、前記無機粒子及び前記バインダー樹脂を溶媒に溶解又は分散させてなる多孔性被覆層形成用分散液を塗布し乾燥する方法(塗布乾燥法)で形成する場合、該分散液には、酸成分を含有していることが好ましい。該酸成分を含有することで、該分散液中の無機粒子の凝集を抑制し、該分散液の長期保存時の粘度安定性が向上するため、均一な多孔性被覆層を形成することができる。
 該酸成分は、本発明の積層多孔フィルムにおいては、酸そのものとして多孔性被覆層に残存していても良いし、多孔性被覆層中のアルカリ性不純物と反応して形成された塩として残存していても良い。
 前記酸成分は、25℃希薄水溶液下における第一酸解離定数(pKa1)が5以下であり、かつ第二酸解離定数(pKa2)が存在しないか又は7以上であることが好ましい。このような特性を有する酸成分の例としては、蟻酸、酢酸、プロピオン酸、アクリル酸等の低級1級カルボン酸;硝酸、亜硝酸等のニトロ酸;過塩素酸、次亜塩素酸等のハロゲンオキソ酸;塩酸、フッ化水素酸、臭化水素酸等のハロゲン化イオン;燐酸、サリチル酸、グリコール酸、乳酸、アスコルビン酸、エリソルビン酸等、が挙げられる。これらの中でも、少量添加でpHを下げられる点、入手の容易性、酸の安定性が高いという観点で、蟻酸、酢酸、硝酸、塩酸、燐酸が好ましい。酸成分が上述の条件を満たすことで、無機粒子の凝集が抑制され、多孔性被覆層の形成に用いられる多孔性被覆層形成用分散液の長期保存時の粘度安定性が向上する。
 前記多孔性被覆層形成分散液は、前記酸成分を10質量ppm以上、10000質量ppm以下の範囲で含有していることが好ましい。前記酸成分の含有量は30質量ppm以上、9000質量ppm以下であることがより好ましく、50質量ppm以上、8000質量ppm以下であることが更に好ましい。
 多孔性被覆層形成用分散液への前記酸成分の含有量が10質量ppm以上であれば、長期保存時の粘度安定性に優れる分散液が得られ、均一な多孔性被覆層を形成できる。また、該酸成分の含有量が10000質量ppm以下であれば、該多孔性被覆層を有する積層多孔フィルムを非水電解液二次電池用セパレータに用いた際にも、非水電解液二次電池の性能に悪影響を与えない。
(多孔性被覆層の製造方法)
 本発明の積層多孔フィルムにおける多孔性被覆層の形成方法としては、共押出法、ラミネート法、塗布乾燥法等が挙げられるが、連続生産性の面で、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、前記無機粒子及び前記バインダー樹脂を溶媒に溶解又は分散させてなる多孔性被覆層形成用分散液を塗布し乾燥する方法により形成することが好ましい。
 多孔性被覆層を塗布乾燥法で作製する場合において、多孔性被覆層形成用分散液の溶媒は無機粒子を適度に均一かつ安定に分散させ、また、バインダー樹脂が適度に均一かつ安定に溶解または分散可能な溶媒を用いることが好ましい。
 このような溶媒としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、水、ジオキサン、アセトニトリル、炭素数1~4のアルコール、グリコール類、グリセリン、乳酸エステル等が挙げられる。炭素数1~4のアルコールとしては、炭素数1~4の1価のアルコールが好ましく、メタノール、エタノール及びイソプロピルアルコールから選ばれる1種以上がより好ましい。なお、本発明において溶媒として水を用いる場合、溶媒中の水の含有量は、塗工液の粘度安定性を向上させる観点から、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上がより更に好ましい。
 これらの溶媒の中でもコスト面、環境負荷の点で水、又は水と炭素数1~4のアルコールとの混合溶媒が好ましく、水と炭素数1~4の1価のアルコールとの混合溶媒がより好ましく、水とイソプロピルアルコールとの混合溶媒が更に好ましい。
 前記無機粒子を溶媒に分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法等が挙げられる。なお、前記無機粒子を分散させる際に前記樹脂バインダーを同時に溶解又は分散させてもよい。
 前記無機粒子及び前記樹脂バインダーを溶媒に分散させて多孔性被覆層形成用分散液を作製する際、その多孔性被覆層形成用分散液の分散安定性を向上させ、及び多孔性被覆層形成に適した粘性の最適化をするために、分散助剤、安定剤、増粘剤等をさらに配合してもよい。
 ポリオレフィン系樹脂多孔フィルムの表面に、多孔性被覆層形成用分散液を塗布する工程としては、使用するポリオレフィン系樹脂多孔フィルムの製造工程の途中の段階で行ってもよい。例えば、ポリオレフィン系樹脂フィルムの押出成形工程の後でかつ延伸工程の前に行ってもよいし、延伸工程の後に行ってもよい。中でもより均一な多孔性被覆層を形成する観点から延伸工程の後に塗布することが特に好ましい。
 前記塗布工程における塗布方式としては、必要とする層厚や塗布面積を実現できる方式であれば特に限定されない。このような塗布方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等が挙げられる。
 本発明においては、多孔性被覆層形成用分散液を塗布した後、さらに前記分散媒を除去する工程を行うことが好ましい。これにより、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダー樹脂組成物を含む多孔性被覆層を形成することができる。前記溶媒を除去する方法としては、ポリオレフィン系樹脂多孔フィルムに悪影響を及ぼさない方法であれば、特に限定することなく採用することができ、例えば、ポリオレフィン系樹脂多孔フィルムを固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法などが挙げられる。
 なお、130℃1時間の条件下における幅収縮率が0.1%未満である市販のポリオレフィン系樹脂多孔フィルムを使用する場合、乾燥時の温度は、ポリオレフィン系樹脂多孔フィルムの幅方向に張力を印加する際の温度以下であることが、印加した張力が緩和し難いため好ましい。
 本発明の積層多孔フィルムにおける多孔性被覆層の平均厚み(T)は、耐熱性の観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上、特に好ましくは3μm以上である。一方連通性を確保し優れた透気特性を付与する観点から、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下、特に好ましくは5μm以下である。なお、多孔性被覆層を2層以上有する場合には、上記多孔性被覆層の平均厚みとは、1層あたりの厚みを意味する。
 多孔性被覆層の平均厚みは、例えば本発明の積層多孔フィルムの厚み方向に垂直な断面の画像から、多孔性被覆層の厚みを計測することを不特定の異なる5ヶ所の断面で繰り返し、それらの値の相加平均として算出することができる。また、ポリオレフィン系樹脂多孔フィルムの片面にのみ多孔性被覆層を有する場合には例えば、後述の実施例に記載の通り、多孔性被覆層形成後の積層多孔フィルムの総厚みと、ポリオレフィン系樹脂多孔フィルムの総厚みとの差として算出することができる。
 なお、前記の通りポリオレフィン系樹脂多孔フィルムの表面と裏面の両面に多孔性被覆層を有する場合には、表裏非対称であることから、表面に積層した多孔性被覆層の平均厚みと、裏面に積層した多孔性被覆層の平均厚みが異なる。
 本発明において、表裏各面の多孔性被覆層の平均厚みの差の絶対値(T)は、通常1μm以上である。一方、積層多孔フィルムのハンドリング性などの観点から、Tは20μm以下であることが好ましい。
[積層多孔フィルムの形状及び物性]
 本発明の積層多孔フィルムの総厚みは、用途に応じて適宜選択することができる。該積層多孔フィルムを非水電解液二次電池用セパレータとして使用する場合には、積層多孔フィルムの総厚みは好ましくは5~100μm、より好ましくは8~50μm、さらに好ましくは10~30μmである。該総厚みが5μm以上であれば、非水電解液二次電池用セパレータとして実質的に必要な電気絶縁性を得ることができ、例えば電極の突起部分に大きな力がかかった場合でも非水電解液二次電池用セパレータを突き破って短絡しにくく、安全性に優れる。また、積層多孔フィルムの総厚みが100μm以下であれば、積層多孔フィルムの電気抵抗を小さくすることができるので、電池の性能を十分に確保することができる。
 本発明の積層多孔フィルムにおける、前述のポリオレフィン系樹脂多孔フィルムの厚み(TPO)に対する、表裏各面の多孔性被覆層の平均厚みの差の絶対値(T)の比T/TPOは0.1以上0.5以下であることが好ましい。なお、本発明の積層多孔フィルムが片面にのみ多孔性被覆層を有する場合には、その多孔性被覆層の平均厚み(T)がTとなる。
 T/TPOが0.1以上であれば、本発明の積層多孔フィルムに充分な耐熱性を賦与することができる。また、T/TPOが0.5以下であれば多孔性被覆層の割れや脱落を軽減することができる。
 本発明の積層多孔フィルムにおいて、空孔率は30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましい。空孔率が30%以上であれば、連通性を確保し透気特性に優れた積層多孔フィルムとすることができる。
 一方、積層多孔フィルムの空孔率は70%以下が好ましく、65%以下がより好ましく、60%以下が更に好ましい。空孔率が70%以下であれば、積層多孔フィルムの強度を十分に保持することができ、ハンドリングの観点からも好ましい。
 本発明の積層多孔フィルムの透気度は1000秒/100mL以下が好ましく、10~800秒/100mLがより好ましく、50~500秒/100mLが更に好ましい。透気度が1000秒/100mL以下であれば、積層多孔フィルムに連通性があることを示し、優れた透気性能を示すことができるため好ましい。
 透気度はフィルム厚み方向の空気の通り抜け易さを表し、具体的には100mLの空気が当該フィルムを通過するのに必要な時間で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルム厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の積層多孔フィルムの透気度が低ければ様々な用途に使用することができる。例えば非水電解液二次電池用セパレータとして使用する場合、透気度が低いということイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
 本発明の積層多孔フィルムは、電池用セパレータとして使用時において、SD特性を有することが好ましい。具体的には、135℃で5秒間加熱後の透気度は10000秒/100mL以上であることが好ましく、より好ましくは25000秒/100mL以上、さらに好ましくは50000秒/100mL以上である。135℃で5秒間加熱後の透気度が10000秒/100mL以上とすることで、異常発熱時において空孔が速やかに閉塞し、電流が遮断されるため、電池の破裂等のトラブルを回避することができる。
 本発明の積層多孔フィルムの溶融面収縮率は、8%未満が好ましく、7%未満がより好ましく、6%未満であることが更に好ましい。溶融面収縮率が8%未満であれば、SD温度を超えて異常発熱した際においても、寸法安定性がよく、耐熱性を有することを示唆しており、破膜を防ぎ、内部短絡温度を向上することができる。
 積層多孔フィルムの溶融面収縮率は、後述の実施例に記載の方法で測定される。
 本発明の積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルムと多孔性被覆層の密着性に優れる。多孔性被覆層の密着性は後述の実施例に記載の方法で測定される引き剥がし強度で評価することができ、引き剥がし強度が大きいほど平滑性に優れたフィルムとなる。
 引き剥がし強度は3N/18mm以上であることがフィルムの搬送トラブルや外観不良を軽減できるという点で好ましく、4N/18mm以上であることがさらに好ましい。上限については、特に制限は無く20N/18mm以下であることが理想であるが、現実的には10N/18mm以下であることが好ましい。
 本発明の積層多孔フィルムは、前述の通り、カールを低減した積層多孔フィルムであって、特に該積層多孔フィルムを15cm四方の大きさとし、温度25℃、相対湿度50%雰囲気下でステンレス鋼(SUS)板の上に5分間静置した際の幅方向の最大カール高さが5mm以下であることが、積層多孔フィルムをロール形状の製品として巻き取る場合や、電池用セパレータとして円筒型電池に使用するために電極と共に捲回体を作製する場合などに、折れシワやバタつきといった不具合が生じるおそれを小さくする効果を奏するために重要である。
 積層多孔フィルムの幅方向の最大カール高さは、4mm以下であることが好ましく、3mm以下であることがさらに好ましく、2mm以下であることが特に好ましく、1mm以下であることがとりわけ好ましく、理想的には0mmである。
 積層多孔フィルムの幅方向の最大カール高さは、前述の条件の下、後述の実施例に記載の方法で測定される。
[非水電解液二次電池]
 続いて、本発明の前記積層多孔フィルムを非水電解液二次電池用セパレータとして収容している非水電解液二次電池20について、図1を参照して説明する。但し、本発明を係る非水電解液二次電池20に限定するものではない。
 正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体とする。
 前記捲回工程について詳しく説明する。電池用セパレータの片端をピンのスリット部の間に通し、ピンを少しだけ回転させて電池用セパレータの一端をピンに巻きつけておく。この時、ピンの表面と電池用セパレータの多孔性被覆層とが接触している。その後、電池用セパレータを間に挟むようにして正極と負極を配置し、捲回機によってピンを回転させて、正負極と電池用セパレータを捲回する。捲回後、ピンは捲回物から引き抜かれる。
 前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液二次電池20を作製する。
 電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジメトキシメタン、ジメトキシプロパン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフランもしくは4-メチル-1,3-ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
 負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
 正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
 以下に実施例および比較例を示し、本発明の積層多孔フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。
<評価方法>
(1)ポリオレフィン系樹脂多孔フィルムの幅収縮率
 積層多孔フィルムの多孔性被覆層を、ポリオレフィン系樹脂多孔フィルムを膨潤・溶解させない媒体(水やアルコールなど)で拭き取ることで、多孔性被覆層を除去し、常温で真空乾燥させることで、ポリオレフィン系樹脂多孔フィルムを得た。該フィルムを幅方向に20cm、流れ方向に1cmの短冊状に切り出し、130℃のオーブン内に1時間静置して加熱処理した後、処理後の幅方向の寸法減少量を測定し、処理前の寸法で除することでポリオレフィン系樹脂多孔フィルムの幅収縮率を算出した。
(2)ポリオレフィン系樹脂多孔フィルムの空孔率
 積層多孔フィルムの多孔性被覆層を、ポリオレフィン系樹脂多孔フィルムを膨潤・溶解させない媒体(水やアルコールなど)で拭き取ることで、多孔性被覆層を除去し、常温で真空乾燥させることで、ポリオレフィン系樹脂多孔フィルムを得た。該フィルムを50mm×50mmのサイズに切り出し、質量を天秤にて、厚みをダイアルゲージにて測定し、以下の式にて空孔率を算出した。
 空孔率(%)=100-{W/(50×50×TPO×R/1000)×100}
  W:ポリオレフィン系樹脂多孔フィルムの質量(g)
  TPO:ポリオレフィン系樹脂多孔フィルムの厚み(mm)
  R:ポリオレフィン系樹脂多孔フィルムの真密度:(g/cm
(3)ポリオレフィン系樹脂多孔フィルムの厚み、及び積層多孔フィルムの総厚み
 ポリオレフィン系樹脂多孔フィルムの厚み、及び積層多孔フィルムの総厚みは、1/1000mmのダイアルゲージにて、フィルムの面内を不特定に5ヶ所測定し、その平均値として算出した。
(4)多孔性被覆層の平均厚み
 多孔性被覆層の平均厚みは、多孔性被覆層形成後の積層多孔フィルムの総厚みと、ポリオレフィン系樹脂多孔フィルムの総厚みとの差として算出した。
(5)透気度(ガーレ値)
 透気度は、JIS P8117(2009年)に準拠して測定した。
(6)溶融面収縮率
 40℃に設定したホットプレート(アズワン社製;ND-2)上に、115mm×140mmに切り出した耐水研磨紙#1000(理研コランダム社製)を研磨面が上になるよう乗せ、100mm×100mm四方に切り出した積層多孔フィルムを重ね合わせ、180℃で1時間熱処理したポリエチレンテレフタレート(PET)フィルム(三菱樹脂社製;ダイアホイル T100-38)を200mm×200mm四方に切り出して上に乗せ、200mm×200mm×5mmの耐熱ガラス(東新理興社製)を更に2枚上に乗せ、ホットプレートの設定温度を200℃に設定し。200℃に到達後、40℃まで冷却した後、当該サンプルを取り出した。
 100mm×100mm四方に切り出したPETフィルム(三菱樹脂社製;ダイアホイル T100-38)の重量を測定し(以下Wとする)、これを該サンプル上に重ね、収縮後の該サンプルの形状を写し取り、PETフィルムを切り出し、その重量を測定した(以下Wとする)。なお、以下の式にて面収縮率を算出した。
   溶融面収縮率(%)={1-(W/W)}×100
(7)耐熱性
 耐熱性は、以下の評価基準において評価した。
  ○:溶融面収縮率が8%未満の場合。
  ×:溶融面収縮率が8%以上の場合。
(8)引き剥がし強度
 作製した積層多孔フィルムについて、ポリオレフィン系樹脂多孔フィルムと多孔性被覆層との引き剥がし強度をJIS Z0237(2009年)に準拠して測定した。
 まず、積層多孔フィルムを流れ方向に150mm、幅方向に50mmの短冊状に切り出してサンプル41とし、当該サンプルの縦方向にテープ42(図2)として、セロハンテープ(ニチバン社製、幅:18mm)を貼付け、該セロハンテープの粘着面とは反対側の面同士が重なるように180°に折り返し、該サンプルから25mm剥がした。
 次に、引張試験機(インテスコ社製;インテスコIM-20ST)の下部チャック45に剥がした部分のサンプルの片端を固定し、上部チャック44に該セロハンテープを固定し、試験速度300mm/分にて引き剥がし強度を測定した(図2)。測定後、最初の25mmの長さの測定値は無視し、試験片から引き剥がされた50mmの長さの引き剥がし強度測定値を平均し、引き剥がし強度とした。
(9)密着性
 密着性は、以下の評価基準にしたがって評価した。
   ○:引き剥がし強度が3N/18mm以上の場合。
   ×:引き剥がし強度が3N/18mm未満の場合。
(10)幅方向の最大カール高さ
 作製した積層多孔フィルムを、15cm×15cmのサイズに2枚切り出し、ステンレス鋼(SUS)板の上に、多孔性被覆層が上及び下になるようそれぞれ1枚ずつ温度25℃、相対湿度50%雰囲気下に5分間静置し、定規を用いてSUS板の水平面からフィルムが浮き上がっている垂直方向の高さをフィルムの流れ方向の両端辺において全幅で測定し、その最大値を幅方向の最大カール高さとした。なお、フィルムが完全にカールして円筒形になっている場合は、その状態における円筒の最大直径を最大カール高さとした。
(11)耐カール性
 (10)で測定した最大カール高さの数値を踏まえて、以下の評価基準にしたがって評価した。
   ○:多孔性被覆層が上、下いずれの場合も積層多孔フィルムの幅方向の最大カール高さが5mm以下の場合。
   ×:多孔性被覆層が上、下いずれかの場合に積層多孔フィルムの幅方向の最大カール高さが5mmを超えた場合。
(12)SD特性
 ポリオレフィン系樹脂多孔フィルムを60mm×60mm角に切り出したサンプル32を、図3(A)に示すように中央部にφ40mmの円状の穴を空けたアルミ板31(材質:JIS A5052、サイズ:縦60mm、横60mm、厚さ1mm)2枚の間にはさみ、図3(B)に示すように周囲をクリップ33で固定した。次に、グリセリン(ナカライテスク社製、1級)を底面から100mmとなるまで満たした、135℃のオイルバス(アズワン社製、OB-200A)の中央部に、アルミ板2枚で固定された状態のフィルムを浸漬し、5秒間加熱した。加熱後直ちに、別途用意した25℃のグリセリンを満たした冷却槽に浸漬して5分間冷却した後、2-プロパノール(ナカライテスク社製、特級)、アセトン(ナカライテスク社製、特級)で洗浄し、25℃の空気雰囲気下にて15分間乾燥した。この乾燥後のフィルムの中央部のφ40mmの円状の部分の透気度を前記(5)の方法に従い測定した。
 積層多孔フィルムのSD特性は、このポリオレフィン系樹脂多孔フィルムの透気度を踏まえて以下の基準で評価した。
  ○:透気度が10000秒/100mL以上であり、SD特性を有する
  ×:透気度が10000秒/100mL未満であり、SD特性を有しない
(ポリオレフィン系樹脂多孔フィルム)
 ポリオレフィン系樹脂多孔フィルム1:多孔層Aがポリプロピレン系樹脂、多孔層Bがポリエチレン系樹脂をそれぞれ主成分とし、A/B/Aの2種3層構成である多孔フィルム。厚み:20μm;透気度530秒/100mL;135℃5秒間加熱時の透気度99999秒/100mL;幅収縮率0.0%;空孔率39%
 ポリオレフィン系樹脂多孔フィルム2:多孔層Aがポリプロピレン系樹脂、多孔層Bがポリエチレン系樹脂をそれぞれ主成分とし、A/B/Aの2種3層構成である多孔フィルム。厚み:16μm;透気度470秒/100mL;135℃5秒間加熱時の透気度99999秒/100mL;幅収縮率0.0%;空孔率39%
 ポリオレフィン系樹脂多孔フィルム3:ポリプロピレン系樹脂を主成分とする単層構成である多孔フィルム。厚み:20μm;透気度160秒/100mL;135℃5秒間加熱時の透気度170秒/100mL;幅収縮率1.3%;空孔率55%
 上記のポリオレフィン系樹脂多孔フィルム1~3について、それぞれコロナ処理装置(VETAPHONE社製;ジェネレータCP1)を使用し、出力0.4kW・速度10m/分の条件で片面にコロナ表面処理を施した。
(多孔性被覆層形成用分散液の作製)
 アルミナ(日本軽金属社製「LS-410」)52.6質量部、イソプロピルアルコール5.3質量部、イオン交換水42.1質量部を混合し、ビーズミル処理を行ない、アルミナスラリーを得た。使用したビーズミルの条件は下記のとおりであった。
    装置 :アイメックス株式会社製「NVM-1.5」
    ビーズ:直径0.5mmジルコニア製 充填率85%
    周速 :10m/秒
    吐出量:350mL/分
 得られたアルミナスラリーを1週間静置したのち、アルミナスラリー62質量部、5質量%ポリビニルアルコール(株式会社クラレ製「PVA-124」)水溶液10質量部、イオン交換水28質量部を混合し、全量に対し、70質量ppmとなるよう塩酸を加えることで、固形分濃度33質量%の多孔性被覆層形成用分散液を得た。
[実施例1]
 ポリオレフィン系樹脂多孔フィルム1を流れ方向20cm×幅方向40cmの長方形に切り出し、温度25℃の雰囲気下で幅方向に4.8Nの張力を均一にかけ、続いてコロナ処理面に得られた分散液を、#12番手のバーコーターを用いて塗布した後、温度25℃、相対湿度50%の雰囲気下にて20分間乾燥させた。
 乾燥後、得られた積層多孔フィルムの張力を解放し、物性評価を行い、その結果を表1にまとめた。この時のポリオレフィン系樹脂多孔フィルム1の幅収縮率は0.2%であった。
[実施例2]
 ポリオレフィン系樹脂多孔フィルム2を流れ方向20cm×幅方向40cmの長方形に切り出し、温度25℃の雰囲気下で幅方向に4.8Nの張力を均一にかけ、続いてコロナ処理面に得られた分散液を、#12番手のバーコーターを用いて塗布した後、温度25℃、相対湿度50%の雰囲気下にて20分間乾燥させた。
 乾燥後、得られた積層多孔フィルムの張力を解放し、物性評価を行い、その結果を表1にまとめた。この時のポリオレフィン系樹脂多孔フィルム2の幅収縮率は0.2%であった。
[比較例1]
 ポリオレフィン系樹脂多孔フィルム1を流れ方向20cm×幅方向40cmの長方形に切り出し、温度25℃の雰囲気下で幅方向に4.8Nの張力を均一にかけ、続いてコロナ処理面に得られた分散液を、#12番手のバーコーターを用いて塗布した後、温度80℃の乾燥機にて2分間乾燥させた。
 乾燥後、得られた積層多孔フィルムの張力を解放し、物性評価を行い、その結果を表1にまとめた。この時のポリオレフィン系樹脂多孔フィルム1の幅収縮率は0.0%であった。
[比較例2]
 ポリオレフィン系樹脂多孔フィルム1を流れ方向20cm×幅方向40cmの長方形に切り出し、温度25℃の雰囲気下で流れ方向に2.4Nの張力を均一にかけ、続いてコロナ面に得られた分散液を、#12番手のバーコーターを用いて塗布した後、温度25℃、相対湿度50%の雰囲気下にて20分間乾燥させた。
 乾燥後、得られた積層多孔フィルムの張力を解放し、物性評価を行い、その結果を表1にまとめた。この時のポリオレフィン系樹脂多孔フィルム1の幅収縮率は-0.1%であった。
[比較例3]
 ポリオレフィン系樹脂多孔フィルム3を流れ方向20cm×幅方向40cmの長方形に切り出し、温度25℃の雰囲気下で幅方向に2.4Nの張力を均一にかけ、続いてコロナ面に得られた分散液を、#12番手のバーコーターを用いて塗布した後、温度25℃、相対湿度50%の雰囲気下にて20分間乾燥させた。
 乾燥後、得られた積層多孔フィルムの張力を解放し、物性評価を行い、その結果を表1にまとめた。この時のポリオレフィン系樹脂多孔フィルム3の幅収縮率は13.9%であった。
[比較例4]
 比較例4では、多孔性被覆層の積層は行わず、前記ポリオレフィン系樹脂多孔フィルム1の物性評価を行い、その結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 表1より明らかである通り、実施例で得た積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルムの幅収縮率が規定の範囲内であり、多孔性被覆層が形成された積層多孔フィルムのカールが小さく、かつ良好な耐熱性、透気性、多孔性被覆層の密着性、及びSD特性を有するものであった。
 一方、比較例1、2で得た積層多孔フィルムはポリオレフィン系樹脂多孔フィルムの幅収縮率が小さすぎる為、いずれも幅方向にカールして円筒形となり、耐カール性に劣っていた。
 比較例3で得た積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルムの幅収縮率や溶融面収縮率が大きすぎる為、耐熱性に劣っており、かつSD特性を有していなかった。
 比較例4のポリオレフィン系樹脂多孔フィルムは、多孔性被覆層が積層されていなかったため、耐熱性が不十分であった。
 本発明の積層多孔フィルムは、透気特性が要求される種々の用途に応用することができる。具体的には、リチウムイオン二次電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に利用できる。
 10 非水電解液二次電池用セパレータ
 20 二次電池
 21 正極板
 22 負極板
 24 正極リード体
 25 負極リード体
 26 ガスケット
 27 正極蓋
 31 アルミ板
 32 サンプル
 33 クリップ
 34 フィルム流れ方向
 35 フィルム幅方向
 41 サンプル
 42 テープ
 43 滑り止め
 44 上部チャック
 45 下部チャック

Claims (10)

  1.  融点が150℃以上のポリオレフィン系樹脂を主成分とする多孔層Aと、ポリオレフィン系樹脂を主成分とし、100℃以上150℃未満の温度領域で孔閉塞する多孔層Bを、A/B/Aの順に積層した構造を有するポリオレフィン系樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダー樹脂組成物を含有する多孔性被覆層を積層して設けた積層多孔フィルムであって、
     前記多孔性被覆層を、前記ポリオレフィン系樹脂多孔フィルムに対して、表裏非対称に備え、
     前記ポリオレフィン系樹脂多孔フィルムを温度130℃で1時間加熱処理した際の幅収縮率が、0.1%以上3%以下であり、
     該積層多孔フィルムを15cm四方の大きさとし、温度25℃、相対湿度50%雰囲気下でステンレス鋼(SUS)板の上に5分間静置した際の幅方向の最大カール高さが5mm以下であることを特徴とする積層多孔フィルム。
  2.  前記ポリオレフィン系樹脂多孔フィルムの厚み(TPO)に対する、前記ポリオレフィン系樹脂多孔フィルムの表裏各面の多孔性被覆層の平均厚みの差の絶対値(T)の比T/TPOが、0.1以上0.5以下であることを特徴とする請求項1に記載の積層多孔フィルム。
  3.  前記多孔層Aがポリプロピレン系樹脂を主成分とすることを特徴とする、請求項1又は2に記載の積層多孔フィルム。
  4.  前記多孔層Bがポリエチレン系樹脂を主成分とすることを特徴とする、請求項1~3のいずれか1項に記載の積層多孔フィルム。
  5.  前記ポリオレフィン系樹脂多孔フィルムの空孔率が30%以上50%以下であることを特徴とする請求項1~4のいずれか1項に記載の積層多孔フィルム。
  6.  前記バインダー樹脂組成物の平衡含水率が1%以上であることを特徴とする請求項1~5のいずれか1項に記載の積層多孔フィルム。
  7.  溶融面収縮率が8%以下であることを特徴とする請求項1~6のいずれか1項に記載の積層多孔フィルム。
  8.  請求項1~7のいずれか1項に記載の積層多孔フィルムを用いた非水電解液二次電池用セパレータ。
  9.  請求項8に記載の非水電解液二次電池用セパレータを用いた非水電解液二次電池。
  10.  融点が150℃以上のポリオレフィン系樹脂を主成分とする多孔層Aと、ポリオレフィン系樹脂を主成分とし、100℃以上150℃未満の温度領域で孔閉塞する多孔層Bを、A/B/Aの構成で有し、温度130℃で1時間加熱処理した際の幅収縮率が0.1%未満であるポリオレフィン系樹脂多孔フィルムに対して、幅方向に張力を印加して温度130℃で1時間加熱処理した際の幅収縮率を0.1%以上3%以下とした後、該ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダー樹脂組成物を含有する多孔性被覆層を形成することを特徴とする、積層多孔フィルムの製造方法。
PCT/JP2016/070546 2015-07-15 2016-07-12 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法 WO2017010480A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/743,796 US20180294459A1 (en) 2015-07-15 2016-07-12 Laminated porous film, separator for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and production method for laminated porous film
CN201680053205.3A CN108025539B (zh) 2015-07-15 2016-07-12 叠层多孔膜、非水电解质二次电池用隔板、非水电解质二次电池、以及叠层多孔膜的制造方法
JP2017528688A JP6652135B2 (ja) 2015-07-15 2016-07-12 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法
KR1020187004655A KR20180030666A (ko) 2015-07-15 2016-07-12 적층 다공 필름, 비수 전해액 이차 전지용 세퍼레이터, 비수 전해액 이차 전지, 및 적층 다공 필름의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-141634 2015-07-15
JP2015141634 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010480A1 true WO2017010480A1 (ja) 2017-01-19

Family

ID=57757431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070546 WO2017010480A1 (ja) 2015-07-15 2016-07-12 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法

Country Status (5)

Country Link
US (1) US20180294459A1 (ja)
JP (1) JP6652135B2 (ja)
KR (1) KR20180030666A (ja)
CN (1) CN108025539B (ja)
WO (1) WO2017010480A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190710A (ja) * 2017-04-28 2018-11-29 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
WO2019235112A1 (ja) * 2018-06-08 2019-12-12 旭化成株式会社 多層セパレータ
WO2021033734A1 (ja) * 2019-08-22 2021-02-25 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ、及び二次電池
US11728100B2 (en) * 2019-03-29 2023-08-15 Ube Corporation Polyolefin porous film, separator for energy storage device, and energy storage device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180294459A1 (en) * 2015-07-15 2018-10-11 Mitsubish Chemical Corporation Laminated porous film, separator for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and production method for laminated porous film
CN109192902B (zh) * 2018-07-10 2021-11-23 深圳中兴新材技术股份有限公司 一种多级安全防护锂电池隔膜的制备方法及锂电池隔膜
CN112350026B (zh) * 2019-12-25 2023-03-17 万向一二三股份公司 一种隔膜及使用该隔膜的锂电池
CN114243218B (zh) * 2022-02-25 2022-05-06 湖南中锂新材料科技有限公司 一种膜面平整的隔膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002701A1 (ja) * 2012-06-29 2014-01-03 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2014205344A (ja) * 2013-03-18 2014-10-30 東レ株式会社 積層多孔性フィルムおよび蓄電デバイス
WO2015064726A1 (ja) * 2013-10-28 2015-05-07 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池
WO2016031990A1 (ja) * 2014-08-29 2016-03-03 住友化学株式会社 多孔質フィルムの捲回体、および、その製造方法
JP2016031833A (ja) * 2014-07-29 2016-03-07 住友化学株式会社 多孔質膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169510A1 (ja) * 2011-06-08 2012-12-13 東レ株式会社 多孔性ポリプロピレンフィルムおよびその製造方法
JP5796367B2 (ja) * 2011-06-22 2015-10-21 日産自動車株式会社 耐熱絶縁層付セパレータ
JP6233301B2 (ja) * 2012-03-27 2017-11-22 東レ株式会社 積層多孔質フィルム、蓄電デバイス用セパレータおよび積層多孔質フィルムの製造方法
CN104395382B (zh) * 2012-07-04 2016-11-23 东丽株式会社 多孔性聚丙烯膜、蓄电装置用隔膜及蓄电装置
US20180294459A1 (en) * 2015-07-15 2018-10-11 Mitsubish Chemical Corporation Laminated porous film, separator for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and production method for laminated porous film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002701A1 (ja) * 2012-06-29 2014-01-03 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2014205344A (ja) * 2013-03-18 2014-10-30 東レ株式会社 積層多孔性フィルムおよび蓄電デバイス
WO2015064726A1 (ja) * 2013-10-28 2015-05-07 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2016031833A (ja) * 2014-07-29 2016-03-07 住友化学株式会社 多孔質膜
WO2016031990A1 (ja) * 2014-08-29 2016-03-03 住友化学株式会社 多孔質フィルムの捲回体、および、その製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190710A (ja) * 2017-04-28 2018-11-29 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
WO2019235112A1 (ja) * 2018-06-08 2019-12-12 旭化成株式会社 多層セパレータ
JPWO2019235112A1 (ja) * 2018-06-08 2021-02-25 旭化成株式会社 多層セパレータ
JP7042338B2 (ja) 2018-06-08 2022-03-25 旭化成株式会社 多層セパレータ
US11728100B2 (en) * 2019-03-29 2023-08-15 Ube Corporation Polyolefin porous film, separator for energy storage device, and energy storage device
WO2021033734A1 (ja) * 2019-08-22 2021-02-25 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ、及び二次電池
CN114207004A (zh) * 2019-08-22 2022-03-18 东丽株式会社 聚烯烃微多孔膜、电池用隔膜和二次电池
CN114207004B (zh) * 2019-08-22 2023-04-25 东丽株式会社 聚烯烃微多孔膜、电池用隔膜和二次电池

Also Published As

Publication number Publication date
KR20180030666A (ko) 2018-03-23
CN108025539A (zh) 2018-05-11
US20180294459A1 (en) 2018-10-11
CN108025539B (zh) 2020-04-14
JP6652135B2 (ja) 2020-02-19
JPWO2017010480A1 (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6652135B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法
JP6432203B2 (ja) 積層多孔フィルムの製造方法
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5930032B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5344107B1 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6161049B2 (ja) 積層多孔フィルムの被覆層形成用分散液及び積層多孔フィルムの製造方法
JP2011126275A (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP6459694B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2014208780A (ja) 塗工液の製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6002353B1 (ja) アルミナスラリー
JP6027401B2 (ja) 塗工液、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6035387B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、スラリー、及び塗工液
JP6137523B2 (ja) 積層多孔フィルムの製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6117493B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6318919B2 (ja) 積層多孔フィルム、積層多孔フィルムの製造方法、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2015151445A (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5848193B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6413676B2 (ja) 積層多孔フィルムの製造方法
JP2015201389A (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2016087944A (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2013116442A (ja) 積層多孔フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187004655

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743796

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16824460

Country of ref document: EP

Kind code of ref document: A1