WO2012169510A1 - 多孔性ポリプロピレンフィルムおよびその製造方法 - Google Patents

多孔性ポリプロピレンフィルムおよびその製造方法 Download PDF

Info

Publication number
WO2012169510A1
WO2012169510A1 PCT/JP2012/064515 JP2012064515W WO2012169510A1 WO 2012169510 A1 WO2012169510 A1 WO 2012169510A1 JP 2012064515 W JP2012064515 W JP 2012064515W WO 2012169510 A1 WO2012169510 A1 WO 2012169510A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat treatment
width direction
temperature
shrinkage
Prior art date
Application number
PCT/JP2012/064515
Other languages
English (en)
French (fr)
Inventor
今西康之
大倉正寿
久万琢也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280022168.1A priority Critical patent/CN103502335B/zh
Priority to KR1020137034287A priority patent/KR20140048147A/ko
Priority to JP2012530440A priority patent/JP5924263B2/ja
Publication of WO2012169510A1 publication Critical patent/WO2012169510A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a porous polypropylene film excellent in the uniformity of thermal dimensional change in the film width direction and a method for producing the same.
  • Polypropylene films are used in various applications such as industrial materials, packaging materials, optical materials, and electrical materials due to their excellent mechanical, thermal, electrical, and optical properties. Since this porous polypropylene film is porous and porous, it has excellent properties such as permeability and low specific gravity in addition to the properties of a polypropylene film. Development into a wide range of applications such as separation membranes, clothing, moisture-permeable waterproof membranes in medical applications, reflectors for flat panel displays, and thermal transfer recording sheets is under consideration.
  • Porous methods can be broadly classified into wet methods and dry methods.
  • Patent Document 1 and Patent Document 2 have difficulty in production efficiency, such as being difficult to manufacture in a wide and large area and increasing costs.
  • Patent Documents 3 to 5 can form a porous film having excellent air permeability with a wide width, a large area, and high productivity, but the width of the porous polypropylene film is also stretched in the width direction. In some cases, the thickness of the direction, the air permeability, and the uniformity of the porosity were inferior.
  • an object of the present invention is to solve the above-mentioned problems. That is, an object of the present invention is to provide a porous polypropylene film excellent in uniformity of thermal dimensional change in the film width direction and a method for producing the same.
  • the porous polypropylene film of the present invention has the following configuration. That is, It is a porous polypropylene film containing a polypropylene resin and having a deviation of 3% shrinkage temperature in the film width direction represented by the following formula (1) of less than 0.05.
  • Deviation of 3% shrinkage temperature in the film width direction (Tmax ⁇ Tmin) / Tave (1) here, Tmax: The highest temperature among the temperatures showing the shrinkage of 3% in the measurement point of the shrinkage curve in the film width direction. Tmin: The highest temperature among the temperatures showing the shrinkage of 3% in the measurement point of the shrinkage curve in the film width direction.
  • Low temperature Tave Average temperature at all measurement points of the shrinkage curve in the film width direction Measurement points of the shrinkage curve in the film width direction: The center in the film width direction, and the position at every 30 mm toward both ends with the same center as the base point
  • the manufacturing method of the porous polypropylene film of this invention has the following structure.
  • a polypropylene resin is melt-extruded on a support to form a polypropylene resin sheet, and the polypropylene resin sheet is biaxially stretched and then subjected to a heat treatment to produce a porous polypropylene film, the heat treatment comprising a tension treatment and a relaxation treatment.
  • the porous polypropylene film of the present invention preferably has a 3% shrinkage temperature of 130 ° C. or more in the film width direction at each measurement point of the shrinkage curve in the film width direction.
  • porous polypropylene film of the present invention preferably has a ⁇ -crystal forming ability of the porous polypropylene film of 60% or more.
  • the heat treatment temperature of the first step in the multistage heat treatment step is not less than the transverse stretching temperature and not more than the melting point Tm of the film, and the heat treatment temperature after the second step is not less than the heat treatment temperature of the immediately preceding step. It is preferable that it is below melting
  • porous polypropylene film of the present invention is excellent in the uniformity of thermal dimensional change in the film width direction, for example, when used as a separator for an electricity storage device, a battery excellent in battery performance uniformity can be obtained.
  • the present invention is a porous polypropylene film containing a polypropylene resin and having a deviation of 3% shrinkage temperature in the film width direction represented by the following formula (1) of less than 0.05.
  • Deviation of 3% shrinkage temperature in the film width direction (Tmax ⁇ Tmin) / Tave (1) here, Tmax: The highest temperature among the temperatures showing the shrinkage of 3% in the measurement point of the shrinkage curve in the film width direction. Tmin: The highest temperature among the temperatures showing the shrinkage of 3% in the measurement point of the shrinkage curve in the film width direction.
  • Low temperature Tave Average temperature at all measurement points of the shrinkage curve in the film width direction Measurement points of the shrinkage curve in the film width direction: The center in the film width direction, and the position at every 30 mm toward both ends with the same center as the base point The above measurement is performed under the condition that the temperature is increased from 25 ° C. to 160 ° C. at a temperature increase rate of 4 mm width ⁇ measured length 15 mm, film width direction (TD) load 0.15 MPa, 5 ° C./min by Thermal Mechanical Analysys (TMA). In the width direction (TD).
  • the deviation of the 3% shrinkage temperature in the film width direction (TD) when the deviation of the 3% shrinkage temperature in the film width direction (TD) is 0.05 or more, heat shrinkage unevenness tends to occur in the width direction of the film roll.
  • the deviation of the 3% shrinkage temperature in the film width direction (TD) is preferably less than 0.04, more preferably less than 0.03.
  • the lower limit is 0.001.
  • the porous polypropylene film of the present invention has pores that penetrate both surfaces of the film and have air permeability (hereinafter referred to as through-holes).
  • the through holes are preferably formed in the film by at least uniaxial or biaxial stretching, and are preferably formed by a ⁇ crystal method from the viewpoint of achieving high productivity, uniform physical properties, and thinning.
  • the ⁇ crystal forming ability of the polypropylene resin is 60% or more. If the ⁇ -crystal forming ability is within this preferable range, the amount of ⁇ -crystals is sufficient at the time of film production, so that the number of voids formed in the film using the transition to ⁇ -crystal becomes sufficient, and as a result, the permeability is improved. An excellent film is obtained.
  • the upper limit of the ⁇ -crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the ⁇ -crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used.
  • the ⁇ -crystal forming ability is preferably 65 to 99.9%, particularly preferably 70 to 95%.
  • the ⁇ -crystal forming ability of the porous polypropylene film is preferably 60% or more.
  • a polypropylene resin with a high isotactic index is used, or a ⁇ crystal is selectively formed by adding it to a polypropylene resin called a ⁇ crystal nucleating agent.
  • the crystallization nucleating agent to be used is preferably used as an additive.
  • the ⁇ crystal nucleating agent include various pigment compounds and amide compounds.
  • amide compounds disclosed in JP-A-5-310665 can be preferably used.
  • the addition amount of the ⁇ crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the whole polypropylene resin.
  • the porous polypropylene film of the present invention is substantially composed of a polypropylene resin, and when the total polypropylene resin constituting the film is 100% by mass, it is 80% by mass or more of the polypropylene resin, and the thermal dimensional stability of the film. In view of the above, it is preferably 85% by mass or more, more preferably 90% by mass or more.
  • the polypropylene resin constituting the porous polypropylene film of the present invention preferably has a melt flow rate (hereinafter referred to as MFR, measurement conditions: 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 min.
  • MFR melt flow rate
  • measurement conditions 230 ° C., 2.16 kg
  • MFR melt flow rate
  • the MFR is 2 g / 10 min or more
  • the melt viscosity of the resin does not become too high, high-precision filtration is possible, and the high quality of the film can be maintained.
  • the MFR is 30 g / 10 min or less
  • the MFR is 3 to 20 g / 10 min.
  • the polypropylene resin constituting the porous polypropylene film of the present invention is preferably an isotactic polypropylene resin.
  • the isotactic index is preferably 90 to 99.9%.
  • the resin has high crystallinity and it is easy to achieve high air permeability.
  • polypropylene resin used in the present invention it is possible to use a homopolypropylene resin, as well as from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, polypropylene with an ethylene component or butene, Resins obtained by copolymerizing ⁇ -olefin components such as hexene and octene in an amount of 10% by mass or less, more preferably 5% by mass or less, and further preferably 2.5% by mass or less can be used.
  • the form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
  • the above-mentioned polypropylene resin it is preferable for the above-mentioned polypropylene resin to contain a high molecular weight polypropylene, a low melting point polypropylene, a high melt tension polypropylene or the like within a range not impairing the effects of the present invention from the viewpoint of improving safety and improving film forming property.
  • the high molecular weight polypropylene is a polypropylene having an MFR of 0.1 to 2 g / 10 min
  • the low melting point polypropylene is a polypropylene having a melting point lower than the resin melting point 153 ° C. (for example, ethylene component, butene, hexene, octene, etc.
  • High melt tension polypropylene is a mixture of a high molecular weight component or a component having a branched structure in a polypropylene resin, or copolymerization of a long-chain branched component with polypropylene. Polypropylene resin with increased tension in the molten state.
  • the polypropylene resin used in the present invention is composed of 80 to 99% by mass of polypropylene and ethylene / ⁇ -olefin from the viewpoint of improving void formation efficiency during biaxial stretching, and improving air permeability by increasing the hole opening and hole diameter. It is preferable to use a mixture of 20% by mass or less of the copolymer.
  • examples of the ethylene / ⁇ -olefin copolymer include linear low-density polyethylene and ultra-low-density polyethylene, and among them, a copolymer polyethylene obtained by copolymerizing octene-1 and having a melting point of 60 to 90 ° C.
  • a resin (copolymerized PE resin) can be preferably used.
  • the copolymer polyethylene include commercially available resins such as “ENGAGE” (registered trademark) (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
  • the copolymerized polyethylene resin is preferably contained in an amount of 1 to 10% by mass when the entire polypropylene resin constituting the film of the present invention is 100% by mass, from the viewpoint of improving air permeability. More preferably, it is 1 to 7% by mass, and further preferably 1 to 5% by mass.
  • the polypropylene resin forming the porous polypropylene film of the present invention preferably has a cold xylene soluble component (CXS) of less than 2% by mass. More preferably, it is less than 1.5 mass%.
  • CXS cold xylene soluble component
  • the low molecular weight component is small and the mechanical properties of the porous polypropylene film are excellent.
  • a method of polymerizing with a polymerization catalyst system capable of reducing CXS, a method of removing atactic polymer by providing a washing step after the polymerization reaction, or the like can be used.
  • the amount of hydrotalcite in the polypropylene resin is preferably 0.01% by mass or less. More preferably, it is 0.005 mass% or less, More preferably, it is 0.001 mass% or less. Hydrotalcite may inhibit ⁇ -crystal formation, and if the amount of hydrotalcite is 0.01% by mass or less, the air permeability of the porous polypropylene film can be maintained high.
  • the polypropylene resin forming the porous polypropylene film of the present invention preferably has an ash content in the polypropylene resin of 0.01% by mass or less.
  • the ash content is 0.01% by mass or less, the withstand voltage is high and the battery life is long when used for a separator for an electricity storage device.
  • an antioxidant for the purpose of suppressing the oxidative deterioration due to the heat history of the polypropylene resin, but the amount of the antioxidant added is preferably 2% by mass or less with respect to 100% by mass of the polypropylene resin. More preferably, it is 1 mass% or less, More preferably, it is 0.5 mass% or less.
  • the porous polypropylene film of the present invention preferably has a porosity of 35 to 80% from the viewpoint of achieving both ionic conductivity and safety when used as a separator.
  • the porosity is 35% or more, the electrical resistance can be reduced when used as a separator.
  • the porosity is 80% or less, it is excellent in safety when used in a separator for a large-capacity battery such as an electric vehicle.
  • the porosity of the film is more preferably 40 to 75%, and further preferably 40 to 70%.
  • the porous polypropylene film of the present invention preferably has an air resistance of 50 to 1,000 sec / 100 mL. More preferably, it is 80 to 600 sec / 100 mL, and still more preferably 80 to 400 sec / 100 mL.
  • the air permeation resistance is 50 sec / 100 mL or more, the mechanical strength of the film is not lowered and the handling property is not lowered, and the safety is not lowered when it is used for a separator.
  • the air permeation resistance is 1,000 sec / 100 mL or less, the output characteristics do not deteriorate when used for a separator.
  • the heat treatment after biaxial stretching is performed under specific conditions as will be described later, so that the porous material has excellent uniformity of thermal dimensional change in the film width direction. Can be obtained.
  • a polypropylene resin is melt-extruded on a support to obtain a polypropylene resin sheet, and when the polypropylene resin sheet is biaxially stretched and then subjected to a heat treatment to produce a porous polypropylene film, the heat treatment is a tension treatment.
  • This multi-stage heat treatment process has a relaxation treatment in which the total relaxation rate exceeds 15% and the relaxation rate in the width direction is 5 to 15%. It is necessary to have at least two steps and that the heat treatment temperature in the multistage heat treatment step is not less than the stretching temperature and not more than the melting point Tm of the film.
  • biaxial stretching is preferably performed in the longitudinal direction (longitudinal direction, MD) using a stretching roll or the like and then stretched in the transverse direction (width direction, TD) using a tenter or the like.
  • the tenter can be divided into three processes, a preheating process, a lateral stretching process, and a heat treatment process.
  • the tensioning process and the relaxation process are a set of steps for the heat treatment process. It is necessary to include a multistage heat treatment step having a plurality of the above.
  • the tension treatment refers to heat treatment with a fixed length in the width direction of the film
  • the relaxation treatment refers to heat treatment while reducing the length in the width direction by 1% or more.
  • Each of the above steps preferably includes a relaxation process in which the relaxation rate in the width direction is 5 to 15%, and it is necessary to have at least two such steps. Furthermore, the total relaxation rate in the multi-stage heat treatment step needs to exceed 15% from the viewpoint of obtaining the uniformity effect of the thermal dimensional change in the width direction. When the total relaxation rate is 15% or less, the stress relaxation caused by stretching becomes insufficient, and the film tends to be inferior in the uniformity of the thermal dimensional change in the width direction. A more preferable total relaxation rate is 17% or more, and further preferably 20% or more. The upper limit of the total relaxation rate is not particularly limited, but is preferably 50%. If it exceeds 50%, the film flatness may deteriorate.
  • the total relaxation rate is defined as follows.
  • the distance between the tenter clips after transverse stretching is the width direction length (L 0 ), and the distance between the tenter clips after the relaxation treatment at the first step is the width direction length (L 1 ).
  • the second step the third step, ...
  • the n-th step is (L 2 ), (L 3 ), ...
  • the heat treatment temperature in the above-described multistage heat treatment process needs to be not less than the stretching temperature and not more than the melting point Tm of the film in any step.
  • the heat treatment process is one step or when the relaxation rate of each step is less than 5%, the stress relaxation caused by transverse stretching cannot be sufficiently uniformly performed in the plane, and the heat dimension in the film width direction If the uniformity of change is insufficient, or if the heat treatment process is one step and the relaxation rate exceeds 15%, the tenter outlet width becomes extremely narrow when two or more steps are applied according to the present invention. In some cases, productivity is inferior because the final product area is small.
  • the multistage heat treatment process by providing two or more steps including a relaxation treatment with a relaxation rate in the width direction of 5 to 15%, partial residual stress that could not be relaxed in one step is released. And a film having a uniform thermal dimensional change in the width direction can be obtained.
  • the rate at which the relaxation treatment is performed is preferably 50 to 1,000% / min.
  • the relaxation rate is 50% / min or more, there is no need to slow down the film forming speed or increase the tenter length, and the productivity is excellent. If the relaxation speed is 1,000% / min or less, the speed at which the film shrinks will not be slower than the speed at which the rail width of the tenter shrinks, and the film flutters in the tenter and is not flat. It does not occur.
  • the relaxation rate is more preferably 100 to 800% / min.
  • the heat treatment temperature of the first step in the multistage heat treatment step is set to the transverse stretching temperature or more and the film melting point Tm or less. It is preferable that the heat treatment temperature after the second step is not less than the heat treatment temperature of the immediately preceding step and not more than the melting point Tm of the film.
  • the heat treatment temperature in the first step (first step) is equal to or higher than the transverse stretching temperature, the stress relaxation in the width direction is sufficient and the thermal contraction rate can be reduced.
  • the heat treatment temperature in the first step is not higher than the melting point Tm of the film
  • the polymer around the hole does not melt and the air resistance is not increased.
  • the heat treatment temperature after the second step is equal to or higher than the heat treatment temperature of the immediately preceding step, the residual stress that could not be relaxed at the first step is sufficiently released, and the uniformity in the width direction of the thermal dimensional change can be maintained high.
  • the heat treatment temperature after the second step is not more than the melting point Tm of the film, the polymer around the hole will not melt and the air resistance will not increase.
  • the difference in heat treatment temperature between the first step and the last step after the second step is preferably less than 15 ° C.
  • the difference in the heat treatment temperature is 15 ° C. or more, the polymer around the pores may melt due to excessive heat during the heat treatment, and the air resistance may increase.
  • the difference in heat treatment temperature between the first step and the last step after the second step is more preferably 10 ° C. or less, from the viewpoint of achieving appropriate air resistance and uniformity of thermal dimensional change. The following is more preferable.
  • the heat treatment time in each step in the above-described multi-stage heat treatment process is 1 sec or more and 30 sec or less from the viewpoint of achieving uniformity of the thermal dimensional change in the width direction while having air permeability resistance suitable as a separator. More preferably, it is 5 sec or more and 30 sec or less, and further preferably 10 sec or more and 30 sec or less. If the heat treatment time in each step is 1 sec or longer, the state is not substantially unheated, and the uniformity in the width direction of the thermal dimensional change can be maintained high.
  • the heat treatment time in each step is 30 seconds or less, the polymer around the pores will not melt due to excessive heat quantity and the air permeability resistance will not increase, and it is also necessary to slow down the film forming speed or increase the tenter length There is no productivity.
  • the step of the multistage heat treatment process needs to be 2 steps or more, and preferably 3 steps or more.
  • the upper limit of the number of steps is not particularly limited, but it is preferable to set the upper limit to 5 steps from the viewpoint of obtaining an air resistance suitable for the separator because the polymer around the pores is not melted due to excessive heat treatment.
  • the porous polypropylene film of the present invention preferably has a 3% shrinkage temperature of 130 ° C. or more in the film width direction at each measurement point from the viewpoint of thermal dimensional stability.
  • the 3% shrinkage temperature in the film width direction is 130 ° C. or higher, for example, when the temperature of the battery rises when the separator is used, the separator is difficult to shrink and short-circuiting hardly occurs.
  • the 3% shrinkage temperature in the film width direction is more preferably 135 ° C. or more, and further preferably 140 ° C. or more.
  • the number of steps in the multi-stage heat treatment process is 2 steps or more, the total relaxation treatment rate is over 15%, and the heat treatment time in each step is in the range of 1 to 30 seconds. It is preferable to set.
  • the porous polypropylene film of the present invention preferably has a film thickness of 5 to 50 ⁇ m.
  • the film thickness is 5 ⁇ m or more, the film is not broken at the time of use, and when it is 50 ⁇ m or less, the volume ratio of the porous film in the electric storage device does not become too high, and a high energy density can be obtained.
  • the film thickness is more preferably 7 to 30 ⁇ m, further preferably 10 to 25 ⁇ m.
  • polypropylene resin 99.6% by mass of a commercially available homopolypropylene resin is added to 0.3% by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide, which is a ⁇ crystal nucleating agent, and an antioxidant is 0%.
  • the raw material is supplied from the weighing hopper to the twin screw extruder so that 1% by mass is mixed at this ratio, melt kneaded at 300 ° C., discharged from the die in a strand shape, and cooled and solidified in a 25 ° C. water tank. Then, it is cut into chips to produce a polypropylene composition (I).
  • the cast drum for obtaining the unstretched sheet preferably has a surface temperature of 105 to 130 ° C. from the viewpoint of controlling the ⁇ crystal fraction in the unstretched sheet to be high.
  • the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary based on the state of close contact of the entire sheet on the drum. Moreover, you may laminate by coextrusion using a some extruder and pinol.
  • the obtained unstretched sheet is biaxially stretched to form pores (through holes) in the film.
  • a biaxial stretching method use a sequential biaxial stretching method in which the film is stretched in the width direction after stretching in the film longitudinal direction, or a simultaneous biaxial stretching method in which the longitudinal direction and the width direction of the film are stretched almost simultaneously.
  • the sequential biaxial stretching method it is preferable to apply the sequential biaxial stretching method in that it is easy to obtain a highly permeable film.
  • the heat treatment process is performed in a state of tension gripping after stretching, but any step in the multistage heat treatment in which the tension process and the relaxation process are performed as one step.
  • an unstretched sheet is controlled to a temperature at which it can be stretched in the longitudinal direction.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction it is preferable to employ a temperature of 110 to 140 ° C., more preferably 120 to 135 ° C., and particularly preferably 123 to 130 ° C. from the viewpoint of film characteristics and uniformity.
  • the draw ratio is 4 to 6 times, more preferably 4.5 to 5.8 times. Further, the higher the stretching ratio, the higher the porosity. However, when the film is stretched within the above preferred range, the film is hardly broken in the next lateral stretching step.
  • the uniaxially stretched polypropylene film is introduced into the tenter-type stretching machine by gripping the end of the film. Then, it is preferably heated to 130 to 155 ° C., more preferably 145 to 153 ° C., and stretched 4 to 12 times, more preferably 6 to 11 times, and further preferably 6.5 to 10 times in the width direction.
  • the transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min.
  • the above-described multistage heat treatment is performed.
  • the operating conditions are set in the range of the number of steps, relaxation rate, and heat treatment time.
  • a film having excellent flatness can be obtained by performing a tension treatment for 1 to 30 seconds at a temperature equal to or higher than the heat treatment temperature of the final step and not higher than the melting point Tm of the film while maintaining the distance between clips after the multistage heat treatment step.
  • the film after the heat treatment process is removed by slitting the ears gripped by the tenter clip, and wound around the core with a winder to form a film roll.
  • This film roll may be re-slit to a desired width and length.
  • the porous polypropylene film of the present invention is excellent in uniformity of thermal dimensional change in the film width direction, and is suitable from the viewpoint of excellent uniformity in battery performance when used as a separator for an electricity storage device.
  • the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor. Since such an electricity storage device can be repeatedly used by charging and discharging, it can be used as a power supply device for industrial devices, household equipment, electric vehicles, hybrid electric vehicles, and the like.
  • an electricity storage device using a separator using the porous polypropylene film of the present invention is excellent in output characteristics, and therefore can be suitably used for a non-aqueous electrolyte secondary battery for an electric vehicle.
  • the melting peak of the ⁇ crystal is 158 ° C. or higher.
  • the melting of the ⁇ crystal is the melting peak of the ⁇ crystal, the melting peak of the ⁇ crystal is taken as the melting peak of the base, and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side.
  • the value calculated by the following formula is ⁇ crystal forming ability.
  • the calibration of the heat of fusion was performed using indium.
  • ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100
  • the ⁇ crystal fraction in the state of the sample can be calculated by similarly calculating the existence ratio of the ⁇ crystal from the melting peak observed in the first run.
  • Film melting point (Tm) The porous polypropylene film was measured by the same method as the method for measuring the ⁇ crystal forming ability, and the melting peak temperature of 158 ° C. or higher observed in the first run was defined as the film melting point (Tm).
  • Deviation of the 3% shrinkage temperature in the film width direction (Tmax ⁇ Tmin) / Tave here, Tmax: The highest temperature among the temperatures showing the shrinkage of 3% in the measurement point of the shrinkage curve in the film width direction. Tmin: The highest temperature among the temperatures showing the shrinkage of 3% in the measurement point of the shrinkage curve in the film width direction.
  • Low temperature Tave Average temperature at all measurement points of the shrinkage curve in the film width direction Measurement points of the shrinkage curve in the film width direction: the center in the film width direction, and the position (30 mm) toward the both ends from the same center )
  • Air permeability resistance A square having a size of 100 mm x 100 mm was cut out from a porous polypropylene film and used as a sample. Using a JIS P 8117 (1998) type B Gurley tester, the permeation time of 100 mL of air was measured at 23 ° C. and a relative humidity of 65%. The measurement was performed three times by changing the sample at the center of the film, and the average value of the permeation time was defined as the air permeability of the film.
  • Example 1 As a polypropylene resin, 99.45% by mass of homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide as a ⁇ crystal nucleating agent (manufactured by Shin Nippon Rika Co., Ltd.
  • multi-stage heat treatment was performed. Specifically, in the first step, after the tension treatment at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, a relaxation treatment is performed for 3 seconds at a relaxation rate of 10%, and then in the second step, one step. While maintaining the distance between clips after eye heat treatment, after tensing treatment at 155 ° C. for 3 seconds, relaxation treatment is performed for 3 seconds at a relaxation rate of 10%, and in the third step, the distance between clips after the second heat treatment is set. After maintaining the tension at 158 ° C. for 3 seconds, the tension was applied for 3 seconds at a relaxation rate of 10%. Finally, the tension was applied at 158 ° C. for 3 seconds while maintaining the distance between the clips after relaxation. The relaxation process in each step was performed at a rate of 120% / min.
  • Example 1 The film forming conditions and film characteristics are shown in Table 1.
  • Example 2 and 3 A porous polypropylene film having a width of 600 mm and a thickness of 25 ⁇ m was wound around a core by 500 m in the same manner as in Example 1 except that the multistage heat treatment conditions in the heat treatment step were changed to the conditions shown in Table 1.
  • Example 3 The width is 600 mm in the same manner as in Example 3 except that the heat treatment process is only one step, the treatment temperature, the treatment time, and the tension treatment conditions after treatment are as shown in Table 1 and the relaxation treatment speed is 240% / min.
  • a porous polypropylene film having a thickness of 25 ⁇ m was wound around the core by 500 m.
  • Example 3 A porous polypropylene film having a width of 600 mm and a thickness of 25 ⁇ m was wound on a core by 500 m in the same manner as in Example 3 except that the multistage heat treatment conditions in the heat treatment step were changed to the conditions shown in Table 1.
  • Example 4 69.75% by mass of homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd.
  • ENGAGE (registered trademark) manufactured by Dow Chemical Co., Ltd.) 8411, melt index: 18 g / 10 min) is added to 30% by mass, and further, “IRGANOX” (registered trademark) 1010 and “IRGAFOS” (registered trademark) 168 manufactured by Ciba Specialty Chemicals Co., Ltd. are used as antioxidants.
  • the raw material is supplied from the weighing hopper to the twin screw extruder so that 0.15% by mass and 0.1% by mass are mixed at this ratio, melt kneaded at 240 ° C., and discharged from the die in a strand shape.
  • Example 5 The conditions of the biaxial stretching and heat treatment steps were the same as in Example 1, and a porous polypropylene film having a width of 600 mm and a thickness of 25 ⁇ m was wound around the core by 500 m.
  • Example 5 A film stretched in the longitudinal direction in the same manner as in Example 1 was introduced into a tenter-type stretching machine by gripping the end with a clip, and it was 6.5 times at 150 ° C. and a width at a stretching speed of 1,600% / min. Stretched in the direction. The distance between the clips in the width direction at the entrance of the tenter was 150 mm, and the distance between the clips after transverse stretching with the tenter (L 0 ) was 975 mm.
  • multi-stage heat treatment was performed. Specifically, in the first step, after the tension treatment at 150 ° C. for 10 seconds while maintaining the distance between the clips after stretching, a relaxation treatment is performed for 10 seconds at a relaxation rate of 10%, and then in the second step, one step. Tension treatment at 155 ° C. for 10 seconds while maintaining the distance between clips after eye heat treatment, relaxation treatment for 10 seconds was performed at a relaxation rate of 10%, and finally, the distance between clips after the second step heat treatment was maintained. Tensile treatment was performed at 155 ° C. for 10 seconds. The relaxation process in each step was performed at a rate of 60% / min.
  • Example 6 The film stretched in the longitudinal direction in the same manner as in Example 1 was introduced into a tenter-type stretching machine by gripping the ends with clips, and the film was stretched 6.5 times at 150 ° C. and the width at a stretching speed of 2,650% / min. Stretched in the direction. The distance between the clips in the width direction at the entrance of the tenter was 150 mm, and the distance between the clips after transverse stretching with the tenter (L 0 ) was 975 mm.
  • the relaxation treatment is performed for 6 seconds at a relaxation rate of 10%
  • the tension treatment was performed at 155 ° C. for 6 seconds
  • the relaxation treatment was performed at a relaxation rate of 10% for 6 seconds.
  • the distance between the clips after the second step heat treatment was maintained.
  • Tension treatment was performed at 155 ° C. for 6 seconds.
  • the relaxation process in each step was performed at a rate of 100% / min.
  • Example 7 and 8 and Comparative Example 4 The same procedure as in Example 5 except that the temperature of the tension treatment performed while maintaining the distance between the clips after the first step, the second step, and finally the second step heat treatment of the multi-step heat treatment was the conditions shown in Table 1.
  • a porous polypropylene film having a width of 600 mm and a thickness of 25 ⁇ m was wound around the core by 500 m.
  • Example 5 The film forming conditions and film characteristics are shown in Table 1.
  • Example 5 The same procedure as in Example 3 except that the conditions of the tension treatment performed while maintaining the distance between the clips after the first step, the second step, and finally the second step heat treatment of the multi-step heat treatment were the conditions shown in Table 1.
  • the battery performance is uniform and suitable as a separator for an electricity storage device. It is thought that it can be used for.
  • the uniformity of the thermal dimensional change in the film width direction was insufficient.
  • the porous propylene film of the present invention is a porous polypropylene film excellent in the uniformity of thermal dimensional change in the film width direction, and is preferable because it has excellent battery performance uniformity when used, for example, as a separator for an electricity storage device. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本願発明は、ポリプロピレン樹脂を含み、下記式(1)で示されるフィルム幅方向の3%収縮温度の偏差が0.05未満である多孔性ポリプロピレンフィルム、及び、その製造方法であり、フィルムの幅方向において極めて熱寸法変化の均一性に優れる。フィルム幅方向の3%収縮温度の偏差=(Tmax-Tmin)/Tave・・・(1)Tmax:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち最も高い温度、Tmin:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち最も低い温度、Tave:フィルム幅方向の収縮曲線の全測定点における平均温度、フィルム幅方向の収縮曲線の測定点:フィルム幅方向の中央、および、同中央を基点として両端へ向かって30mm毎の位置。

Description

多孔性ポリプロピレンフィルムおよびその製造方法
 本発明は、フィルム幅方向において熱寸法変化の均一性に優れた多孔性ポリプロピレンフィルムおよびその製造方法に関する。
 ポリプロピレンフィルムは優れた機械特性、熱特性、電気特性、光学特性により、工業材料用途、包装材料用途、光学材料用途、電機材料用途など多様な用途で使用されている。このポリプロピレンフィルムに空隙を設け、多孔化した多孔性ポリプロピレンフィルムについても、ポリプロピレンフィルムとしての特性に加えて、透過性や低比重などの優れた特性を併せ持つことから、電池や電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜、フラットパネルディスプレイの反射板や感熱転写記録シートなど多岐にわたる用途への展開が検討されている。
 ポリプロピレンフィルムを多孔化する手法としては、様々な提案がなされている。多孔化の方法を大別すると湿式法と乾式法に分類することができる。
 湿式法とは、ポリプロピレンをマトリックス樹脂とし、シート化後に抽出する被抽出物を添加、混合し、被抽出物の良溶媒を用いて添加剤のみを抽出することで、マトリックス樹脂中に空隙を生成せしめる方法であり、種々の提案がなされている(たとえば、特許文献1参照)。
 他方、乾式法としては、たとえば、溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを長手方向に一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法(所謂、ラメラ延伸法)が提案されている(たとえば、特許文献2参照)。
 一方、乾式法であり、かつ二軸延伸により製膜されるため広幅、大面積での製造が可能な多孔性ポリプロピレンフィルムとしては、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる、所謂β晶法と呼ばれる方法の提案も数多くなされている(たとえば、特許文献3~5参照)。
 幅方向の均一性を向上させる目的で、延伸工程でのラメラ配向制御による厚み均一性を向上する方法(たとえば、特許文献6参照)や、キャスト条件、縦延伸条件、巻き取りでの制御による透気性、空孔率および厚みの均一性を向上する方法(たとえば、特許文献7参照)も提案されている。
特開昭55-131028号公報 特公昭55-32531号公報 特開昭63-199742号公報 特開平6-100720号公報 特開平9-255804号公報 国際公開2002/066233号 特開2010-242060号公報
 しかしながら、特許文献1、特許文献2に開示されたいずれの方法も広幅、大面積での製造が困難でありコストが高くなるなど生産効率に難があった。
 特許文献3~5に開示された方法は透気性に優れた多孔性フィルムを広幅、大面積でかつ、生産性よく製膜可能であるが、幅方向にも延伸するため多孔性ポリプロピレンフィルムの幅方向の厚み、透気性、空孔率の均一性が劣る場合があった。
 特許文献6、特許文献7に開示された方法では、熱処理工程で熱固定および弛緩処理が不十分なため幅方向の熱寸法変化の低減および均一性が不十分であり、製品ロールフィルムを蓄電デバイス用セパレータに使用する幅にスリットしたときに各スリット位置での熱寸法ムラが生じ、蓄電デバイス用セパレータとして用いたとき蓄電デバイスの電池性能の均一性が不十分なため製造時歩留まり悪化の原因となる場合があった。
 本発明の課題は、上記した問題点を解決することにある。すなわちフィルム幅方向において熱寸法変化の均一性に優れた多孔性ポリプロピレンフィルムおよびその製造方法を提供することにある。
 上記した課題を解決するため、本発明の多孔性ポリプロピレンフィルムは次の構成を有する。すなわち、
 ポリプロピレン樹脂を含み、下記式(1)で示されるフィルム幅方向の3%収縮温度の偏差が0.05未満である多孔性ポリプロピレンフィルム、である。
   フィルム幅方向の3%収縮温度の偏差=(Tmax-Tmin)/Tave・・・(1)
 ここで、
 Tmax:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も高い温度
 Tmin:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も低い温度
 Tave:フィルム幅方向の収縮曲線の全測定点における平均温度
 フィルム幅方向の収縮曲線の測定点:フィルム幅方向の中央、および、同中央を基点として両端へ向かって30mm毎の位置
 また、本発明の多孔性ポリプロピレンフィルムの製造方法は次の構成を有する。すなわち、
 ポリプロピレン樹脂を支持体上に溶融押出してポリプロピレン樹脂シートとし、このポリプロピレン樹脂シートを二軸延伸した後に熱処理を施して多孔性ポリプロピレンフィルムを製造する方法であって、前記熱処理は緊張処理と弛緩処理とを1組とするステップを複数有する多段熱処理工程を含み、この多段熱処理工程はトータルの弛緩率が15%を超えるとともに、幅方向の弛緩率が5~15%である弛緩処理を有するステップを少なくとも2ステップ有し、かつ多段熱処理工程における熱処理温度が延伸温度以上フィルムの融点Tm以下である多孔性ポリプロピレンフィルムの製造方法、である。
 なお、本発明の多孔性ポリプロピレンフィルムは、フィルム幅方向の収縮曲線の各測定点におけるフィルム幅方向の3%収縮温度がいずれも130℃以上であることが好ましい。
 また、本発明の多孔性ポリプロピレンフィルムは、多孔性ポリプロピレンフィルムのβ晶形成能が60%以上であることが好ましい。
 本発明の多孔性ポリプロピレンフィルムの製造方法は、多段熱処理工程における最初のステップの熱処理温度が横延伸温度以上フィルムの融点Tm以下であり、2ステップ目以降の熱処理温度が直前のステップの熱処理温度以上フィルムの融点Tm以下であることが好ましい。
 本発明の多孔性ポリプロピレンフィルムは、フィルム幅方向において熱寸法変化の均一性に優れるため、例えば蓄電デバイス用のセパレータとして用いた場合に電池性能の均一性に優れた電池を得ることができる。
 本発明は、ポリプロピレン樹脂を含み、下記式(1)で示されるフィルム幅方向の3%収縮温度の偏差が0.05未満である多孔性ポリプロピレンフィルムである。
   フィルム幅方向の3%収縮温度の偏差=(Tmax-Tmin)/Tave・・・(1)
 ここで、
 Tmax:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も高い温度
 Tmin:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も低い温度
 Tave:フィルム幅方向の収縮曲線の全測定点における平均温度
 フィルム幅方向の収縮曲線の測定点:フィルム幅方向の中央、および、同中央を基点として両端へ向かって30mm毎の位置
 なお、上記の測定は、Thermal Mechanical Analysys(TMA)にて幅4mm×測定長15mm、フィルム幅方向(TD)荷重0.15MPa、5℃/minの昇温速度で25℃から160℃まで昇温させる条件で幅方向(TD)に行う。
 本発明の多孔性ポリプロピレンフィルムにおいて、フィルム幅方向(TD)の3%収縮温度の偏差が0.05以上である場合には、フィルムロールの幅方向で熱収縮ムラを発生させやすい。この結果、フィルムロール幅のまま蓄電デバイス用セパレータとして用いる場合だけでなく、例えば蓄電デバイス用セパレータ幅へこのフィルムロールを小幅スリットした場合、各スリットロールで物性ムラを生じ、電池性能試験中に部分的な熱収縮が原因となり特性悪化に繋がったり、電池性能の均一性不足などを引き起こす。上記観点からフィルム幅方向(TD)の3%収縮温度の偏差は、好ましくは0.04未満、さらに好ましくは0.03未満である。なお、下限値は0.001である。偏差を上記の範囲内とするには製造時における熱処理条件を適宜制御することにより実現可能であるが、詳細については後述する。
 本発明の多孔性ポリプロピレンフィルムは、フィルムの両表面を貫通し、透気性を有する孔(以下、貫通孔という)を有している。この貫通孔は、少なくとも一軸方向あるいは二軸延伸によりフィルム中に形成することが好ましく、高い生産性、均一物性、薄膜化を達成する観点からβ晶法により形成せしめることが好ましい。
 β晶法を用いてフィルムに貫通孔を形成するためには、ポリプロピレン樹脂のβ晶形成能が60%以上であることが好ましい。β晶形成能がこの好ましい範囲であると、フィルム製造時にβ晶量が十分なためにα晶への転移を利用してフィルム中に形成される空隙数が十分となり、その結果、透過性に優れたフィルムが得られる。一方、β晶形成能の上限は特に限定されるものではないが、99.9%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂の立体規則性を極めて高くしたりする必要があり、製膜安定性が悪化するなど工業的な実用価値が低い。工業的にはβ晶形成能は65~99.9%が好ましく、70~95%が特に好ましい。また、多孔性ポリプロピレンフィルムのβ晶形成能についても、同様に60%以上であることが好ましい。
 β晶形成能を60%以上に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。β晶核剤としては種々の顔料系化合物やアミド系化合物などを挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の添加量としては、ポリプロピレン樹脂全体を基準とした場合に、0.05~0.5質量%であることが好ましく、0.1~0.3質量%であればより好ましい。β晶核剤の添加量が0.05質量%以上であれば、β晶の形成が十分となり、多孔性ポリプロピレンフィルムの透気性を高くできる。β晶核剤の添加量が0.5質量%以下であれば、粗大ボイドを形成せず、蓄電デバイス用セパレータに用いたとき、安全性を高めることができる。
本発明の多孔性ポリプロピレンフィルムとは実質的にポリプロピレン樹脂からなり、フィルムを構成するポリプロピレン樹脂全体を100質量%としたときに、80質量%以上がポリプロピレン樹脂であることがフィルムの熱寸法安定性の観点から好ましく、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。
 本発明の多孔性ポリプロピレンフィルムを構成するポリプロピレン樹脂は、メルトフローレート(以下、MFR。測定条件:230℃、2.16kg)が2~30g/10minの範囲であることが好ましい。MFRが2g/10min以上であると、樹脂の溶融粘度が高くなり過ぎず、高精度濾過が可能で、フィルムの高品位を保つことができる。MFRが30g/10min以下であると、分子量が低くなり過ぎず、延伸時のフィルム破れが起こり難く、高い生産性を保つことができる。より好ましくは、MFRは3~20g/10minである。
 また、本発明の多孔性ポリプロピレンフィルムを構成するポリプロピレン樹脂は、アイソタクチックポリプロピレン樹脂であることが好ましい。アイソタクチックポリプロピレン樹脂を用いる場合、アイソタクチックインデックスは90~99.9%であることが好ましい。アイソタクチックインデックスがこの好ましい範囲であると、樹脂の結晶性が高く、高い透気性を達成するのが容易となる。
 本発明で用いるポリプロピレン樹脂としては、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を10質量%以下、より好ましくは5質量%以下、さらに好ましくは2.5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。
 また、上記したポリプロピレン樹脂には本発明の効果を阻害しない範囲で高分子量ポリプロピレン、低融点ポリプロピレン、高溶融張力ポリプロピレンなど含有させることが安全性向上や製膜性向上の点で好ましい。ここで高分子量ポリプロピレンとはMFRが0.1~2g/10minのポリプロピレンであり、低融点ポリプロピレンとは樹脂融点153℃より低い融点を持つポリプロピレンであり(例えば、エチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を共重合したポリプロピレンなど)、高溶融張力ポリプロピレンとは高分子量成分や分岐構造を有する成分をポリプロピレン樹脂中に混合したり、ポリプロピレンに長鎖分岐成分を共重合させたりすることで溶融状態での張力を高めたポリプロピレン樹脂である。
 本発明で用いるポリプロピレン樹脂は、二軸延伸時の空隙形成効率の向上や、孔の開孔、孔径が拡大することによる透気性向上の観点から、ポリプロピレン80~99質量%とエチレン・α-オレフィン共重合体20質量%以下の混合物とすることが好ましい。ここで、エチレン・α-オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン-1を共重合した、融点が60~90℃の共重合ポリエチレン樹脂(共重合PE樹脂)を好ましく用いることができる。この共重合ポリエチレンは市販されている樹脂、たとえば、ダウ・ケミカル社製“ENGAGE(エンゲージ)”(登録商標)(タイプ名:8411、8452、8100など)を挙げることができる。
 上記共重合ポリエチレン樹脂は本発明のフィルムを構成するポリプロピレン樹脂全体を100質量%としたときに、1~10質量%含有することが透気性向上の観点で好ましい。より好ましくは1~7質量%、さらに好ましくは1~5質量%である。
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂は、冷キシレン可溶成分(CXS)が2質量%未満であることが好ましい。より好ましくは1.5質量%未満である。CXSを2質量%未満であると低分子量成分が少なく、多孔性ポリプロピレンフィルムの機械物性に優れる。CXSを2質量%未満とするためには、CXSを低減可能な重合触媒系で重合する方法、重合反応後に洗浄工程を設けてアタクティックポリマーを除去する方法などの方法を用いることができる。
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂は、ポリプロピレン樹脂中のハイドロタルサイト量が0.01質量%以下であることが好ましい。より好ましくは0.005質量%以下、更に好ましくは0.001質量%以下である。ハイドロタルサイトはβ晶形成を阻害する場合があり、ハイドロタルサイト量を0.01質量%以下とすると、多孔性ポリプロピレンフィルムの透気性を高く維持できる。
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂は、ポリプロピレン樹脂中の灰分量が0.01質量%以下であることが好ましい。灰分量を0.01質量%以下とすると、蓄電デバイス用セパレータに用いたとき、耐電圧が高く、電池寿命が長い。
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、中和剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましいが、ポリプロピレン樹脂100質量%に対して酸化防止剤添加量は2質量%以下とすることが好ましく、より好ましくは1質量%以下、更に好ましくは0.5質量%以下である。
 本発明の多孔性ポリプロピレンフィルムはセパレータとして用いた際のイオン電導性と安全性の両立の観点から空孔率が35~80%であることが好ましい。空孔率を35%以上とすると、セパレータとして使用したときに電気抵抗を小さくすることができる。一方、空孔率を80%以下とすると、電気自動車用などの大容量電池用セパレータに用いたとき安全性に優れる。優れた電池特性を発現する観点からフィルムの空孔率は40~75%であればより好ましく、40~70%であればさらに好ましい。
 本発明の多孔性ポリプロピレンフィルムは、透気抵抗が50~1,000sec/100mLであることが好ましい。より好ましくは80~600sec/100mL、更に好ましくは80~400sec/100mLである。透気抵抗を50sec/100mL以上とすると、フィルムの機械強度が低下してハンドリング性が低下することはなく、セパレータに用いたとき安全性が低下することもない。透気抵抗を1,000sec/100mL以下とすると、セパレータに用いたとき出力特性が低下しない。
 本発明の多孔性ポリプロピレンフィルムの製造方法においては、二軸延伸を行った後の熱処理について、後述するような特定の条件とすることにより、フィルム幅方向において熱寸法変化の均一性に優れた多孔性ポリプロピレンフィルムを得ることができる。熱処理の条件としては、ポリプロピレン樹脂を支持体上に溶融押出してポリプロピレン樹脂シートとし、このポリプロピレン樹脂シートを二軸延伸した後に熱処理を施して多孔性ポリプロピレンフィルムを製造するに際し、前記熱処理は緊張処理と弛緩処理とを1組とするステップを複数有する多段熱処理工程を含み、この多段熱処理工程はトータルの弛緩率が15%を超えるとともに、幅方向の弛緩率が5~15%である弛緩処理を有するステップを少なくとも2ステップ有し、かつ多段熱処理工程における熱処理温度が延伸温度以上フィルムの融点Tm以下とすることが必要である。
 上記において、二軸延伸は、縦方向(長手方向、MD)に延伸ロール等を用いて延伸した後に、テンター等を用いて横方向(幅方向、TD)に延伸することが好ましい。この際、テンターでは、予熱工程、横延伸工程、熱処理工程の3つの工程に分けることが可能であるが、この熱処理工程については、上記したように緊張処理と弛緩処理とを1組とするステップを複数有する多段熱処理工程を含んでいることが必要である。ここで、緊張処理とはフィルムの幅方向の長さを一定とした上で熱処理することをいい、弛緩処理とは幅方向の長さを1%以上縮めつつ熱処理することをいう。上記した各ステップでは、幅方向の弛緩率が5~15%である弛緩処理を含むことが好ましく、またこのようなステップを少なくとも2ステップ有していることが必要である。さらに、多段熱処理工程におけるトータルの弛緩率は幅方向での熱寸法変化の均一性効果を得る観点から15%を超えることが必要である。トータルの弛緩率が15%以下の場合には、延伸で生じた応力緩和が不十分となり幅方向での熱寸法変化の均一性に劣るフィルムとなりやすい。より好ましいトータル弛緩率は17%以上であり、さらに好ましくは20%以上である。トータルの弛緩率の上限は特に限定されないが50%であることが好ましい。50%を超える場合にはフィルム平面性が低下する場合がある。ここでトータル弛緩率とは以下のように定義するものである。横延伸後のテンタークリップ間距離を幅方向長さ(L)とし、1ステップ目の弛緩処理後のテンタークリップ間距離を幅方向長さ(L1)、以降2ステップ目、3ステップ目、・・・nステップ目を、(L)、(L)、・・・(L)とした場合、各ステップでの弛緩率は次式(1)で各々表され、
 式(1):
   1ステップ目の弛緩率(Rx)={(L)-(L1)}/(L
   2ステップ目の弛緩率(Rx)={(L)-(L)}/(L
   3ステップ目の弛緩率(Rx)={(L2)-(L3)}/(L
   nステップ目の弛緩率(Rx)={(Ln-1)-(L)}/(L
 ステップ数がn回のトータル弛緩率は次式(2)より表される。
 式(2):
Figure JPOXMLDOC01-appb-M000001
 また、上記した多段熱処理工程における熱処理温度は、いずれのステップについても、延伸温度以上、フィルムの融点Tm以下とすることが必要である。
 熱処理工程が1ステップである場合や、各ステップの弛緩率が5%未満である場合、横延伸によって生じた応力緩和を面内で十分均一に行うことができず、フィルム幅方向での熱寸法変化の均一性が不十分となったり、また、熱処理工程が1ステップで弛緩率が15%を超える場合は、本発明で施す2ステップ以上の処理をした場合にテンター出口幅が極端に狭くなり、最終製品面積が小さくなるため生産性に劣る場合がある。上記したように、多段熱処理工程において、幅方向の弛緩率が5~15%である弛緩処理を含むステップを2ステップ以上設けることにより、1ステップでは緩和できなかった部分的残留応力を開放することができ、幅方向に均一な熱寸法変化を有したフィルムを得ることができる。
 ここで弛緩処理を行う速度(弛緩速度)は、50~1,000%/minであることが好ましい。弛緩速度が50%/min以上であると、製膜速度を遅くしたり、テンター長さを長くする必要がなく、生産性に優れる。弛緩速度が1,000%/min以下であると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなることはなく、テンター内でフィルムがばたついて破れたり、平面性の低下を生じることもない。弛緩速度は100~800%/minであることがより好ましい。
 本発明の多孔性ポリプロピレンフィルムの製造方法において、フィルム幅方向の熱寸法変化の均一性をより向上させる観点から、多段熱処理工程における最初のステップの熱処理温度を横延伸温度以上フィルムの融点Tm以下とし、2ステップ目以降の熱処理温度を直前のステップの熱処理温度以上フィルムの融点Tm以下とすることが好ましい。最初のステップ(1ステップ目)の熱処理温度が横延伸温度以上であると、幅方向の応力緩和が十分となり熱収縮率を小さくできる。他方、最初のステップ(1ステップ目)の熱処理温度がフィルムの融点Tm以下であると、孔周辺のポリマーが溶けて透気抵抗が大きくなることもない。また、2ステップ目以降の熱処理温度が直前のステップの熱処理温度以上の場合、1ステップ目で緩和しきれなかった残留応力の開放が十分で、熱寸法変化の幅方向の均一性を高く維持できる。他方、2ステップ目以降の熱処理温度がフィルムの融点Tm以下であると孔周辺のポリマーが溶けて透気抵抗が大きくなることもない。ここで1ステップ目と2ステップ目以降にある最後のステップとの熱処理温度の差は15℃未満であることが好ましい。前記の熱処理温度の差が15℃以上の場合は熱処理時の熱量過多によって孔周辺のポリマーが溶けて透気抵抗が大きくなる場合がある。本発明では適度な透気抵抗と熱寸法変化の均一性を両立させる観点から、1ステップ目と2ステップ目以降にある最後のステップとの熱処理温度の差は10℃以下がより好ましく、5℃以下がさらに好ましい。
 また、上記した多段熱処理工程における各ステップでの熱処理時間は、セパレータとして適した透気抵抗を有しながら幅方向の熱寸法変化の均一性を達成する観点から、1sec以上30sec以下であることが好ましく、より好ましくは5sec以上30sec以下、さらに好ましくは10sec以上30sec以下である。各ステップでの熱処理時間を1sec以上とすると実質未熱処理の状態とはならず熱寸法変化の幅方向の均一性を高く維持できる。他方、各ステップでの熱処理時間を30sec以下とすると熱量過多によって孔周辺のポリマーが溶けて透気抵抗が大きくなることもなく、また製膜速度を遅くしたり、テンター長さを長くする必要もなく、生産性に優れる。
 多段熱処理工程のステップは2ステップ以上であることが必要であり、3ステップ以上であることが好ましい。ステップ数の上限は特に限定されないが、熱処理による熱量過多で孔周辺のポリマーが溶けず、セパレータに適した透気抵抗を得る観点から5ステップを上限とすることが好ましい。
 本発明の多孔性ポリプロピレンフィルムは、熱寸法安定性の観点から各測定点におけるフィルム幅方向の3%収縮温度がいずれも130℃以上であることが好ましい。該フィルム幅方向の3%収縮温度が130℃以上であると、例えばセパレータ使用時に電池の温度が上昇した際、セパレータが収縮し難く、短絡が生じ難い。電気自動車用などの大容量電池用セパレータに用いる場合には更なる耐熱性が求められ、該フィルム幅方向の3%収縮温度は、より好ましくは135℃以上、更に好ましくは140℃以上である。フィルム幅方向の3%収縮温度を上記範囲とするためには、多段熱処理工程のステップ数を2ステップ以上、トータル弛緩処理率を15%超、各ステップでの熱処理時間を1~30secの範囲で設定することが好ましい。
 本発明の多孔性ポリプロピレンフィルムは、フィルム厚みが5~50μmであることが好ましい。フィルム厚みを5μm以上とすると使用時にフィルムが破断する場合はなく、50μm以下とすると蓄電デバイス内に占める多孔性フィルムの体積割合が高くなり過ぎることはなく、高いエネルギー密度を得ることができる。フィルム厚みは7~30μmであればより好ましく、10~25μmであればさらに好ましい。
 以下に本発明の多孔性ポリプロピレンフィルムの製造方法の例を具体的に説明する。なお、本発明のフィルムの製造方法はこれに限定されるものではない。
 まず、ポリプロピレン樹脂として、市販のホモポリプロピレン樹脂99.6質量%にβ晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3質量%、さらに酸化防止剤を0.1質量%がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(I)を作製する。
 次に、ポリプロピレン組成物(I)100質量%を単軸の溶融押出機に供給し、200~230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸シートを得る。未延伸シートを得る際のキャストドラムは表面温度が105~130℃であることが、未延伸シート中のβ晶分率を高く制御する観点から好ましい。この際、特にシートの端部の成形が後の延伸性に影響するため、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態に基づき、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。また、複数の押出機とピノールを用いて共押出による積層を行ってもよい。
 次に得られた未延伸シートを二軸延伸してフィルム中に空孔(貫通孔)を形成する。二軸延伸の方法としては、フィルム長手方向に延伸後、幅方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、高透気性フィルムを得やすいという点で逐次二軸延伸法を適用することが好ましい。同時二軸延伸法を適用する場合においても逐次二軸延伸法と同様に、延伸後緊張把持した状態で熱処理工程を施すが、緊張処理と弛緩処理を1ステップとする多段熱処理においてはいずれのステップについても、延伸温度以上、フィルムの融点Tm以下とすることが好ましい。
 具体的な延伸条件としては、まず未延伸シートを長手方向に延伸可能な温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としてはフィルム特性とその均一性の観点から、110~140℃、さらに好ましくは120~135℃、特に好ましくは123~130℃の温度を採用することが好ましい。延伸倍率としては4~6倍、より好ましくは4.5~5.8倍である。また、延伸倍率を高くするほど高空孔率化するが、上記好ましい範囲で延伸すると、次の横延伸工程でフィルム破れが起き難い。
 次に、一軸延伸ポリプロピレンフィルムをテンター式延伸機にフィルム端部を把持させて導入する。そして、好ましくは130~155℃、より好ましくは145~153℃に加熱して幅方向に4~12倍、より好ましくは6~11倍、更に好ましくは6.5~10倍延伸を行う。なお、このときの横延伸速度としては500~6,000%/minで行うことが好ましく、1,000~5,000%/minであればより好ましい。
 次いで、そのままテンター内で熱処理を行うが、本発明のセパレータとして適した透気抵抗を有しながら幅方向の熱寸法変化の均一性に優れたフィルムを得るには、上述したような多段熱処理のステップ数、弛緩率、熱処理時間の範囲で設定した運転条件とすることが好ましい。また多段熱処理工程の後クリップ間距離に保ったまま最終ステップの熱処理温度以上フィルムの融点Tm以下で1~30sec間の緊張処理を行うことで平面性に優れたフィルムを得ることができる。
 熱処理工程後のフィルムは、テンターのクリップで把持した耳部をスリットして除去し、ワインダーでコアに巻き取ってフィルムロールとする。このフィルムロールは、所望の幅、長さに再スリットを行ってもよい。
 本発明の多孔性ポリプロピレンフィルムは、フィルム幅方向の熱寸法変化の均一性に優れており、蓄電デバイス用のセパレータとして用いたとき電池性能の均一性に優れる観点から好適である。ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタなどの電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。特に本発明の多孔性ポリプロピレンフィルムを用いたセパレータを使用した蓄電デバイスは、出力特性に優れることから電気自動車用の非水電解液二次電池に好適に用いることができる。
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
(1)β晶形成能
 ポリプロピレン組成物または多孔性ポリプロピレンフィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコーインスツル(株)製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/minで昇温(first run)し、10min間保持した後、20℃まで10℃/minで冷却する。5min保持後、再度10℃/minで昇温(second run)した際に観測される融解ピークにについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。
 なお、融解熱量の校正はインジウムを用いて行った。
   β晶形成能(%)=〔ΔHβ/(ΔHα+ΔHβ)〕×100
 なお、first runで観察される融解ピークから同様にβ晶の存在比率を算出することで、その試料の状態でのβ晶分率を算出することができる。
(2)フィルム融点(Tm)
 上記β晶形成能の測定方法と同様の方法で多孔性ポリプロピレンフィルムを測定し、first runで観測される158℃以上の融解ピーク温度をフィルム融点(Tm)とした。
(3)3%収縮温度
 フィルム幅方向の中央位置、および同位置を基点に両端へ向けてそれぞれ30mm毎の位置について、セイコーインスツル(株)製Thermal Mechanical Analysys;TMA/SS6000を用い、下記温度プログラムにてフィルム幅方向(TD)一定荷重下におけるフィルム幅方向の収縮曲線を求めた。測定方向はフィルム幅方向(TD)とした。
 得られた収縮曲線から、もとのサンプル長より3%収縮した時の温度を読み取った。
 温度プログラム 25℃→(5℃/min)→160℃(hold 5min)
 荷重 0.15MPa
 サンプルサイズ サンプル長(測定長)15mm×幅4mm
 また、フィルム幅方向の3%収縮時点温度の偏差は下記式より算出した
   フィルム幅方向の3%収縮時点温度の偏差=(Tmax-Tmin)/Tave
 ここで、
  Tmax:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も高い温度
  Tmin:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も低い温度
  Tave:フィルム幅方向の収縮曲線の全測定点における平均温度
 フィルム幅方向の収縮曲線の測定点:フィルム幅方向の中央、および、同中央を基点として両端へ向かって30mm毎の位置
(4)透気抵抗
 多孔性ポリプロピレンフィルムから100mm×100mmの大きさの正方形を切取り試料とした。JIS P 8117 (1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mLの空気の透過時間の測定を行った。測定はフィルム中央部について試料を替えて3回行い、透過時間の平均値をそのフィルムの透気性とした。なお、フィルムに貫通孔が形成されていることは、この透気性の値が有限値であることをもって確認できる。
(実施例1)
 ポリプロピレン樹脂として、住友化学(株)製ホモポリプロピレンFLX80E4を99.45質量%、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製 Nu-100、以下、単にβ晶核剤と表記)を0.3質量%、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ(株)製“IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.15質量%、0.1質量%を、この比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(A)とした。
 得られたポリプロピレン組成物(A)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15sec間接するようにキャストして未延伸シートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で8.5倍に、延伸速度1,500%/minで幅方向へ延伸した。なお、テンター入り口の幅方向クリップ間距離は120mm、テンターでの横延伸後のクリップ間距離(L)は1,020mmであった。
 続く熱処理工程で、多段熱処理を実施した。具体的には、1ステップ目では延伸後のクリップ間距離に保ったまま150℃、3sec間の緊張処理の後、弛緩率10%で3sec間の弛緩処理を施し、次いで2ステップ目では1ステップ目熱処理後のクリップ間距離に保ったまま155℃、3sec間の緊張処理の後、弛緩率10%で3sec間の弛緩処理を施し、さらに3ステップ目では2ステップ目熱処理後のクリップ間距離に保ったまま158℃、3sec間の緊張処理の後、弛緩率10%で3sec間の緊張処理を施し、最後に弛緩後のクリップ間距離に保ったまま158℃で3sec間緊張処理を行った。各ステップの弛緩処理は120%/minの速度でおこなった。
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
 製膜条件、フィルム特性を表1に示す。
(実施例2、3)
 熱処理工程での多段熱処理条件を表1に示した条件とした以外は実施例1と同様にして幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
(比較例1および2)
 熱処理工程を1ステップのみとして処理温度、処理時間および処理後の緊張処理の条件を表1に示した通りとし、また弛緩処理速度240%/minとした以外は実施例3と同様にして幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
(比較例3)
 熱処理工程での多段熱処理条件を表1に示した条件とした以外は実施例3と同様にして幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
(実施例4)
 ポリプロピレン樹脂として、住友化学(株)製ホモポリプロピレンFLX80E4を69.75質量%に、共重合PE樹脂としてエチレン-オクテン-1共重合体(ダウ・ケミカル社製“ENGAGE(エンゲージ)”(登録商標)8411、メルトインデックス:18g/10min)を30質量%に加えて、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ(株)製 “IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.15質量%、0.1質量%がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(B)を得た。次いで実施例1で作製したポリプロピレン組成物(A)90質量%とポリプロピレン組成物(B)10質量%をドライブレンドして単軸の溶融押出機に供給し、220℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15sec間接するようにキャストして未延伸シートを得た。二軸延伸および熱処理工程の条件は実施例1と同様にして幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
(実施例5)
 実施例1と同様にして長手方向に延伸したフィルムを、テンター式延伸機に端部をクリップで把持させて導入し、150℃で6.5倍に、延伸速度1,600%/minで幅方向へ延伸した。なお、テンター入り口の幅方向クリップ間距離は150mm、テンターでの横延伸後のクリップ間距離(L)は975mmであった。
 続く熱処理工程で、多段熱処理を実施した。具体的には、1ステップ目では延伸後のクリップ間距離に保ったまま150℃、10sec間の緊張処理の後、弛緩率10%で10sec間の弛緩処理を施し、次いで2ステップ目では1ステップ目熱処理後のクリップ間距離に保ったまま155℃、10sec間の緊張処理の後、弛緩率10%で10sec間の弛緩処理を施し、最後に2ステップ目熱処理後のクリップ間距離に保ったまま155℃で10sec間緊張処理を行った。各ステップの弛緩処理は60%/minの速度でおこなった。
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
 製膜条件、フィルム特性を表1に示す。
(実施例6)
 実施例1と同様にして長手方向に延伸したフィルムを、テンター式延伸機に端部をクリップで把持させて導入し、150℃で6.5倍に、延伸速度2,650%/minで幅方向へ延伸した。なお、テンター入り口の幅方向クリップ間距離は150mm、テンターでの横延伸後のクリップ間距離(L)は975mmであった。
 続く熱処理工程で、多段熱処理を実施した。具体的には、1ステップ目では延伸後のクリップ間距離に保ったまま150℃、6sec間の緊張処理の後、弛緩率10%で6sec間の弛緩処理を施し、次いで2ステップ目では1ステップ目熱処理後のクリップ間距離に保ったまま155℃、6sec間の緊張処理の後、弛緩率10%で6sec間の弛緩処理を施し、最後に2ステップ目熱処理後のクリップ間距離に保ったまま155℃で6sec間緊張処理を行った。各ステップの弛緩処理は100%/minの速度でおこなった。
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
 製膜条件、フィルム特性を表1に示す。
(実施例7、8および比較例4)
 多段熱処理の1ステップ目、2ステップ目、最後に2ステップ目熱処理後のクリップ間距離に保ったまま行う緊張処理の各温度を表1に示した条件とした以外は、実施例5と同様にして幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
 製膜条件、フィルム特性を表1に示す。
(比較例5)
多段熱処理の1ステップ目、2ステップ目、最後に2ステップ目熱処理後のクリップ間距離に保ったまま行う緊張処理の各温度を表1に示した条件とした以外は、実施例3と同様にして幅600mm、厚み25μmの多孔性ポリプロピレンフィルムをコアに500m巻き取った。
Figure JPOXMLDOC01-appb-T000002
 本発明の要件を満足する実施例ではセパレータに適した透気抵抗を有しながら幅方向の熱寸法変化の均一性に優れるため、電池性能の均一性能を有し、蓄電デバイス用のセパレータとして好適に用いることが可能であると考えられる。一方、比較例では、フィルム幅方向の熱寸法変化の均一性が不十分であった。
 本発明の多孔性プロピレンフィルムは、フィルム幅方向における熱寸法変化の均一性に優れた多孔性ポリプロピレンフィルムであり、例えば蓄電デバイス用のセパレータとして用いた場合に電池性能の均一性に優れるため好適に使用することができる。

Claims (5)

  1. ポリプロピレン樹脂を含み、下記式(1)で示されるフィルム幅方向の3%収縮温度の偏差が0.05未満である多孔性ポリプロピレンフィルム。
       フィルム幅方向の3%収縮温度の偏差=(Tmax-Tmin)/Tave・・・(1)
     ここで、
     Tmax:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も高い温度
     Tmin:フィルム幅方向の収縮曲線の測定点中、3%の収縮を示す温度のうち、最も低い温度
     Tave:フィルム幅方向の収縮曲線の全測定点における平均温度
     フィルム幅方向の収縮曲線の測定点:フィルム幅方向の中央、および、同中央を基点として両端へ向かって30mm毎の位置
  2. フィルム幅方向の収縮曲線の各測定点におけるフィルム幅方向の3%収縮温度がいずれも130℃以上である、請求項1に記載の多孔性ポリプロピレンフィルム。
  3. 多孔性ポリプロピレンフィルムのβ晶形成能が60%以上である、請求項1または2に記載の多孔性ポリプロピレンフィルム。
  4. ポリプロピレン樹脂を支持体上に溶融押出してポリプロピレン樹脂シートとし、このポリプロピレン樹脂シートを二軸延伸した後に熱処理を施して多孔性ポリプロピレンフィルムを製造する方法であって、前記熱処理は緊張処理と弛緩処理とを1組とするステップを複数有する多段熱処理工程を含み、この多段熱処理工程はトータルの弛緩率が15%を超えるとともに、幅方向の弛緩率が5~15%である弛緩処理を有するステップを少なくとも2ステップ有し、かつ多段熱処理工程における熱処理温度が延伸温度以上フィルムの融点Tm以下である多孔性ポリプロピレンフィルムの製造方法。
  5. 多段熱処理工程における最初のステップの熱処理温度が横延伸温度以上フィルムの融点Tm以下であり、2ステップ目以降の熱処理温度が直前のステップの熱処理温度以上フィルムの融点Tm以下である、請求項4に記載の多孔性プロピレンフィルムの製造方法。
PCT/JP2012/064515 2011-06-08 2012-06-06 多孔性ポリプロピレンフィルムおよびその製造方法 WO2012169510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280022168.1A CN103502335B (zh) 2011-06-08 2012-06-06 多孔性聚丙烯膜及其制造方法
KR1020137034287A KR20140048147A (ko) 2011-06-08 2012-06-06 다공성 폴리프로필렌 필름 및 그의 제조 방법
JP2012530440A JP5924263B2 (ja) 2011-06-08 2012-06-06 多孔性ポリプロピレンフィルムおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011127860 2011-06-08
JP2011-127860 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169510A1 true WO2012169510A1 (ja) 2012-12-13

Family

ID=47296845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064515 WO2012169510A1 (ja) 2011-06-08 2012-06-06 多孔性ポリプロピレンフィルムおよびその製造方法

Country Status (4)

Country Link
JP (1) JP5924263B2 (ja)
KR (1) KR20140048147A (ja)
CN (1) CN103502335B (ja)
WO (1) WO2012169510A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010480A1 (ja) * 2015-07-15 2017-01-19 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び積層多孔フィルムの製造方法
KR102452075B1 (ko) * 2018-12-28 2022-10-07 도요보 가부시키가이샤 2축 배향 폴리프로필렌 필름
EP3922436A4 (en) * 2019-02-21 2022-11-23 Toray Industries, Inc. POLYPROPYLENE FILM, METALLIC FILM USING POLYPROPYLENE FILM, AND FILM CAPACITOR

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003008A (ja) * 2001-06-19 2003-01-08 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2008248231A (ja) * 2007-03-06 2008-10-16 Toray Ind Inc 多孔性ポリプロピレンフィルム
JP2010538097A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP2011076851A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 微多孔性フィルム及びその製造方法、並びに電池用セパレータ
JP2012072380A (ja) * 2010-08-30 2012-04-12 Toray Ind Inc 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP2012072263A (ja) * 2010-09-28 2012-04-12 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298465B2 (en) * 2008-07-31 2012-10-30 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003008A (ja) * 2001-06-19 2003-01-08 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2008248231A (ja) * 2007-03-06 2008-10-16 Toray Ind Inc 多孔性ポリプロピレンフィルム
JP2010538097A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP2011076851A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 微多孔性フィルム及びその製造方法、並びに電池用セパレータ
JP2012072380A (ja) * 2010-08-30 2012-04-12 Toray Ind Inc 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP2012072263A (ja) * 2010-09-28 2012-04-12 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜

Also Published As

Publication number Publication date
CN103502335B (zh) 2015-06-24
JPWO2012169510A1 (ja) 2015-02-23
JP5924263B2 (ja) 2016-05-25
KR20140048147A (ko) 2014-04-23
CN103502335A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
US9991488B2 (en) Polyolefin-based porous film and method for producing the same
JP5907066B2 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5807388B2 (ja) 多孔性ポリプロピレンフィルム
JP5256773B2 (ja) 多孔性ポリプロピレンフィルム
JP5604898B2 (ja) 多孔性ポリプロピレンフィルムロール
JP5672007B2 (ja) 多孔性ポリプロピレンフィルムロール
WO2017170289A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
WO2010008003A1 (ja) 蓄電デバイス用セパレータ
JP2014141644A (ja) 二軸配向多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータフィルムおよび蓄電デバイス
JP5251193B2 (ja) 多孔性ポリオレフィンフィルム
JP5724329B2 (ja) 多孔性ポリプロピレンフィルムロール
JP6135665B2 (ja) ポリオレフィン多孔性フィルムおよび蓄電デバイス
JP5267754B1 (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP5924263B2 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
JP2011246539A (ja) ポリオレフィン系二軸延伸多孔質膜の製造方法及びポリオレフィン系二軸延伸多孔質膜
JP2012177106A (ja) 多孔性ポリプロピレンフィルム
WO2014103713A1 (ja) 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
JP2013032505A (ja) 多孔性ポリオレフィンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5354131B2 (ja) 多孔性ポリプロピレンフィルム、積層多孔性フィルムおよび蓄電デバイス
JP7334719B2 (ja) ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、電池
KR20240026878A (ko) 폴리올레핀 미다공막 및 전지용 세퍼레이터
JP2010215901A (ja) 多孔性ポリプロピレンフィルム
WO2013187326A1 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2013054931A1 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP2013213193A (ja) 蓄電デバイス用セパレータフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530440

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137034287

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12796797

Country of ref document: EP

Kind code of ref document: A1