WO2013187326A1 - 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス - Google Patents

多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス Download PDF

Info

Publication number
WO2013187326A1
WO2013187326A1 PCT/JP2013/065839 JP2013065839W WO2013187326A1 WO 2013187326 A1 WO2013187326 A1 WO 2013187326A1 JP 2013065839 W JP2013065839 W JP 2013065839W WO 2013187326 A1 WO2013187326 A1 WO 2013187326A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
separator
polypropylene film
porous polypropylene
porous
Prior art date
Application number
PCT/JP2013/065839
Other languages
English (en)
French (fr)
Inventor
啓 生駒
葉子 若原
大倉 正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013551821A priority Critical patent/JPWO2013187326A1/ja
Publication of WO2013187326A1 publication Critical patent/WO2013187326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention provides a porous polypropylene film excellent in coating property of a functional layer such as a heat-resistant protective layer and suitability for a battery assembly process because the separator resistance when used as a separator is low and the surface elastic modulus is high.
  • the present invention relates to a power storage device separator using a polypropylene film, and a power storage device using the power storage device separator.
  • Porous polypropylene films are being considered for use in a wide range of applications such as separators for electricity storage devices and electrolytic capacitors, various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays, and thermal transfer recording sheets. ing.
  • a porous polypropylene film is suitable as a separator for lithium ion batteries widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras, electric vehicles, and hybrid vehicles.
  • porous films for separators in addition to excellent productivity and low cost, separator resistance is low and output characteristics are high, film rigidity is high, functional layer coating properties such as heat-resistant protective layers, and batteries There are demands for characteristics such as excellent assembly process suitability, high heat resistance of the porous film, and ensuring safety even when the temperature of the battery rises in the event of an abnormality.
  • characteristics such as excellent assembly process suitability, high heat resistance of the porous film, and ensuring safety even when the temperature of the battery rises in the event of an abnormality.
  • it is necessary to increase the amount of resin per thickness of the porous film but as the amount of resin per thickness increases, the porosity of the porous film decreases. Therefore, since the separator resistance is increased, a porous film that satisfies safety, productivity, process suitability and output characteristics at the same time is required.
  • voids are formed in the film by utilizing the difference in crystal density and crystal transition between ⁇ -type crystal ( ⁇ crystal) and ⁇ -type crystal ( ⁇ crystal), which are polymorphs of polypropylene.
  • ⁇ crystal ⁇ -type crystal
  • ⁇ crystal ⁇ -type crystal
  • Patent Documents 3 to 11 porous polypropylene films
  • Patent Document 3 describes a porous polypropylene film having high puncture strength and good mechanical properties.
  • the porous polypropylene film of Patent Document 3 has high separator resistance and ion conductivity is hindered, the output characteristics may be insufficient, and it is insufficient for high output applications.
  • Patent Documents 4 to 11 describe porous polypropylene films having good separator resistance.
  • these porous polypropylene films are excellent in output characteristics, they cannot be said to have sufficient mechanical properties, and the coating properties of functional layers such as a heat-resistant protective layer and the suitability for battery assembly processes are insufficient.
  • JP-A-55-131028 Japanese Patent Publication No.55-32531 JP 2000-30683 A JP 2008-307890 A JP 2008-311220 A JP 2009-39910 A JP 2009-45771 A JP 2010-111182 A JP 2010-171003 A International Publication No. 2010/147149 International Publication No. 2010/008003
  • the object of the present invention is to solve the above-mentioned problems. That is, when used as a separator for power storage devices, the separator resistance is low and the surface elastic modulus is high, so that it is excellent in coating properties of functional layers such as heat-resistant protective layers and battery assembly process suitability, and also has excellent battery characteristics
  • An object is to provide a polypropylene film, a separator for an electricity storage device, and an electricity storage device.
  • TMD + TTD TTD
  • R the separator resistance ( ⁇ ) per 25 ⁇ m thickness.
  • the porous propylene film of the present invention has a low separator resistance when used as a separator, and is excellent in coating property of a functional layer such as a heat-resistant protective layer and suitability for a battery assembly process. can do.
  • FIG. 1 is an equivalent circuit used when measuring the separator resistance.
  • the porous polypropylene film of the present invention contains a polypropylene resin as a main component.
  • a polypropylene resin as a main component, it is possible to satisfy the heat resistance necessary for preventing a short circuit of the battery when used as a separator for an electricity storage device.
  • having a polypropylene resin as a main component means that the proportion of the polypropylene resin in all resin components constituting the porous polypropylene film is 50% by mass or more, preferably 80% by mass or more, more preferably Is 90% by mass or more, more preferably 95% by mass or more.
  • the porous polypropylene film of the present invention has pores that penetrate from one surface of the film toward the other surface and have air permeability (hereinafter referred to as through-holes).
  • Examples of the method for forming the through hole include an extraction method, a lamellar stretching method, a ⁇ crystal method, and the like. From the viewpoint of productivity and uniformity of physical properties in the longitudinal direction and the width direction, the ⁇ crystal method is preferable.
  • the ⁇ crystal method uses a cast sheet of a polypropylene resin composition containing a polypropylene resin having a ⁇ crystal as a crystal structure, and the crystal structure of the ⁇ crystal is transferred to the ⁇ crystal by longitudinally stretching the cast sheet.
  • an ⁇ -crystal fibril-like product oriented in the film forming direction is formed, and the fibril-like product is cleaved in a transverse stretching process to form a network structure, thereby obtaining a film having through holes.
  • a cast sheet means the unstretched sheet
  • a ⁇ crystal nucleating agent to the polypropylene resin composition to enhance the ⁇ crystal forming ability. Since the ⁇ -crystal forming ability is high, the portion of the crystal structure that causes crystal transition to the ⁇ -crystal increases, and the number of voids formed in the film can be increased.
  • the orientation and density of polypropylene crystals are improved, and the porous polypropylene film is used for power storage devices by opening the holes uniformly and densely. Reduction in separator resistance when used as a separator can be achieved.
  • the ⁇ -crystal forming ability of the porous polypropylene film is preferably larger than 60% from the viewpoint of the formation of through holes. More preferred is 65 to 90%, and particularly preferred is 65 to 85%.
  • the ⁇ crystal forming ability is 60% or less, since the amount of ⁇ crystal is small, the number of voids formed in the film using the transition to ⁇ crystal is reduced, and the separator resistance of the film may be inferior.
  • a method of increasing the ⁇ -crystal forming ability to more than 60% a method using a polypropylene resin having a high isotactic index, or a ⁇ crystal is selectively formed by adding to a polypropylene resin called a ⁇ crystal nucleating agent.
  • a method of using a crystallization nucleating agent as an additive there is a method of using a crystallization nucleating agent as an additive.
  • a method using a ⁇ -crystal nucleating agent described later, or a ⁇ -crystal nucleating agent described later on a polypropylene resin having a high isotactic index It is preferable to use a method in which is used as an additive.
  • Examples of the ⁇ crystal nucleating agent used in the present invention include alkali metal salts or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, N, N′-dicyclohexyl-2,6- Amide compounds represented by naphthalene dicarboxyamide, tetraoxa such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane Examples include spiro compounds, aromatic sulfonic acid compounds such as sodium benzene sulfonate and sodium naphthalene sulfonate, imide carboxylic acid derivatives, and quinacridone pigments.
  • carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate
  • the amide type disclosed in JP-A-5-310665 It is preferable to use a compound.
  • the content of the ⁇ crystal nucleating agent varies depending on the ⁇ crystal nucleating agent to be used, but when the amide compound is used, it is 0.05 to 0.5 based on the whole polypropylene composition.
  • the content is preferably 0.1% by mass, more preferably 0.1 to 0.3% by mass, and particularly preferably 0.22 to 0.3% by mass in order to have the effects described later. If it is less than 0.05% by mass, the formation of ⁇ crystals becomes insufficient, and the separator resistance of the porous polypropylene film may increase.
  • an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR) of 2 to 30 g / 10 min is used as the polypropylene resin from the viewpoint of extrusion moldability and uniform pore formation.
  • MFR is an index indicating the melt viscosity of a resin defined in JIS K 7210 (1995), and is a physical property value indicating the characteristics of a polyolefin resin. In the present invention, it refers to a value measured at 230 ° C. and 2.16 kg.
  • the isotactic index of the polypyropylene resin used in the present invention is preferably in the range of 90 to 99.9%, more preferably 95 to 99% from the viewpoint of crystallinity.
  • the porous polypropylene film of the present invention may contain a polyolefin-based resin, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine-based resin and the like as long as the effects of the present invention are not impaired.
  • the polypropylene resin composition forming the porous polypropylene film of the present invention includes an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and a blocking agent within the range that does not impair the effects of the present invention.
  • You may contain various additives, such as an inhibitor, a filler, and an incompatible polymer.
  • an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polypropylene resin.
  • the addition amount of the antioxidant is preferably 2 parts by mass or less, more preferably 1 part by mass or less, still more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the polypropylene resin composition.
  • the polypropylene resin composition for forming the porous polypropylene film of the present invention can contain a pore-forming aid made of inorganic or organic particles within a range not impairing the effects of the present invention.
  • a pore-forming aid the content is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, and still more preferably 1 part by mass or less with respect to 100 parts by mass of the polypropylene composition resin.
  • the amount exceeds 5 parts by mass when used as a separator for an electricity storage device, the dropped particles may cause a decrease in battery performance, and the raw material cost may increase and productivity may decrease.
  • the porous polypropylene film of the present invention satisfies the following formula (1) when the elastic modulus in the longitudinal direction is TMD, the elastic modulus in the width direction is TTD, and the separator resistance per 25 ⁇ m thickness is R. (TMD + TTD) / R ⁇ 450 (1)
  • (TMD + TTD) / R (unit: MPa / ⁇ ) is more preferably 470 or more, and particularly preferably 500 or more.
  • (TMD + TTD) is high, that is, the surface modulus of elasticity of the film is high, it becomes difficult for wrinkles to occur during film conveyance, and the process suitability in the coating process of the functional layer such as the heat protection layer and the battery assembly process becomes good.
  • the separator resistance R is low, it can be suitably used as a separator for applications requiring high output, such as electric vehicles and hybrid vehicles.
  • (TMD + TTD) / R represented by the above formula (1) can be used as an index for estimating the balance between process suitability and separator resistance in a coating process of a functional layer such as a thermal protection layer and a battery assembly process.
  • (TMD + TTD) / R is less than 450, it may be difficult to achieve both compatibility with process suitability and high output in the coating process of the functional layer such as the thermal protection layer and the battery assembly process.
  • said elasticity modulus (TMD, TTD) means the value computed from the inclination of the tensile stress at the time of 2% expansion
  • An evaluation cell is prepared by the method described later using the, and the Cole-Cole plot measured by the AC impedance method is the electrical resistance calculated from the equivalent circuit shown in FIG.
  • the addition amount of the ⁇ crystal nucleating agent in the polypropylene resin composition, the adjustment of the crystallization temperature of the ⁇ crystal of the polypropylene resin composition, the temperature of the cast drum, the longitudinal direction The stretching ratio and temperature, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • the sum of the elastic modulus in the longitudinal direction and the elastic modulus in the width direction (TMD + TTD) of the porous polypropylene film of the present invention is preferably 1,200 MPa or more, more preferably 1,300 MPa or more, and further 1,400 MPa or more. preferable.
  • TMD + TTD is less than 1,200 MPa, the film undergoes large compression and deformation in the longitudinal and / or width directions during film conveyance, and it is easy for wrinkles to occur and the quality deteriorates in the coating process of functional layers such as a thermal protection layer.
  • the process suitability in the battery assembly process in a laminate type laminated battery using a sheet separator may be insufficient.
  • Methods for obtaining a film having a TMD + TTD of 1,200 MPa or more include adjusting the amount of ⁇ crystal nucleating agent in the polypropylene resin composition, adjusting the crystallization temperature of ⁇ crystal of the polypropylene resin composition, the temperature of the cast drum, and the longitudinal direction.
  • the stretching ratio and temperature, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • the ratio TMD / TTD between the elastic modulus in the longitudinal direction and the elastic modulus in the width direction preferably satisfies the following formula (2). 0.7 ⁇ TMD / TTD ⁇ 2.0 (2)
  • TMD / TTD is more preferably 0.7 ⁇ TMD / TTD ⁇ 1.5, and particularly preferably 0.8 ⁇ TMD / TTD ⁇ 1.4.
  • TMD + TTD is less than 0.7 or greater than 2.0, even in the case where the elastic modulus of the entire film is high, only the elastic modulus in the longitudinal direction or the width direction is increased, and a coating process of a functional layer such as a thermal protection layer and The process suitability in the battery assembly process may be insufficient.
  • the stretching ratio and temperature, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • the porous polypropylene film of the present invention preferably has an air permeability resistance of 10 to 1,000 seconds / 100 ml, more preferably 50 to 500 seconds / 100 ml, and 80 to 300 seconds / 100 ml. Particularly preferred. If the air permeation resistance is less than 10 seconds / 100 ml, the mechanical strength such as elastic modulus, which is an index of process suitability, may be lowered. When the air permeability resistance exceeds 1,000 seconds / 100 ml, the output characteristics may be deteriorated particularly when used as a separator for a high-power storage device.
  • Air permeability resistance is the amount of ⁇ -crystal nucleating agent added to the polypropylene resin composition, adjustment of the crystallization temperature of the ⁇ -crystal of the polypropylene resin composition, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, and the transverse stretching speed.
  • the temperature and time in the heat treatment step and the relaxation rate in the relaxation zone can be controlled within the ranges described later.
  • the porous polypropylene film of the present invention preferably has a film thickness of 5 to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the film may break during use. If the thickness exceeds 30 ⁇ m, the separator resistance increases and the output characteristics may deteriorate when used as a separator, and the porous film occupies the power storage device. In some cases, the volume ratio of becomes high, and a high energy density cannot be obtained.
  • the film thickness is more preferably 10 to 25 ⁇ m, still more preferably 12 to 20 ⁇ m.
  • the porous polypropylene film of the present invention preferably has a porosity of 40 to 85% from the viewpoint of achieving both battery characteristics and mechanical strength. More preferably, it is 50 to 80%, and particularly preferably 55 to 75%.
  • the porosity is less than 40%, the separator resistance may increase particularly when used as a separator for a high-power electricity storage device.
  • mechanical strength such as elastic modulus and tensile strength may be lowered.
  • the porosity is determined by adjusting the addition amount of the ⁇ crystal nucleating agent in the polypropylene resin composition, adjusting the crystallization temperature of the ⁇ crystal of the polypropylene resin composition, the temperature of the cast drum, the draw ratio and temperature in the longitudinal direction, and the heat treatment step. It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
  • the porous polypropylene film of the present invention preferably has a heat shrinkage in the width direction of 10% or less when heat-treated at 135 ° C. for 60 minutes. More preferably, it is 0.5 to 8%, and more preferably 1 to 5%. If the thermal shrinkage at 135 ° C exceeds 10%, it may be inferior in safety when used as a separator for an electricity storage device.
  • a shutdown layer containing polyethylene is applied to the surface of the porous polyolefin film of the present invention.
  • the layers are laminated by coextrusion lamination or the like, when the polyethylene melts and closes the hole at around 135 ° C., the porous polyolefin film as the base material may contract and the battery may be short-circuited.
  • the heat shrinkage ratio is determined by adjusting the amount of ⁇ -crystal nucleating agent added to the polypropylene resin composition, adjusting the crystallization temperature of the ⁇ -crystal of the polypropylene resin composition, the temperature of the cast drum, the draw ratio and temperature in the longitudinal direction, and the heat treatment step. It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
  • the direction parallel to the film forming direction is referred to as the film forming direction, the longitudinal direction, the MD direction, or simply MD, and the direction perpendicular to the film forming direction in the film plane is the width direction and the TD direction. Alternatively, it may be simply referred to as TD.
  • the porous polypropylene film of the present invention may have a laminated structure for the purpose of imparting various effects.
  • the number of laminations may be two-layer lamination, three-layer lamination, or a larger number of laminations.
  • a lamination method there are a feed block method by co-extrusion, a multi-manifold method, a method of laminating porous films by lamination, and the lamination method may be selected according to the physical properties of the resin to be laminated.
  • a layer containing polyethylene is laminated for the purpose of imparting a shutdown property at a low temperature
  • polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine-based resin is used for the purpose of imparting strength and heat resistance.
  • a porous layer composed of a polymer having such heat resistance, a porous layer composed of an inorganic filler, or a porous layer composed of a highly rigid polymer and an inorganic filler, or a porous layer for the purpose of imparting easy adhesion And can be laminated.
  • the method for producing the porous polypropylene film of the present invention will be described based on a specific example.
  • the manufacturing method of the film of this invention is not limited to this.
  • the melting temperature is preferably 280 to 310 ° C.
  • the cross-sectional shape of the chip may be any of a circle, an ellipse, and a rectangle.
  • the crystallization temperature of the polypropylene ⁇ crystal of the produced polypropylene resin composition (a) is preferably 130 ° C. or higher in order to reduce the separator resistance and improve the balance with the surface elastic modulus. More preferably, the temperature is higher than or equal to ° C. There is no particular upper limit for the crystallization temperature of polypropylene ⁇ crystal, but it is difficult to make it 140 ° C. or higher.
  • the crystallization temperature of the ⁇ crystal of the polypropylene resin composition can be controlled within the above temperature range by increasing the take-up speed of the strand after discharge and increasing the draft ratio. It was found that the separator resistance can be reduced.
  • the draft ratio is preferably 2 or more, and more preferably 3 or more. If the draft ratio exceeds 10, the strands are likely to be broken, and gut breakage may easily occur, and chip productivity is likely to be reduced.
  • the draft ratio can be calculated by the strand take-up speed / discharged raw material flow rate.
  • the polypropylene resin composition (a) is supplied to a single screw extruder, and melt extrusion is performed at 200 to 230 ° C. And after removing a foreign material, a modified polymer, etc. with the filter installed in the middle of the polymer pipe
  • a plurality of extruders are used to form a laminated structure by a feed block method or a multi-manifold method, and then discharged from a T die onto a cast drum, and the laminated unstretched It can be a sheet.
  • the cast drum preferably has a surface temperature of 105 to 130 ° C from the viewpoint of separator resistance control, and more preferably 120 to 130 ° C.
  • the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum.
  • the obtained cast sheet is biaxially oriented to form pores in the film.
  • a biaxial orientation method the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction.
  • the simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method in that it is easy to obtain a film having a balance between the separator resistance and the mechanical strength, particularly after stretching in the longitudinal direction.
  • the film is preferably stretched in the width direction.
  • stretching is performed in the longitudinal direction while controlling the temperature of the cast sheet.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction is preferably 90 to 140 ° C., more preferably 100 to 130 ° C., and particularly preferably 115 to 125 ° C. from the viewpoint of achieving both separator resistance and mechanical strength. If it is less than 90 degreeC, a film may fracture
  • the transverse stretching temperature is preferably 130 to 155 ° C., more preferably 145 to 155 ° C., from the viewpoint of achieving both separator resistance and mechanical strength. If it is less than 130 degreeC, a film may fracture
  • the draw ratio in the width direction is preferably 2 to 12 times from the viewpoint of improving the tensile strength. The ratio is more preferably 7 to 11 times, still more preferably 7 to 10 times. If it is less than twice, the separator resistance may increase or the tensile strength in the width direction may decrease. If it exceeds 12 times, the film may break.
  • the transverse stretching speed is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min.
  • the area ratio (longitudinal stretch ratio ⁇ transverse stretch ratio) is preferably higher, specifically 20 times or more, more preferably 30 times or more, 45 times or more is particularly preferable.
  • the area magnification is low, specifically, less than 20 times, it is difficult to reduce the separator resistance and improve the elastic modulus.
  • the upper limit of the area magnification is not particularly provided, but if it exceeds 60 times, the film forming property is deteriorated and may be easily broken.
  • the heat treatment step includes a heat setting zone (hereinafter referred to as HS1 zone) in which heat treatment is performed with the width after transverse stretching, and a relaxation zone (hereinafter referred to as Rx zone) in which heat treatment is performed while relaxing the film by narrowing the width of the tenter.
  • HS1 zone heat setting zone
  • Rx zone relaxation zone
  • HS2 zone heat fixing zone
  • the temperature of the HS1 zone is preferably 140 to 165 ° C., more preferably 150 to 160 ° C. from the viewpoint of achieving both separator resistance and mechanical strength. If it is lower than 140 ° C., the thermal shrinkage in the width direction may increase. If the temperature exceeds 165 ° C., the relaxation of the orientation of the film is too large, so that the relaxation rate cannot be increased in the subsequent Rx zone, and it may be difficult to achieve both separator resistance and mechanical strength. It may melt and increase the air resistance.
  • the heat treatment time in the HS1 zone is preferably 0.1 seconds or more and 10 seconds or less from the viewpoint of achieving both the thermal shrinkage in the width direction and the productivity.
  • the relaxation rate in the Rx zone is preferably from 5 to 35%, more preferably from 5 to 30%, from the viewpoint of reducing the thermal resistance of the separator in addition to reducing the separator resistance and the surface elastic modulus. If the relaxation rate is less than 5%, the surface elastic modulus may decrease and / or the heat shrinkage rate may increase. If it exceeds 35%, the separator resistance may increase, and thickness unevenness and flatness in the width direction may decrease.
  • the temperature of the Rx zone is preferably 155 to 170 ° C., more preferably 160 to 165 ° C., from the viewpoint of lowering the separator resistance and reducing the heat shrinkage rate.
  • the temperature of the Rx zone is less than 155 ° C., the shrinkage stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, and the thermal shrinkage rate in the width direction may be increased.
  • the temperature exceeds 170 ° C. the polymer around the pores may melt due to high temperature, and the separator resistance may increase.
  • the relaxation rate in the Rx zone is preferably 100 to 1,000% / min, and more preferably 150 to 500% / min.
  • the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or lengthen the tenter length, which may be inferior in productivity. If it exceeds 1,000% / min, the speed at which the film shrinks becomes slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and breaks, or the physical properties in the width direction are uneven and the flatness is lowered. There is a case.
  • the temperature of the HS2 zone is preferably 155 to 165 ° C., more preferably 160 to 165 ° C., from the viewpoint of achieving both separator resistance and mechanical strength.
  • the temperature is lower than 155 ° C., the tension of the film after thermal relaxation becomes insufficient, which may cause uneven physical properties in the width direction and a decrease in flatness, or increase the heat shrinkage rate in the width direction.
  • the higher the HS2 temperature the higher the mechanical strength. If it is lower than 155 ° C., the mechanical strength may be inferior. If it exceeds 165 ° C., the polymer around the pores may melt due to the high temperature and the separator resistance may increase.
  • the heat treatment time in the HS2 zone is preferably 0.1 second or more and 10 seconds or less from the viewpoint of physical property unevenness in the width direction and the compatibility between flatness and productivity.
  • the film after the heat setting step is removed by slitting the ears gripped by the tenter clip, and wound around the core with a winder to obtain a product.
  • the porous polypropylene film of the present invention not only has excellent separator resistance and productivity, but also has excellent mechanical strength, heat resistance, and extrusion stability, so that it can be used for packaging, hygiene, agricultural, building, medical, and separation.
  • it can be used for a film, a light diffusing plate, and a reflective sheet, it can be preferably used particularly as a separator for an electricity storage device.
  • the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor.
  • the separator for an electricity storage device obtained by laminating a functional layer on the porous polypropylene film of the present invention not only has excellent separator resistance and productivity, but also has excellent heat resistance and short circuit resistance. It can be preferably used as a power storage device separator for power supplies such as equipment, electric vehicles, and hybrid electric vehicles. Furthermore, a separator using the porous polypropylene film of the present invention, a positive electrode, a negative electrode, and an electrolytic solution can be suitably used for power supplies for industrial equipment and automobiles due to the excellent characteristics of the separator. .
  • Thickness The thickness was measured with a contact-type film thickness meter Lightmatic VL-50A (10.5 mm ⁇ carbide spherical surface probe, measurement load 0.06 N) manufactured by Mitutoyo Corporation. The measurement was performed 10 times at different locations, and the average value was defined as the thickness t ( ⁇ m) of the porous polypropylene film.
  • Air permeability resistance A square having a size of 100 mm ⁇ 100 mm was cut from a porous propylene film and used as a sample. Using a JIS P 8117 (1998) B-type Gurley tester, the permeation time of 100 ml of air was measured at 23 ° C. and a relative humidity of 65%. The measurement was performed three times by changing the sample, and the average value of the permeation time was taken as the air resistance of the film.
  • the melting at which the peak is observed is defined as the melting peak of the ⁇ crystal, and the melting heat amount of the ⁇ crystal is obtained from the baseline and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side.
  • Is ⁇ H ⁇ , and the heat of fusion of ⁇ crystal is ⁇ H ⁇
  • the value calculated by the following formula is ⁇ crystal forming ability.
  • the heat of fusion was calibrated using indium.
  • ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100
  • a sample prepared under the following conditions is determined to have ⁇ -crystal forming ability when the K value calculated from each diffraction peak intensity of the diffraction profile obtained by the 2 ⁇ / ⁇ scan is 0.3 or more.
  • sample preparation conditions and the measurement conditions of the wide angle X-ray diffraction method are shown below.
  • ⁇ sample The direction of the film is aligned, and the samples are stacked so that the sample thickness after hot press preparation is about 1 mm.
  • This sample is sandwiched between two aluminum plates having a thickness of 0.5 mm, and is hot-pressed at 280 ° C. for 3 minutes to be melted and compressed to make the polymer chain substantially non-oriented.
  • the obtained sheet is crystallized by being immersed in boiling water at 100 ° C. for 5 minutes immediately after being taken out together with the aluminum plate. Then, a sample obtained by cutting a sheet obtained by cooling in an atmosphere at 25 ° C. is used for measurement.
  • ⁇ Wide-angle X-ray diffraction method measurement conditions In accordance with the above conditions, an X-ray diffraction profile is obtained by 2 ⁇ / ⁇ scanning.
  • the K value is an empirical value indicating the ratio of ⁇ crystals.
  • K H ⁇ 1 / ⁇ H ⁇ 1 + (H ⁇ 1 + H ⁇ 2 + H ⁇ 3) ⁇
  • the structure of the polypropylene crystal type ( ⁇ crystal, ⁇ crystal), the obtained wide-angle X-ray diffraction profile, etc. are described in, for example, Edward P. Moore Jr. Written by "Polypropylene Handbook", Industrial Research Committee (1998), p.
  • Crystallization temperature (Tc) The raw material polypropylene resin was measured by the same method as the method for measuring the ⁇ crystal forming ability by the differential scanning calorimeter in (4) above, and the peak temperature of cooling (first run) was defined as the crystallization temperature (Tc).
  • MFR Melt flow rate
  • Elastic modulus A porous polypropylene film was cut into a rectangular shape having a length of 150 mm and a width of 10 mm as a sample. Samples in each direction were prepared by matching the length direction of 150 mm with the film forming direction and the width direction of the film. Using a tensile testing machine (Tensilon UCT-100 manufactured by Orientec), a tensile test was performed according to JIS K 7127 (1999, specimen type 2), and the tensile stress and strain displacement at 2% tensile elongation were measured. The slope was calculated.
  • the measurement was performed 5 times each in the film forming direction and the width direction with an initial chuck distance of 50 mm, a tensile speed of 300 mm / min, and the average value of the calculated inclination was defined as the elastic modulus.
  • IRGANOX registered trademark
  • the obtained polypropylene resin composition (I) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and the surface temperature is increased to 120 ° C. with a T-die. Was discharged onto a controlled cast drum to obtain a cast sheet.
  • preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film.
  • heat treatment was performed at 150 ° C.
  • Example 2 The polypropylene resin composition (I) obtained in Example 1 was supplied to a uniaxial melt extruder, melt-extruded at 220 ° C., and foreign matters were removed with a 60 ⁇ m cut sintered filter, and then 121 with a T-die. It was discharged onto a cast drum whose surface temperature was controlled at °C to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 4.5 times in the longitudinal direction of the film. Next, the edge part was hold
  • Example 3 The polypropylene resin composition (I) obtained in Example 1 was supplied to a uniaxial melt extruder, melt-extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and then 122 with a T-die. It was discharged onto a cast drum whose surface temperature was controlled at °C to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5 times in the longitudinal direction of the film. Next, the edge part was hold
  • Example 4 The polypropylene resin composition (I) obtained in Example 1 was supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and then 120 with a T die. It was discharged onto a cast drum whose surface temperature was controlled at °C to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 4.5 times in the longitudinal direction of the film. Next, the edge part was hold
  • Example 5 The polypropylene resin composition (I) obtained in Example 1 was supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and then 120 with a T die. It was discharged onto a cast drum whose surface temperature was controlled at °C to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5.3 times in the longitudinal direction of the film. Next, the edge part was hold
  • IRGANOX registered by Ciba Specialty Chemicals, an antioxidant
  • the raw materials are supplied, melt kneaded at 240 ° C, discharged from a die in a strand shape, taken to a draft ratio of 3.8, and cooled in a 25 ° C water bath.
  • Tc crystallization temperature
  • the polypropylene resin composition (I) is supplied to a uniaxial melt extruder for the A layer, 90 parts by mass of the polypropylene resin composition (I) and 10 parts by mass of the polypropylene resin composition (III) are dry blended, and the B layer Uniaxial melt extruder, melt extrusion at 220 ° C., remove foreign matter with a 60 ⁇ m cut sintered filter, and then feed feed type B / A / B composite T die 1/8 / A cast sheet was obtained by laminating at a thickness ratio of 1 and discharging onto a cast drum whose surface temperature was controlled at 120 ° C. The obtained cast sheet was formed under the same film forming conditions as in Example 1 to obtain a porous polypropylene film having a thickness of 21 ⁇ m.
  • a chip fat composition (IV) The obtained polypropylene resin composition (IV) was supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and the surface temperature was increased to 120 ° C. with a T-die.
  • a cast sheet was obtained by discharging to a controlled cast drum.
  • preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film.
  • Comparative Example 2 The polypropylene resin composition (IV) obtained in Comparative Example 1 was supplied to a uniaxial melt extruder, melt-extruded at 220 ° C., foreign matters were removed with a 60 ⁇ m cut sintered filter, and then 119 with a T-die. It was discharged onto a cast drum whose surface temperature was controlled at °C to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film. Next, the edge part was hold
  • Comparative Example 3 The polypropylene resin composition (III) obtained in Comparative Example 1 was supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and then 120 with a T die. It was discharged onto a cast drum whose surface temperature was controlled at °C to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film. Next, the edge part was hold
  • IRGANOX registered trademark
  • IRGAFOS registered trademark
  • the raw material is fed from the weighing hopper to the twin-screw extruder, melt-kneaded at 240 ° C, discharged from the die in a strand shape, taken to a draft ratio of 1.8, and placed in a 25 ° C water tank.
  • the polypropylene resin composition (V) chip is cooled and solidified, cut into chips and the crystallization temperature (Tc) is 128.3 ° C. It was obtained.
  • 90 parts by mass of the polypropylene resin composition (IV) obtained in Comparative Example 1 and 10 parts by mass of the polypropylene resin composition (V) were dry-blended and supplied to a uniaxial melt extruder for the A layer.
  • the obtained polypropylene resin composition (IV) was supplied to a single-axis melt extruder for the B layer, melt-extruded at 220 ° C., and foreign matters were removed with a 60 ⁇ m-cut sintered filter.
  • the A / B composite T die was laminated at a thickness ratio of 1/8/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. to obtain a cast sheet.
  • preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film.
  • the edge part was hold
  • relaxation was performed at 160 ° C. so that the relaxation rate was 10% (Rx zone). Then, the ear
  • the porous polypropylene film according to the example satisfying the requirements of the present invention has not only low separator resistance but also excellent elasticity.
  • the porous polypropylene film according to the present invention not only has a good balance between separator resistance and elastic modulus, but also has excellent heat resistance, and therefore can be suitably used as a separator for an electricity storage device.
  • the balance between the separator resistance and the elastic modulus is not good because the mechanical properties are inferior or the separator resistance is inferior, and it is difficult to use as a separator for an electricity storage device.
  • the porous propylene film of the present invention is suitable for use as a separator for an electricity storage device because it is coated with a coating layer such as a heat-resistant protective layer and is suitable for a battery assembly process and has excellent separator resistance when used as a separator. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 セパレータ抵抗が低く、かつ面弾性率が高いために耐熱保護層などの機能層の塗工性や電池組立工程適性に優れた多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイスを提供すること。本発明の多孔性ポリプロピレンフィルムは、ポリプロピレン樹脂を主成分とし、下記式(1)を満たす。 (TMD+TTD)/R≧450 ・・・(1) (式(1)中、TMDは長手方向の弾性率(MPa)、TTDは幅方向の弾性率(MPa)、Rは厚み25μmあたりのセパレータ抵抗(Ω)である。)

Description

多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
 本発明は、セパレータとして用いた際のセパレータ抵抗が低く、かつ面弾性率が高いために耐熱保護層などの機能層の塗工性や電池組立工程適性に優れた多孔性ポリプロピレンフィルム、該多孔性ポリプロピレンフィルムを用いた蓄電デバイス用セパレータ、および該蓄電デバイス用セパレータを用いた蓄電デバイスに関する。
 多孔性ポリプロピレンフィルムは、蓄電デバイスや電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜、フラットパネルディスプレイの反射板や感熱転写記録シートなど多岐に亘る用途への展開が検討されている。中でも、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどのモバイル機器や、電気自動車、ハイブリッド車などに広く使用されているリチウムイオン電池用のセパレータとして、多孔性ポリプロピレンフィルムは好適である。
 セパレータ用の多孔性フィルムにおいては、生産性に優れ低コストであることに加え、セパレータ抵抗が低く出力特性が高いこと、フィルムの剛性が高く、耐熱保護層などの機能層の塗工性および電池組立工程適性に優れていること、さらには、多孔性フィルムの耐熱性が高く、異常時に電池の温度が上昇しても安全性が確保されることなどの特性が求められる。しかし、機械特性や耐熱性を高くするためには、多孔性フィルムの厚み当たりの樹脂量を増やすことが必要となるが、厚みあたりの樹脂量が増加すると、多孔性フィルムの空孔率が低くなり、セパレータ抵抗が高くなるため、安全性、生産性、工程適性と出力特性とを同時に満たす多孔性フィルムが要求されている。
 特に、近年、多孔性フィルムの表面に無機粒子や耐熱樹脂などを含む機能層をコーティングすることによる耐熱性の向上が検討されているが、多孔性フィルムの剛性や強度が低いと、塗工工程におけるフィルムの搬送時にシワが発生したり、破断したりする場合があるため、機能層をコーティングする基材としての多孔性フィルムには、高い機械特性、特に剛性が求められる。しかしながら、一般に機械剛性を高くするためには空孔率を下げることが必要となり、セパレータ抵抗と機械強度を同時に満たすことは困難であった。
 一方、ポリプロピレンフィルムを多孔化する手法としては、様々な提案がなされており、大別すると湿式法と乾式法に分類することができる。湿式法とは、ポリエチレンやポリプロピレンをマトリックス樹脂とし、溶質として被抽出物を添加、混合してシート化し、その後被抽出物の良溶媒を用いて添加剤のみを抽出することで、マトリックス樹脂中に空隙を生成せしめる方法である(たとえば、特許文献1参照)。該方法を用いると、溶質として添加する有機液状体を含有させることにより押出時の樹脂粘度を低下させることができ、高分子量の原料を使用することができることから、機械物性が向上するが、溶質の抽出工程や抽出溶媒の洗浄工程を含むため、生産性の向上という課題を有している。
 一方、乾式法としては、たとえば、溶融押出時に低温押出、高ドラフト比を採用することにより、延伸前のフィルム中のラメラ構造を制御し、これを一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法(所謂、ラメラ延伸法)が提案されている(たとえば、特許文献2参照)。該方法は、抽出、洗浄工程を必要としないため湿式法に比べ生産性に優れるが、一軸延伸であるため製品を広幅化しにくいことや、延伸速度を低くする必要があるため、更なる生産性向上が困難であった。また、一軸延伸であるため長手方向と幅方向との機械物性が大きく異なるため、幅方向の強度に劣るほか、長手方向に裂けやすいなどの問題があった。
 乾式法の別法として、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる、所謂β晶法と呼ばれる多孔性ポリプロピレンフィルムについての提案も数多くなされている(たとえば、特許文献3~11参照)。該方法は、一般に、乾式の二軸延伸により製膜されるため生産性に優れるが、押出時の樹脂粘度が高くなるため、使用するポリプロピレン樹脂の分子量に上限があり、多孔性ポリプロピレンフィルムの機械物性を高くすることは困難であった。一方、使用する材料によらずに多孔性ポリプロピレンフィルムの機械物性を高くするには、空孔率を低くする必要があり、セパレータ抵抗との両立が困難であった。
 例えば、特許文献3には、突刺強度が高く、機械物性が良好である多孔性ポリプロピレンフィルムの記載がある。しかしながら、特許文献3の多孔性ポリプロピレンフィルムは、セパレータ抵抗が高く、イオン伝導性が阻害されるため、出力特性が不十分の場合があり、高出力用途に不十分であった。また、特許文献4~11には、セパレータ抵抗の良い多孔性ポリプロピレンフィルムについて記載がある。しかしながら、これらの多孔性ポリプロピレンフィルムは出力特性に優れるものの、機械物性が十分とはいえず、耐熱保護層などの機能層の塗工性や電池組立工程への適性が不十分であった。
特開昭55-131028号公報 特公昭55-32531号公報 特開2000-30683号公報 特開2008-307890号公報 特開2008-311220号公報 特開2009-39910号公報 特開2009-45771号公報 特開2010-111832号公報 特開2010-171003号公報 国際公開第2010/147149号 国際公開第2010/008003号
 本発明の課題は、上記した問題点を解決することにある。すなわち、蓄電デバイス用セパレータとして使用したとき、セパレータ抵抗が低く、面弾性率が高いために耐熱保護層などの機能層の塗工性や電池組立工程適性に優れ、電池特性にも優れた多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイスを提供することにある。
 上記した課題は、ポリプロピレン樹脂を主成分とし、下記式(1)を満たす多孔性ポリプロピレンフィルムによって達成可能である。
  (TMD+TTD)/R≧450   ・・・(1)
 (式(1)中、TMDは長手方向の弾性率(MPa)、TTDは幅方向の弾性率(MPa)、Rは厚み25μmあたりのセパレータ抵抗(Ω)である。)
 本発明の多孔性プロピレンフィルムは、セパレータとして用いた際のセパレータ抵抗が低く、かつ耐熱保護層などの機能層の塗工性および電池組立工程適性に優れるため、蓄電デバイス用のセパレータとして好適に使用することができる。
図1は、セパレータ抵抗を測定する際に使用する等価回路である。
 本発明の多孔性ポリプロピレンフィルムは、ポリプロピレン樹脂を主成分とする。ポリプロピレン樹脂を主成分とすることにより、蓄電デバイス用セパレータとして使用する際に電池の短絡を防ぐために必要な耐熱性を満足することができる。ここで、ポリプロピレン樹脂を主成分とするとは、多孔性ポリプロピレンフィルムを構成する全樹脂成分中に占めるポリプロピレン樹脂の割合が50質量%以上であることを意味し、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 本発明の多孔性ポリプロピレンフィルムは、フィルムの一方の表面から他方の表面に向かって貫通し、透気性を有する孔(以下、貫通孔という)を有している。貫通孔を形成する方法としては、抽出法、ラメラ延伸法、β晶法などが挙げられるが、生産性、長手方向と幅方向の物性の均一性の観点から、β晶法によることが好ましい。
 ここで、β晶法とは、結晶構造としてβ晶を有するポリプロピレン樹脂を含むポリプロピレン樹脂組成物のキャストシートを用い、該キャストシートを縦延伸することにより、β晶の結晶構造をα晶に転移させるとともに、製膜方向に配向したα晶のフィブリル状物を形成させ、そのフィブリル状物を横延伸工程において開裂させて網目構造を形成させることにより、貫通孔を有するフィルムを得る手法である。また、キャストシートとは、溶融したポリプロピレン樹脂組成物をキャストドラム上でシート状に成型した、未延伸のシートを意味する。β晶法においては、多孔性ポリプロピレンフィルムの物性を向上させるために、ポリプロピレン樹脂組成物にβ晶核剤を添加しβ晶形成能を高めることが好ましい。β晶形成能が高いことにより、α晶への結晶転移を起こす結晶構造の部分が多くなり、フィルム中に形成される空隙の数を増加させることができる。また、β晶核剤の種類、配合量を含む原料の制御により、ポリプロピレン結晶の配向性、緻密性を向上させ、孔を均一かつ緻密に開孔させることにより、多孔性ポリプロピレンフィルムを蓄電デバイス用セパレータとして用いた際のセパレータ抵抗の低減を達成することができる。また、開孔状態の均一性を向上させることにより、粗大孔を減少させ、弾性率や引張伸度などの機械物性を向上させることができる。これらのβ晶法におけるセパレータ抵抗の低減と機械特性の向上は、後述する原料を用い、特定の製膜条件で製膜を行うことにより達成することができる。
 つぎに本発明の多孔性ポリプロピレンフィルムに用いる原料について説明する。
 本発明において、多孔性ポリプロピレンフィルムのβ晶形成能は、貫通孔の形成性の観点から60%より大きいことが好ましい。より好ましくは65~90%であり、65~85%が特に好ましい。β晶形成能が60%以下の場合、β晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、フィルムのセパレータ抵抗に劣る場合がある。β晶形成能を60%より大きくする方法としては、アイソタクチックインデックスの高いポリプロピレン樹脂を使用する方法や、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いる方法がある。本発明において、多孔性ポリプロピレンフィルムのβ晶形成能を60%より大きくするためには、後述するβ晶核剤を使用する方法、またはアイソタクチックインデックスの高いポリプロピレン樹脂に後述するβ晶核剤を添加剤として用いる方法によることが好ましい。
 本発明で用いるβ晶核剤としては、たとえば、1,2-ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリ金属塩またはアルカリ土類金属塩、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、キナクリドン系顔料を挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を用いることが好ましい。また、β晶核剤の含有量は、使用するβ晶核剤によって異なるが、上記アミド系化合物を使用する場合には、ポリプロピレン組成物全体を基準とした場合に、0.05~0.5質量%であることが好ましく、0.1~0.3質量%であればより好ましく、後述する効果を有するためには0.22~0.3質量%であれば特に好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性ポリプロピレンフィルムのセパレータ抵抗が増大する場合がある。また、0.5質量%を超えると、β晶核剤の凝集などによりフィルムに粗大ボイドが形成され、弾性率、突刺強度、引張強度などの機械強度が低下する場合がある。
 本発明においては、ポリプロピレン樹脂として、メルトフローレート(以下、MFRと表記する)が2~30g/10分のアイソタクチックポリプロピレン樹脂を用いることが、押出成形性及び孔の均一な形成の観点から好ましい。ここで、MFRとはJIS K 7210(1995)で規定されている樹脂の溶融粘度を示す指標であり、ポリオレフィン樹脂の特徴を示す物性値である。本発明においては230℃、2.16kgで測定した値を指す。
 また、本発明において使用するポリピロピレン樹脂のアイソタクチックインデックスは、結晶性の観点から90~99.9%の範囲であることが好ましく、95~99%であることがより好ましい。アイソタクチックインデックスが90%未満の場合、樹脂の結晶性が低くなり、製膜性が低下する場合があるほか、フィルムの弾性率に劣る場合がある。
本発明の多孔性ポリプロピレンフィルム中には、本発明の効果を損なわない範囲において、ポリオレフィン系樹脂、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂などを含有させてもよい。
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂組成物には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤の添加量は、ポリプロピレン樹脂組成物100質量部に対して2質量部以下とすることが好ましく、より好ましくは1質量部以下、更に好ましくは0.5質量部以下である。
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂組成物には、本発明の効果を損なわない範囲において、無機あるいは有機粒子からなる孔形成助剤を含有させることができる。孔形成助剤を使用する場合、含有量はポリプロピレン組成物樹脂100質量部に対して5質量部以下とすることが好ましく、より好ましくは2質量部以下、更に好ましくは1質量部以下である。5質量部を超えると、蓄電デバイス用セパレータとして使用した際に、脱落した粒子が電池性能の低下の原因となる場合があるほか、原料コストが高くなり、生産性が低下する場合がある。
 本発明の多孔性ポリプロピレンフィルムは、長手方向の弾性率をTMD、幅方向の弾性率をTTD、厚み25μmあたりのセパレータ抵抗をRとした場合に、下記式(1)を満足している。
  (TMD+TTD)/R≧450   ・・・(1)
 (TMD+TTD)/R(単位は、MPa/Ω)は、より好ましくは470以上であり、500以上であることが特に好ましい。(TMD+TTD)が高い、つまりフィルムの面弾性率が高い場合、フィルム搬送時に流れシワが入りにくくなり、熱保護層などの機能層の塗工工程および電池組立工程における工程適性が良好となる。また、セパレータ抵抗Rが低い場合、特に電気自動車、ハイブリッド車などの高出力を必要とする用途のセパレータとして好適に使用することができる。上記式(1)で表される(TMD+TTD)/Rは、熱保護層などの機能層の塗工工程および電池組立工程における工程適性とセパレータ抵抗のバランスを推し量る指標として用いることができる。(TMD+TTD)/Rが450未満の場合、熱保護層などの機能層の塗工工程および電池組立工程における工程適性と高出力の両立が困難になる場合がある。なお、上記の弾性率(TMD、TTD)とは、2%伸長時の引張応力と歪み変位量の傾きから算出される値のことをいい、セパレータ抵抗Rとは、本発明の多孔性ポリプロピレンフィルムを用いて後述する方法によって評価セルを作製し、交流インピーダンス法で測定したCole-Coleプロットを図1に示す等価回路から算出した電気抵抗のことをいう。式(1)を満足するフィルムを得る方法としては、ポリプロピレン樹脂組成物中のβ晶核剤の添加量、およびポリプロピレン樹脂組成物のβ晶の結晶化温度の調整、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御することができる。
 本発明の多孔性ポリプロピレンフィルムの長手方向の弾性率と幅方向の弾性率の和(TMD+TTD)は、1,200MPa以上が好ましく、1,300MPa以上であることがより好ましく、1,400MPa以上が更に好ましい。TMD+TTDが1,200MPa未満の場合、フィルム搬送時のフィルムの長手方向および/または幅方向の圧縮変形が大きく、流れシワが入りやすくなり、熱保護層などの機能層の塗工工程で品質を低下させたり、特に枚葉セパレータを用いるラミネート型積層電池での電池組立工程における工程適性が不十分となる場合がある。TMD+TTDが1,200MPa以上のフィルムを得る方法としては、ポリプロピレン樹脂組成物中のβ晶核剤の添加量、およびポリプロピレン樹脂組成物のβ晶の結晶化温度の調整、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御することができる。
 また、本発明の多孔性ポリプロピレンフィルムは、長手方向の弾性率と幅方向の弾性率との比TMD/TTDが下記式(2)を満たしていることが好ましい。
  0.7≦TMD/TTD≦2.0  ・・・(2)
 TMD/TTDの値は、より好ましくは0.7≦TMD/TTD<1.5であり、0.8≦TMD/TTD≦1.4であることが特に好ましい。TMD+TTDが0.7未満、または、2.0より大きい場合、フィルム全体の弾性率が高い場合においても長手方向もしくは幅方向の弾性率のみ高くなり、熱保護層などの機能層の塗工工程および電池組立工程における工程適性が不十分となる場合がある。式(2)を満足するフィルムを得る方法としては、ポリプロピレン樹脂組成物中のβ晶核剤の添加量、およびポリプロピレン樹脂組成物のβ晶の結晶化温度の調整、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御することができる。
 本発明の多孔性ポリプロピレンフィルムは、透気抵抗が10~1,000秒/100mlであることが好ましく、50~500秒/100mlであることがより好ましく、80~300秒/100mlであることが特に好ましい。透気抵抗が10秒/100ml未満であると、工程適性の指標となる弾性率などの機械強度が低下する場合がある。透気抵抗が1,000秒/100mlを超えると、特に高出力蓄電デバイス用のセパレータとして用いた際に出力特性が低下する場合がある。透気抵抗は、ポリプロピレン樹脂組成物中のβ晶核剤の添加量、およびポリプロピレン樹脂組成物のβ晶の結晶化温度の調整、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。
 本発明の多孔性ポリプロピレンフィルムは、フィルム厚みが5~30μmであることが好ましい。厚みが5μm未満では使用時にフィルムが破断する場合があり、30μmを超えると、セパレータ抵抗が増大してセパレータとして用いた際に出力特性が低下する場合があるほか、蓄電デバイス内に占める多孔性フィルムの体積割合が高くなり、高いエネルギー密度を得ることができなくなる場合がある。フィルム厚みは10~25μmであればより好ましく、12~20μmであればなお好ましい。
 本発明の多孔性ポリプロピレンフィルムは、電池特性と機械強度を両立させる観点から、空孔率が40~85%であることが好ましい。より好ましくは50~80%であり、55~75%であることが特に好ましい。空孔率が40%未満では、特に高出力蓄電デバイス用のセパレータとして使用したときにセパレータ抵抗が大きくなる場合がある。一方、空孔率が85%を超えると、弾性率や引張強度などの機械強度が低下する場合がある。空孔率は、ポリプロピレン樹脂組成物中のβ晶核剤の添加量、およびポリプロピレン樹脂組成物のβ晶の結晶化温度の調整、キャストドラムの温度、長手方向の延伸倍率と温度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。
 本発明の多孔性ポリプロピレンフィルムは、135℃で60分間熱処理したときの幅方向の熱収縮率が10%以下であることが好ましい。より好ましくは0.5~8%であり、1~5%であることがより好ましい。135℃での熱収縮率が10%を超えると、蓄電デバイス用セパレータとして使用した際に安全性に劣る場合があるほか、例えば本発明の多孔性ポリオレフィンフィルムの表面にポリエチレンを含むシャットダウン層を塗布や共押出積層などにより積層して用いる場合、135℃付近でポリエチレンが溶けて孔を塞いだときに、基材である多孔性ポリオレフィンフィルムも収縮して電池が短絡する場合がある。熱収縮率は、ポリプロピレン樹脂組成物中のβ晶核剤の添加量、およびポリプロピレン樹脂組成物のβ晶の結晶化温度の調整、キャストドラムの温度、長手方向の延伸倍率と温度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。
 尚、本願においては、フィルムの製膜する方向に平行な方向を、製膜方向、長手方向、MD方向あるいは単にMDと称し、フィルム面内で製膜方向に直交する方向を幅方向、TD方向あるいは単にTDと称することがある。
 本発明の多孔性ポリプロピレンフィルムは、様々な効果を付与する目的で積層構成をとっても構わない。積層数としては、2層積層でも3層積層でも、また、それ以上の積層数でもよく、本発明の多孔性ポリプロピレンフィルムを少なくとも一方の表層とする積層形態、本発明の多孔性ポリプロピレンフィルムの両表面に同一もしくは異なる表層を形成する積層形態のいずれを採用してもよい。積層の方法としては、共押出によるフィードブロック方式やマルチマニホールド方式、ラミネートにより多孔性フィルム同士を貼り合わせる方法などがあるが、積層する樹脂などの物性に応じて、積層方法を選択すればよい。積層構成としては、例えば、低温でのシャットダウン性を付与する目的でポリエチレンを含む層を積層したり、強度や耐熱性を付与する目的でポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂のような耐熱性を有するポリマーからなる多孔層、無機フィラーを配してなる多孔層、もしくは、高剛性ポリマーと無機フィラーからなる多孔層を積層したり、易接着性を付与する目的で多孔層を積層したりすることができる。
 以下に本発明の多孔性ポリプロピレンフィルムの製造方法を具体的な一例をもとに説明する。なお、本発明のフィルムの製造方法はこれに限定されるものではない。
 ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂99.5質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3質量部、酸化防止剤として“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部、滑剤としてベヘン酸カルシウム0.05質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給して溶融混練を行い、ストランドをダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(a)を準備する。この際、溶融温度は280~310℃とすることが好ましく、チップの断面形状は、円、楕円、長方形のいずれでもかまわない。作製したポリプロピレン樹脂組成物(a)のポリプロピレンβ晶の結晶化温度は、セパレータ抵抗を低減させ、面弾性率とのバランスを向上させるためには、130℃以上であることが好ましく、130.5℃以上であることがより好ましい。ポリプロピレンβ晶の結晶化温度に特に上限は設けないが、140℃以上にすることは困難である。驚くべきことに、吐出後のストランドの引取速度を大きくして、ドラフト比を大きくすることにより、ポリプロピレン樹脂組成物のβ晶の結晶化温度を上記温度範囲に制御でき、かつ多孔性ポリプロピレンフィルムのセパレータ抵抗を低減させることが可能となることがわかった。上記効果を得るためには、ドラフト比は2以上が好ましく、3以上がより好ましい。ドラフト比が10を超えるとストランドが切れやすく、ガット切れが起こりやすくなる場合がありチップの生産性が低下しやすい。なお、ドラフト比はストランドの引取速度/吐出された原料の流速で算出することができる。
 次に、ポリプロピレン樹脂組成物(a)を単軸押出機に供給し、200~230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸シートを得る。ここで、共押出しによりフィルムを積層構造とする場合には、複数の押出機を用い、フィードブロック方式やマルチマニホールド方式により積層構造とした後、Tダイよりキャストドラム上に吐出し、積層未延伸シートとすることができる。キャストドラムは、表面温度が105~130℃であることが、セパレータ抵抗制御の観点から好ましく、120~130℃がさらに好ましい。この際、特にシートの端部の成形が、後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態から、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。
 次に、得られたキャストシートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、セパレータ抵抗と機械強度のバランスの取れたフィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に、長手方向に延伸後、幅方向に延伸することが好ましい。
 具体的な延伸条件としては、まず、キャストシートの温度を制御しながら長手方向に延伸する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては、セパレータ抵抗と機械強度の両立の観点から、90~140℃であることが好ましく、より好ましくは100~130℃、特に好ましくは115~125℃である。90℃未満では、フィルムが破断する場合がある。また、140℃を超えると、セパレータ抵抗が増大する場合がある。セパレータ抵抗と機械強度の両立の観点から、長手方向の延伸倍率としては、3~10倍であることが好ましい。より好ましくは4.5~6倍である。長手方向の延伸倍率を高くするほどセパレータ抵抗は低下するが、10倍を超えて延伸すると、次の横延伸工程でフィルム破れが起きやすくするほか、セパレータ抵抗が低くなりすぎて機械強度が低下する場合がある。
 次に、テンター式延伸機にフィルム端部を把持させて導入する。横延伸温度は、セパレータ抵抗と機械強度の両立の観点から、130~155℃であることが好ましく、より好ましくは145~155℃である。130℃未満ではフィルムが破断する場合があり、155℃を超えるとセパレータ抵抗が増大する場合がある。幅方向の延伸倍率は、引張強度向上の観点から2~12倍であることが好ましい。より好ましくは7~11倍、更に好ましくは7~10倍である。2倍未満であると、セパレータ抵抗が増大したり、幅方向の引張強度が低下する場合がある。12倍を超えるとフィルムが破断する場合がある。また、横延伸速度としては、500~6,000%/分で行うことが好ましく、1,000~5,000%/分であればより好ましい。セパレータ抵抗を低減させながら弾性率を向上させる観点から、面積倍率(縦延伸倍率×横延伸倍率)は、高倍とするほうが好ましく、具体的には20倍以上が好ましく、30倍以上がより好ましく、45倍以上が特に好ましい。面積倍率が低倍の場合、具体的には20倍未満の場合、セパレータ抵抗低減と弾性率向上が困難となる。面積倍率の上限は特に設けないが、60倍を超えると製膜性が悪くなり破れやすくなる場合がある。
 横延伸に続いて、テンター内で熱処理工程を行う。ここで熱処理工程は、横延伸後の幅のまま熱処理を行う熱固定ゾーン(以後、HS1ゾーンと記す)、テンターの幅を狭めてフィルムを弛緩させながら熱処理を行うリラックスゾーン(以後、Rxゾーンと記す)、リラックス後の幅のまま熱処理を行う熱固定ゾーン(以後、HS2ゾーンと記す)の3ゾーンに分かれていることが、セパレータ抵抗と機械強度の両立、さらには低熱収の観点から好ましい。
 HS1ゾーンの温度は、セパレータ抵抗と機械強度の両立の観点から140~165℃であることが好ましく、150~160℃であることがより好ましい。140℃未満であると、幅方向の熱収縮率が大きくなる場合がある。165℃を超えると、フィルムの配向緩和が大きすぎるために、続くRxゾーンにおいて弛緩率を高くできず、セパレータ抵抗と機械強度の両立が困難となる場合があるほか、高温により孔周辺のポリマーが溶けて透気抵抗が大きくなる場合がある。
 HS1ゾーンでの熱処理時間は、幅方向の熱収縮率と生産性の両立の観点から0.1秒以上10秒以下であることが好ましい。
 本発明におけるRxゾーンでの弛緩率は、セパレータ抵抗低下と面弾性率低減に加えて熱収縮率低減の観点から、5~35%であることが好ましく、5~30%であるとより好ましい。弛緩率が5%未満であると面弾性率が小さくなり、および/または熱収縮率が大きくなる場合がある。35%を超えるとセパレータ抵抗が増大する場合があるほか、幅方向の厚み斑や平面性が低下する場合がある。
 Rxゾーンの温度は、セパレータ抵抗低下と熱収縮率低減の観点から、155~170℃であることが好ましく、160~165℃であるとより好ましい。Rxゾーンの温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できない場合があるほか、幅方向の熱収縮率が大きくなる場合がある。170℃を超えると、高温により孔周辺のポリマーが溶けてセパレータ抵抗が増大する場合がある。
 Rxゾーンでの弛緩速度は、100~1,000%/分であることが好ましく、150~500%/分であることがより好ましい。弛緩速度が100%/分未満であると、製膜速度を遅くしたり、テンター長さを長くする必要があり、生産性に劣る場合がある。1,000%/分を超えると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなり、テンター内でフィルムがばたついて破れたり、幅方向の物性ムラや平面性の低下を生じる場合がある。
 HS2ゾーンの温度は、セパレータ抵抗と機械強度の両立の観点から、155~165℃であることが好ましく、160~165℃であることがより好ましい。155℃未満であると、熱弛緩後のフィルムの緊張が不十分となり、幅方向の物性ムラや平面性の低下を生じたり、幅方向の熱収縮率が大きくなる場合がある。また、HS2の温度が高い方が、機械強度が高くなる傾向があり、155℃未満では機械強度に劣る場合がある。165℃を超えると、高温により孔周辺のポリマーが溶けてセパレータ抵抗が増大する場合がある。
 本発明におけるHS2ゾーンでの熱処理時間は、幅方向の物性ムラや平面性と生産性の両立の観点から0.1秒以上10秒以下であることが好ましい。熱固定工程後のフィルムは、テンターのクリップで把持した耳部をスリットして除去し、ワインダーでコアに巻き取って製品とする。
 本発明の多孔性ポリプロピレンフィルムは、セパレータ抵抗、生産性に優れるだけでなく、機械強度、耐熱性、押出安定性に優れることから、包装用品、衛生用品、農業用品、建築用品、医療用品、分離膜、光拡散板、反射シート用途で用いることができるが、特に蓄電デバイス用のセパレータとして好ましく用いることができる。ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタなどの電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。また、本発明の多孔性ポリプロピレンフィルム上に機能層を積層してなる蓄電デバイス用セパレータは、セパレータ抵抗、生産性に優れるだけでなく、耐熱性、耐短絡性に優れることから、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置用の蓄電デバイスセパレータとして好ましく用いることができる。さらに、本発明の多孔性ポリプロピレンフィルムを用いたセパレータと、正極と、負極と、電解液を備えた蓄電デバイスは、セパレータの優れた特性から産業機器や自動車の電源装置に好適に用いることができる。
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
 (1)厚み
 接触式の膜厚計ミツトヨ社製ライトマチックVL-50A(10.5mmφ超硬球面測定子、測定荷重0.06N)にて測定した。測定は場所を替えて10回行い、その平均値を多孔性ポリプロピレンフィルムの厚みt(μm)とした。
 (2)透気抵抗
 多孔性プロピレンフィルムから100mm×100mmの大きさの正方形を切取り試料とした。JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を行った。測定は試料を替えて3回行い、透過時間の平均値をそのフィルムの透気抵抗とした。
 (3)厚み25μmで換算したセパレータ抵抗:R
 多孔性ポリプロピレンフィルムを直径24mmの円形に打ち抜いた。下から直径16mmのSUS板、多孔性ポリプロピレンフィルム、直径16mmのSUS板の順に重ね、蓋付ステンレス金属製小容器(宝泉(株)製、HSセル、ばね圧1kgf)に収納した。容器と蓋とは絶縁され、容器と蓋はSUS板と接している。この容器内にエチレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPFを濃度1モル/リットルとなるように溶解させた電解液を注入して密閉し、評価用セルを作製した。
 作製した各評価用セルについて、25℃雰囲気下で、電圧振幅10mV、周波数10Hz~100kHzの条件下で、交流インピーダンスを測定し、得られたCole-Coleプロットから、図1の等価回路をモデルとしてセパレータ抵抗Rsを求めた。測定は試料を替えて5回行い、セパレータ抵抗の平均値をセパレータ抵抗Rとした。
 厚み25μmあたりのセパレータ抵抗Rは以下の式を用いて算出した。tは(1)で測定した多孔性ポリプロピレンフィルムの厚みである。
 R(Ω)=R×25/t
 (4)β晶形成能
 多孔性ポリプロピレンフィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から220℃まで40℃/分で昇温(ファーストラン)し、5分間保持した後、20℃まで10℃/分で冷却(ファーストラン)した。5分保持後、再度40℃/分で昇温(セカンドラン)した際に観測される融解ピークにについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とした。なお、融解熱量の校正はインジウムを用いて行った。
  β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
 ただし、上記方法において、140~160℃に頂点を有する融解ピークが存在するが、β晶の融解に起因するものか不明確な場合は、140~160℃に融解ピークの頂点が存在することと、下記条件で調製したサンプルについて、上記2θ/θスキャンで得られる回折プロファイルの各回折ピーク強度から算出されるK値が0.3以上であることをもってβ晶形成能を有するものと判定する。
 下記にサンプル調製条件、広角X線回折法の測定条件を示す。
 ・サンプル:
 フィルムの方向を揃え、熱プレス調製後のサンプル厚さが1mm程度になるよう重ね合わせる。このサンプルを0.5mm厚みの2枚のアルミ板で挟み、280℃で3分間熱プレスして融解・圧縮させ、ポリマー鎖をほぼ無配向化する。得られたシートを、アルミ板ごと取り出した直後に100℃の沸騰水中に5分間浸漬して結晶化させる。その後25℃の雰囲気下で冷却して得られるシートを切り出したサンプルを測定に供する。
 ・広角X線回折方法測定条件:
 上記条件に準拠し、2θ/θスキャンによりX線回折プロファイルを得る。
 ここで、K値は、2θ=16°付近に観測され、β晶に起因する(300)面の回折ピーク強度(Hβ1とする)と、2θ=14,17,19°付近にそれぞれ観測され、α晶に起因する(110)、(040)、(130)面の回折ピーク強度(それぞれHα1、Hα2、Hα3とする)とから、下記の数式により算出できる。K値はβ晶の比率を示す経験的な値であり、各回折ピーク強度の算出方法などK値の詳細については、ターナージョーンズ(A.Turner Jones)ら,“マクロモレキュラーレ ヒェミー”(Makromolekulare Chemie),75,134-158頁(1964)を参考にすればよい。
  K = Hβ1/{Hβ1+(Hα1+Hα2+Hα3)}
 なお、ポリプロピレンの結晶型(α晶、β晶)の構造、得られる広角X線回折プロファイルなどは、例えば、エドワード・P・ムーア・Jr.著、“ポリプロピレンハンドブック”、工業調査会(1998)、p.135-163;田所宏行著、“高分子の構造”、化学同人(1976)、p.393;ターナージョーンズ(A.Turner Jones)ら,“マクロモレキュラーレ ヒェミー”(Makromolekulare Chemie),75,134-158頁(1964)や、これらに挙げられた参考文献なども含めて多数の報告があり、それを参考にすればよい。
 (5)結晶化温度(Tc)
 上記(4)の示差走査熱量計によるβ晶形成能の測定方法と同様の方法で原料のポリプロピレン樹脂を測定し、冷却(ファーストラン)のピーク温度を結晶化温度(Tc)とした。
 (6)メルトフローレート(MFR)
 ポリプロピレン樹脂のMFRは、JIS K 7210(1995)の条件M(230℃、2.16kg)に準拠して測定した。ポリエチレン樹脂は、JIS K 7210(1995)の条件D(190℃、2.16kg)に準拠して測定した。
 (7)弾性率
 多孔性ポリプロピレンフィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。なお、150mmの長さ方向をフィルムの製膜方向および幅方向に合わせて各方向のサンプルを用意した。引張試験機(オリエンテック製テンシロンUCT-100)を用い、JIS K 7127(1999、試験片タイプ2)に準じて引張試験を行い、2%引張伸度時の引張応力と歪み変位量を測定し、その傾きを算出した。なお、測定は、初期チャック間距離は50mm、引張速度を300mm/分とし、製膜方向および幅方向について各5回ずつ測定し、算出した傾きの平均値を弾性率とした。
 (8)熱収縮率
 多孔性ポリプロピレンフィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。なお、150mmの長さ方向をフィルムの幅方向に合わせた。サンプルの中央部を中心として100mmの間隔で2本の標線を描き、加熱前の標線間距離Lを測定した。サンプルの上端を把持し、下端に3gの加重をかけ、135℃に加熱した熱風オーブン内に吊り下げて60分間静置し加熱処理を行った。熱処理後、放冷し、加重を外したあと、加熱後の標線間距離Lを測定し、以下の式で計算される値を熱収縮率とした。測定は各サンプルにつき5回実施して平均値を表1に記した。
 熱収縮率(%) = (L-L)/L×100
 (実施例1)
 ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、ドラフト比が3.8となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が130.8℃となるポリプロピレン樹脂組成物(I)のチップを得た。
 得られたポリプロピレン樹脂組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃で弛緩率17%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み23μmの多孔性ポリプロピレンフィルムを得た。
 (実施例2)
 実施例1で得られたポリプロピレン樹脂組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて121℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に4.5倍延伸を行った。次に端部をクリップで把持して151℃で幅方向に7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃で弛緩率20%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み21μmの多孔性ポリプロピレンフィルムを得た。
 (実施例3)
 実施例1で得られたポリプロピレン樹脂組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて122℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍延伸を行った。次に端部をクリップで把持して149℃で幅方向に7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に165℃で弛緩率20%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み20μmの多孔性ポリプロピレンフィルムを得た。
 (実施例4)
 実施例1で得られたポリプロピレン樹脂組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に4.5倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.6倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に164℃で弛緩率17%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま162℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み21μmの多孔性ポリプロピレンフィルムを得た。
 (実施例5)
 実施例1で得られたポリプロピレン樹脂組成物(I)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.3倍延伸を行った。次に端部をクリップで把持して149℃で幅方向に9.5倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃で弛緩率25%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま162℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み19μmの多孔性ポリプロピレンフィルムを得た。
 (実施例6)
 ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX“(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、ドラフト比が3.0となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が130.2℃となるポリプロピレン樹脂組成物(II)のチップを得た。
 得られたポリプロピレン樹脂組成物(II)を実施例1と同様の製膜条件で製膜を行い、厚み22μmの多孔性ポリプロピレンフィルムを得た。
 (実施例7)
 融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を89.7質量部、融点162℃、MFR=0.5g/10分の住友化学(株)製ホモポリプロピレンD101を10質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、ドラフト比が3.8となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が130.3℃となるポリプロピレン樹脂組成物(III)チップを得た。
 ポリプロピレン樹脂組成物(I)をA層用の単軸の溶融押出機に供給し、ポリプロピレン樹脂組成物(I)90質量部とポリプロピレン樹脂組成物(III)10質量部をドライブレンドしてB層用の単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のB/A/B複合Tダイにて1/8/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。得られたキャストシートを実施例1と同様の製膜条件で製膜を行い、厚み21μmの多孔性ポリプロピレンフィルムを得た。
 (比較例1)
 ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、ドラフト比が1.9となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が128.0℃となるポリプロピレン樹脂組成物(IV)のチップを得た。
 得られたポリプロピレン樹脂組成物(IV)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃で弛緩率17%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み23μmの多孔性ポリプロピレンフィルムを得た。
 (比較例2)
 比較例1で得られたポリプロピレン樹脂組成物(IV)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて119℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃で弛緩率20%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま160℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み20μmの多孔性ポリプロピレンフィルムを得た。
 (比較例3)
 比較例1で得られたポリプロピレン樹脂組成物(III)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して155℃で幅方向に9.5倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃で弛緩率17%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み24μmの多孔性ポリプロピレンフィルムを得た。
 (比較例4)
 融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を70質量部、共重合PE樹脂としてエチレン-オクテン-1共重合体(ダウ・ケミカル製 Engage8411、MFR:18g/10分)を30質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、ドラフト比が1.8となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が128.3℃となるポリプロピレン樹脂組成物(V)チップを得た。
 比較例1で得たポリプロピレン樹脂組成物(IV)90質量部とポリプロピレン樹脂組成物(V)10質量部をドライブレンドしてA層用の単軸の溶融押出機に供給し、比較例1で得たポリプロピレン樹脂組成物(IV)をB層用の単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のB/A/B複合Tダイにて1/8/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に4.0倍延伸した。
 続く熱処理工程で、160℃で弛緩率10%となるようリラックスを行った(Rxゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み24μmの多孔性ポリプロピレンフィルムを得た。
Figure JPOXMLDOC01-appb-T000001
 本発明の要件を満足する実施例にかかる多孔性ポリプロピレンフィルムでは、セパレータ抵抗が低いだけでなく、弾性率に優れることが確認された。本発明にかかる多孔性ポリプロピレンフィルムは、セパレータ抵抗と弾性率のバランスが良好であるだけでなく、耐熱性に優れるため、蓄電デバイス用のセパレータとして好適に用いることが可能である。一方、比較例では、機械特性に劣る、または、セパレータ抵抗に劣るなどのことからセパレータ抵抗と弾性率のバランスが良好ではなく、蓄電デバイス用のセパレータとして用いることが困難である。
 本発明の多孔性プロピレンフィルムは、耐熱保護層などの塗工層を塗工するおよび電池組立工程適性かつセパレータとして用いた際のセパレータ抵抗に優れるため、蓄電デバイス用のセパレータとして好適に使用することができる。

Claims (8)

  1.  ポリプロピレン樹脂を主成分とし、下記式(1)を満たす多孔性ポリプロピレンフィルム。
      (TMD+TTD)/R≧450   ・・・(1)
     (式(1)中、TMDは長手方向の弾性率(MPa)、TTDは幅方向の弾性率(MPa)、Rは厚み25μmあたりのセパレータ抵抗(Ω)である。)
  2.  前記長手方向の弾性率TMDと、前記幅方向の弾性率TTDとの和(TMD+TTD)が、下記式(2)を満たす、請求項1記載の多孔性ポリプロピレンフィルム。
      TMD+TTD≧1,200  ・・・(2)
  3.  前記多孔性ポリプロピレンフィルム中の前記ポリプロピレン樹脂の含有量が80質量%以上である、請求項1または2に記載の多孔性ポリプロピレンフィルム。
  4.  前記多孔性ポリプロピレンフィルムのβ晶形成能が60%以上である、請求項1~3のいずれかに記載の多孔性ポリプロピレンフィルム。
  5.  135℃で60分間熱処理したときの幅方向の熱収縮率が10%以下である、請求項1~4のいずれかに記載の多孔性ポリプロピレンフィルム。
  6.  請求項1~5のいずれかに記載の多孔性ポリプロピレンフィルムを用いてなる蓄電デバイス用セパレータ。
  7.  請求項1~5のいずれかに記載の多孔性ポリプロピレンフィルム上に機能層を積層してなる蓄電デバイス用セパレータ。
  8.  請求項6または7に記載の蓄電デバイス用セパレータと、正極と、負極と、電解液とを備えた蓄電デバイス。
PCT/JP2013/065839 2012-06-13 2013-06-07 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス WO2013187326A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551821A JPWO2013187326A1 (ja) 2012-06-13 2013-06-07 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012133540 2012-06-13
JP2012-133540 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187326A1 true WO2013187326A1 (ja) 2013-12-19

Family

ID=49758149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065839 WO2013187326A1 (ja) 2012-06-13 2013-06-07 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス

Country Status (2)

Country Link
JP (1) JPWO2013187326A1 (ja)
WO (1) WO2013187326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780046A4 (en) * 2018-03-29 2022-01-05 Nippon Kodoshi Corporation SEPARATOR FOR ALUMINUM ELECTROLYTIC CAPACITORS AND ALUMINUM ELECTROLYTIC CAPACITOR
WO2023115625A1 (zh) * 2021-12-23 2023-06-29 中材锂膜有限公司 高弹性形变量隔膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195030A (ja) * 1986-02-21 1987-08-27 Toray Ind Inc 微孔性フイルムの製造方法
JPS63199742A (ja) * 1987-02-17 1988-08-18 Toray Ind Inc ポリプロピレン微孔性フイルムの製造方法
JPH02311539A (ja) * 1989-05-26 1990-12-27 Toray Ind Inc 多孔性ポリプロピレンフィルム
WO2005103127A1 (ja) * 2004-04-22 2005-11-03 Toray Industries, Inc. 微孔性ポリプロピレンフィルムおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195030A (ja) * 1986-02-21 1987-08-27 Toray Ind Inc 微孔性フイルムの製造方法
JPS63199742A (ja) * 1987-02-17 1988-08-18 Toray Ind Inc ポリプロピレン微孔性フイルムの製造方法
JPH02311539A (ja) * 1989-05-26 1990-12-27 Toray Ind Inc 多孔性ポリプロピレンフィルム
WO2005103127A1 (ja) * 2004-04-22 2005-11-03 Toray Industries, Inc. 微孔性ポリプロピレンフィルムおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780046A4 (en) * 2018-03-29 2022-01-05 Nippon Kodoshi Corporation SEPARATOR FOR ALUMINUM ELECTROLYTIC CAPACITORS AND ALUMINUM ELECTROLYTIC CAPACITOR
WO2023115625A1 (zh) * 2021-12-23 2023-06-29 中材锂膜有限公司 高弹性形变量隔膜及其制备方法

Also Published As

Publication number Publication date
JPWO2013187326A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5354132B2 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP5626486B2 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5907066B2 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5807388B2 (ja) 多孔性ポリプロピレンフィルム
JP5604898B2 (ja) 多孔性ポリプロピレンフィルムロール
JP6273898B2 (ja) 積層多孔性フィルムおよび蓄電デバイス
JPWO2011043160A1 (ja) 多孔性ポリプロピレンフィルムロール
JP6361251B2 (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2013100487A (ja) 多孔性フィルムおよび蓄電デバイス
JP5724329B2 (ja) 多孔性ポリプロピレンフィルムロール
JP5267754B1 (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP5672015B2 (ja) 二軸配向多孔性フィルムおよび蓄電デバイス
WO2014103713A1 (ja) 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
WO2013187326A1 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5354131B2 (ja) 多孔性ポリプロピレンフィルム、積層多孔性フィルムおよび蓄電デバイス
JP2014060146A (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2014198832A (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2012169510A1 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
WO2013054931A1 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP2014035890A (ja) 蓄電デバイスの製造方法
JP2013199511A (ja) 多孔性フィルムおよび蓄電デバイス
JP2013100458A (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2020147639A (ja) 多孔性フィルム捲回体、およびその製造方法
JP2015110688A (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013551821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803762

Country of ref document: EP

Kind code of ref document: A1